linux/fs/ext4/file.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/file.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/file.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  ext4 fs regular file handling primitives
  16 *
  17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  18 *      (jj@sunsite.ms.mff.cuni.cz)
  19 */
  20
  21#include <linux/time.h>
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/path.h>
  25#include <linux/dax.h>
  26#include <linux/quotaops.h>
  27#include <linux/pagevec.h>
  28#include <linux/uio.h>
  29#include "ext4.h"
  30#include "ext4_jbd2.h"
  31#include "xattr.h"
  32#include "acl.h"
  33
  34/*
  35 * Called when an inode is released. Note that this is different
  36 * from ext4_file_open: open gets called at every open, but release
  37 * gets called only when /all/ the files are closed.
  38 */
  39static int ext4_release_file(struct inode *inode, struct file *filp)
  40{
  41        if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
  42                ext4_alloc_da_blocks(inode);
  43                ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
  44        }
  45        /* if we are the last writer on the inode, drop the block reservation */
  46        if ((filp->f_mode & FMODE_WRITE) &&
  47                        (atomic_read(&inode->i_writecount) == 1) &&
  48                        !EXT4_I(inode)->i_reserved_data_blocks)
  49        {
  50                down_write(&EXT4_I(inode)->i_data_sem);
  51                ext4_discard_preallocations(inode);
  52                up_write(&EXT4_I(inode)->i_data_sem);
  53        }
  54        if (is_dx(inode) && filp->private_data)
  55                ext4_htree_free_dir_info(filp->private_data);
  56
  57        return 0;
  58}
  59
  60static void ext4_unwritten_wait(struct inode *inode)
  61{
  62        wait_queue_head_t *wq = ext4_ioend_wq(inode);
  63
  64        wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
  65}
  66
  67/*
  68 * This tests whether the IO in question is block-aligned or not.
  69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
  70 * are converted to written only after the IO is complete.  Until they are
  71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
  72 * it needs to zero out portions of the start and/or end block.  If 2 AIO
  73 * threads are at work on the same unwritten block, they must be synchronized
  74 * or one thread will zero the other's data, causing corruption.
  75 */
  76static int
  77ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
  78{
  79        struct super_block *sb = inode->i_sb;
  80        int blockmask = sb->s_blocksize - 1;
  81
  82        if (pos >= i_size_read(inode))
  83                return 0;
  84
  85        if ((pos | iov_iter_alignment(from)) & blockmask)
  86                return 1;
  87
  88        return 0;
  89}
  90
  91static ssize_t
  92ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  93{
  94        struct inode *inode = file_inode(iocb->ki_filp);
  95        int o_direct = iocb->ki_flags & IOCB_DIRECT;
  96        int unaligned_aio = 0;
  97        int overwrite = 0;
  98        ssize_t ret;
  99
 100        inode_lock(inode);
 101        ret = generic_write_checks(iocb, from);
 102        if (ret <= 0)
 103                goto out;
 104
 105        /*
 106         * Unaligned direct AIO must be serialized among each other as zeroing
 107         * of partial blocks of two competing unaligned AIOs can result in data
 108         * corruption.
 109         */
 110        if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
 111            !is_sync_kiocb(iocb) &&
 112            ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
 113                unaligned_aio = 1;
 114                ext4_unwritten_wait(inode);
 115        }
 116
 117        /*
 118         * If we have encountered a bitmap-format file, the size limit
 119         * is smaller than s_maxbytes, which is for extent-mapped files.
 120         */
 121        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
 122                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 123
 124                if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
 125                        ret = -EFBIG;
 126                        goto out;
 127                }
 128                iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
 129        }
 130
 131        iocb->private = &overwrite;
 132        if (o_direct) {
 133                size_t length = iov_iter_count(from);
 134                loff_t pos = iocb->ki_pos;
 135
 136                /* check whether we do a DIO overwrite or not */
 137                if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
 138                    pos + length <= i_size_read(inode)) {
 139                        struct ext4_map_blocks map;
 140                        unsigned int blkbits = inode->i_blkbits;
 141                        int err, len;
 142
 143                        map.m_lblk = pos >> blkbits;
 144                        map.m_len = EXT4_MAX_BLOCKS(length, pos, blkbits);
 145                        len = map.m_len;
 146
 147                        err = ext4_map_blocks(NULL, inode, &map, 0);
 148                        /*
 149                         * 'err==len' means that all of blocks has
 150                         * been preallocated no matter they are
 151                         * initialized or not.  For excluding
 152                         * unwritten extents, we need to check
 153                         * m_flags.  There are two conditions that
 154                         * indicate for initialized extents.  1) If we
 155                         * hit extent cache, EXT4_MAP_MAPPED flag is
 156                         * returned; 2) If we do a real lookup,
 157                         * non-flags are returned.  So we should check
 158                         * these two conditions.
 159                         */
 160                        if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
 161                                overwrite = 1;
 162                }
 163        }
 164
 165        ret = __generic_file_write_iter(iocb, from);
 166        inode_unlock(inode);
 167
 168        if (ret > 0)
 169                ret = generic_write_sync(iocb, ret);
 170
 171        return ret;
 172
 173out:
 174        inode_unlock(inode);
 175        return ret;
 176}
 177
 178#ifdef CONFIG_FS_DAX
 179static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 180{
 181        int result;
 182        handle_t *handle = NULL;
 183        struct inode *inode = file_inode(vma->vm_file);
 184        struct super_block *sb = inode->i_sb;
 185        bool write = vmf->flags & FAULT_FLAG_WRITE;
 186
 187        if (write) {
 188                sb_start_pagefault(sb);
 189                file_update_time(vma->vm_file);
 190                down_read(&EXT4_I(inode)->i_mmap_sem);
 191                handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
 192                                                EXT4_DATA_TRANS_BLOCKS(sb));
 193        } else
 194                down_read(&EXT4_I(inode)->i_mmap_sem);
 195
 196        if (IS_ERR(handle))
 197                result = VM_FAULT_SIGBUS;
 198        else
 199                result = dax_fault(vma, vmf, ext4_dax_get_block);
 200
 201        if (write) {
 202                if (!IS_ERR(handle))
 203                        ext4_journal_stop(handle);
 204                up_read(&EXT4_I(inode)->i_mmap_sem);
 205                sb_end_pagefault(sb);
 206        } else
 207                up_read(&EXT4_I(inode)->i_mmap_sem);
 208
 209        return result;
 210}
 211
 212static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
 213                                                pmd_t *pmd, unsigned int flags)
 214{
 215        int result;
 216        handle_t *handle = NULL;
 217        struct inode *inode = file_inode(vma->vm_file);
 218        struct super_block *sb = inode->i_sb;
 219        bool write = flags & FAULT_FLAG_WRITE;
 220
 221        if (write) {
 222                sb_start_pagefault(sb);
 223                file_update_time(vma->vm_file);
 224                down_read(&EXT4_I(inode)->i_mmap_sem);
 225                handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
 226                                ext4_chunk_trans_blocks(inode,
 227                                                        PMD_SIZE / PAGE_SIZE));
 228        } else
 229                down_read(&EXT4_I(inode)->i_mmap_sem);
 230
 231        if (IS_ERR(handle))
 232                result = VM_FAULT_SIGBUS;
 233        else
 234                result = dax_pmd_fault(vma, addr, pmd, flags,
 235                                         ext4_dax_get_block);
 236
 237        if (write) {
 238                if (!IS_ERR(handle))
 239                        ext4_journal_stop(handle);
 240                up_read(&EXT4_I(inode)->i_mmap_sem);
 241                sb_end_pagefault(sb);
 242        } else
 243                up_read(&EXT4_I(inode)->i_mmap_sem);
 244
 245        return result;
 246}
 247
 248/*
 249 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
 250 * handler we check for races agaist truncate. Note that since we cycle through
 251 * i_mmap_sem, we are sure that also any hole punching that began before we
 252 * were called is finished by now and so if it included part of the file we
 253 * are working on, our pte will get unmapped and the check for pte_same() in
 254 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
 255 * desired.
 256 */
 257static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
 258                                struct vm_fault *vmf)
 259{
 260        struct inode *inode = file_inode(vma->vm_file);
 261        struct super_block *sb = inode->i_sb;
 262        loff_t size;
 263        int ret;
 264
 265        sb_start_pagefault(sb);
 266        file_update_time(vma->vm_file);
 267        down_read(&EXT4_I(inode)->i_mmap_sem);
 268        size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 269        if (vmf->pgoff >= size)
 270                ret = VM_FAULT_SIGBUS;
 271        else
 272                ret = dax_pfn_mkwrite(vma, vmf);
 273        up_read(&EXT4_I(inode)->i_mmap_sem);
 274        sb_end_pagefault(sb);
 275
 276        return ret;
 277}
 278
 279static const struct vm_operations_struct ext4_dax_vm_ops = {
 280        .fault          = ext4_dax_fault,
 281        .pmd_fault      = ext4_dax_pmd_fault,
 282        .page_mkwrite   = ext4_dax_fault,
 283        .pfn_mkwrite    = ext4_dax_pfn_mkwrite,
 284};
 285#else
 286#define ext4_dax_vm_ops ext4_file_vm_ops
 287#endif
 288
 289static const struct vm_operations_struct ext4_file_vm_ops = {
 290        .fault          = ext4_filemap_fault,
 291        .map_pages      = filemap_map_pages,
 292        .page_mkwrite   = ext4_page_mkwrite,
 293};
 294
 295static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
 296{
 297        struct inode *inode = file->f_mapping->host;
 298
 299        if (ext4_encrypted_inode(inode)) {
 300                int err = fscrypt_get_encryption_info(inode);
 301                if (err)
 302                        return 0;
 303                if (!fscrypt_has_encryption_key(inode))
 304                        return -ENOKEY;
 305        }
 306        file_accessed(file);
 307        if (IS_DAX(file_inode(file))) {
 308                vma->vm_ops = &ext4_dax_vm_ops;
 309                vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
 310        } else {
 311                vma->vm_ops = &ext4_file_vm_ops;
 312        }
 313        return 0;
 314}
 315
 316static int ext4_file_open(struct inode * inode, struct file * filp)
 317{
 318        struct super_block *sb = inode->i_sb;
 319        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 320        struct vfsmount *mnt = filp->f_path.mnt;
 321        struct dentry *dir;
 322        struct path path;
 323        char buf[64], *cp;
 324        int ret;
 325
 326        if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
 327                     !(sb->s_flags & MS_RDONLY))) {
 328                sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
 329                /*
 330                 * Sample where the filesystem has been mounted and
 331                 * store it in the superblock for sysadmin convenience
 332                 * when trying to sort through large numbers of block
 333                 * devices or filesystem images.
 334                 */
 335                memset(buf, 0, sizeof(buf));
 336                path.mnt = mnt;
 337                path.dentry = mnt->mnt_root;
 338                cp = d_path(&path, buf, sizeof(buf));
 339                if (!IS_ERR(cp)) {
 340                        handle_t *handle;
 341                        int err;
 342
 343                        handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
 344                        if (IS_ERR(handle))
 345                                return PTR_ERR(handle);
 346                        BUFFER_TRACE(sbi->s_sbh, "get_write_access");
 347                        err = ext4_journal_get_write_access(handle, sbi->s_sbh);
 348                        if (err) {
 349                                ext4_journal_stop(handle);
 350                                return err;
 351                        }
 352                        strlcpy(sbi->s_es->s_last_mounted, cp,
 353                                sizeof(sbi->s_es->s_last_mounted));
 354                        ext4_handle_dirty_super(handle, sb);
 355                        ext4_journal_stop(handle);
 356                }
 357        }
 358        if (ext4_encrypted_inode(inode)) {
 359                ret = fscrypt_get_encryption_info(inode);
 360                if (ret)
 361                        return -EACCES;
 362                if (!fscrypt_has_encryption_key(inode))
 363                        return -ENOKEY;
 364        }
 365
 366        dir = dget_parent(file_dentry(filp));
 367        if (ext4_encrypted_inode(d_inode(dir)) &&
 368                        !fscrypt_has_permitted_context(d_inode(dir), inode)) {
 369                ext4_warning(inode->i_sb,
 370                             "Inconsistent encryption contexts: %lu/%lu",
 371                             (unsigned long) d_inode(dir)->i_ino,
 372                             (unsigned long) inode->i_ino);
 373                dput(dir);
 374                return -EPERM;
 375        }
 376        dput(dir);
 377        /*
 378         * Set up the jbd2_inode if we are opening the inode for
 379         * writing and the journal is present
 380         */
 381        if (filp->f_mode & FMODE_WRITE) {
 382                ret = ext4_inode_attach_jinode(inode);
 383                if (ret < 0)
 384                        return ret;
 385        }
 386        return dquot_file_open(inode, filp);
 387}
 388
 389/*
 390 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
 391 * file rather than ext4_ext_walk_space() because we can introduce
 392 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
 393 * function.  When extent status tree has been fully implemented, it will
 394 * track all extent status for a file and we can directly use it to
 395 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
 396 */
 397
 398/*
 399 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
 400 * lookup page cache to check whether or not there has some data between
 401 * [startoff, endoff] because, if this range contains an unwritten extent,
 402 * we determine this extent as a data or a hole according to whether the
 403 * page cache has data or not.
 404 */
 405static int ext4_find_unwritten_pgoff(struct inode *inode,
 406                                     int whence,
 407                                     ext4_lblk_t end_blk,
 408                                     loff_t *offset)
 409{
 410        struct pagevec pvec;
 411        unsigned int blkbits;
 412        pgoff_t index;
 413        pgoff_t end;
 414        loff_t endoff;
 415        loff_t startoff;
 416        loff_t lastoff;
 417        int found = 0;
 418
 419        blkbits = inode->i_sb->s_blocksize_bits;
 420        startoff = *offset;
 421        lastoff = startoff;
 422        endoff = (loff_t)end_blk << blkbits;
 423
 424        index = startoff >> PAGE_SHIFT;
 425        end = endoff >> PAGE_SHIFT;
 426
 427        pagevec_init(&pvec, 0);
 428        do {
 429                int i, num;
 430                unsigned long nr_pages;
 431
 432                num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
 433                nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
 434                                          (pgoff_t)num);
 435                if (nr_pages == 0) {
 436                        if (whence == SEEK_DATA)
 437                                break;
 438
 439                        BUG_ON(whence != SEEK_HOLE);
 440                        /*
 441                         * If this is the first time to go into the loop and
 442                         * offset is not beyond the end offset, it will be a
 443                         * hole at this offset
 444                         */
 445                        if (lastoff == startoff || lastoff < endoff)
 446                                found = 1;
 447                        break;
 448                }
 449
 450                /*
 451                 * If this is the first time to go into the loop and
 452                 * offset is smaller than the first page offset, it will be a
 453                 * hole at this offset.
 454                 */
 455                if (lastoff == startoff && whence == SEEK_HOLE &&
 456                    lastoff < page_offset(pvec.pages[0])) {
 457                        found = 1;
 458                        break;
 459                }
 460
 461                for (i = 0; i < nr_pages; i++) {
 462                        struct page *page = pvec.pages[i];
 463                        struct buffer_head *bh, *head;
 464
 465                        /*
 466                         * If the current offset is not beyond the end of given
 467                         * range, it will be a hole.
 468                         */
 469                        if (lastoff < endoff && whence == SEEK_HOLE &&
 470                            page->index > end) {
 471                                found = 1;
 472                                *offset = lastoff;
 473                                goto out;
 474                        }
 475
 476                        lock_page(page);
 477
 478                        if (unlikely(page->mapping != inode->i_mapping)) {
 479                                unlock_page(page);
 480                                continue;
 481                        }
 482
 483                        if (!page_has_buffers(page)) {
 484                                unlock_page(page);
 485                                continue;
 486                        }
 487
 488                        if (page_has_buffers(page)) {
 489                                lastoff = page_offset(page);
 490                                bh = head = page_buffers(page);
 491                                do {
 492                                        if (buffer_uptodate(bh) ||
 493                                            buffer_unwritten(bh)) {
 494                                                if (whence == SEEK_DATA)
 495                                                        found = 1;
 496                                        } else {
 497                                                if (whence == SEEK_HOLE)
 498                                                        found = 1;
 499                                        }
 500                                        if (found) {
 501                                                *offset = max_t(loff_t,
 502                                                        startoff, lastoff);
 503                                                unlock_page(page);
 504                                                goto out;
 505                                        }
 506                                        lastoff += bh->b_size;
 507                                        bh = bh->b_this_page;
 508                                } while (bh != head);
 509                        }
 510
 511                        lastoff = page_offset(page) + PAGE_SIZE;
 512                        unlock_page(page);
 513                }
 514
 515                /*
 516                 * The no. of pages is less than our desired, that would be a
 517                 * hole in there.
 518                 */
 519                if (nr_pages < num && whence == SEEK_HOLE) {
 520                        found = 1;
 521                        *offset = lastoff;
 522                        break;
 523                }
 524
 525                index = pvec.pages[i - 1]->index + 1;
 526                pagevec_release(&pvec);
 527        } while (index <= end);
 528
 529out:
 530        pagevec_release(&pvec);
 531        return found;
 532}
 533
 534/*
 535 * ext4_seek_data() retrieves the offset for SEEK_DATA.
 536 */
 537static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
 538{
 539        struct inode *inode = file->f_mapping->host;
 540        struct extent_status es;
 541        ext4_lblk_t start, last, end;
 542        loff_t dataoff, isize;
 543        int blkbits;
 544        int ret;
 545
 546        inode_lock(inode);
 547
 548        isize = i_size_read(inode);
 549        if (offset >= isize) {
 550                inode_unlock(inode);
 551                return -ENXIO;
 552        }
 553
 554        blkbits = inode->i_sb->s_blocksize_bits;
 555        start = offset >> blkbits;
 556        last = start;
 557        end = isize >> blkbits;
 558        dataoff = offset;
 559
 560        do {
 561                ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
 562                if (ret <= 0) {
 563                        /* No extent found -> no data */
 564                        if (ret == 0)
 565                                ret = -ENXIO;
 566                        inode_unlock(inode);
 567                        return ret;
 568                }
 569
 570                last = es.es_lblk;
 571                if (last != start)
 572                        dataoff = (loff_t)last << blkbits;
 573                if (!ext4_es_is_unwritten(&es))
 574                        break;
 575
 576                /*
 577                 * If there is a unwritten extent at this offset,
 578                 * it will be as a data or a hole according to page
 579                 * cache that has data or not.
 580                 */
 581                if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
 582                                              es.es_lblk + es.es_len, &dataoff))
 583                        break;
 584                last += es.es_len;
 585                dataoff = (loff_t)last << blkbits;
 586                cond_resched();
 587        } while (last <= end);
 588
 589        inode_unlock(inode);
 590
 591        if (dataoff > isize)
 592                return -ENXIO;
 593
 594        return vfs_setpos(file, dataoff, maxsize);
 595}
 596
 597/*
 598 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
 599 */
 600static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
 601{
 602        struct inode *inode = file->f_mapping->host;
 603        struct extent_status es;
 604        ext4_lblk_t start, last, end;
 605        loff_t holeoff, isize;
 606        int blkbits;
 607        int ret;
 608
 609        inode_lock(inode);
 610
 611        isize = i_size_read(inode);
 612        if (offset >= isize) {
 613                inode_unlock(inode);
 614                return -ENXIO;
 615        }
 616
 617        blkbits = inode->i_sb->s_blocksize_bits;
 618        start = offset >> blkbits;
 619        last = start;
 620        end = isize >> blkbits;
 621        holeoff = offset;
 622
 623        do {
 624                ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
 625                if (ret < 0) {
 626                        inode_unlock(inode);
 627                        return ret;
 628                }
 629                /* Found a hole? */
 630                if (ret == 0 || es.es_lblk > last) {
 631                        if (last != start)
 632                                holeoff = (loff_t)last << blkbits;
 633                        break;
 634                }
 635                /*
 636                 * If there is a unwritten extent at this offset,
 637                 * it will be as a data or a hole according to page
 638                 * cache that has data or not.
 639                 */
 640                if (ext4_es_is_unwritten(&es) &&
 641                    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
 642                                              last + es.es_len, &holeoff))
 643                        break;
 644
 645                last += es.es_len;
 646                holeoff = (loff_t)last << blkbits;
 647                cond_resched();
 648        } while (last <= end);
 649
 650        inode_unlock(inode);
 651
 652        if (holeoff > isize)
 653                holeoff = isize;
 654
 655        return vfs_setpos(file, holeoff, maxsize);
 656}
 657
 658/*
 659 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
 660 * by calling generic_file_llseek_size() with the appropriate maxbytes
 661 * value for each.
 662 */
 663loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
 664{
 665        struct inode *inode = file->f_mapping->host;
 666        loff_t maxbytes;
 667
 668        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
 669                maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
 670        else
 671                maxbytes = inode->i_sb->s_maxbytes;
 672
 673        switch (whence) {
 674        case SEEK_SET:
 675        case SEEK_CUR:
 676        case SEEK_END:
 677                return generic_file_llseek_size(file, offset, whence,
 678                                                maxbytes, i_size_read(inode));
 679        case SEEK_DATA:
 680                return ext4_seek_data(file, offset, maxbytes);
 681        case SEEK_HOLE:
 682                return ext4_seek_hole(file, offset, maxbytes);
 683        }
 684
 685        return -EINVAL;
 686}
 687
 688const struct file_operations ext4_file_operations = {
 689        .llseek         = ext4_llseek,
 690        .read_iter      = generic_file_read_iter,
 691        .write_iter     = ext4_file_write_iter,
 692        .unlocked_ioctl = ext4_ioctl,
 693#ifdef CONFIG_COMPAT
 694        .compat_ioctl   = ext4_compat_ioctl,
 695#endif
 696        .mmap           = ext4_file_mmap,
 697        .open           = ext4_file_open,
 698        .release        = ext4_release_file,
 699        .fsync          = ext4_sync_file,
 700        .get_unmapped_area = thp_get_unmapped_area,
 701        .splice_read    = generic_file_splice_read,
 702        .splice_write   = iter_file_splice_write,
 703        .fallocate      = ext4_fallocate,
 704};
 705
 706const struct inode_operations ext4_file_inode_operations = {
 707        .setattr        = ext4_setattr,
 708        .getattr        = ext4_getattr,
 709        .listxattr      = ext4_listxattr,
 710        .get_acl        = ext4_get_acl,
 711        .set_acl        = ext4_set_acl,
 712        .fiemap         = ext4_fiemap,
 713};
 714
 715