linux/fs/libfs.c
<<
>>
Prefs
   1/*
   2 *      fs/libfs.c
   3 *      Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
  10#include <linux/mount.h>
  11#include <linux/vfs.h>
  12#include <linux/quotaops.h>
  13#include <linux/mutex.h>
  14#include <linux/namei.h>
  15#include <linux/exportfs.h>
  16#include <linux/writeback.h>
  17#include <linux/buffer_head.h> /* sync_mapping_buffers */
  18
  19#include <asm/uaccess.h>
  20
  21#include "internal.h"
  22
  23int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  24                   struct kstat *stat)
  25{
  26        struct inode *inode = d_inode(dentry);
  27        generic_fillattr(inode, stat);
  28        stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  29        return 0;
  30}
  31EXPORT_SYMBOL(simple_getattr);
  32
  33int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  34{
  35        buf->f_type = dentry->d_sb->s_magic;
  36        buf->f_bsize = PAGE_SIZE;
  37        buf->f_namelen = NAME_MAX;
  38        return 0;
  39}
  40EXPORT_SYMBOL(simple_statfs);
  41
  42/*
  43 * Retaining negative dentries for an in-memory filesystem just wastes
  44 * memory and lookup time: arrange for them to be deleted immediately.
  45 */
  46int always_delete_dentry(const struct dentry *dentry)
  47{
  48        return 1;
  49}
  50EXPORT_SYMBOL(always_delete_dentry);
  51
  52const struct dentry_operations simple_dentry_operations = {
  53        .d_delete = always_delete_dentry,
  54};
  55EXPORT_SYMBOL(simple_dentry_operations);
  56
  57/*
  58 * Lookup the data. This is trivial - if the dentry didn't already
  59 * exist, we know it is negative.  Set d_op to delete negative dentries.
  60 */
  61struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  62{
  63        if (dentry->d_name.len > NAME_MAX)
  64                return ERR_PTR(-ENAMETOOLONG);
  65        if (!dentry->d_sb->s_d_op)
  66                d_set_d_op(dentry, &simple_dentry_operations);
  67        d_add(dentry, NULL);
  68        return NULL;
  69}
  70EXPORT_SYMBOL(simple_lookup);
  71
  72int dcache_dir_open(struct inode *inode, struct file *file)
  73{
  74        file->private_data = d_alloc_cursor(file->f_path.dentry);
  75
  76        return file->private_data ? 0 : -ENOMEM;
  77}
  78EXPORT_SYMBOL(dcache_dir_open);
  79
  80int dcache_dir_close(struct inode *inode, struct file *file)
  81{
  82        dput(file->private_data);
  83        return 0;
  84}
  85EXPORT_SYMBOL(dcache_dir_close);
  86
  87/* parent is locked at least shared */
  88static struct dentry *next_positive(struct dentry *parent,
  89                                    struct list_head *from,
  90                                    int count)
  91{
  92        unsigned *seq = &parent->d_inode->i_dir_seq, n;
  93        struct dentry *res;
  94        struct list_head *p;
  95        bool skipped;
  96        int i;
  97
  98retry:
  99        i = count;
 100        skipped = false;
 101        n = smp_load_acquire(seq) & ~1;
 102        res = NULL;
 103        rcu_read_lock();
 104        for (p = from->next; p != &parent->d_subdirs; p = p->next) {
 105                struct dentry *d = list_entry(p, struct dentry, d_child);
 106                if (!simple_positive(d)) {
 107                        skipped = true;
 108                } else if (!--i) {
 109                        res = d;
 110                        break;
 111                }
 112        }
 113        rcu_read_unlock();
 114        if (skipped) {
 115                smp_rmb();
 116                if (unlikely(*seq != n))
 117                        goto retry;
 118        }
 119        return res;
 120}
 121
 122static void move_cursor(struct dentry *cursor, struct list_head *after)
 123{
 124        struct dentry *parent = cursor->d_parent;
 125        unsigned n, *seq = &parent->d_inode->i_dir_seq;
 126        spin_lock(&parent->d_lock);
 127        for (;;) {
 128                n = *seq;
 129                if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
 130                        break;
 131                cpu_relax();
 132        }
 133        __list_del(cursor->d_child.prev, cursor->d_child.next);
 134        if (after)
 135                list_add(&cursor->d_child, after);
 136        else
 137                list_add_tail(&cursor->d_child, &parent->d_subdirs);
 138        smp_store_release(seq, n + 2);
 139        spin_unlock(&parent->d_lock);
 140}
 141
 142loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 143{
 144        struct dentry *dentry = file->f_path.dentry;
 145        switch (whence) {
 146                case 1:
 147                        offset += file->f_pos;
 148                case 0:
 149                        if (offset >= 0)
 150                                break;
 151                default:
 152                        return -EINVAL;
 153        }
 154        if (offset != file->f_pos) {
 155                file->f_pos = offset;
 156                if (file->f_pos >= 2) {
 157                        struct dentry *cursor = file->private_data;
 158                        struct dentry *to;
 159                        loff_t n = file->f_pos - 2;
 160
 161                        inode_lock_shared(dentry->d_inode);
 162                        to = next_positive(dentry, &dentry->d_subdirs, n);
 163                        move_cursor(cursor, to ? &to->d_child : NULL);
 164                        inode_unlock_shared(dentry->d_inode);
 165                }
 166        }
 167        return offset;
 168}
 169EXPORT_SYMBOL(dcache_dir_lseek);
 170
 171/* Relationship between i_mode and the DT_xxx types */
 172static inline unsigned char dt_type(struct inode *inode)
 173{
 174        return (inode->i_mode >> 12) & 15;
 175}
 176
 177/*
 178 * Directory is locked and all positive dentries in it are safe, since
 179 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 180 * both impossible due to the lock on directory.
 181 */
 182
 183int dcache_readdir(struct file *file, struct dir_context *ctx)
 184{
 185        struct dentry *dentry = file->f_path.dentry;
 186        struct dentry *cursor = file->private_data;
 187        struct list_head *p = &cursor->d_child;
 188        struct dentry *next;
 189        bool moved = false;
 190
 191        if (!dir_emit_dots(file, ctx))
 192                return 0;
 193
 194        if (ctx->pos == 2)
 195                p = &dentry->d_subdirs;
 196        while ((next = next_positive(dentry, p, 1)) != NULL) {
 197                if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 198                              d_inode(next)->i_ino, dt_type(d_inode(next))))
 199                        break;
 200                moved = true;
 201                p = &next->d_child;
 202                ctx->pos++;
 203        }
 204        if (moved)
 205                move_cursor(cursor, p);
 206        return 0;
 207}
 208EXPORT_SYMBOL(dcache_readdir);
 209
 210ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 211{
 212        return -EISDIR;
 213}
 214EXPORT_SYMBOL(generic_read_dir);
 215
 216const struct file_operations simple_dir_operations = {
 217        .open           = dcache_dir_open,
 218        .release        = dcache_dir_close,
 219        .llseek         = dcache_dir_lseek,
 220        .read           = generic_read_dir,
 221        .iterate_shared = dcache_readdir,
 222        .fsync          = noop_fsync,
 223};
 224EXPORT_SYMBOL(simple_dir_operations);
 225
 226const struct inode_operations simple_dir_inode_operations = {
 227        .lookup         = simple_lookup,
 228};
 229EXPORT_SYMBOL(simple_dir_inode_operations);
 230
 231static const struct super_operations simple_super_operations = {
 232        .statfs         = simple_statfs,
 233};
 234
 235/*
 236 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 237 * will never be mountable)
 238 */
 239struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
 240        const struct super_operations *ops, const struct xattr_handler **xattr,
 241        const struct dentry_operations *dops, unsigned long magic)
 242{
 243        struct super_block *s;
 244        struct dentry *dentry;
 245        struct inode *root;
 246        struct qstr d_name = QSTR_INIT(name, strlen(name));
 247
 248        s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
 249        if (IS_ERR(s))
 250                return ERR_CAST(s);
 251
 252        s->s_maxbytes = MAX_LFS_FILESIZE;
 253        s->s_blocksize = PAGE_SIZE;
 254        s->s_blocksize_bits = PAGE_SHIFT;
 255        s->s_magic = magic;
 256        s->s_op = ops ? ops : &simple_super_operations;
 257        s->s_xattr = xattr;
 258        s->s_time_gran = 1;
 259        root = new_inode(s);
 260        if (!root)
 261                goto Enomem;
 262        /*
 263         * since this is the first inode, make it number 1. New inodes created
 264         * after this must take care not to collide with it (by passing
 265         * max_reserved of 1 to iunique).
 266         */
 267        root->i_ino = 1;
 268        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 269        root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 270        dentry = __d_alloc(s, &d_name);
 271        if (!dentry) {
 272                iput(root);
 273                goto Enomem;
 274        }
 275        d_instantiate(dentry, root);
 276        s->s_root = dentry;
 277        s->s_d_op = dops;
 278        s->s_flags |= MS_ACTIVE;
 279        return dget(s->s_root);
 280
 281Enomem:
 282        deactivate_locked_super(s);
 283        return ERR_PTR(-ENOMEM);
 284}
 285EXPORT_SYMBOL(mount_pseudo_xattr);
 286
 287int simple_open(struct inode *inode, struct file *file)
 288{
 289        if (inode->i_private)
 290                file->private_data = inode->i_private;
 291        return 0;
 292}
 293EXPORT_SYMBOL(simple_open);
 294
 295int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 296{
 297        struct inode *inode = d_inode(old_dentry);
 298
 299        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 300        inc_nlink(inode);
 301        ihold(inode);
 302        dget(dentry);
 303        d_instantiate(dentry, inode);
 304        return 0;
 305}
 306EXPORT_SYMBOL(simple_link);
 307
 308int simple_empty(struct dentry *dentry)
 309{
 310        struct dentry *child;
 311        int ret = 0;
 312
 313        spin_lock(&dentry->d_lock);
 314        list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 315                spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 316                if (simple_positive(child)) {
 317                        spin_unlock(&child->d_lock);
 318                        goto out;
 319                }
 320                spin_unlock(&child->d_lock);
 321        }
 322        ret = 1;
 323out:
 324        spin_unlock(&dentry->d_lock);
 325        return ret;
 326}
 327EXPORT_SYMBOL(simple_empty);
 328
 329int simple_unlink(struct inode *dir, struct dentry *dentry)
 330{
 331        struct inode *inode = d_inode(dentry);
 332
 333        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 334        drop_nlink(inode);
 335        dput(dentry);
 336        return 0;
 337}
 338EXPORT_SYMBOL(simple_unlink);
 339
 340int simple_rmdir(struct inode *dir, struct dentry *dentry)
 341{
 342        if (!simple_empty(dentry))
 343                return -ENOTEMPTY;
 344
 345        drop_nlink(d_inode(dentry));
 346        simple_unlink(dir, dentry);
 347        drop_nlink(dir);
 348        return 0;
 349}
 350EXPORT_SYMBOL(simple_rmdir);
 351
 352int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 353                  struct inode *new_dir, struct dentry *new_dentry,
 354                  unsigned int flags)
 355{
 356        struct inode *inode = d_inode(old_dentry);
 357        int they_are_dirs = d_is_dir(old_dentry);
 358
 359        if (flags & ~RENAME_NOREPLACE)
 360                return -EINVAL;
 361
 362        if (!simple_empty(new_dentry))
 363                return -ENOTEMPTY;
 364
 365        if (d_really_is_positive(new_dentry)) {
 366                simple_unlink(new_dir, new_dentry);
 367                if (they_are_dirs) {
 368                        drop_nlink(d_inode(new_dentry));
 369                        drop_nlink(old_dir);
 370                }
 371        } else if (they_are_dirs) {
 372                drop_nlink(old_dir);
 373                inc_nlink(new_dir);
 374        }
 375
 376        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 377                new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 378
 379        return 0;
 380}
 381EXPORT_SYMBOL(simple_rename);
 382
 383/**
 384 * simple_setattr - setattr for simple filesystem
 385 * @dentry: dentry
 386 * @iattr: iattr structure
 387 *
 388 * Returns 0 on success, -error on failure.
 389 *
 390 * simple_setattr is a simple ->setattr implementation without a proper
 391 * implementation of size changes.
 392 *
 393 * It can either be used for in-memory filesystems or special files
 394 * on simple regular filesystems.  Anything that needs to change on-disk
 395 * or wire state on size changes needs its own setattr method.
 396 */
 397int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 398{
 399        struct inode *inode = d_inode(dentry);
 400        int error;
 401
 402        error = setattr_prepare(dentry, iattr);
 403        if (error)
 404                return error;
 405
 406        if (iattr->ia_valid & ATTR_SIZE)
 407                truncate_setsize(inode, iattr->ia_size);
 408        setattr_copy(inode, iattr);
 409        mark_inode_dirty(inode);
 410        return 0;
 411}
 412EXPORT_SYMBOL(simple_setattr);
 413
 414int simple_readpage(struct file *file, struct page *page)
 415{
 416        clear_highpage(page);
 417        flush_dcache_page(page);
 418        SetPageUptodate(page);
 419        unlock_page(page);
 420        return 0;
 421}
 422EXPORT_SYMBOL(simple_readpage);
 423
 424int simple_write_begin(struct file *file, struct address_space *mapping,
 425                        loff_t pos, unsigned len, unsigned flags,
 426                        struct page **pagep, void **fsdata)
 427{
 428        struct page *page;
 429        pgoff_t index;
 430
 431        index = pos >> PAGE_SHIFT;
 432
 433        page = grab_cache_page_write_begin(mapping, index, flags);
 434        if (!page)
 435                return -ENOMEM;
 436
 437        *pagep = page;
 438
 439        if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 440                unsigned from = pos & (PAGE_SIZE - 1);
 441
 442                zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 443        }
 444        return 0;
 445}
 446EXPORT_SYMBOL(simple_write_begin);
 447
 448/**
 449 * simple_write_end - .write_end helper for non-block-device FSes
 450 * @available: See .write_end of address_space_operations
 451 * @file:               "
 452 * @mapping:            "
 453 * @pos:                "
 454 * @len:                "
 455 * @copied:             "
 456 * @page:               "
 457 * @fsdata:             "
 458 *
 459 * simple_write_end does the minimum needed for updating a page after writing is
 460 * done. It has the same API signature as the .write_end of
 461 * address_space_operations vector. So it can just be set onto .write_end for
 462 * FSes that don't need any other processing. i_mutex is assumed to be held.
 463 * Block based filesystems should use generic_write_end().
 464 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 465 * is not called, so a filesystem that actually does store data in .write_inode
 466 * should extend on what's done here with a call to mark_inode_dirty() in the
 467 * case that i_size has changed.
 468 */
 469int simple_write_end(struct file *file, struct address_space *mapping,
 470                        loff_t pos, unsigned len, unsigned copied,
 471                        struct page *page, void *fsdata)
 472{
 473        struct inode *inode = page->mapping->host;
 474        loff_t last_pos = pos + copied;
 475
 476        /* zero the stale part of the page if we did a short copy */
 477        if (copied < len) {
 478                unsigned from = pos & (PAGE_SIZE - 1);
 479
 480                zero_user(page, from + copied, len - copied);
 481        }
 482
 483        if (!PageUptodate(page))
 484                SetPageUptodate(page);
 485        /*
 486         * No need to use i_size_read() here, the i_size
 487         * cannot change under us because we hold the i_mutex.
 488         */
 489        if (last_pos > inode->i_size)
 490                i_size_write(inode, last_pos);
 491
 492        set_page_dirty(page);
 493        unlock_page(page);
 494        put_page(page);
 495
 496        return copied;
 497}
 498EXPORT_SYMBOL(simple_write_end);
 499
 500/*
 501 * the inodes created here are not hashed. If you use iunique to generate
 502 * unique inode values later for this filesystem, then you must take care
 503 * to pass it an appropriate max_reserved value to avoid collisions.
 504 */
 505int simple_fill_super(struct super_block *s, unsigned long magic,
 506                      struct tree_descr *files)
 507{
 508        struct inode *inode;
 509        struct dentry *root;
 510        struct dentry *dentry;
 511        int i;
 512
 513        s->s_blocksize = PAGE_SIZE;
 514        s->s_blocksize_bits = PAGE_SHIFT;
 515        s->s_magic = magic;
 516        s->s_op = &simple_super_operations;
 517        s->s_time_gran = 1;
 518
 519        inode = new_inode(s);
 520        if (!inode)
 521                return -ENOMEM;
 522        /*
 523         * because the root inode is 1, the files array must not contain an
 524         * entry at index 1
 525         */
 526        inode->i_ino = 1;
 527        inode->i_mode = S_IFDIR | 0755;
 528        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 529        inode->i_op = &simple_dir_inode_operations;
 530        inode->i_fop = &simple_dir_operations;
 531        set_nlink(inode, 2);
 532        root = d_make_root(inode);
 533        if (!root)
 534                return -ENOMEM;
 535        for (i = 0; !files->name || files->name[0]; i++, files++) {
 536                if (!files->name)
 537                        continue;
 538
 539                /* warn if it tries to conflict with the root inode */
 540                if (unlikely(i == 1))
 541                        printk(KERN_WARNING "%s: %s passed in a files array"
 542                                "with an index of 1!\n", __func__,
 543                                s->s_type->name);
 544
 545                dentry = d_alloc_name(root, files->name);
 546                if (!dentry)
 547                        goto out;
 548                inode = new_inode(s);
 549                if (!inode) {
 550                        dput(dentry);
 551                        goto out;
 552                }
 553                inode->i_mode = S_IFREG | files->mode;
 554                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 555                inode->i_fop = files->ops;
 556                inode->i_ino = i;
 557                d_add(dentry, inode);
 558        }
 559        s->s_root = root;
 560        return 0;
 561out:
 562        d_genocide(root);
 563        shrink_dcache_parent(root);
 564        dput(root);
 565        return -ENOMEM;
 566}
 567EXPORT_SYMBOL(simple_fill_super);
 568
 569static DEFINE_SPINLOCK(pin_fs_lock);
 570
 571int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 572{
 573        struct vfsmount *mnt = NULL;
 574        spin_lock(&pin_fs_lock);
 575        if (unlikely(!*mount)) {
 576                spin_unlock(&pin_fs_lock);
 577                mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
 578                if (IS_ERR(mnt))
 579                        return PTR_ERR(mnt);
 580                spin_lock(&pin_fs_lock);
 581                if (!*mount)
 582                        *mount = mnt;
 583        }
 584        mntget(*mount);
 585        ++*count;
 586        spin_unlock(&pin_fs_lock);
 587        mntput(mnt);
 588        return 0;
 589}
 590EXPORT_SYMBOL(simple_pin_fs);
 591
 592void simple_release_fs(struct vfsmount **mount, int *count)
 593{
 594        struct vfsmount *mnt;
 595        spin_lock(&pin_fs_lock);
 596        mnt = *mount;
 597        if (!--*count)
 598                *mount = NULL;
 599        spin_unlock(&pin_fs_lock);
 600        mntput(mnt);
 601}
 602EXPORT_SYMBOL(simple_release_fs);
 603
 604/**
 605 * simple_read_from_buffer - copy data from the buffer to user space
 606 * @to: the user space buffer to read to
 607 * @count: the maximum number of bytes to read
 608 * @ppos: the current position in the buffer
 609 * @from: the buffer to read from
 610 * @available: the size of the buffer
 611 *
 612 * The simple_read_from_buffer() function reads up to @count bytes from the
 613 * buffer @from at offset @ppos into the user space address starting at @to.
 614 *
 615 * On success, the number of bytes read is returned and the offset @ppos is
 616 * advanced by this number, or negative value is returned on error.
 617 **/
 618ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 619                                const void *from, size_t available)
 620{
 621        loff_t pos = *ppos;
 622        size_t ret;
 623
 624        if (pos < 0)
 625                return -EINVAL;
 626        if (pos >= available || !count)
 627                return 0;
 628        if (count > available - pos)
 629                count = available - pos;
 630        ret = copy_to_user(to, from + pos, count);
 631        if (ret == count)
 632                return -EFAULT;
 633        count -= ret;
 634        *ppos = pos + count;
 635        return count;
 636}
 637EXPORT_SYMBOL(simple_read_from_buffer);
 638
 639/**
 640 * simple_write_to_buffer - copy data from user space to the buffer
 641 * @to: the buffer to write to
 642 * @available: the size of the buffer
 643 * @ppos: the current position in the buffer
 644 * @from: the user space buffer to read from
 645 * @count: the maximum number of bytes to read
 646 *
 647 * The simple_write_to_buffer() function reads up to @count bytes from the user
 648 * space address starting at @from into the buffer @to at offset @ppos.
 649 *
 650 * On success, the number of bytes written is returned and the offset @ppos is
 651 * advanced by this number, or negative value is returned on error.
 652 **/
 653ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 654                const void __user *from, size_t count)
 655{
 656        loff_t pos = *ppos;
 657        size_t res;
 658
 659        if (pos < 0)
 660                return -EINVAL;
 661        if (pos >= available || !count)
 662                return 0;
 663        if (count > available - pos)
 664                count = available - pos;
 665        res = copy_from_user(to + pos, from, count);
 666        if (res == count)
 667                return -EFAULT;
 668        count -= res;
 669        *ppos = pos + count;
 670        return count;
 671}
 672EXPORT_SYMBOL(simple_write_to_buffer);
 673
 674/**
 675 * memory_read_from_buffer - copy data from the buffer
 676 * @to: the kernel space buffer to read to
 677 * @count: the maximum number of bytes to read
 678 * @ppos: the current position in the buffer
 679 * @from: the buffer to read from
 680 * @available: the size of the buffer
 681 *
 682 * The memory_read_from_buffer() function reads up to @count bytes from the
 683 * buffer @from at offset @ppos into the kernel space address starting at @to.
 684 *
 685 * On success, the number of bytes read is returned and the offset @ppos is
 686 * advanced by this number, or negative value is returned on error.
 687 **/
 688ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 689                                const void *from, size_t available)
 690{
 691        loff_t pos = *ppos;
 692
 693        if (pos < 0)
 694                return -EINVAL;
 695        if (pos >= available)
 696                return 0;
 697        if (count > available - pos)
 698                count = available - pos;
 699        memcpy(to, from + pos, count);
 700        *ppos = pos + count;
 701
 702        return count;
 703}
 704EXPORT_SYMBOL(memory_read_from_buffer);
 705
 706/*
 707 * Transaction based IO.
 708 * The file expects a single write which triggers the transaction, and then
 709 * possibly a read which collects the result - which is stored in a
 710 * file-local buffer.
 711 */
 712
 713void simple_transaction_set(struct file *file, size_t n)
 714{
 715        struct simple_transaction_argresp *ar = file->private_data;
 716
 717        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 718
 719        /*
 720         * The barrier ensures that ar->size will really remain zero until
 721         * ar->data is ready for reading.
 722         */
 723        smp_mb();
 724        ar->size = n;
 725}
 726EXPORT_SYMBOL(simple_transaction_set);
 727
 728char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 729{
 730        struct simple_transaction_argresp *ar;
 731        static DEFINE_SPINLOCK(simple_transaction_lock);
 732
 733        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 734                return ERR_PTR(-EFBIG);
 735
 736        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 737        if (!ar)
 738                return ERR_PTR(-ENOMEM);
 739
 740        spin_lock(&simple_transaction_lock);
 741
 742        /* only one write allowed per open */
 743        if (file->private_data) {
 744                spin_unlock(&simple_transaction_lock);
 745                free_page((unsigned long)ar);
 746                return ERR_PTR(-EBUSY);
 747        }
 748
 749        file->private_data = ar;
 750
 751        spin_unlock(&simple_transaction_lock);
 752
 753        if (copy_from_user(ar->data, buf, size))
 754                return ERR_PTR(-EFAULT);
 755
 756        return ar->data;
 757}
 758EXPORT_SYMBOL(simple_transaction_get);
 759
 760ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 761{
 762        struct simple_transaction_argresp *ar = file->private_data;
 763
 764        if (!ar)
 765                return 0;
 766        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 767}
 768EXPORT_SYMBOL(simple_transaction_read);
 769
 770int simple_transaction_release(struct inode *inode, struct file *file)
 771{
 772        free_page((unsigned long)file->private_data);
 773        return 0;
 774}
 775EXPORT_SYMBOL(simple_transaction_release);
 776
 777/* Simple attribute files */
 778
 779struct simple_attr {
 780        int (*get)(void *, u64 *);
 781        int (*set)(void *, u64);
 782        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 783        char set_buf[24];
 784        void *data;
 785        const char *fmt;        /* format for read operation */
 786        struct mutex mutex;     /* protects access to these buffers */
 787};
 788
 789/* simple_attr_open is called by an actual attribute open file operation
 790 * to set the attribute specific access operations. */
 791int simple_attr_open(struct inode *inode, struct file *file,
 792                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 793                     const char *fmt)
 794{
 795        struct simple_attr *attr;
 796
 797        attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 798        if (!attr)
 799                return -ENOMEM;
 800
 801        attr->get = get;
 802        attr->set = set;
 803        attr->data = inode->i_private;
 804        attr->fmt = fmt;
 805        mutex_init(&attr->mutex);
 806
 807        file->private_data = attr;
 808
 809        return nonseekable_open(inode, file);
 810}
 811EXPORT_SYMBOL_GPL(simple_attr_open);
 812
 813int simple_attr_release(struct inode *inode, struct file *file)
 814{
 815        kfree(file->private_data);
 816        return 0;
 817}
 818EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
 819
 820/* read from the buffer that is filled with the get function */
 821ssize_t simple_attr_read(struct file *file, char __user *buf,
 822                         size_t len, loff_t *ppos)
 823{
 824        struct simple_attr *attr;
 825        size_t size;
 826        ssize_t ret;
 827
 828        attr = file->private_data;
 829
 830        if (!attr->get)
 831                return -EACCES;
 832
 833        ret = mutex_lock_interruptible(&attr->mutex);
 834        if (ret)
 835                return ret;
 836
 837        if (*ppos) {            /* continued read */
 838                size = strlen(attr->get_buf);
 839        } else {                /* first read */
 840                u64 val;
 841                ret = attr->get(attr->data, &val);
 842                if (ret)
 843                        goto out;
 844
 845                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 846                                 attr->fmt, (unsigned long long)val);
 847        }
 848
 849        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 850out:
 851        mutex_unlock(&attr->mutex);
 852        return ret;
 853}
 854EXPORT_SYMBOL_GPL(simple_attr_read);
 855
 856/* interpret the buffer as a number to call the set function with */
 857ssize_t simple_attr_write(struct file *file, const char __user *buf,
 858                          size_t len, loff_t *ppos)
 859{
 860        struct simple_attr *attr;
 861        u64 val;
 862        size_t size;
 863        ssize_t ret;
 864
 865        attr = file->private_data;
 866        if (!attr->set)
 867                return -EACCES;
 868
 869        ret = mutex_lock_interruptible(&attr->mutex);
 870        if (ret)
 871                return ret;
 872
 873        ret = -EFAULT;
 874        size = min(sizeof(attr->set_buf) - 1, len);
 875        if (copy_from_user(attr->set_buf, buf, size))
 876                goto out;
 877
 878        attr->set_buf[size] = '\0';
 879        val = simple_strtoll(attr->set_buf, NULL, 0);
 880        ret = attr->set(attr->data, val);
 881        if (ret == 0)
 882                ret = len; /* on success, claim we got the whole input */
 883out:
 884        mutex_unlock(&attr->mutex);
 885        return ret;
 886}
 887EXPORT_SYMBOL_GPL(simple_attr_write);
 888
 889/**
 890 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 891 * @sb:         filesystem to do the file handle conversion on
 892 * @fid:        file handle to convert
 893 * @fh_len:     length of the file handle in bytes
 894 * @fh_type:    type of file handle
 895 * @get_inode:  filesystem callback to retrieve inode
 896 *
 897 * This function decodes @fid as long as it has one of the well-known
 898 * Linux filehandle types and calls @get_inode on it to retrieve the
 899 * inode for the object specified in the file handle.
 900 */
 901struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 902                int fh_len, int fh_type, struct inode *(*get_inode)
 903                        (struct super_block *sb, u64 ino, u32 gen))
 904{
 905        struct inode *inode = NULL;
 906
 907        if (fh_len < 2)
 908                return NULL;
 909
 910        switch (fh_type) {
 911        case FILEID_INO32_GEN:
 912        case FILEID_INO32_GEN_PARENT:
 913                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 914                break;
 915        }
 916
 917        return d_obtain_alias(inode);
 918}
 919EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 920
 921/**
 922 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 923 * @sb:         filesystem to do the file handle conversion on
 924 * @fid:        file handle to convert
 925 * @fh_len:     length of the file handle in bytes
 926 * @fh_type:    type of file handle
 927 * @get_inode:  filesystem callback to retrieve inode
 928 *
 929 * This function decodes @fid as long as it has one of the well-known
 930 * Linux filehandle types and calls @get_inode on it to retrieve the
 931 * inode for the _parent_ object specified in the file handle if it
 932 * is specified in the file handle, or NULL otherwise.
 933 */
 934struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 935                int fh_len, int fh_type, struct inode *(*get_inode)
 936                        (struct super_block *sb, u64 ino, u32 gen))
 937{
 938        struct inode *inode = NULL;
 939
 940        if (fh_len <= 2)
 941                return NULL;
 942
 943        switch (fh_type) {
 944        case FILEID_INO32_GEN_PARENT:
 945                inode = get_inode(sb, fid->i32.parent_ino,
 946                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
 947                break;
 948        }
 949
 950        return d_obtain_alias(inode);
 951}
 952EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 953
 954/**
 955 * __generic_file_fsync - generic fsync implementation for simple filesystems
 956 *
 957 * @file:       file to synchronize
 958 * @start:      start offset in bytes
 959 * @end:        end offset in bytes (inclusive)
 960 * @datasync:   only synchronize essential metadata if true
 961 *
 962 * This is a generic implementation of the fsync method for simple
 963 * filesystems which track all non-inode metadata in the buffers list
 964 * hanging off the address_space structure.
 965 */
 966int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 967                                 int datasync)
 968{
 969        struct inode *inode = file->f_mapping->host;
 970        int err;
 971        int ret;
 972
 973        err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 974        if (err)
 975                return err;
 976
 977        inode_lock(inode);
 978        ret = sync_mapping_buffers(inode->i_mapping);
 979        if (!(inode->i_state & I_DIRTY_ALL))
 980                goto out;
 981        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 982                goto out;
 983
 984        err = sync_inode_metadata(inode, 1);
 985        if (ret == 0)
 986                ret = err;
 987
 988out:
 989        inode_unlock(inode);
 990        return ret;
 991}
 992EXPORT_SYMBOL(__generic_file_fsync);
 993
 994/**
 995 * generic_file_fsync - generic fsync implementation for simple filesystems
 996 *                      with flush
 997 * @file:       file to synchronize
 998 * @start:      start offset in bytes
 999 * @end:        end offset in bytes (inclusive)
1000 * @datasync:   only synchronize essential metadata if true
1001 *
1002 */
1003
1004int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1005                       int datasync)
1006{
1007        struct inode *inode = file->f_mapping->host;
1008        int err;
1009
1010        err = __generic_file_fsync(file, start, end, datasync);
1011        if (err)
1012                return err;
1013        return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1014}
1015EXPORT_SYMBOL(generic_file_fsync);
1016
1017/**
1018 * generic_check_addressable - Check addressability of file system
1019 * @blocksize_bits:     log of file system block size
1020 * @num_blocks:         number of blocks in file system
1021 *
1022 * Determine whether a file system with @num_blocks blocks (and a
1023 * block size of 2**@blocksize_bits) is addressable by the sector_t
1024 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1025 */
1026int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1027{
1028        u64 last_fs_block = num_blocks - 1;
1029        u64 last_fs_page =
1030                last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1031
1032        if (unlikely(num_blocks == 0))
1033                return 0;
1034
1035        if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1036                return -EINVAL;
1037
1038        if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1039            (last_fs_page > (pgoff_t)(~0ULL))) {
1040                return -EFBIG;
1041        }
1042        return 0;
1043}
1044EXPORT_SYMBOL(generic_check_addressable);
1045
1046/*
1047 * No-op implementation of ->fsync for in-memory filesystems.
1048 */
1049int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1050{
1051        return 0;
1052}
1053EXPORT_SYMBOL(noop_fsync);
1054
1055/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1056void kfree_link(void *p)
1057{
1058        kfree(p);
1059}
1060EXPORT_SYMBOL(kfree_link);
1061
1062/*
1063 * nop .set_page_dirty method so that people can use .page_mkwrite on
1064 * anon inodes.
1065 */
1066static int anon_set_page_dirty(struct page *page)
1067{
1068        return 0;
1069};
1070
1071/*
1072 * A single inode exists for all anon_inode files. Contrary to pipes,
1073 * anon_inode inodes have no associated per-instance data, so we need
1074 * only allocate one of them.
1075 */
1076struct inode *alloc_anon_inode(struct super_block *s)
1077{
1078        static const struct address_space_operations anon_aops = {
1079                .set_page_dirty = anon_set_page_dirty,
1080        };
1081        struct inode *inode = new_inode_pseudo(s);
1082
1083        if (!inode)
1084                return ERR_PTR(-ENOMEM);
1085
1086        inode->i_ino = get_next_ino();
1087        inode->i_mapping->a_ops = &anon_aops;
1088
1089        /*
1090         * Mark the inode dirty from the very beginning,
1091         * that way it will never be moved to the dirty
1092         * list because mark_inode_dirty() will think
1093         * that it already _is_ on the dirty list.
1094         */
1095        inode->i_state = I_DIRTY;
1096        inode->i_mode = S_IRUSR | S_IWUSR;
1097        inode->i_uid = current_fsuid();
1098        inode->i_gid = current_fsgid();
1099        inode->i_flags |= S_PRIVATE;
1100        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1101        return inode;
1102}
1103EXPORT_SYMBOL(alloc_anon_inode);
1104
1105/**
1106 * simple_nosetlease - generic helper for prohibiting leases
1107 * @filp: file pointer
1108 * @arg: type of lease to obtain
1109 * @flp: new lease supplied for insertion
1110 * @priv: private data for lm_setup operation
1111 *
1112 * Generic helper for filesystems that do not wish to allow leases to be set.
1113 * All arguments are ignored and it just returns -EINVAL.
1114 */
1115int
1116simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1117                  void **priv)
1118{
1119        return -EINVAL;
1120}
1121EXPORT_SYMBOL(simple_nosetlease);
1122
1123const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1124                            struct delayed_call *done)
1125{
1126        return inode->i_link;
1127}
1128EXPORT_SYMBOL(simple_get_link);
1129
1130const struct inode_operations simple_symlink_inode_operations = {
1131        .get_link = simple_get_link,
1132        .readlink = generic_readlink
1133};
1134EXPORT_SYMBOL(simple_symlink_inode_operations);
1135
1136/*
1137 * Operations for a permanently empty directory.
1138 */
1139static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1140{
1141        return ERR_PTR(-ENOENT);
1142}
1143
1144static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1145                                 struct kstat *stat)
1146{
1147        struct inode *inode = d_inode(dentry);
1148        generic_fillattr(inode, stat);
1149        return 0;
1150}
1151
1152static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1153{
1154        return -EPERM;
1155}
1156
1157static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1158{
1159        return -EOPNOTSUPP;
1160}
1161
1162static const struct inode_operations empty_dir_inode_operations = {
1163        .lookup         = empty_dir_lookup,
1164        .permission     = generic_permission,
1165        .setattr        = empty_dir_setattr,
1166        .getattr        = empty_dir_getattr,
1167        .listxattr      = empty_dir_listxattr,
1168};
1169
1170static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1171{
1172        /* An empty directory has two entries . and .. at offsets 0 and 1 */
1173        return generic_file_llseek_size(file, offset, whence, 2, 2);
1174}
1175
1176static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1177{
1178        dir_emit_dots(file, ctx);
1179        return 0;
1180}
1181
1182static const struct file_operations empty_dir_operations = {
1183        .llseek         = empty_dir_llseek,
1184        .read           = generic_read_dir,
1185        .iterate_shared = empty_dir_readdir,
1186        .fsync          = noop_fsync,
1187};
1188
1189
1190void make_empty_dir_inode(struct inode *inode)
1191{
1192        set_nlink(inode, 2);
1193        inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1194        inode->i_uid = GLOBAL_ROOT_UID;
1195        inode->i_gid = GLOBAL_ROOT_GID;
1196        inode->i_rdev = 0;
1197        inode->i_size = 0;
1198        inode->i_blkbits = PAGE_SHIFT;
1199        inode->i_blocks = 0;
1200
1201        inode->i_op = &empty_dir_inode_operations;
1202        inode->i_opflags &= ~IOP_XATTR;
1203        inode->i_fop = &empty_dir_operations;
1204}
1205
1206bool is_empty_dir_inode(struct inode *inode)
1207{
1208        return (inode->i_fop == &empty_dir_operations) &&
1209                (inode->i_op == &empty_dir_inode_operations);
1210}
1211