linux/fs/ubifs/file.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements VFS file and inode operations for regular files, device
  25 * nodes and symlinks as well as address space operations.
  26 *
  27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
  28 * the page is dirty and is used for optimization purposes - dirty pages are
  29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
  30 * the budget for this page. The @PG_checked flag is set if full budgeting is
  31 * required for the page e.g., when it corresponds to a file hole or it is
  32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
  33 * it is OK to fail in this function, and the budget is released in
  34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
  35 * information about how the page was budgeted, to make it possible to release
  36 * the budget properly.
  37 *
  38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
  39 * implement. However, this is not true for 'ubifs_writepage()', which may be
  40 * called with @i_mutex unlocked. For example, when flusher thread is doing
  41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
  42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
  43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
  44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
  45 *
  46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
  47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
  48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
  49 * set as well. However, UBIFS disables readahead.
  50 */
  51
  52#include "ubifs.h"
  53#include <linux/mount.h>
  54#include <linux/slab.h>
  55#include <linux/migrate.h>
  56
  57static int read_block(struct inode *inode, void *addr, unsigned int block,
  58                      struct ubifs_data_node *dn)
  59{
  60        struct ubifs_info *c = inode->i_sb->s_fs_info;
  61        int err, len, out_len;
  62        union ubifs_key key;
  63        unsigned int dlen;
  64
  65        data_key_init(c, &key, inode->i_ino, block);
  66        err = ubifs_tnc_lookup(c, &key, dn);
  67        if (err) {
  68                if (err == -ENOENT)
  69                        /* Not found, so it must be a hole */
  70                        memset(addr, 0, UBIFS_BLOCK_SIZE);
  71                return err;
  72        }
  73
  74        ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
  75                     ubifs_inode(inode)->creat_sqnum);
  76        len = le32_to_cpu(dn->size);
  77        if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  78                goto dump;
  79
  80        dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  81        out_len = UBIFS_BLOCK_SIZE;
  82        err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
  83                               le16_to_cpu(dn->compr_type));
  84        if (err || len != out_len)
  85                goto dump;
  86
  87        /*
  88         * Data length can be less than a full block, even for blocks that are
  89         * not the last in the file (e.g., as a result of making a hole and
  90         * appending data). Ensure that the remainder is zeroed out.
  91         */
  92        if (len < UBIFS_BLOCK_SIZE)
  93                memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
  94
  95        return 0;
  96
  97dump:
  98        ubifs_err(c, "bad data node (block %u, inode %lu)",
  99                  block, inode->i_ino);
 100        ubifs_dump_node(c, dn);
 101        return -EINVAL;
 102}
 103
 104static int do_readpage(struct page *page)
 105{
 106        void *addr;
 107        int err = 0, i;
 108        unsigned int block, beyond;
 109        struct ubifs_data_node *dn;
 110        struct inode *inode = page->mapping->host;
 111        loff_t i_size = i_size_read(inode);
 112
 113        dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 114                inode->i_ino, page->index, i_size, page->flags);
 115        ubifs_assert(!PageChecked(page));
 116        ubifs_assert(!PagePrivate(page));
 117
 118        addr = kmap(page);
 119
 120        block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 121        beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 122        if (block >= beyond) {
 123                /* Reading beyond inode */
 124                SetPageChecked(page);
 125                memset(addr, 0, PAGE_SIZE);
 126                goto out;
 127        }
 128
 129        dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
 130        if (!dn) {
 131                err = -ENOMEM;
 132                goto error;
 133        }
 134
 135        i = 0;
 136        while (1) {
 137                int ret;
 138
 139                if (block >= beyond) {
 140                        /* Reading beyond inode */
 141                        err = -ENOENT;
 142                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 143                } else {
 144                        ret = read_block(inode, addr, block, dn);
 145                        if (ret) {
 146                                err = ret;
 147                                if (err != -ENOENT)
 148                                        break;
 149                        } else if (block + 1 == beyond) {
 150                                int dlen = le32_to_cpu(dn->size);
 151                                int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
 152
 153                                if (ilen && ilen < dlen)
 154                                        memset(addr + ilen, 0, dlen - ilen);
 155                        }
 156                }
 157                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 158                        break;
 159                block += 1;
 160                addr += UBIFS_BLOCK_SIZE;
 161        }
 162        if (err) {
 163                struct ubifs_info *c = inode->i_sb->s_fs_info;
 164                if (err == -ENOENT) {
 165                        /* Not found, so it must be a hole */
 166                        SetPageChecked(page);
 167                        dbg_gen("hole");
 168                        goto out_free;
 169                }
 170                ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
 171                          page->index, inode->i_ino, err);
 172                goto error;
 173        }
 174
 175out_free:
 176        kfree(dn);
 177out:
 178        SetPageUptodate(page);
 179        ClearPageError(page);
 180        flush_dcache_page(page);
 181        kunmap(page);
 182        return 0;
 183
 184error:
 185        kfree(dn);
 186        ClearPageUptodate(page);
 187        SetPageError(page);
 188        flush_dcache_page(page);
 189        kunmap(page);
 190        return err;
 191}
 192
 193/**
 194 * release_new_page_budget - release budget of a new page.
 195 * @c: UBIFS file-system description object
 196 *
 197 * This is a helper function which releases budget corresponding to the budget
 198 * of one new page of data.
 199 */
 200static void release_new_page_budget(struct ubifs_info *c)
 201{
 202        struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
 203
 204        ubifs_release_budget(c, &req);
 205}
 206
 207/**
 208 * release_existing_page_budget - release budget of an existing page.
 209 * @c: UBIFS file-system description object
 210 *
 211 * This is a helper function which releases budget corresponding to the budget
 212 * of changing one one page of data which already exists on the flash media.
 213 */
 214static void release_existing_page_budget(struct ubifs_info *c)
 215{
 216        struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
 217
 218        ubifs_release_budget(c, &req);
 219}
 220
 221static int write_begin_slow(struct address_space *mapping,
 222                            loff_t pos, unsigned len, struct page **pagep,
 223                            unsigned flags)
 224{
 225        struct inode *inode = mapping->host;
 226        struct ubifs_info *c = inode->i_sb->s_fs_info;
 227        pgoff_t index = pos >> PAGE_SHIFT;
 228        struct ubifs_budget_req req = { .new_page = 1 };
 229        int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 230        struct page *page;
 231
 232        dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
 233                inode->i_ino, pos, len, inode->i_size);
 234
 235        /*
 236         * At the slow path we have to budget before locking the page, because
 237         * budgeting may force write-back, which would wait on locked pages and
 238         * deadlock if we had the page locked. At this point we do not know
 239         * anything about the page, so assume that this is a new page which is
 240         * written to a hole. This corresponds to largest budget. Later the
 241         * budget will be amended if this is not true.
 242         */
 243        if (appending)
 244                /* We are appending data, budget for inode change */
 245                req.dirtied_ino = 1;
 246
 247        err = ubifs_budget_space(c, &req);
 248        if (unlikely(err))
 249                return err;
 250
 251        page = grab_cache_page_write_begin(mapping, index, flags);
 252        if (unlikely(!page)) {
 253                ubifs_release_budget(c, &req);
 254                return -ENOMEM;
 255        }
 256
 257        if (!PageUptodate(page)) {
 258                if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
 259                        SetPageChecked(page);
 260                else {
 261                        err = do_readpage(page);
 262                        if (err) {
 263                                unlock_page(page);
 264                                put_page(page);
 265                                ubifs_release_budget(c, &req);
 266                                return err;
 267                        }
 268                }
 269
 270                SetPageUptodate(page);
 271                ClearPageError(page);
 272        }
 273
 274        if (PagePrivate(page))
 275                /*
 276                 * The page is dirty, which means it was budgeted twice:
 277                 *   o first time the budget was allocated by the task which
 278                 *     made the page dirty and set the PG_private flag;
 279                 *   o and then we budgeted for it for the second time at the
 280                 *     very beginning of this function.
 281                 *
 282                 * So what we have to do is to release the page budget we
 283                 * allocated.
 284                 */
 285                release_new_page_budget(c);
 286        else if (!PageChecked(page))
 287                /*
 288                 * We are changing a page which already exists on the media.
 289                 * This means that changing the page does not make the amount
 290                 * of indexing information larger, and this part of the budget
 291                 * which we have already acquired may be released.
 292                 */
 293                ubifs_convert_page_budget(c);
 294
 295        if (appending) {
 296                struct ubifs_inode *ui = ubifs_inode(inode);
 297
 298                /*
 299                 * 'ubifs_write_end()' is optimized from the fast-path part of
 300                 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
 301                 * if data is appended.
 302                 */
 303                mutex_lock(&ui->ui_mutex);
 304                if (ui->dirty)
 305                        /*
 306                         * The inode is dirty already, so we may free the
 307                         * budget we allocated.
 308                         */
 309                        ubifs_release_dirty_inode_budget(c, ui);
 310        }
 311
 312        *pagep = page;
 313        return 0;
 314}
 315
 316/**
 317 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 318 * @c: UBIFS file-system description object
 319 * @page: page to allocate budget for
 320 * @ui: UBIFS inode object the page belongs to
 321 * @appending: non-zero if the page is appended
 322 *
 323 * This is a helper function for 'ubifs_write_begin()' which allocates budget
 324 * for the operation. The budget is allocated differently depending on whether
 325 * this is appending, whether the page is dirty or not, and so on. This
 326 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
 327 * in case of success and %-ENOSPC in case of failure.
 328 */
 329static int allocate_budget(struct ubifs_info *c, struct page *page,
 330                           struct ubifs_inode *ui, int appending)
 331{
 332        struct ubifs_budget_req req = { .fast = 1 };
 333
 334        if (PagePrivate(page)) {
 335                if (!appending)
 336                        /*
 337                         * The page is dirty and we are not appending, which
 338                         * means no budget is needed at all.
 339                         */
 340                        return 0;
 341
 342                mutex_lock(&ui->ui_mutex);
 343                if (ui->dirty)
 344                        /*
 345                         * The page is dirty and we are appending, so the inode
 346                         * has to be marked as dirty. However, it is already
 347                         * dirty, so we do not need any budget. We may return,
 348                         * but @ui->ui_mutex hast to be left locked because we
 349                         * should prevent write-back from flushing the inode
 350                         * and freeing the budget. The lock will be released in
 351                         * 'ubifs_write_end()'.
 352                         */
 353                        return 0;
 354
 355                /*
 356                 * The page is dirty, we are appending, the inode is clean, so
 357                 * we need to budget the inode change.
 358                 */
 359                req.dirtied_ino = 1;
 360        } else {
 361                if (PageChecked(page))
 362                        /*
 363                         * The page corresponds to a hole and does not
 364                         * exist on the media. So changing it makes
 365                         * make the amount of indexing information
 366                         * larger, and we have to budget for a new
 367                         * page.
 368                         */
 369                        req.new_page = 1;
 370                else
 371                        /*
 372                         * Not a hole, the change will not add any new
 373                         * indexing information, budget for page
 374                         * change.
 375                         */
 376                        req.dirtied_page = 1;
 377
 378                if (appending) {
 379                        mutex_lock(&ui->ui_mutex);
 380                        if (!ui->dirty)
 381                                /*
 382                                 * The inode is clean but we will have to mark
 383                                 * it as dirty because we are appending. This
 384                                 * needs a budget.
 385                                 */
 386                                req.dirtied_ino = 1;
 387                }
 388        }
 389
 390        return ubifs_budget_space(c, &req);
 391}
 392
 393/*
 394 * This function is called when a page of data is going to be written. Since
 395 * the page of data will not necessarily go to the flash straight away, UBIFS
 396 * has to reserve space on the media for it, which is done by means of
 397 * budgeting.
 398 *
 399 * This is the hot-path of the file-system and we are trying to optimize it as
 400 * much as possible. For this reasons it is split on 2 parts - slow and fast.
 401 *
 402 * There many budgeting cases:
 403 *     o a new page is appended - we have to budget for a new page and for
 404 *       changing the inode; however, if the inode is already dirty, there is
 405 *       no need to budget for it;
 406 *     o an existing clean page is changed - we have budget for it; if the page
 407 *       does not exist on the media (a hole), we have to budget for a new
 408 *       page; otherwise, we may budget for changing an existing page; the
 409 *       difference between these cases is that changing an existing page does
 410 *       not introduce anything new to the FS indexing information, so it does
 411 *       not grow, and smaller budget is acquired in this case;
 412 *     o an existing dirty page is changed - no need to budget at all, because
 413 *       the page budget has been acquired by earlier, when the page has been
 414 *       marked dirty.
 415 *
 416 * UBIFS budgeting sub-system may force write-back if it thinks there is no
 417 * space to reserve. This imposes some locking restrictions and makes it
 418 * impossible to take into account the above cases, and makes it impossible to
 419 * optimize budgeting.
 420 *
 421 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 422 * there is a plenty of flash space and the budget will be acquired quickly,
 423 * without forcing write-back. The slow path does not make this assumption.
 424 */
 425static int ubifs_write_begin(struct file *file, struct address_space *mapping,
 426                             loff_t pos, unsigned len, unsigned flags,
 427                             struct page **pagep, void **fsdata)
 428{
 429        struct inode *inode = mapping->host;
 430        struct ubifs_info *c = inode->i_sb->s_fs_info;
 431        struct ubifs_inode *ui = ubifs_inode(inode);
 432        pgoff_t index = pos >> PAGE_SHIFT;
 433        int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 434        int skipped_read = 0;
 435        struct page *page;
 436
 437        ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
 438        ubifs_assert(!c->ro_media && !c->ro_mount);
 439
 440        if (unlikely(c->ro_error))
 441                return -EROFS;
 442
 443        /* Try out the fast-path part first */
 444        page = grab_cache_page_write_begin(mapping, index, flags);
 445        if (unlikely(!page))
 446                return -ENOMEM;
 447
 448        if (!PageUptodate(page)) {
 449                /* The page is not loaded from the flash */
 450                if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
 451                        /*
 452                         * We change whole page so no need to load it. But we
 453                         * do not know whether this page exists on the media or
 454                         * not, so we assume the latter because it requires
 455                         * larger budget. The assumption is that it is better
 456                         * to budget a bit more than to read the page from the
 457                         * media. Thus, we are setting the @PG_checked flag
 458                         * here.
 459                         */
 460                        SetPageChecked(page);
 461                        skipped_read = 1;
 462                } else {
 463                        err = do_readpage(page);
 464                        if (err) {
 465                                unlock_page(page);
 466                                put_page(page);
 467                                return err;
 468                        }
 469                }
 470
 471                SetPageUptodate(page);
 472                ClearPageError(page);
 473        }
 474
 475        err = allocate_budget(c, page, ui, appending);
 476        if (unlikely(err)) {
 477                ubifs_assert(err == -ENOSPC);
 478                /*
 479                 * If we skipped reading the page because we were going to
 480                 * write all of it, then it is not up to date.
 481                 */
 482                if (skipped_read) {
 483                        ClearPageChecked(page);
 484                        ClearPageUptodate(page);
 485                }
 486                /*
 487                 * Budgeting failed which means it would have to force
 488                 * write-back but didn't, because we set the @fast flag in the
 489                 * request. Write-back cannot be done now, while we have the
 490                 * page locked, because it would deadlock. Unlock and free
 491                 * everything and fall-back to slow-path.
 492                 */
 493                if (appending) {
 494                        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 495                        mutex_unlock(&ui->ui_mutex);
 496                }
 497                unlock_page(page);
 498                put_page(page);
 499
 500                return write_begin_slow(mapping, pos, len, pagep, flags);
 501        }
 502
 503        /*
 504         * Whee, we acquired budgeting quickly - without involving
 505         * garbage-collection, committing or forcing write-back. We return
 506         * with @ui->ui_mutex locked if we are appending pages, and unlocked
 507         * otherwise. This is an optimization (slightly hacky though).
 508         */
 509        *pagep = page;
 510        return 0;
 511
 512}
 513
 514/**
 515 * cancel_budget - cancel budget.
 516 * @c: UBIFS file-system description object
 517 * @page: page to cancel budget for
 518 * @ui: UBIFS inode object the page belongs to
 519 * @appending: non-zero if the page is appended
 520 *
 521 * This is a helper function for a page write operation. It unlocks the
 522 * @ui->ui_mutex in case of appending.
 523 */
 524static void cancel_budget(struct ubifs_info *c, struct page *page,
 525                          struct ubifs_inode *ui, int appending)
 526{
 527        if (appending) {
 528                if (!ui->dirty)
 529                        ubifs_release_dirty_inode_budget(c, ui);
 530                mutex_unlock(&ui->ui_mutex);
 531        }
 532        if (!PagePrivate(page)) {
 533                if (PageChecked(page))
 534                        release_new_page_budget(c);
 535                else
 536                        release_existing_page_budget(c);
 537        }
 538}
 539
 540static int ubifs_write_end(struct file *file, struct address_space *mapping,
 541                           loff_t pos, unsigned len, unsigned copied,
 542                           struct page *page, void *fsdata)
 543{
 544        struct inode *inode = mapping->host;
 545        struct ubifs_inode *ui = ubifs_inode(inode);
 546        struct ubifs_info *c = inode->i_sb->s_fs_info;
 547        loff_t end_pos = pos + len;
 548        int appending = !!(end_pos > inode->i_size);
 549
 550        dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
 551                inode->i_ino, pos, page->index, len, copied, inode->i_size);
 552
 553        if (unlikely(copied < len && len == PAGE_SIZE)) {
 554                /*
 555                 * VFS copied less data to the page that it intended and
 556                 * declared in its '->write_begin()' call via the @len
 557                 * argument. If the page was not up-to-date, and @len was
 558                 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
 559                 * not load it from the media (for optimization reasons). This
 560                 * means that part of the page contains garbage. So read the
 561                 * page now.
 562                 */
 563                dbg_gen("copied %d instead of %d, read page and repeat",
 564                        copied, len);
 565                cancel_budget(c, page, ui, appending);
 566                ClearPageChecked(page);
 567
 568                /*
 569                 * Return 0 to force VFS to repeat the whole operation, or the
 570                 * error code if 'do_readpage()' fails.
 571                 */
 572                copied = do_readpage(page);
 573                goto out;
 574        }
 575
 576        if (!PagePrivate(page)) {
 577                SetPagePrivate(page);
 578                atomic_long_inc(&c->dirty_pg_cnt);
 579                __set_page_dirty_nobuffers(page);
 580        }
 581
 582        if (appending) {
 583                i_size_write(inode, end_pos);
 584                ui->ui_size = end_pos;
 585                /*
 586                 * Note, we do not set @I_DIRTY_PAGES (which means that the
 587                 * inode has dirty pages), this has been done in
 588                 * '__set_page_dirty_nobuffers()'.
 589                 */
 590                __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 591                ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 592                mutex_unlock(&ui->ui_mutex);
 593        }
 594
 595out:
 596        unlock_page(page);
 597        put_page(page);
 598        return copied;
 599}
 600
 601/**
 602 * populate_page - copy data nodes into a page for bulk-read.
 603 * @c: UBIFS file-system description object
 604 * @page: page
 605 * @bu: bulk-read information
 606 * @n: next zbranch slot
 607 *
 608 * This function returns %0 on success and a negative error code on failure.
 609 */
 610static int populate_page(struct ubifs_info *c, struct page *page,
 611                         struct bu_info *bu, int *n)
 612{
 613        int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
 614        struct inode *inode = page->mapping->host;
 615        loff_t i_size = i_size_read(inode);
 616        unsigned int page_block;
 617        void *addr, *zaddr;
 618        pgoff_t end_index;
 619
 620        dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 621                inode->i_ino, page->index, i_size, page->flags);
 622
 623        addr = zaddr = kmap(page);
 624
 625        end_index = (i_size - 1) >> PAGE_SHIFT;
 626        if (!i_size || page->index > end_index) {
 627                hole = 1;
 628                memset(addr, 0, PAGE_SIZE);
 629                goto out_hole;
 630        }
 631
 632        page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 633        while (1) {
 634                int err, len, out_len, dlen;
 635
 636                if (nn >= bu->cnt) {
 637                        hole = 1;
 638                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 639                } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
 640                        struct ubifs_data_node *dn;
 641
 642                        dn = bu->buf + (bu->zbranch[nn].offs - offs);
 643
 644                        ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
 645                                     ubifs_inode(inode)->creat_sqnum);
 646
 647                        len = le32_to_cpu(dn->size);
 648                        if (len <= 0 || len > UBIFS_BLOCK_SIZE)
 649                                goto out_err;
 650
 651                        dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 652                        out_len = UBIFS_BLOCK_SIZE;
 653                        err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
 654                                               le16_to_cpu(dn->compr_type));
 655                        if (err || len != out_len)
 656                                goto out_err;
 657
 658                        if (len < UBIFS_BLOCK_SIZE)
 659                                memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 660
 661                        nn += 1;
 662                        read = (i << UBIFS_BLOCK_SHIFT) + len;
 663                } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
 664                        nn += 1;
 665                        continue;
 666                } else {
 667                        hole = 1;
 668                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 669                }
 670                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 671                        break;
 672                addr += UBIFS_BLOCK_SIZE;
 673                page_block += 1;
 674        }
 675
 676        if (end_index == page->index) {
 677                int len = i_size & (PAGE_SIZE - 1);
 678
 679                if (len && len < read)
 680                        memset(zaddr + len, 0, read - len);
 681        }
 682
 683out_hole:
 684        if (hole) {
 685                SetPageChecked(page);
 686                dbg_gen("hole");
 687        }
 688
 689        SetPageUptodate(page);
 690        ClearPageError(page);
 691        flush_dcache_page(page);
 692        kunmap(page);
 693        *n = nn;
 694        return 0;
 695
 696out_err:
 697        ClearPageUptodate(page);
 698        SetPageError(page);
 699        flush_dcache_page(page);
 700        kunmap(page);
 701        ubifs_err(c, "bad data node (block %u, inode %lu)",
 702                  page_block, inode->i_ino);
 703        return -EINVAL;
 704}
 705
 706/**
 707 * ubifs_do_bulk_read - do bulk-read.
 708 * @c: UBIFS file-system description object
 709 * @bu: bulk-read information
 710 * @page1: first page to read
 711 *
 712 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
 713 */
 714static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
 715                              struct page *page1)
 716{
 717        pgoff_t offset = page1->index, end_index;
 718        struct address_space *mapping = page1->mapping;
 719        struct inode *inode = mapping->host;
 720        struct ubifs_inode *ui = ubifs_inode(inode);
 721        int err, page_idx, page_cnt, ret = 0, n = 0;
 722        int allocate = bu->buf ? 0 : 1;
 723        loff_t isize;
 724
 725        err = ubifs_tnc_get_bu_keys(c, bu);
 726        if (err)
 727                goto out_warn;
 728
 729        if (bu->eof) {
 730                /* Turn off bulk-read at the end of the file */
 731                ui->read_in_a_row = 1;
 732                ui->bulk_read = 0;
 733        }
 734
 735        page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
 736        if (!page_cnt) {
 737                /*
 738                 * This happens when there are multiple blocks per page and the
 739                 * blocks for the first page we are looking for, are not
 740                 * together. If all the pages were like this, bulk-read would
 741                 * reduce performance, so we turn it off for a while.
 742                 */
 743                goto out_bu_off;
 744        }
 745
 746        if (bu->cnt) {
 747                if (allocate) {
 748                        /*
 749                         * Allocate bulk-read buffer depending on how many data
 750                         * nodes we are going to read.
 751                         */
 752                        bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
 753                                      bu->zbranch[bu->cnt - 1].len -
 754                                      bu->zbranch[0].offs;
 755                        ubifs_assert(bu->buf_len > 0);
 756                        ubifs_assert(bu->buf_len <= c->leb_size);
 757                        bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
 758                        if (!bu->buf)
 759                                goto out_bu_off;
 760                }
 761
 762                err = ubifs_tnc_bulk_read(c, bu);
 763                if (err)
 764                        goto out_warn;
 765        }
 766
 767        err = populate_page(c, page1, bu, &n);
 768        if (err)
 769                goto out_warn;
 770
 771        unlock_page(page1);
 772        ret = 1;
 773
 774        isize = i_size_read(inode);
 775        if (isize == 0)
 776                goto out_free;
 777        end_index = ((isize - 1) >> PAGE_SHIFT);
 778
 779        for (page_idx = 1; page_idx < page_cnt; page_idx++) {
 780                pgoff_t page_offset = offset + page_idx;
 781                struct page *page;
 782
 783                if (page_offset > end_index)
 784                        break;
 785                page = find_or_create_page(mapping, page_offset,
 786                                           GFP_NOFS | __GFP_COLD);
 787                if (!page)
 788                        break;
 789                if (!PageUptodate(page))
 790                        err = populate_page(c, page, bu, &n);
 791                unlock_page(page);
 792                put_page(page);
 793                if (err)
 794                        break;
 795        }
 796
 797        ui->last_page_read = offset + page_idx - 1;
 798
 799out_free:
 800        if (allocate)
 801                kfree(bu->buf);
 802        return ret;
 803
 804out_warn:
 805        ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
 806        goto out_free;
 807
 808out_bu_off:
 809        ui->read_in_a_row = ui->bulk_read = 0;
 810        goto out_free;
 811}
 812
 813/**
 814 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 815 * @page: page from which to start bulk-read.
 816 *
 817 * Some flash media are capable of reading sequentially at faster rates. UBIFS
 818 * bulk-read facility is designed to take advantage of that, by reading in one
 819 * go consecutive data nodes that are also located consecutively in the same
 820 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
 821 */
 822static int ubifs_bulk_read(struct page *page)
 823{
 824        struct inode *inode = page->mapping->host;
 825        struct ubifs_info *c = inode->i_sb->s_fs_info;
 826        struct ubifs_inode *ui = ubifs_inode(inode);
 827        pgoff_t index = page->index, last_page_read = ui->last_page_read;
 828        struct bu_info *bu;
 829        int err = 0, allocated = 0;
 830
 831        ui->last_page_read = index;
 832        if (!c->bulk_read)
 833                return 0;
 834
 835        /*
 836         * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
 837         * so don't bother if we cannot lock the mutex.
 838         */
 839        if (!mutex_trylock(&ui->ui_mutex))
 840                return 0;
 841
 842        if (index != last_page_read + 1) {
 843                /* Turn off bulk-read if we stop reading sequentially */
 844                ui->read_in_a_row = 1;
 845                if (ui->bulk_read)
 846                        ui->bulk_read = 0;
 847                goto out_unlock;
 848        }
 849
 850        if (!ui->bulk_read) {
 851                ui->read_in_a_row += 1;
 852                if (ui->read_in_a_row < 3)
 853                        goto out_unlock;
 854                /* Three reads in a row, so switch on bulk-read */
 855                ui->bulk_read = 1;
 856        }
 857
 858        /*
 859         * If possible, try to use pre-allocated bulk-read information, which
 860         * is protected by @c->bu_mutex.
 861         */
 862        if (mutex_trylock(&c->bu_mutex))
 863                bu = &c->bu;
 864        else {
 865                bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
 866                if (!bu)
 867                        goto out_unlock;
 868
 869                bu->buf = NULL;
 870                allocated = 1;
 871        }
 872
 873        bu->buf_len = c->max_bu_buf_len;
 874        data_key_init(c, &bu->key, inode->i_ino,
 875                      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
 876        err = ubifs_do_bulk_read(c, bu, page);
 877
 878        if (!allocated)
 879                mutex_unlock(&c->bu_mutex);
 880        else
 881                kfree(bu);
 882
 883out_unlock:
 884        mutex_unlock(&ui->ui_mutex);
 885        return err;
 886}
 887
 888static int ubifs_readpage(struct file *file, struct page *page)
 889{
 890        if (ubifs_bulk_read(page))
 891                return 0;
 892        do_readpage(page);
 893        unlock_page(page);
 894        return 0;
 895}
 896
 897static int do_writepage(struct page *page, int len)
 898{
 899        int err = 0, i, blen;
 900        unsigned int block;
 901        void *addr;
 902        union ubifs_key key;
 903        struct inode *inode = page->mapping->host;
 904        struct ubifs_info *c = inode->i_sb->s_fs_info;
 905
 906#ifdef UBIFS_DEBUG
 907        struct ubifs_inode *ui = ubifs_inode(inode);
 908        spin_lock(&ui->ui_lock);
 909        ubifs_assert(page->index <= ui->synced_i_size >> PAGE_SHIFT);
 910        spin_unlock(&ui->ui_lock);
 911#endif
 912
 913        /* Update radix tree tags */
 914        set_page_writeback(page);
 915
 916        addr = kmap(page);
 917        block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 918        i = 0;
 919        while (len) {
 920                blen = min_t(int, len, UBIFS_BLOCK_SIZE);
 921                data_key_init(c, &key, inode->i_ino, block);
 922                err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
 923                if (err)
 924                        break;
 925                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 926                        break;
 927                block += 1;
 928                addr += blen;
 929                len -= blen;
 930        }
 931        if (err) {
 932                SetPageError(page);
 933                ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
 934                          page->index, inode->i_ino, err);
 935                ubifs_ro_mode(c, err);
 936        }
 937
 938        ubifs_assert(PagePrivate(page));
 939        if (PageChecked(page))
 940                release_new_page_budget(c);
 941        else
 942                release_existing_page_budget(c);
 943
 944        atomic_long_dec(&c->dirty_pg_cnt);
 945        ClearPagePrivate(page);
 946        ClearPageChecked(page);
 947
 948        kunmap(page);
 949        unlock_page(page);
 950        end_page_writeback(page);
 951        return err;
 952}
 953
 954/*
 955 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 956 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 957 * situation when a we have an inode with size 0, then a megabyte of data is
 958 * appended to the inode, then write-back starts and flushes some amount of the
 959 * dirty pages, the journal becomes full, commit happens and finishes, and then
 960 * an unclean reboot happens. When the file system is mounted next time, the
 961 * inode size would still be 0, but there would be many pages which are beyond
 962 * the inode size, they would be indexed and consume flash space. Because the
 963 * journal has been committed, the replay would not be able to detect this
 964 * situation and correct the inode size. This means UBIFS would have to scan
 965 * whole index and correct all inode sizes, which is long an unacceptable.
 966 *
 967 * To prevent situations like this, UBIFS writes pages back only if they are
 968 * within the last synchronized inode size, i.e. the size which has been
 969 * written to the flash media last time. Otherwise, UBIFS forces inode
 970 * write-back, thus making sure the on-flash inode contains current inode size,
 971 * and then keeps writing pages back.
 972 *
 973 * Some locking issues explanation. 'ubifs_writepage()' first is called with
 974 * the page locked, and it locks @ui_mutex. However, write-back does take inode
 975 * @i_mutex, which means other VFS operations may be run on this inode at the
 976 * same time. And the problematic one is truncation to smaller size, from where
 977 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
 978 * then drops the truncated pages. And while dropping the pages, it takes the
 979 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
 980 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
 981 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
 982 *
 983 * XXX(truncate): with the new truncate sequence this is not true anymore,
 984 * and the calls to truncate_setsize can be move around freely.  They should
 985 * be moved to the very end of the truncate sequence.
 986 *
 987 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
 988 * inode size. How do we do this if @inode->i_size may became smaller while we
 989 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
 990 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
 991 * internally and updates it under @ui_mutex.
 992 *
 993 * Q: why we do not worry that if we race with truncation, we may end up with a
 994 * situation when the inode is truncated while we are in the middle of
 995 * 'do_writepage()', so we do write beyond inode size?
 996 * A: If we are in the middle of 'do_writepage()', truncation would be locked
 997 * on the page lock and it would not write the truncated inode node to the
 998 * journal before we have finished.
 999 */
1000static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1001{
1002        struct inode *inode = page->mapping->host;
1003        struct ubifs_inode *ui = ubifs_inode(inode);
1004        loff_t i_size =  i_size_read(inode), synced_i_size;
1005        pgoff_t end_index = i_size >> PAGE_SHIFT;
1006        int err, len = i_size & (PAGE_SIZE - 1);
1007        void *kaddr;
1008
1009        dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1010                inode->i_ino, page->index, page->flags);
1011        ubifs_assert(PagePrivate(page));
1012
1013        /* Is the page fully outside @i_size? (truncate in progress) */
1014        if (page->index > end_index || (page->index == end_index && !len)) {
1015                err = 0;
1016                goto out_unlock;
1017        }
1018
1019        spin_lock(&ui->ui_lock);
1020        synced_i_size = ui->synced_i_size;
1021        spin_unlock(&ui->ui_lock);
1022
1023        /* Is the page fully inside @i_size? */
1024        if (page->index < end_index) {
1025                if (page->index >= synced_i_size >> PAGE_SHIFT) {
1026                        err = inode->i_sb->s_op->write_inode(inode, NULL);
1027                        if (err)
1028                                goto out_unlock;
1029                        /*
1030                         * The inode has been written, but the write-buffer has
1031                         * not been synchronized, so in case of an unclean
1032                         * reboot we may end up with some pages beyond inode
1033                         * size, but they would be in the journal (because
1034                         * commit flushes write buffers) and recovery would deal
1035                         * with this.
1036                         */
1037                }
1038                return do_writepage(page, PAGE_SIZE);
1039        }
1040
1041        /*
1042         * The page straddles @i_size. It must be zeroed out on each and every
1043         * writepage invocation because it may be mmapped. "A file is mapped
1044         * in multiples of the page size. For a file that is not a multiple of
1045         * the page size, the remaining memory is zeroed when mapped, and
1046         * writes to that region are not written out to the file."
1047         */
1048        kaddr = kmap_atomic(page);
1049        memset(kaddr + len, 0, PAGE_SIZE - len);
1050        flush_dcache_page(page);
1051        kunmap_atomic(kaddr);
1052
1053        if (i_size > synced_i_size) {
1054                err = inode->i_sb->s_op->write_inode(inode, NULL);
1055                if (err)
1056                        goto out_unlock;
1057        }
1058
1059        return do_writepage(page, len);
1060
1061out_unlock:
1062        unlock_page(page);
1063        return err;
1064}
1065
1066/**
1067 * do_attr_changes - change inode attributes.
1068 * @inode: inode to change attributes for
1069 * @attr: describes attributes to change
1070 */
1071static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1072{
1073        if (attr->ia_valid & ATTR_UID)
1074                inode->i_uid = attr->ia_uid;
1075        if (attr->ia_valid & ATTR_GID)
1076                inode->i_gid = attr->ia_gid;
1077        if (attr->ia_valid & ATTR_ATIME)
1078                inode->i_atime = timespec_trunc(attr->ia_atime,
1079                                                inode->i_sb->s_time_gran);
1080        if (attr->ia_valid & ATTR_MTIME)
1081                inode->i_mtime = timespec_trunc(attr->ia_mtime,
1082                                                inode->i_sb->s_time_gran);
1083        if (attr->ia_valid & ATTR_CTIME)
1084                inode->i_ctime = timespec_trunc(attr->ia_ctime,
1085                                                inode->i_sb->s_time_gran);
1086        if (attr->ia_valid & ATTR_MODE) {
1087                umode_t mode = attr->ia_mode;
1088
1089                if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1090                        mode &= ~S_ISGID;
1091                inode->i_mode = mode;
1092        }
1093}
1094
1095/**
1096 * do_truncation - truncate an inode.
1097 * @c: UBIFS file-system description object
1098 * @inode: inode to truncate
1099 * @attr: inode attribute changes description
1100 *
1101 * This function implements VFS '->setattr()' call when the inode is truncated
1102 * to a smaller size. Returns zero in case of success and a negative error code
1103 * in case of failure.
1104 */
1105static int do_truncation(struct ubifs_info *c, struct inode *inode,
1106                         const struct iattr *attr)
1107{
1108        int err;
1109        struct ubifs_budget_req req;
1110        loff_t old_size = inode->i_size, new_size = attr->ia_size;
1111        int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1112        struct ubifs_inode *ui = ubifs_inode(inode);
1113
1114        dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1115        memset(&req, 0, sizeof(struct ubifs_budget_req));
1116
1117        /*
1118         * If this is truncation to a smaller size, and we do not truncate on a
1119         * block boundary, budget for changing one data block, because the last
1120         * block will be re-written.
1121         */
1122        if (new_size & (UBIFS_BLOCK_SIZE - 1))
1123                req.dirtied_page = 1;
1124
1125        req.dirtied_ino = 1;
1126        /* A funny way to budget for truncation node */
1127        req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1128        err = ubifs_budget_space(c, &req);
1129        if (err) {
1130                /*
1131                 * Treat truncations to zero as deletion and always allow them,
1132                 * just like we do for '->unlink()'.
1133                 */
1134                if (new_size || err != -ENOSPC)
1135                        return err;
1136                budgeted = 0;
1137        }
1138
1139        truncate_setsize(inode, new_size);
1140
1141        if (offset) {
1142                pgoff_t index = new_size >> PAGE_SHIFT;
1143                struct page *page;
1144
1145                page = find_lock_page(inode->i_mapping, index);
1146                if (page) {
1147                        if (PageDirty(page)) {
1148                                /*
1149                                 * 'ubifs_jnl_truncate()' will try to truncate
1150                                 * the last data node, but it contains
1151                                 * out-of-date data because the page is dirty.
1152                                 * Write the page now, so that
1153                                 * 'ubifs_jnl_truncate()' will see an already
1154                                 * truncated (and up to date) data node.
1155                                 */
1156                                ubifs_assert(PagePrivate(page));
1157
1158                                clear_page_dirty_for_io(page);
1159                                if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1160                                        offset = new_size &
1161                                                 (PAGE_SIZE - 1);
1162                                err = do_writepage(page, offset);
1163                                put_page(page);
1164                                if (err)
1165                                        goto out_budg;
1166                                /*
1167                                 * We could now tell 'ubifs_jnl_truncate()' not
1168                                 * to read the last block.
1169                                 */
1170                        } else {
1171                                /*
1172                                 * We could 'kmap()' the page and pass the data
1173                                 * to 'ubifs_jnl_truncate()' to save it from
1174                                 * having to read it.
1175                                 */
1176                                unlock_page(page);
1177                                put_page(page);
1178                        }
1179                }
1180        }
1181
1182        mutex_lock(&ui->ui_mutex);
1183        ui->ui_size = inode->i_size;
1184        /* Truncation changes inode [mc]time */
1185        inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1186        /* Other attributes may be changed at the same time as well */
1187        do_attr_changes(inode, attr);
1188        err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1189        mutex_unlock(&ui->ui_mutex);
1190
1191out_budg:
1192        if (budgeted)
1193                ubifs_release_budget(c, &req);
1194        else {
1195                c->bi.nospace = c->bi.nospace_rp = 0;
1196                smp_wmb();
1197        }
1198        return err;
1199}
1200
1201/**
1202 * do_setattr - change inode attributes.
1203 * @c: UBIFS file-system description object
1204 * @inode: inode to change attributes for
1205 * @attr: inode attribute changes description
1206 *
1207 * This function implements VFS '->setattr()' call for all cases except
1208 * truncations to smaller size. Returns zero in case of success and a negative
1209 * error code in case of failure.
1210 */
1211static int do_setattr(struct ubifs_info *c, struct inode *inode,
1212                      const struct iattr *attr)
1213{
1214        int err, release;
1215        loff_t new_size = attr->ia_size;
1216        struct ubifs_inode *ui = ubifs_inode(inode);
1217        struct ubifs_budget_req req = { .dirtied_ino = 1,
1218                                .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1219
1220        err = ubifs_budget_space(c, &req);
1221        if (err)
1222                return err;
1223
1224        if (attr->ia_valid & ATTR_SIZE) {
1225                dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1226                truncate_setsize(inode, new_size);
1227        }
1228
1229        mutex_lock(&ui->ui_mutex);
1230        if (attr->ia_valid & ATTR_SIZE) {
1231                /* Truncation changes inode [mc]time */
1232                inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1233                /* 'truncate_setsize()' changed @i_size, update @ui_size */
1234                ui->ui_size = inode->i_size;
1235        }
1236
1237        do_attr_changes(inode, attr);
1238
1239        release = ui->dirty;
1240        if (attr->ia_valid & ATTR_SIZE)
1241                /*
1242                 * Inode length changed, so we have to make sure
1243                 * @I_DIRTY_DATASYNC is set.
1244                 */
1245                 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1246        else
1247                mark_inode_dirty_sync(inode);
1248        mutex_unlock(&ui->ui_mutex);
1249
1250        if (release)
1251                ubifs_release_budget(c, &req);
1252        if (IS_SYNC(inode))
1253                err = inode->i_sb->s_op->write_inode(inode, NULL);
1254        return err;
1255}
1256
1257int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1258{
1259        int err;
1260        struct inode *inode = d_inode(dentry);
1261        struct ubifs_info *c = inode->i_sb->s_fs_info;
1262
1263        dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1264                inode->i_ino, inode->i_mode, attr->ia_valid);
1265        err = setattr_prepare(dentry, attr);
1266        if (err)
1267                return err;
1268
1269        err = dbg_check_synced_i_size(c, inode);
1270        if (err)
1271                return err;
1272
1273        if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1274                /* Truncation to a smaller size */
1275                err = do_truncation(c, inode, attr);
1276        else
1277                err = do_setattr(c, inode, attr);
1278
1279        return err;
1280}
1281
1282static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1283                                 unsigned int length)
1284{
1285        struct inode *inode = page->mapping->host;
1286        struct ubifs_info *c = inode->i_sb->s_fs_info;
1287
1288        ubifs_assert(PagePrivate(page));
1289        if (offset || length < PAGE_SIZE)
1290                /* Partial page remains dirty */
1291                return;
1292
1293        if (PageChecked(page))
1294                release_new_page_budget(c);
1295        else
1296                release_existing_page_budget(c);
1297
1298        atomic_long_dec(&c->dirty_pg_cnt);
1299        ClearPagePrivate(page);
1300        ClearPageChecked(page);
1301}
1302
1303int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1304{
1305        struct inode *inode = file->f_mapping->host;
1306        struct ubifs_info *c = inode->i_sb->s_fs_info;
1307        int err;
1308
1309        dbg_gen("syncing inode %lu", inode->i_ino);
1310
1311        if (c->ro_mount)
1312                /*
1313                 * For some really strange reasons VFS does not filter out
1314                 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1315                 */
1316                return 0;
1317
1318        err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1319        if (err)
1320                return err;
1321        inode_lock(inode);
1322
1323        /* Synchronize the inode unless this is a 'datasync()' call. */
1324        if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1325                err = inode->i_sb->s_op->write_inode(inode, NULL);
1326                if (err)
1327                        goto out;
1328        }
1329
1330        /*
1331         * Nodes related to this inode may still sit in a write-buffer. Flush
1332         * them.
1333         */
1334        err = ubifs_sync_wbufs_by_inode(c, inode);
1335out:
1336        inode_unlock(inode);
1337        return err;
1338}
1339
1340/**
1341 * mctime_update_needed - check if mtime or ctime update is needed.
1342 * @inode: the inode to do the check for
1343 * @now: current time
1344 *
1345 * This helper function checks if the inode mtime/ctime should be updated or
1346 * not. If current values of the time-stamps are within the UBIFS inode time
1347 * granularity, they are not updated. This is an optimization.
1348 */
1349static inline int mctime_update_needed(const struct inode *inode,
1350                                       const struct timespec *now)
1351{
1352        if (!timespec_equal(&inode->i_mtime, now) ||
1353            !timespec_equal(&inode->i_ctime, now))
1354                return 1;
1355        return 0;
1356}
1357
1358#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1359/**
1360 * ubifs_update_time - update time of inode.
1361 * @inode: inode to update
1362 *
1363 * This function updates time of the inode.
1364 */
1365int ubifs_update_time(struct inode *inode, struct timespec *time,
1366                             int flags)
1367{
1368        struct ubifs_inode *ui = ubifs_inode(inode);
1369        struct ubifs_info *c = inode->i_sb->s_fs_info;
1370        struct ubifs_budget_req req = { .dirtied_ino = 1,
1371                        .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1372        int iflags = I_DIRTY_TIME;
1373        int err, release;
1374
1375        err = ubifs_budget_space(c, &req);
1376        if (err)
1377                return err;
1378
1379        mutex_lock(&ui->ui_mutex);
1380        if (flags & S_ATIME)
1381                inode->i_atime = *time;
1382        if (flags & S_CTIME)
1383                inode->i_ctime = *time;
1384        if (flags & S_MTIME)
1385                inode->i_mtime = *time;
1386
1387        if (!(inode->i_sb->s_flags & MS_LAZYTIME))
1388                iflags |= I_DIRTY_SYNC;
1389
1390        release = ui->dirty;
1391        __mark_inode_dirty(inode, iflags);
1392        mutex_unlock(&ui->ui_mutex);
1393        if (release)
1394                ubifs_release_budget(c, &req);
1395        return 0;
1396}
1397#endif
1398
1399/**
1400 * update_mctime - update mtime and ctime of an inode.
1401 * @inode: inode to update
1402 *
1403 * This function updates mtime and ctime of the inode if it is not equivalent to
1404 * current time. Returns zero in case of success and a negative error code in
1405 * case of failure.
1406 */
1407static int update_mctime(struct inode *inode)
1408{
1409        struct timespec now = ubifs_current_time(inode);
1410        struct ubifs_inode *ui = ubifs_inode(inode);
1411        struct ubifs_info *c = inode->i_sb->s_fs_info;
1412
1413        if (mctime_update_needed(inode, &now)) {
1414                int err, release;
1415                struct ubifs_budget_req req = { .dirtied_ino = 1,
1416                                .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1417
1418                err = ubifs_budget_space(c, &req);
1419                if (err)
1420                        return err;
1421
1422                mutex_lock(&ui->ui_mutex);
1423                inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1424                release = ui->dirty;
1425                mark_inode_dirty_sync(inode);
1426                mutex_unlock(&ui->ui_mutex);
1427                if (release)
1428                        ubifs_release_budget(c, &req);
1429        }
1430
1431        return 0;
1432}
1433
1434static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1435{
1436        int err = update_mctime(file_inode(iocb->ki_filp));
1437        if (err)
1438                return err;
1439
1440        return generic_file_write_iter(iocb, from);
1441}
1442
1443static int ubifs_set_page_dirty(struct page *page)
1444{
1445        int ret;
1446
1447        ret = __set_page_dirty_nobuffers(page);
1448        /*
1449         * An attempt to dirty a page without budgeting for it - should not
1450         * happen.
1451         */
1452        ubifs_assert(ret == 0);
1453        return ret;
1454}
1455
1456#ifdef CONFIG_MIGRATION
1457static int ubifs_migrate_page(struct address_space *mapping,
1458                struct page *newpage, struct page *page, enum migrate_mode mode)
1459{
1460        int rc;
1461
1462        rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1463        if (rc != MIGRATEPAGE_SUCCESS)
1464                return rc;
1465
1466        if (PagePrivate(page)) {
1467                ClearPagePrivate(page);
1468                SetPagePrivate(newpage);
1469        }
1470
1471        migrate_page_copy(newpage, page);
1472        return MIGRATEPAGE_SUCCESS;
1473}
1474#endif
1475
1476static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1477{
1478        /*
1479         * An attempt to release a dirty page without budgeting for it - should
1480         * not happen.
1481         */
1482        if (PageWriteback(page))
1483                return 0;
1484        ubifs_assert(PagePrivate(page));
1485        ubifs_assert(0);
1486        ClearPagePrivate(page);
1487        ClearPageChecked(page);
1488        return 1;
1489}
1490
1491/*
1492 * mmap()d file has taken write protection fault and is being made writable.
1493 * UBIFS must ensure page is budgeted for.
1494 */
1495static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
1496                                 struct vm_fault *vmf)
1497{
1498        struct page *page = vmf->page;
1499        struct inode *inode = file_inode(vma->vm_file);
1500        struct ubifs_info *c = inode->i_sb->s_fs_info;
1501        struct timespec now = ubifs_current_time(inode);
1502        struct ubifs_budget_req req = { .new_page = 1 };
1503        int err, update_time;
1504
1505        dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1506                i_size_read(inode));
1507        ubifs_assert(!c->ro_media && !c->ro_mount);
1508
1509        if (unlikely(c->ro_error))
1510                return VM_FAULT_SIGBUS; /* -EROFS */
1511
1512        /*
1513         * We have not locked @page so far so we may budget for changing the
1514         * page. Note, we cannot do this after we locked the page, because
1515         * budgeting may cause write-back which would cause deadlock.
1516         *
1517         * At the moment we do not know whether the page is dirty or not, so we
1518         * assume that it is not and budget for a new page. We could look at
1519         * the @PG_private flag and figure this out, but we may race with write
1520         * back and the page state may change by the time we lock it, so this
1521         * would need additional care. We do not bother with this at the
1522         * moment, although it might be good idea to do. Instead, we allocate
1523         * budget for a new page and amend it later on if the page was in fact
1524         * dirty.
1525         *
1526         * The budgeting-related logic of this function is similar to what we
1527         * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1528         * for more comments.
1529         */
1530        update_time = mctime_update_needed(inode, &now);
1531        if (update_time)
1532                /*
1533                 * We have to change inode time stamp which requires extra
1534                 * budgeting.
1535                 */
1536                req.dirtied_ino = 1;
1537
1538        err = ubifs_budget_space(c, &req);
1539        if (unlikely(err)) {
1540                if (err == -ENOSPC)
1541                        ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1542                                   inode->i_ino);
1543                return VM_FAULT_SIGBUS;
1544        }
1545
1546        lock_page(page);
1547        if (unlikely(page->mapping != inode->i_mapping ||
1548                     page_offset(page) > i_size_read(inode))) {
1549                /* Page got truncated out from underneath us */
1550                err = -EINVAL;
1551                goto out_unlock;
1552        }
1553
1554        if (PagePrivate(page))
1555                release_new_page_budget(c);
1556        else {
1557                if (!PageChecked(page))
1558                        ubifs_convert_page_budget(c);
1559                SetPagePrivate(page);
1560                atomic_long_inc(&c->dirty_pg_cnt);
1561                __set_page_dirty_nobuffers(page);
1562        }
1563
1564        if (update_time) {
1565                int release;
1566                struct ubifs_inode *ui = ubifs_inode(inode);
1567
1568                mutex_lock(&ui->ui_mutex);
1569                inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1570                release = ui->dirty;
1571                mark_inode_dirty_sync(inode);
1572                mutex_unlock(&ui->ui_mutex);
1573                if (release)
1574                        ubifs_release_dirty_inode_budget(c, ui);
1575        }
1576
1577        wait_for_stable_page(page);
1578        return VM_FAULT_LOCKED;
1579
1580out_unlock:
1581        unlock_page(page);
1582        ubifs_release_budget(c, &req);
1583        if (err)
1584                err = VM_FAULT_SIGBUS;
1585        return err;
1586}
1587
1588static const struct vm_operations_struct ubifs_file_vm_ops = {
1589        .fault        = filemap_fault,
1590        .map_pages = filemap_map_pages,
1591        .page_mkwrite = ubifs_vm_page_mkwrite,
1592};
1593
1594static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1595{
1596        int err;
1597
1598        err = generic_file_mmap(file, vma);
1599        if (err)
1600                return err;
1601        vma->vm_ops = &ubifs_file_vm_ops;
1602#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1603        file_accessed(file);
1604#endif
1605        return 0;
1606}
1607
1608const struct address_space_operations ubifs_file_address_operations = {
1609        .readpage       = ubifs_readpage,
1610        .writepage      = ubifs_writepage,
1611        .write_begin    = ubifs_write_begin,
1612        .write_end      = ubifs_write_end,
1613        .invalidatepage = ubifs_invalidatepage,
1614        .set_page_dirty = ubifs_set_page_dirty,
1615#ifdef CONFIG_MIGRATION
1616        .migratepage    = ubifs_migrate_page,
1617#endif
1618        .releasepage    = ubifs_releasepage,
1619};
1620
1621const struct inode_operations ubifs_file_inode_operations = {
1622        .setattr     = ubifs_setattr,
1623        .getattr     = ubifs_getattr,
1624        .listxattr   = ubifs_listxattr,
1625#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1626        .update_time = ubifs_update_time,
1627#endif
1628};
1629
1630const struct inode_operations ubifs_symlink_inode_operations = {
1631        .readlink    = generic_readlink,
1632        .get_link    = simple_get_link,
1633        .setattr     = ubifs_setattr,
1634        .getattr     = ubifs_getattr,
1635        .listxattr   = ubifs_listxattr,
1636#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1637        .update_time = ubifs_update_time,
1638#endif
1639};
1640
1641const struct file_operations ubifs_file_operations = {
1642        .llseek         = generic_file_llseek,
1643        .read_iter      = generic_file_read_iter,
1644        .write_iter     = ubifs_write_iter,
1645        .mmap           = ubifs_file_mmap,
1646        .fsync          = ubifs_fsync,
1647        .unlocked_ioctl = ubifs_ioctl,
1648        .splice_read    = generic_file_splice_read,
1649        .splice_write   = iter_file_splice_write,
1650#ifdef CONFIG_COMPAT
1651        .compat_ioctl   = ubifs_compat_ioctl,
1652#endif
1653};
1654