linux/fs/ubifs/orphan.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Author: Adrian Hunter
  20 */
  21
  22#include "ubifs.h"
  23
  24/*
  25 * An orphan is an inode number whose inode node has been committed to the index
  26 * with a link count of zero. That happens when an open file is deleted
  27 * (unlinked) and then a commit is run. In the normal course of events the inode
  28 * would be deleted when the file is closed. However in the case of an unclean
  29 * unmount, orphans need to be accounted for. After an unclean unmount, the
  30 * orphans' inodes must be deleted which means either scanning the entire index
  31 * looking for them, or keeping a list on flash somewhere. This unit implements
  32 * the latter approach.
  33 *
  34 * The orphan area is a fixed number of LEBs situated between the LPT area and
  35 * the main area. The number of orphan area LEBs is specified when the file
  36 * system is created. The minimum number is 1. The size of the orphan area
  37 * should be so that it can hold the maximum number of orphans that are expected
  38 * to ever exist at one time.
  39 *
  40 * The number of orphans that can fit in a LEB is:
  41 *
  42 *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
  43 *
  44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
  45 *
  46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
  47 * zero, the inode number is added to the rb-tree. It is removed from the tree
  48 * when the inode is deleted.  Any new orphans that are in the orphan tree when
  49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
  50 * If the orphan area is full, it is consolidated to make space.  There is
  51 * always enough space because validation prevents the user from creating more
  52 * than the maximum number of orphans allowed.
  53 */
  54
  55static int dbg_check_orphans(struct ubifs_info *c);
  56
  57/**
  58 * ubifs_add_orphan - add an orphan.
  59 * @c: UBIFS file-system description object
  60 * @inum: orphan inode number
  61 *
  62 * Add an orphan. This function is called when an inodes link count drops to
  63 * zero.
  64 */
  65int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
  66{
  67        struct ubifs_orphan *orphan, *o;
  68        struct rb_node **p, *parent = NULL;
  69
  70        orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
  71        if (!orphan)
  72                return -ENOMEM;
  73        orphan->inum = inum;
  74        orphan->new = 1;
  75
  76        spin_lock(&c->orphan_lock);
  77        if (c->tot_orphans >= c->max_orphans) {
  78                spin_unlock(&c->orphan_lock);
  79                kfree(orphan);
  80                return -ENFILE;
  81        }
  82        p = &c->orph_tree.rb_node;
  83        while (*p) {
  84                parent = *p;
  85                o = rb_entry(parent, struct ubifs_orphan, rb);
  86                if (inum < o->inum)
  87                        p = &(*p)->rb_left;
  88                else if (inum > o->inum)
  89                        p = &(*p)->rb_right;
  90                else {
  91                        ubifs_err(c, "orphaned twice");
  92                        spin_unlock(&c->orphan_lock);
  93                        kfree(orphan);
  94                        return 0;
  95                }
  96        }
  97        c->tot_orphans += 1;
  98        c->new_orphans += 1;
  99        rb_link_node(&orphan->rb, parent, p);
 100        rb_insert_color(&orphan->rb, &c->orph_tree);
 101        list_add_tail(&orphan->list, &c->orph_list);
 102        list_add_tail(&orphan->new_list, &c->orph_new);
 103        spin_unlock(&c->orphan_lock);
 104        dbg_gen("ino %lu", (unsigned long)inum);
 105        return 0;
 106}
 107
 108/**
 109 * ubifs_delete_orphan - delete an orphan.
 110 * @c: UBIFS file-system description object
 111 * @inum: orphan inode number
 112 *
 113 * Delete an orphan. This function is called when an inode is deleted.
 114 */
 115void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
 116{
 117        struct ubifs_orphan *o;
 118        struct rb_node *p;
 119
 120        spin_lock(&c->orphan_lock);
 121        p = c->orph_tree.rb_node;
 122        while (p) {
 123                o = rb_entry(p, struct ubifs_orphan, rb);
 124                if (inum < o->inum)
 125                        p = p->rb_left;
 126                else if (inum > o->inum)
 127                        p = p->rb_right;
 128                else {
 129                        if (o->del) {
 130                                spin_unlock(&c->orphan_lock);
 131                                dbg_gen("deleted twice ino %lu",
 132                                        (unsigned long)inum);
 133                                return;
 134                        }
 135                        if (o->cmt) {
 136                                o->del = 1;
 137                                o->dnext = c->orph_dnext;
 138                                c->orph_dnext = o;
 139                                spin_unlock(&c->orphan_lock);
 140                                dbg_gen("delete later ino %lu",
 141                                        (unsigned long)inum);
 142                                return;
 143                        }
 144                        rb_erase(p, &c->orph_tree);
 145                        list_del(&o->list);
 146                        c->tot_orphans -= 1;
 147                        if (o->new) {
 148                                list_del(&o->new_list);
 149                                c->new_orphans -= 1;
 150                        }
 151                        spin_unlock(&c->orphan_lock);
 152                        kfree(o);
 153                        dbg_gen("inum %lu", (unsigned long)inum);
 154                        return;
 155                }
 156        }
 157        spin_unlock(&c->orphan_lock);
 158        ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
 159        dump_stack();
 160}
 161
 162/**
 163 * ubifs_orphan_start_commit - start commit of orphans.
 164 * @c: UBIFS file-system description object
 165 *
 166 * Start commit of orphans.
 167 */
 168int ubifs_orphan_start_commit(struct ubifs_info *c)
 169{
 170        struct ubifs_orphan *orphan, **last;
 171
 172        spin_lock(&c->orphan_lock);
 173        last = &c->orph_cnext;
 174        list_for_each_entry(orphan, &c->orph_new, new_list) {
 175                ubifs_assert(orphan->new);
 176                ubifs_assert(!orphan->cmt);
 177                orphan->new = 0;
 178                orphan->cmt = 1;
 179                *last = orphan;
 180                last = &orphan->cnext;
 181        }
 182        *last = NULL;
 183        c->cmt_orphans = c->new_orphans;
 184        c->new_orphans = 0;
 185        dbg_cmt("%d orphans to commit", c->cmt_orphans);
 186        INIT_LIST_HEAD(&c->orph_new);
 187        if (c->tot_orphans == 0)
 188                c->no_orphs = 1;
 189        else
 190                c->no_orphs = 0;
 191        spin_unlock(&c->orphan_lock);
 192        return 0;
 193}
 194
 195/**
 196 * avail_orphs - calculate available space.
 197 * @c: UBIFS file-system description object
 198 *
 199 * This function returns the number of orphans that can be written in the
 200 * available space.
 201 */
 202static int avail_orphs(struct ubifs_info *c)
 203{
 204        int avail_lebs, avail, gap;
 205
 206        avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
 207        avail = avail_lebs *
 208               ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 209        gap = c->leb_size - c->ohead_offs;
 210        if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
 211                avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 212        return avail;
 213}
 214
 215/**
 216 * tot_avail_orphs - calculate total space.
 217 * @c: UBIFS file-system description object
 218 *
 219 * This function returns the number of orphans that can be written in half
 220 * the total space. That leaves half the space for adding new orphans.
 221 */
 222static int tot_avail_orphs(struct ubifs_info *c)
 223{
 224        int avail_lebs, avail;
 225
 226        avail_lebs = c->orph_lebs;
 227        avail = avail_lebs *
 228               ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 229        return avail / 2;
 230}
 231
 232/**
 233 * do_write_orph_node - write a node to the orphan head.
 234 * @c: UBIFS file-system description object
 235 * @len: length of node
 236 * @atomic: write atomically
 237 *
 238 * This function writes a node to the orphan head from the orphan buffer. If
 239 * %atomic is not zero, then the write is done atomically. On success, %0 is
 240 * returned, otherwise a negative error code is returned.
 241 */
 242static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
 243{
 244        int err = 0;
 245
 246        if (atomic) {
 247                ubifs_assert(c->ohead_offs == 0);
 248                ubifs_prepare_node(c, c->orph_buf, len, 1);
 249                len = ALIGN(len, c->min_io_size);
 250                err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
 251        } else {
 252                if (c->ohead_offs == 0) {
 253                        /* Ensure LEB has been unmapped */
 254                        err = ubifs_leb_unmap(c, c->ohead_lnum);
 255                        if (err)
 256                                return err;
 257                }
 258                err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
 259                                       c->ohead_offs);
 260        }
 261        return err;
 262}
 263
 264/**
 265 * write_orph_node - write an orphan node.
 266 * @c: UBIFS file-system description object
 267 * @atomic: write atomically
 268 *
 269 * This function builds an orphan node from the cnext list and writes it to the
 270 * orphan head. On success, %0 is returned, otherwise a negative error code
 271 * is returned.
 272 */
 273static int write_orph_node(struct ubifs_info *c, int atomic)
 274{
 275        struct ubifs_orphan *orphan, *cnext;
 276        struct ubifs_orph_node *orph;
 277        int gap, err, len, cnt, i;
 278
 279        ubifs_assert(c->cmt_orphans > 0);
 280        gap = c->leb_size - c->ohead_offs;
 281        if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
 282                c->ohead_lnum += 1;
 283                c->ohead_offs = 0;
 284                gap = c->leb_size;
 285                if (c->ohead_lnum > c->orph_last) {
 286                        /*
 287                         * We limit the number of orphans so that this should
 288                         * never happen.
 289                         */
 290                        ubifs_err(c, "out of space in orphan area");
 291                        return -EINVAL;
 292                }
 293        }
 294        cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 295        if (cnt > c->cmt_orphans)
 296                cnt = c->cmt_orphans;
 297        len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
 298        ubifs_assert(c->orph_buf);
 299        orph = c->orph_buf;
 300        orph->ch.node_type = UBIFS_ORPH_NODE;
 301        spin_lock(&c->orphan_lock);
 302        cnext = c->orph_cnext;
 303        for (i = 0; i < cnt; i++) {
 304                orphan = cnext;
 305                ubifs_assert(orphan->cmt);
 306                orph->inos[i] = cpu_to_le64(orphan->inum);
 307                orphan->cmt = 0;
 308                cnext = orphan->cnext;
 309                orphan->cnext = NULL;
 310        }
 311        c->orph_cnext = cnext;
 312        c->cmt_orphans -= cnt;
 313        spin_unlock(&c->orphan_lock);
 314        if (c->cmt_orphans)
 315                orph->cmt_no = cpu_to_le64(c->cmt_no);
 316        else
 317                /* Mark the last node of the commit */
 318                orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
 319        ubifs_assert(c->ohead_offs + len <= c->leb_size);
 320        ubifs_assert(c->ohead_lnum >= c->orph_first);
 321        ubifs_assert(c->ohead_lnum <= c->orph_last);
 322        err = do_write_orph_node(c, len, atomic);
 323        c->ohead_offs += ALIGN(len, c->min_io_size);
 324        c->ohead_offs = ALIGN(c->ohead_offs, 8);
 325        return err;
 326}
 327
 328/**
 329 * write_orph_nodes - write orphan nodes until there are no more to commit.
 330 * @c: UBIFS file-system description object
 331 * @atomic: write atomically
 332 *
 333 * This function writes orphan nodes for all the orphans to commit. On success,
 334 * %0 is returned, otherwise a negative error code is returned.
 335 */
 336static int write_orph_nodes(struct ubifs_info *c, int atomic)
 337{
 338        int err;
 339
 340        while (c->cmt_orphans > 0) {
 341                err = write_orph_node(c, atomic);
 342                if (err)
 343                        return err;
 344        }
 345        if (atomic) {
 346                int lnum;
 347
 348                /* Unmap any unused LEBs after consolidation */
 349                for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
 350                        err = ubifs_leb_unmap(c, lnum);
 351                        if (err)
 352                                return err;
 353                }
 354        }
 355        return 0;
 356}
 357
 358/**
 359 * consolidate - consolidate the orphan area.
 360 * @c: UBIFS file-system description object
 361 *
 362 * This function enables consolidation by putting all the orphans into the list
 363 * to commit. The list is in the order that the orphans were added, and the
 364 * LEBs are written atomically in order, so at no time can orphans be lost by
 365 * an unclean unmount.
 366 *
 367 * This function returns %0 on success and a negative error code on failure.
 368 */
 369static int consolidate(struct ubifs_info *c)
 370{
 371        int tot_avail = tot_avail_orphs(c), err = 0;
 372
 373        spin_lock(&c->orphan_lock);
 374        dbg_cmt("there is space for %d orphans and there are %d",
 375                tot_avail, c->tot_orphans);
 376        if (c->tot_orphans - c->new_orphans <= tot_avail) {
 377                struct ubifs_orphan *orphan, **last;
 378                int cnt = 0;
 379
 380                /* Change the cnext list to include all non-new orphans */
 381                last = &c->orph_cnext;
 382                list_for_each_entry(orphan, &c->orph_list, list) {
 383                        if (orphan->new)
 384                                continue;
 385                        orphan->cmt = 1;
 386                        *last = orphan;
 387                        last = &orphan->cnext;
 388                        cnt += 1;
 389                }
 390                *last = NULL;
 391                ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
 392                c->cmt_orphans = cnt;
 393                c->ohead_lnum = c->orph_first;
 394                c->ohead_offs = 0;
 395        } else {
 396                /*
 397                 * We limit the number of orphans so that this should
 398                 * never happen.
 399                 */
 400                ubifs_err(c, "out of space in orphan area");
 401                err = -EINVAL;
 402        }
 403        spin_unlock(&c->orphan_lock);
 404        return err;
 405}
 406
 407/**
 408 * commit_orphans - commit orphans.
 409 * @c: UBIFS file-system description object
 410 *
 411 * This function commits orphans to flash. On success, %0 is returned,
 412 * otherwise a negative error code is returned.
 413 */
 414static int commit_orphans(struct ubifs_info *c)
 415{
 416        int avail, atomic = 0, err;
 417
 418        ubifs_assert(c->cmt_orphans > 0);
 419        avail = avail_orphs(c);
 420        if (avail < c->cmt_orphans) {
 421                /* Not enough space to write new orphans, so consolidate */
 422                err = consolidate(c);
 423                if (err)
 424                        return err;
 425                atomic = 1;
 426        }
 427        err = write_orph_nodes(c, atomic);
 428        return err;
 429}
 430
 431/**
 432 * erase_deleted - erase the orphans marked for deletion.
 433 * @c: UBIFS file-system description object
 434 *
 435 * During commit, the orphans being committed cannot be deleted, so they are
 436 * marked for deletion and deleted by this function. Also, the recovery
 437 * adds killed orphans to the deletion list, and therefore they are deleted
 438 * here too.
 439 */
 440static void erase_deleted(struct ubifs_info *c)
 441{
 442        struct ubifs_orphan *orphan, *dnext;
 443
 444        spin_lock(&c->orphan_lock);
 445        dnext = c->orph_dnext;
 446        while (dnext) {
 447                orphan = dnext;
 448                dnext = orphan->dnext;
 449                ubifs_assert(!orphan->new);
 450                ubifs_assert(orphan->del);
 451                rb_erase(&orphan->rb, &c->orph_tree);
 452                list_del(&orphan->list);
 453                c->tot_orphans -= 1;
 454                dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
 455                kfree(orphan);
 456        }
 457        c->orph_dnext = NULL;
 458        spin_unlock(&c->orphan_lock);
 459}
 460
 461/**
 462 * ubifs_orphan_end_commit - end commit of orphans.
 463 * @c: UBIFS file-system description object
 464 *
 465 * End commit of orphans.
 466 */
 467int ubifs_orphan_end_commit(struct ubifs_info *c)
 468{
 469        int err;
 470
 471        if (c->cmt_orphans != 0) {
 472                err = commit_orphans(c);
 473                if (err)
 474                        return err;
 475        }
 476        erase_deleted(c);
 477        err = dbg_check_orphans(c);
 478        return err;
 479}
 480
 481/**
 482 * ubifs_clear_orphans - erase all LEBs used for orphans.
 483 * @c: UBIFS file-system description object
 484 *
 485 * If recovery is not required, then the orphans from the previous session
 486 * are not needed. This function locates the LEBs used to record
 487 * orphans, and un-maps them.
 488 */
 489int ubifs_clear_orphans(struct ubifs_info *c)
 490{
 491        int lnum, err;
 492
 493        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 494                err = ubifs_leb_unmap(c, lnum);
 495                if (err)
 496                        return err;
 497        }
 498        c->ohead_lnum = c->orph_first;
 499        c->ohead_offs = 0;
 500        return 0;
 501}
 502
 503/**
 504 * insert_dead_orphan - insert an orphan.
 505 * @c: UBIFS file-system description object
 506 * @inum: orphan inode number
 507 *
 508 * This function is a helper to the 'do_kill_orphans()' function. The orphan
 509 * must be kept until the next commit, so it is added to the rb-tree and the
 510 * deletion list.
 511 */
 512static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
 513{
 514        struct ubifs_orphan *orphan, *o;
 515        struct rb_node **p, *parent = NULL;
 516
 517        orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
 518        if (!orphan)
 519                return -ENOMEM;
 520        orphan->inum = inum;
 521
 522        p = &c->orph_tree.rb_node;
 523        while (*p) {
 524                parent = *p;
 525                o = rb_entry(parent, struct ubifs_orphan, rb);
 526                if (inum < o->inum)
 527                        p = &(*p)->rb_left;
 528                else if (inum > o->inum)
 529                        p = &(*p)->rb_right;
 530                else {
 531                        /* Already added - no problem */
 532                        kfree(orphan);
 533                        return 0;
 534                }
 535        }
 536        c->tot_orphans += 1;
 537        rb_link_node(&orphan->rb, parent, p);
 538        rb_insert_color(&orphan->rb, &c->orph_tree);
 539        list_add_tail(&orphan->list, &c->orph_list);
 540        orphan->del = 1;
 541        orphan->dnext = c->orph_dnext;
 542        c->orph_dnext = orphan;
 543        dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
 544                c->new_orphans, c->tot_orphans);
 545        return 0;
 546}
 547
 548/**
 549 * do_kill_orphans - remove orphan inodes from the index.
 550 * @c: UBIFS file-system description object
 551 * @sleb: scanned LEB
 552 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
 553 * @outofdate: whether the LEB is out of date is returned here
 554 * @last_flagged: whether the end orphan node is encountered
 555 *
 556 * This function is a helper to the 'kill_orphans()' function. It goes through
 557 * every orphan node in a LEB and for every inode number recorded, removes
 558 * all keys for that inode from the TNC.
 559 */
 560static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 561                           unsigned long long *last_cmt_no, int *outofdate,
 562                           int *last_flagged)
 563{
 564        struct ubifs_scan_node *snod;
 565        struct ubifs_orph_node *orph;
 566        unsigned long long cmt_no;
 567        ino_t inum;
 568        int i, n, err, first = 1;
 569
 570        list_for_each_entry(snod, &sleb->nodes, list) {
 571                if (snod->type != UBIFS_ORPH_NODE) {
 572                        ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
 573                                  snod->type, sleb->lnum, snod->offs);
 574                        ubifs_dump_node(c, snod->node);
 575                        return -EINVAL;
 576                }
 577
 578                orph = snod->node;
 579
 580                /* Check commit number */
 581                cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
 582                /*
 583                 * The commit number on the master node may be less, because
 584                 * of a failed commit. If there are several failed commits in a
 585                 * row, the commit number written on orphan nodes will continue
 586                 * to increase (because the commit number is adjusted here) even
 587                 * though the commit number on the master node stays the same
 588                 * because the master node has not been re-written.
 589                 */
 590                if (cmt_no > c->cmt_no)
 591                        c->cmt_no = cmt_no;
 592                if (cmt_no < *last_cmt_no && *last_flagged) {
 593                        /*
 594                         * The last orphan node had a higher commit number and
 595                         * was flagged as the last written for that commit
 596                         * number. That makes this orphan node, out of date.
 597                         */
 598                        if (!first) {
 599                                ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
 600                                          cmt_no, sleb->lnum, snod->offs);
 601                                ubifs_dump_node(c, snod->node);
 602                                return -EINVAL;
 603                        }
 604                        dbg_rcvry("out of date LEB %d", sleb->lnum);
 605                        *outofdate = 1;
 606                        return 0;
 607                }
 608
 609                if (first)
 610                        first = 0;
 611
 612                n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 613                for (i = 0; i < n; i++) {
 614                        inum = le64_to_cpu(orph->inos[i]);
 615                        dbg_rcvry("deleting orphaned inode %lu",
 616                                  (unsigned long)inum);
 617                        err = ubifs_tnc_remove_ino(c, inum);
 618                        if (err)
 619                                return err;
 620                        err = insert_dead_orphan(c, inum);
 621                        if (err)
 622                                return err;
 623                }
 624
 625                *last_cmt_no = cmt_no;
 626                if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
 627                        dbg_rcvry("last orph node for commit %llu at %d:%d",
 628                                  cmt_no, sleb->lnum, snod->offs);
 629                        *last_flagged = 1;
 630                } else
 631                        *last_flagged = 0;
 632        }
 633
 634        return 0;
 635}
 636
 637/**
 638 * kill_orphans - remove all orphan inodes from the index.
 639 * @c: UBIFS file-system description object
 640 *
 641 * If recovery is required, then orphan inodes recorded during the previous
 642 * session (which ended with an unclean unmount) must be deleted from the index.
 643 * This is done by updating the TNC, but since the index is not updated until
 644 * the next commit, the LEBs where the orphan information is recorded are not
 645 * erased until the next commit.
 646 */
 647static int kill_orphans(struct ubifs_info *c)
 648{
 649        unsigned long long last_cmt_no = 0;
 650        int lnum, err = 0, outofdate = 0, last_flagged = 0;
 651
 652        c->ohead_lnum = c->orph_first;
 653        c->ohead_offs = 0;
 654        /* Check no-orphans flag and skip this if no orphans */
 655        if (c->no_orphs) {
 656                dbg_rcvry("no orphans");
 657                return 0;
 658        }
 659        /*
 660         * Orph nodes always start at c->orph_first and are written to each
 661         * successive LEB in turn. Generally unused LEBs will have been unmapped
 662         * but may contain out of date orphan nodes if the unmap didn't go
 663         * through. In addition, the last orphan node written for each commit is
 664         * marked (top bit of orph->cmt_no is set to 1). It is possible that
 665         * there are orphan nodes from the next commit (i.e. the commit did not
 666         * complete successfully). In that case, no orphans will have been lost
 667         * due to the way that orphans are written, and any orphans added will
 668         * be valid orphans anyway and so can be deleted.
 669         */
 670        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 671                struct ubifs_scan_leb *sleb;
 672
 673                dbg_rcvry("LEB %d", lnum);
 674                sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
 675                if (IS_ERR(sleb)) {
 676                        if (PTR_ERR(sleb) == -EUCLEAN)
 677                                sleb = ubifs_recover_leb(c, lnum, 0,
 678                                                         c->sbuf, -1);
 679                        if (IS_ERR(sleb)) {
 680                                err = PTR_ERR(sleb);
 681                                break;
 682                        }
 683                }
 684                err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
 685                                      &last_flagged);
 686                if (err || outofdate) {
 687                        ubifs_scan_destroy(sleb);
 688                        break;
 689                }
 690                if (sleb->endpt) {
 691                        c->ohead_lnum = lnum;
 692                        c->ohead_offs = sleb->endpt;
 693                }
 694                ubifs_scan_destroy(sleb);
 695        }
 696        return err;
 697}
 698
 699/**
 700 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
 701 * @c: UBIFS file-system description object
 702 * @unclean: indicates recovery from unclean unmount
 703 * @read_only: indicates read only mount
 704 *
 705 * This function is called when mounting to erase orphans from the previous
 706 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
 707 * orphans are deleted.
 708 */
 709int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
 710{
 711        int err = 0;
 712
 713        c->max_orphans = tot_avail_orphs(c);
 714
 715        if (!read_only) {
 716                c->orph_buf = vmalloc(c->leb_size);
 717                if (!c->orph_buf)
 718                        return -ENOMEM;
 719        }
 720
 721        if (unclean)
 722                err = kill_orphans(c);
 723        else if (!read_only)
 724                err = ubifs_clear_orphans(c);
 725
 726        return err;
 727}
 728
 729/*
 730 * Everything below is related to debugging.
 731 */
 732
 733struct check_orphan {
 734        struct rb_node rb;
 735        ino_t inum;
 736};
 737
 738struct check_info {
 739        unsigned long last_ino;
 740        unsigned long tot_inos;
 741        unsigned long missing;
 742        unsigned long long leaf_cnt;
 743        struct ubifs_ino_node *node;
 744        struct rb_root root;
 745};
 746
 747static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
 748{
 749        struct ubifs_orphan *o;
 750        struct rb_node *p;
 751
 752        spin_lock(&c->orphan_lock);
 753        p = c->orph_tree.rb_node;
 754        while (p) {
 755                o = rb_entry(p, struct ubifs_orphan, rb);
 756                if (inum < o->inum)
 757                        p = p->rb_left;
 758                else if (inum > o->inum)
 759                        p = p->rb_right;
 760                else {
 761                        spin_unlock(&c->orphan_lock);
 762                        return 1;
 763                }
 764        }
 765        spin_unlock(&c->orphan_lock);
 766        return 0;
 767}
 768
 769static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
 770{
 771        struct check_orphan *orphan, *o;
 772        struct rb_node **p, *parent = NULL;
 773
 774        orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
 775        if (!orphan)
 776                return -ENOMEM;
 777        orphan->inum = inum;
 778
 779        p = &root->rb_node;
 780        while (*p) {
 781                parent = *p;
 782                o = rb_entry(parent, struct check_orphan, rb);
 783                if (inum < o->inum)
 784                        p = &(*p)->rb_left;
 785                else if (inum > o->inum)
 786                        p = &(*p)->rb_right;
 787                else {
 788                        kfree(orphan);
 789                        return 0;
 790                }
 791        }
 792        rb_link_node(&orphan->rb, parent, p);
 793        rb_insert_color(&orphan->rb, root);
 794        return 0;
 795}
 796
 797static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
 798{
 799        struct check_orphan *o;
 800        struct rb_node *p;
 801
 802        p = root->rb_node;
 803        while (p) {
 804                o = rb_entry(p, struct check_orphan, rb);
 805                if (inum < o->inum)
 806                        p = p->rb_left;
 807                else if (inum > o->inum)
 808                        p = p->rb_right;
 809                else
 810                        return 1;
 811        }
 812        return 0;
 813}
 814
 815static void dbg_free_check_tree(struct rb_root *root)
 816{
 817        struct check_orphan *o, *n;
 818
 819        rbtree_postorder_for_each_entry_safe(o, n, root, rb)
 820                kfree(o);
 821}
 822
 823static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 824                            void *priv)
 825{
 826        struct check_info *ci = priv;
 827        ino_t inum;
 828        int err;
 829
 830        inum = key_inum(c, &zbr->key);
 831        if (inum != ci->last_ino) {
 832                /* Lowest node type is the inode node, so it comes first */
 833                if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
 834                        ubifs_err(c, "found orphan node ino %lu, type %d",
 835                                  (unsigned long)inum, key_type(c, &zbr->key));
 836                ci->last_ino = inum;
 837                ci->tot_inos += 1;
 838                err = ubifs_tnc_read_node(c, zbr, ci->node);
 839                if (err) {
 840                        ubifs_err(c, "node read failed, error %d", err);
 841                        return err;
 842                }
 843                if (ci->node->nlink == 0)
 844                        /* Must be recorded as an orphan */
 845                        if (!dbg_find_check_orphan(&ci->root, inum) &&
 846                            !dbg_find_orphan(c, inum)) {
 847                                ubifs_err(c, "missing orphan, ino %lu",
 848                                          (unsigned long)inum);
 849                                ci->missing += 1;
 850                        }
 851        }
 852        ci->leaf_cnt += 1;
 853        return 0;
 854}
 855
 856static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
 857{
 858        struct ubifs_scan_node *snod;
 859        struct ubifs_orph_node *orph;
 860        ino_t inum;
 861        int i, n, err;
 862
 863        list_for_each_entry(snod, &sleb->nodes, list) {
 864                cond_resched();
 865                if (snod->type != UBIFS_ORPH_NODE)
 866                        continue;
 867                orph = snod->node;
 868                n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 869                for (i = 0; i < n; i++) {
 870                        inum = le64_to_cpu(orph->inos[i]);
 871                        err = dbg_ins_check_orphan(&ci->root, inum);
 872                        if (err)
 873                                return err;
 874                }
 875        }
 876        return 0;
 877}
 878
 879static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
 880{
 881        int lnum, err = 0;
 882        void *buf;
 883
 884        /* Check no-orphans flag and skip this if no orphans */
 885        if (c->no_orphs)
 886                return 0;
 887
 888        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 889        if (!buf) {
 890                ubifs_err(c, "cannot allocate memory to check orphans");
 891                return 0;
 892        }
 893
 894        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 895                struct ubifs_scan_leb *sleb;
 896
 897                sleb = ubifs_scan(c, lnum, 0, buf, 0);
 898                if (IS_ERR(sleb)) {
 899                        err = PTR_ERR(sleb);
 900                        break;
 901                }
 902
 903                err = dbg_read_orphans(ci, sleb);
 904                ubifs_scan_destroy(sleb);
 905                if (err)
 906                        break;
 907        }
 908
 909        vfree(buf);
 910        return err;
 911}
 912
 913static int dbg_check_orphans(struct ubifs_info *c)
 914{
 915        struct check_info ci;
 916        int err;
 917
 918        if (!dbg_is_chk_orph(c))
 919                return 0;
 920
 921        ci.last_ino = 0;
 922        ci.tot_inos = 0;
 923        ci.missing  = 0;
 924        ci.leaf_cnt = 0;
 925        ci.root = RB_ROOT;
 926        ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 927        if (!ci.node) {
 928                ubifs_err(c, "out of memory");
 929                return -ENOMEM;
 930        }
 931
 932        err = dbg_scan_orphans(c, &ci);
 933        if (err)
 934                goto out;
 935
 936        err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
 937        if (err) {
 938                ubifs_err(c, "cannot scan TNC, error %d", err);
 939                goto out;
 940        }
 941
 942        if (ci.missing) {
 943                ubifs_err(c, "%lu missing orphan(s)", ci.missing);
 944                err = -EINVAL;
 945                goto out;
 946        }
 947
 948        dbg_cmt("last inode number is %lu", ci.last_ino);
 949        dbg_cmt("total number of inodes is %lu", ci.tot_inos);
 950        dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
 951
 952out:
 953        dbg_free_check_tree(&ci.root);
 954        kfree(ci.node);
 955        return err;
 956}
 957