linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  21 *
  22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  24 * Papers:
  25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  27 *
  28 * For detailed explanation of Read-Copy Update mechanism see -
  29 *              http://lse.sourceforge.net/locking/rcupdate.html
  30 *
  31 */
  32
  33#ifndef __LINUX_RCUPDATE_H
  34#define __LINUX_RCUPDATE_H
  35
  36#include <linux/types.h>
  37#include <linux/cache.h>
  38#include <linux/spinlock.h>
  39#include <linux/threads.h>
  40#include <linux/cpumask.h>
  41#include <linux/seqlock.h>
  42#include <linux/lockdep.h>
  43#include <linux/completion.h>
  44#include <linux/debugobjects.h>
  45#include <linux/bug.h>
  46#include <linux/compiler.h>
  47#include <linux/ktime.h>
  48#include <linux/irqflags.h>
  49
  50#include <asm/barrier.h>
  51
  52#ifndef CONFIG_TINY_RCU
  53extern int rcu_expedited; /* for sysctl */
  54extern int rcu_normal;    /* also for sysctl */
  55#endif /* #ifndef CONFIG_TINY_RCU */
  56
  57#ifdef CONFIG_TINY_RCU
  58/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
  59static inline bool rcu_gp_is_normal(void)  /* Internal RCU use. */
  60{
  61        return true;
  62}
  63static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
  64{
  65        return false;
  66}
  67
  68static inline void rcu_expedite_gp(void)
  69{
  70}
  71
  72static inline void rcu_unexpedite_gp(void)
  73{
  74}
  75#else /* #ifdef CONFIG_TINY_RCU */
  76bool rcu_gp_is_normal(void);     /* Internal RCU use. */
  77bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
  78void rcu_expedite_gp(void);
  79void rcu_unexpedite_gp(void);
  80#endif /* #else #ifdef CONFIG_TINY_RCU */
  81
  82enum rcutorture_type {
  83        RCU_FLAVOR,
  84        RCU_BH_FLAVOR,
  85        RCU_SCHED_FLAVOR,
  86        RCU_TASKS_FLAVOR,
  87        SRCU_FLAVOR,
  88        INVALID_RCU_FLAVOR
  89};
  90
  91#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
  92void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  93                            unsigned long *gpnum, unsigned long *completed);
  94void rcutorture_record_test_transition(void);
  95void rcutorture_record_progress(unsigned long vernum);
  96void do_trace_rcu_torture_read(const char *rcutorturename,
  97                               struct rcu_head *rhp,
  98                               unsigned long secs,
  99                               unsigned long c_old,
 100                               unsigned long c);
 101#else
 102static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
 103                                          int *flags,
 104                                          unsigned long *gpnum,
 105                                          unsigned long *completed)
 106{
 107        *flags = 0;
 108        *gpnum = 0;
 109        *completed = 0;
 110}
 111static inline void rcutorture_record_test_transition(void)
 112{
 113}
 114static inline void rcutorture_record_progress(unsigned long vernum)
 115{
 116}
 117#ifdef CONFIG_RCU_TRACE
 118void do_trace_rcu_torture_read(const char *rcutorturename,
 119                               struct rcu_head *rhp,
 120                               unsigned long secs,
 121                               unsigned long c_old,
 122                               unsigned long c);
 123#else
 124#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 125        do { } while (0)
 126#endif
 127#endif
 128
 129#define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
 130#define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
 131#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
 132#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
 133#define ulong2long(a)           (*(long *)(&(a)))
 134
 135/* Exported common interfaces */
 136
 137#ifdef CONFIG_PREEMPT_RCU
 138
 139/**
 140 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 141 * @head: structure to be used for queueing the RCU updates.
 142 * @func: actual callback function to be invoked after the grace period
 143 *
 144 * The callback function will be invoked some time after a full grace
 145 * period elapses, in other words after all pre-existing RCU read-side
 146 * critical sections have completed.  However, the callback function
 147 * might well execute concurrently with RCU read-side critical sections
 148 * that started after call_rcu() was invoked.  RCU read-side critical
 149 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 150 * and may be nested.
 151 *
 152 * Note that all CPUs must agree that the grace period extended beyond
 153 * all pre-existing RCU read-side critical section.  On systems with more
 154 * than one CPU, this means that when "func()" is invoked, each CPU is
 155 * guaranteed to have executed a full memory barrier since the end of its
 156 * last RCU read-side critical section whose beginning preceded the call
 157 * to call_rcu().  It also means that each CPU executing an RCU read-side
 158 * critical section that continues beyond the start of "func()" must have
 159 * executed a memory barrier after the call_rcu() but before the beginning
 160 * of that RCU read-side critical section.  Note that these guarantees
 161 * include CPUs that are offline, idle, or executing in user mode, as
 162 * well as CPUs that are executing in the kernel.
 163 *
 164 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 165 * resulting RCU callback function "func()", then both CPU A and CPU B are
 166 * guaranteed to execute a full memory barrier during the time interval
 167 * between the call to call_rcu() and the invocation of "func()" -- even
 168 * if CPU A and CPU B are the same CPU (but again only if the system has
 169 * more than one CPU).
 170 */
 171void call_rcu(struct rcu_head *head,
 172              rcu_callback_t func);
 173
 174#else /* #ifdef CONFIG_PREEMPT_RCU */
 175
 176/* In classic RCU, call_rcu() is just call_rcu_sched(). */
 177#define call_rcu        call_rcu_sched
 178
 179#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 180
 181/**
 182 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 183 * @head: structure to be used for queueing the RCU updates.
 184 * @func: actual callback function to be invoked after the grace period
 185 *
 186 * The callback function will be invoked some time after a full grace
 187 * period elapses, in other words after all currently executing RCU
 188 * read-side critical sections have completed. call_rcu_bh() assumes
 189 * that the read-side critical sections end on completion of a softirq
 190 * handler. This means that read-side critical sections in process
 191 * context must not be interrupted by softirqs. This interface is to be
 192 * used when most of the read-side critical sections are in softirq context.
 193 * RCU read-side critical sections are delimited by :
 194 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 195 *  OR
 196 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 197 *  These may be nested.
 198 *
 199 * See the description of call_rcu() for more detailed information on
 200 * memory ordering guarantees.
 201 */
 202void call_rcu_bh(struct rcu_head *head,
 203                 rcu_callback_t func);
 204
 205/**
 206 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 207 * @head: structure to be used for queueing the RCU updates.
 208 * @func: actual callback function to be invoked after the grace period
 209 *
 210 * The callback function will be invoked some time after a full grace
 211 * period elapses, in other words after all currently executing RCU
 212 * read-side critical sections have completed. call_rcu_sched() assumes
 213 * that the read-side critical sections end on enabling of preemption
 214 * or on voluntary preemption.
 215 * RCU read-side critical sections are delimited by :
 216 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 217 *  OR
 218 *  anything that disables preemption.
 219 *  These may be nested.
 220 *
 221 * See the description of call_rcu() for more detailed information on
 222 * memory ordering guarantees.
 223 */
 224void call_rcu_sched(struct rcu_head *head,
 225                    rcu_callback_t func);
 226
 227void synchronize_sched(void);
 228
 229/*
 230 * Structure allowing asynchronous waiting on RCU.
 231 */
 232struct rcu_synchronize {
 233        struct rcu_head head;
 234        struct completion completion;
 235};
 236void wakeme_after_rcu(struct rcu_head *head);
 237
 238void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 239                   struct rcu_synchronize *rs_array);
 240
 241#define _wait_rcu_gp(checktiny, ...) \
 242do {                                                                    \
 243        call_rcu_func_t __crcu_array[] = { __VA_ARGS__ };               \
 244        struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)];    \
 245        __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array),              \
 246                        __crcu_array, __rs_array);                      \
 247} while (0)
 248
 249#define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
 250
 251/**
 252 * synchronize_rcu_mult - Wait concurrently for multiple grace periods
 253 * @...: List of call_rcu() functions for the flavors to wait on.
 254 *
 255 * This macro waits concurrently for multiple flavors of RCU grace periods.
 256 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
 257 * on concurrent RCU and RCU-bh grace periods.  Waiting on a give SRCU
 258 * domain requires you to write a wrapper function for that SRCU domain's
 259 * call_srcu() function, supplying the corresponding srcu_struct.
 260 *
 261 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
 262 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
 263 * is automatically a grace period.
 264 */
 265#define synchronize_rcu_mult(...) \
 266        _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
 267
 268/**
 269 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 270 * @head: structure to be used for queueing the RCU updates.
 271 * @func: actual callback function to be invoked after the grace period
 272 *
 273 * The callback function will be invoked some time after a full grace
 274 * period elapses, in other words after all currently executing RCU
 275 * read-side critical sections have completed. call_rcu_tasks() assumes
 276 * that the read-side critical sections end at a voluntary context
 277 * switch (not a preemption!), entry into idle, or transition to usermode
 278 * execution.  As such, there are no read-side primitives analogous to
 279 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
 280 * to determine that all tasks have passed through a safe state, not so
 281 * much for data-strcuture synchronization.
 282 *
 283 * See the description of call_rcu() for more detailed information on
 284 * memory ordering guarantees.
 285 */
 286void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 287void synchronize_rcu_tasks(void);
 288void rcu_barrier_tasks(void);
 289
 290#ifdef CONFIG_PREEMPT_RCU
 291
 292void __rcu_read_lock(void);
 293void __rcu_read_unlock(void);
 294void rcu_read_unlock_special(struct task_struct *t);
 295void synchronize_rcu(void);
 296
 297/*
 298 * Defined as a macro as it is a very low level header included from
 299 * areas that don't even know about current.  This gives the rcu_read_lock()
 300 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 301 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 302 */
 303#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
 304
 305#else /* #ifdef CONFIG_PREEMPT_RCU */
 306
 307static inline void __rcu_read_lock(void)
 308{
 309        if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
 310                preempt_disable();
 311}
 312
 313static inline void __rcu_read_unlock(void)
 314{
 315        if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
 316                preempt_enable();
 317}
 318
 319static inline void synchronize_rcu(void)
 320{
 321        synchronize_sched();
 322}
 323
 324static inline int rcu_preempt_depth(void)
 325{
 326        return 0;
 327}
 328
 329#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 330
 331/* Internal to kernel */
 332void rcu_init(void);
 333void rcu_sched_qs(void);
 334void rcu_bh_qs(void);
 335void rcu_check_callbacks(int user);
 336void rcu_report_dead(unsigned int cpu);
 337void rcu_cpu_starting(unsigned int cpu);
 338
 339#ifndef CONFIG_TINY_RCU
 340void rcu_end_inkernel_boot(void);
 341#else /* #ifndef CONFIG_TINY_RCU */
 342static inline void rcu_end_inkernel_boot(void) { }
 343#endif /* #ifndef CONFIG_TINY_RCU */
 344
 345#ifdef CONFIG_RCU_STALL_COMMON
 346void rcu_sysrq_start(void);
 347void rcu_sysrq_end(void);
 348#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 349static inline void rcu_sysrq_start(void)
 350{
 351}
 352static inline void rcu_sysrq_end(void)
 353{
 354}
 355#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 356
 357#ifdef CONFIG_NO_HZ_FULL
 358void rcu_user_enter(void);
 359void rcu_user_exit(void);
 360#else
 361static inline void rcu_user_enter(void) { }
 362static inline void rcu_user_exit(void) { }
 363#endif /* CONFIG_NO_HZ_FULL */
 364
 365#ifdef CONFIG_RCU_NOCB_CPU
 366void rcu_init_nohz(void);
 367#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 368static inline void rcu_init_nohz(void)
 369{
 370}
 371#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 372
 373/**
 374 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 375 * @a: Code that RCU needs to pay attention to.
 376 *
 377 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 378 * in the inner idle loop, that is, between the rcu_idle_enter() and
 379 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 380 * critical sections.  However, things like powertop need tracepoints
 381 * in the inner idle loop.
 382 *
 383 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 384 * will tell RCU that it needs to pay attention, invoke its argument
 385 * (in this example, calling the do_something_with_RCU() function),
 386 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 387 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 388 * on the order of a million or so, even on 32-bit systems).  It is
 389 * not legal to block within RCU_NONIDLE(), nor is it permissible to
 390 * transfer control either into or out of RCU_NONIDLE()'s statement.
 391 */
 392#define RCU_NONIDLE(a) \
 393        do { \
 394                rcu_irq_enter_irqson(); \
 395                do { a; } while (0); \
 396                rcu_irq_exit_irqson(); \
 397        } while (0)
 398
 399/*
 400 * Note a voluntary context switch for RCU-tasks benefit.  This is a
 401 * macro rather than an inline function to avoid #include hell.
 402 */
 403#ifdef CONFIG_TASKS_RCU
 404#define TASKS_RCU(x) x
 405extern struct srcu_struct tasks_rcu_exit_srcu;
 406#define rcu_note_voluntary_context_switch(t) \
 407        do { \
 408                rcu_all_qs(); \
 409                if (READ_ONCE((t)->rcu_tasks_holdout)) \
 410                        WRITE_ONCE((t)->rcu_tasks_holdout, false); \
 411        } while (0)
 412#else /* #ifdef CONFIG_TASKS_RCU */
 413#define TASKS_RCU(x) do { } while (0)
 414#define rcu_note_voluntary_context_switch(t)    rcu_all_qs()
 415#endif /* #else #ifdef CONFIG_TASKS_RCU */
 416
 417/**
 418 * cond_resched_rcu_qs - Report potential quiescent states to RCU
 419 *
 420 * This macro resembles cond_resched(), except that it is defined to
 421 * report potential quiescent states to RCU-tasks even if the cond_resched()
 422 * machinery were to be shut off, as some advocate for PREEMPT kernels.
 423 */
 424#define cond_resched_rcu_qs() \
 425do { \
 426        if (!cond_resched()) \
 427                rcu_note_voluntary_context_switch(current); \
 428} while (0)
 429
 430#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
 431bool __rcu_is_watching(void);
 432#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
 433
 434/*
 435 * Infrastructure to implement the synchronize_() primitives in
 436 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 437 */
 438
 439#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
 440#include <linux/rcutree.h>
 441#elif defined(CONFIG_TINY_RCU)
 442#include <linux/rcutiny.h>
 443#else
 444#error "Unknown RCU implementation specified to kernel configuration"
 445#endif
 446
 447/*
 448 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 449 * initialization and destruction of rcu_head on the stack. rcu_head structures
 450 * allocated dynamically in the heap or defined statically don't need any
 451 * initialization.
 452 */
 453#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 454void init_rcu_head(struct rcu_head *head);
 455void destroy_rcu_head(struct rcu_head *head);
 456void init_rcu_head_on_stack(struct rcu_head *head);
 457void destroy_rcu_head_on_stack(struct rcu_head *head);
 458#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 459static inline void init_rcu_head(struct rcu_head *head)
 460{
 461}
 462
 463static inline void destroy_rcu_head(struct rcu_head *head)
 464{
 465}
 466
 467static inline void init_rcu_head_on_stack(struct rcu_head *head)
 468{
 469}
 470
 471static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
 472{
 473}
 474#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 475
 476#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 477bool rcu_lockdep_current_cpu_online(void);
 478#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 479static inline bool rcu_lockdep_current_cpu_online(void)
 480{
 481        return true;
 482}
 483#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 484
 485#ifdef CONFIG_DEBUG_LOCK_ALLOC
 486
 487static inline void rcu_lock_acquire(struct lockdep_map *map)
 488{
 489        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 490}
 491
 492static inline void rcu_lock_release(struct lockdep_map *map)
 493{
 494        lock_release(map, 1, _THIS_IP_);
 495}
 496
 497extern struct lockdep_map rcu_lock_map;
 498extern struct lockdep_map rcu_bh_lock_map;
 499extern struct lockdep_map rcu_sched_lock_map;
 500extern struct lockdep_map rcu_callback_map;
 501int debug_lockdep_rcu_enabled(void);
 502
 503int rcu_read_lock_held(void);
 504int rcu_read_lock_bh_held(void);
 505
 506/**
 507 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 508 *
 509 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 510 * RCU-sched read-side critical section.  In absence of
 511 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 512 * critical section unless it can prove otherwise.
 513 */
 514int rcu_read_lock_sched_held(void);
 515
 516#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 517
 518# define rcu_lock_acquire(a)            do { } while (0)
 519# define rcu_lock_release(a)            do { } while (0)
 520
 521static inline int rcu_read_lock_held(void)
 522{
 523        return 1;
 524}
 525
 526static inline int rcu_read_lock_bh_held(void)
 527{
 528        return 1;
 529}
 530
 531static inline int rcu_read_lock_sched_held(void)
 532{
 533        return !preemptible();
 534}
 535#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 536
 537#ifdef CONFIG_PROVE_RCU
 538
 539/**
 540 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 541 * @c: condition to check
 542 * @s: informative message
 543 */
 544#define RCU_LOCKDEP_WARN(c, s)                                          \
 545        do {                                                            \
 546                static bool __section(.data.unlikely) __warned;         \
 547                if (debug_lockdep_rcu_enabled() && !__warned && (c)) {  \
 548                        __warned = true;                                \
 549                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 550                }                                                       \
 551        } while (0)
 552
 553#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 554static inline void rcu_preempt_sleep_check(void)
 555{
 556        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 557                         "Illegal context switch in RCU read-side critical section");
 558}
 559#else /* #ifdef CONFIG_PROVE_RCU */
 560static inline void rcu_preempt_sleep_check(void)
 561{
 562}
 563#endif /* #else #ifdef CONFIG_PROVE_RCU */
 564
 565#define rcu_sleep_check()                                               \
 566        do {                                                            \
 567                rcu_preempt_sleep_check();                              \
 568                RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
 569                                 "Illegal context switch in RCU-bh read-side critical section"); \
 570                RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 571                                 "Illegal context switch in RCU-sched read-side critical section"); \
 572        } while (0)
 573
 574#else /* #ifdef CONFIG_PROVE_RCU */
 575
 576#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
 577#define rcu_sleep_check() do { } while (0)
 578
 579#endif /* #else #ifdef CONFIG_PROVE_RCU */
 580
 581/*
 582 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 583 * and rcu_assign_pointer().  Some of these could be folded into their
 584 * callers, but they are left separate in order to ease introduction of
 585 * multiple flavors of pointers to match the multiple flavors of RCU
 586 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 587 * the future.
 588 */
 589
 590#ifdef __CHECKER__
 591#define rcu_dereference_sparse(p, space) \
 592        ((void)(((typeof(*p) space *)p) == p))
 593#else /* #ifdef __CHECKER__ */
 594#define rcu_dereference_sparse(p, space)
 595#endif /* #else #ifdef __CHECKER__ */
 596
 597#define __rcu_access_pointer(p, space) \
 598({ \
 599        typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 600        rcu_dereference_sparse(p, space); \
 601        ((typeof(*p) __force __kernel *)(_________p1)); \
 602})
 603#define __rcu_dereference_check(p, c, space) \
 604({ \
 605        /* Dependency order vs. p above. */ \
 606        typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
 607        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 608        rcu_dereference_sparse(p, space); \
 609        ((typeof(*p) __force __kernel *)(________p1)); \
 610})
 611#define __rcu_dereference_protected(p, c, space) \
 612({ \
 613        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 614        rcu_dereference_sparse(p, space); \
 615        ((typeof(*p) __force __kernel *)(p)); \
 616})
 617#define rcu_dereference_raw(p) \
 618({ \
 619        /* Dependency order vs. p above. */ \
 620        typeof(p) ________p1 = lockless_dereference(p); \
 621        ((typeof(*p) __force __kernel *)(________p1)); \
 622})
 623
 624/**
 625 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 626 * @v: The value to statically initialize with.
 627 */
 628#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 629
 630/**
 631 * rcu_assign_pointer() - assign to RCU-protected pointer
 632 * @p: pointer to assign to
 633 * @v: value to assign (publish)
 634 *
 635 * Assigns the specified value to the specified RCU-protected
 636 * pointer, ensuring that any concurrent RCU readers will see
 637 * any prior initialization.
 638 *
 639 * Inserts memory barriers on architectures that require them
 640 * (which is most of them), and also prevents the compiler from
 641 * reordering the code that initializes the structure after the pointer
 642 * assignment.  More importantly, this call documents which pointers
 643 * will be dereferenced by RCU read-side code.
 644 *
 645 * In some special cases, you may use RCU_INIT_POINTER() instead
 646 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 647 * to the fact that it does not constrain either the CPU or the compiler.
 648 * That said, using RCU_INIT_POINTER() when you should have used
 649 * rcu_assign_pointer() is a very bad thing that results in
 650 * impossible-to-diagnose memory corruption.  So please be careful.
 651 * See the RCU_INIT_POINTER() comment header for details.
 652 *
 653 * Note that rcu_assign_pointer() evaluates each of its arguments only
 654 * once, appearances notwithstanding.  One of the "extra" evaluations
 655 * is in typeof() and the other visible only to sparse (__CHECKER__),
 656 * neither of which actually execute the argument.  As with most cpp
 657 * macros, this execute-arguments-only-once property is important, so
 658 * please be careful when making changes to rcu_assign_pointer() and the
 659 * other macros that it invokes.
 660 */
 661#define rcu_assign_pointer(p, v)                                              \
 662({                                                                            \
 663        uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
 664                                                                              \
 665        if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
 666                WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
 667        else                                                                  \
 668                smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 669        _r_a_p__v;                                                            \
 670})
 671
 672/**
 673 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 674 * @p: The pointer to read
 675 *
 676 * Return the value of the specified RCU-protected pointer, but omit the
 677 * smp_read_barrier_depends() and keep the READ_ONCE().  This is useful
 678 * when the value of this pointer is accessed, but the pointer is not
 679 * dereferenced, for example, when testing an RCU-protected pointer against
 680 * NULL.  Although rcu_access_pointer() may also be used in cases where
 681 * update-side locks prevent the value of the pointer from changing, you
 682 * should instead use rcu_dereference_protected() for this use case.
 683 *
 684 * It is also permissible to use rcu_access_pointer() when read-side
 685 * access to the pointer was removed at least one grace period ago, as
 686 * is the case in the context of the RCU callback that is freeing up
 687 * the data, or after a synchronize_rcu() returns.  This can be useful
 688 * when tearing down multi-linked structures after a grace period
 689 * has elapsed.
 690 */
 691#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 692
 693/**
 694 * rcu_dereference_check() - rcu_dereference with debug checking
 695 * @p: The pointer to read, prior to dereferencing
 696 * @c: The conditions under which the dereference will take place
 697 *
 698 * Do an rcu_dereference(), but check that the conditions under which the
 699 * dereference will take place are correct.  Typically the conditions
 700 * indicate the various locking conditions that should be held at that
 701 * point.  The check should return true if the conditions are satisfied.
 702 * An implicit check for being in an RCU read-side critical section
 703 * (rcu_read_lock()) is included.
 704 *
 705 * For example:
 706 *
 707 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 708 *
 709 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 710 * if either rcu_read_lock() is held, or that the lock required to replace
 711 * the bar struct at foo->bar is held.
 712 *
 713 * Note that the list of conditions may also include indications of when a lock
 714 * need not be held, for example during initialisation or destruction of the
 715 * target struct:
 716 *
 717 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 718 *                                            atomic_read(&foo->usage) == 0);
 719 *
 720 * Inserts memory barriers on architectures that require them
 721 * (currently only the Alpha), prevents the compiler from refetching
 722 * (and from merging fetches), and, more importantly, documents exactly
 723 * which pointers are protected by RCU and checks that the pointer is
 724 * annotated as __rcu.
 725 */
 726#define rcu_dereference_check(p, c) \
 727        __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 728
 729/**
 730 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 731 * @p: The pointer to read, prior to dereferencing
 732 * @c: The conditions under which the dereference will take place
 733 *
 734 * This is the RCU-bh counterpart to rcu_dereference_check().
 735 */
 736#define rcu_dereference_bh_check(p, c) \
 737        __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 738
 739/**
 740 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 741 * @p: The pointer to read, prior to dereferencing
 742 * @c: The conditions under which the dereference will take place
 743 *
 744 * This is the RCU-sched counterpart to rcu_dereference_check().
 745 */
 746#define rcu_dereference_sched_check(p, c) \
 747        __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 748                                __rcu)
 749
 750/*
 751 * The tracing infrastructure traces RCU (we want that), but unfortunately
 752 * some of the RCU checks causes tracing to lock up the system.
 753 *
 754 * The no-tracing version of rcu_dereference_raw() must not call
 755 * rcu_read_lock_held().
 756 */
 757#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
 758
 759/**
 760 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 761 * @p: The pointer to read, prior to dereferencing
 762 * @c: The conditions under which the dereference will take place
 763 *
 764 * Return the value of the specified RCU-protected pointer, but omit
 765 * both the smp_read_barrier_depends() and the READ_ONCE().  This
 766 * is useful in cases where update-side locks prevent the value of the
 767 * pointer from changing.  Please note that this primitive does -not-
 768 * prevent the compiler from repeating this reference or combining it
 769 * with other references, so it should not be used without protection
 770 * of appropriate locks.
 771 *
 772 * This function is only for update-side use.  Using this function
 773 * when protected only by rcu_read_lock() will result in infrequent
 774 * but very ugly failures.
 775 */
 776#define rcu_dereference_protected(p, c) \
 777        __rcu_dereference_protected((p), (c), __rcu)
 778
 779
 780/**
 781 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 782 * @p: The pointer to read, prior to dereferencing
 783 *
 784 * This is a simple wrapper around rcu_dereference_check().
 785 */
 786#define rcu_dereference(p) rcu_dereference_check(p, 0)
 787
 788/**
 789 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 790 * @p: The pointer to read, prior to dereferencing
 791 *
 792 * Makes rcu_dereference_check() do the dirty work.
 793 */
 794#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 795
 796/**
 797 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 798 * @p: The pointer to read, prior to dereferencing
 799 *
 800 * Makes rcu_dereference_check() do the dirty work.
 801 */
 802#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 803
 804/**
 805 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 806 * @p: The pointer to hand off
 807 *
 808 * This is simply an identity function, but it documents where a pointer
 809 * is handed off from RCU to some other synchronization mechanism, for
 810 * example, reference counting or locking.  In C11, it would map to
 811 * kill_dependency().  It could be used as follows:
 812 *
 813 *      rcu_read_lock();
 814 *      p = rcu_dereference(gp);
 815 *      long_lived = is_long_lived(p);
 816 *      if (long_lived) {
 817 *              if (!atomic_inc_not_zero(p->refcnt))
 818 *                      long_lived = false;
 819 *              else
 820 *                      p = rcu_pointer_handoff(p);
 821 *      }
 822 *      rcu_read_unlock();
 823 */
 824#define rcu_pointer_handoff(p) (p)
 825
 826/**
 827 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 828 *
 829 * When synchronize_rcu() is invoked on one CPU while other CPUs
 830 * are within RCU read-side critical sections, then the
 831 * synchronize_rcu() is guaranteed to block until after all the other
 832 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 833 * on one CPU while other CPUs are within RCU read-side critical
 834 * sections, invocation of the corresponding RCU callback is deferred
 835 * until after the all the other CPUs exit their critical sections.
 836 *
 837 * Note, however, that RCU callbacks are permitted to run concurrently
 838 * with new RCU read-side critical sections.  One way that this can happen
 839 * is via the following sequence of events: (1) CPU 0 enters an RCU
 840 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 841 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 842 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 843 * callback is invoked.  This is legal, because the RCU read-side critical
 844 * section that was running concurrently with the call_rcu() (and which
 845 * therefore might be referencing something that the corresponding RCU
 846 * callback would free up) has completed before the corresponding
 847 * RCU callback is invoked.
 848 *
 849 * RCU read-side critical sections may be nested.  Any deferred actions
 850 * will be deferred until the outermost RCU read-side critical section
 851 * completes.
 852 *
 853 * You can avoid reading and understanding the next paragraph by
 854 * following this rule: don't put anything in an rcu_read_lock() RCU
 855 * read-side critical section that would block in a !PREEMPT kernel.
 856 * But if you want the full story, read on!
 857 *
 858 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 859 * it is illegal to block while in an RCU read-side critical section.
 860 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
 861 * kernel builds, RCU read-side critical sections may be preempted,
 862 * but explicit blocking is illegal.  Finally, in preemptible RCU
 863 * implementations in real-time (with -rt patchset) kernel builds, RCU
 864 * read-side critical sections may be preempted and they may also block, but
 865 * only when acquiring spinlocks that are subject to priority inheritance.
 866 */
 867static inline void rcu_read_lock(void)
 868{
 869        __rcu_read_lock();
 870        __acquire(RCU);
 871        rcu_lock_acquire(&rcu_lock_map);
 872        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 873                         "rcu_read_lock() used illegally while idle");
 874}
 875
 876/*
 877 * So where is rcu_write_lock()?  It does not exist, as there is no
 878 * way for writers to lock out RCU readers.  This is a feature, not
 879 * a bug -- this property is what provides RCU's performance benefits.
 880 * Of course, writers must coordinate with each other.  The normal
 881 * spinlock primitives work well for this, but any other technique may be
 882 * used as well.  RCU does not care how the writers keep out of each
 883 * others' way, as long as they do so.
 884 */
 885
 886/**
 887 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 888 *
 889 * In most situations, rcu_read_unlock() is immune from deadlock.
 890 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 891 * is responsible for deboosting, which it does via rt_mutex_unlock().
 892 * Unfortunately, this function acquires the scheduler's runqueue and
 893 * priority-inheritance spinlocks.  This means that deadlock could result
 894 * if the caller of rcu_read_unlock() already holds one of these locks or
 895 * any lock that is ever acquired while holding them; or any lock which
 896 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
 897 * does not disable irqs while taking ->wait_lock.
 898 *
 899 * That said, RCU readers are never priority boosted unless they were
 900 * preempted.  Therefore, one way to avoid deadlock is to make sure
 901 * that preemption never happens within any RCU read-side critical
 902 * section whose outermost rcu_read_unlock() is called with one of
 903 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 904 * a number of ways, for example, by invoking preempt_disable() before
 905 * critical section's outermost rcu_read_lock().
 906 *
 907 * Given that the set of locks acquired by rt_mutex_unlock() might change
 908 * at any time, a somewhat more future-proofed approach is to make sure
 909 * that that preemption never happens within any RCU read-side critical
 910 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 911 * This approach relies on the fact that rt_mutex_unlock() currently only
 912 * acquires irq-disabled locks.
 913 *
 914 * The second of these two approaches is best in most situations,
 915 * however, the first approach can also be useful, at least to those
 916 * developers willing to keep abreast of the set of locks acquired by
 917 * rt_mutex_unlock().
 918 *
 919 * See rcu_read_lock() for more information.
 920 */
 921static inline void rcu_read_unlock(void)
 922{
 923        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 924                         "rcu_read_unlock() used illegally while idle");
 925        __release(RCU);
 926        __rcu_read_unlock();
 927        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 928}
 929
 930/**
 931 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 932 *
 933 * This is equivalent of rcu_read_lock(), but to be used when updates
 934 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 935 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 936 * softirq handler to be a quiescent state, a process in RCU read-side
 937 * critical section must be protected by disabling softirqs. Read-side
 938 * critical sections in interrupt context can use just rcu_read_lock(),
 939 * though this should at least be commented to avoid confusing people
 940 * reading the code.
 941 *
 942 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 943 * must occur in the same context, for example, it is illegal to invoke
 944 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 945 * was invoked from some other task.
 946 */
 947static inline void rcu_read_lock_bh(void)
 948{
 949        local_bh_disable();
 950        __acquire(RCU_BH);
 951        rcu_lock_acquire(&rcu_bh_lock_map);
 952        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 953                         "rcu_read_lock_bh() used illegally while idle");
 954}
 955
 956/*
 957 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 958 *
 959 * See rcu_read_lock_bh() for more information.
 960 */
 961static inline void rcu_read_unlock_bh(void)
 962{
 963        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 964                         "rcu_read_unlock_bh() used illegally while idle");
 965        rcu_lock_release(&rcu_bh_lock_map);
 966        __release(RCU_BH);
 967        local_bh_enable();
 968}
 969
 970/**
 971 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 972 *
 973 * This is equivalent of rcu_read_lock(), but to be used when updates
 974 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 975 * Read-side critical sections can also be introduced by anything that
 976 * disables preemption, including local_irq_disable() and friends.
 977 *
 978 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 979 * must occur in the same context, for example, it is illegal to invoke
 980 * rcu_read_unlock_sched() from process context if the matching
 981 * rcu_read_lock_sched() was invoked from an NMI handler.
 982 */
 983static inline void rcu_read_lock_sched(void)
 984{
 985        preempt_disable();
 986        __acquire(RCU_SCHED);
 987        rcu_lock_acquire(&rcu_sched_lock_map);
 988        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 989                         "rcu_read_lock_sched() used illegally while idle");
 990}
 991
 992/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 993static inline notrace void rcu_read_lock_sched_notrace(void)
 994{
 995        preempt_disable_notrace();
 996        __acquire(RCU_SCHED);
 997}
 998
 999/*
1000 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1001 *
1002 * See rcu_read_lock_sched for more information.
1003 */
1004static inline void rcu_read_unlock_sched(void)
1005{
1006        RCU_LOCKDEP_WARN(!rcu_is_watching(),
1007                         "rcu_read_unlock_sched() used illegally while idle");
1008        rcu_lock_release(&rcu_sched_lock_map);
1009        __release(RCU_SCHED);
1010        preempt_enable();
1011}
1012
1013/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1014static inline notrace void rcu_read_unlock_sched_notrace(void)
1015{
1016        __release(RCU_SCHED);
1017        preempt_enable_notrace();
1018}
1019
1020/**
1021 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1022 *
1023 * Initialize an RCU-protected pointer in special cases where readers
1024 * do not need ordering constraints on the CPU or the compiler.  These
1025 * special cases are:
1026 *
1027 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1028 * 2.   The caller has taken whatever steps are required to prevent
1029 *      RCU readers from concurrently accessing this pointer -or-
1030 * 3.   The referenced data structure has already been exposed to
1031 *      readers either at compile time or via rcu_assign_pointer() -and-
1032 *      a.      You have not made -any- reader-visible changes to
1033 *              this structure since then -or-
1034 *      b.      It is OK for readers accessing this structure from its
1035 *              new location to see the old state of the structure.  (For
1036 *              example, the changes were to statistical counters or to
1037 *              other state where exact synchronization is not required.)
1038 *
1039 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1040 * result in impossible-to-diagnose memory corruption.  As in the structures
1041 * will look OK in crash dumps, but any concurrent RCU readers might
1042 * see pre-initialized values of the referenced data structure.  So
1043 * please be very careful how you use RCU_INIT_POINTER()!!!
1044 *
1045 * If you are creating an RCU-protected linked structure that is accessed
1046 * by a single external-to-structure RCU-protected pointer, then you may
1047 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1048 * pointers, but you must use rcu_assign_pointer() to initialize the
1049 * external-to-structure pointer -after- you have completely initialized
1050 * the reader-accessible portions of the linked structure.
1051 *
1052 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1053 * ordering guarantees for either the CPU or the compiler.
1054 */
1055#define RCU_INIT_POINTER(p, v) \
1056        do { \
1057                rcu_dereference_sparse(p, __rcu); \
1058                WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1059        } while (0)
1060
1061/**
1062 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1063 *
1064 * GCC-style initialization for an RCU-protected pointer in a structure field.
1065 */
1066#define RCU_POINTER_INITIALIZER(p, v) \
1067                .p = RCU_INITIALIZER(v)
1068
1069/*
1070 * Does the specified offset indicate that the corresponding rcu_head
1071 * structure can be handled by kfree_rcu()?
1072 */
1073#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1074
1075/*
1076 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1077 */
1078#define __kfree_rcu(head, offset) \
1079        do { \
1080                BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1081                kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1082        } while (0)
1083
1084/**
1085 * kfree_rcu() - kfree an object after a grace period.
1086 * @ptr:        pointer to kfree
1087 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
1088 *
1089 * Many rcu callbacks functions just call kfree() on the base structure.
1090 * These functions are trivial, but their size adds up, and furthermore
1091 * when they are used in a kernel module, that module must invoke the
1092 * high-latency rcu_barrier() function at module-unload time.
1093 *
1094 * The kfree_rcu() function handles this issue.  Rather than encoding a
1095 * function address in the embedded rcu_head structure, kfree_rcu() instead
1096 * encodes the offset of the rcu_head structure within the base structure.
1097 * Because the functions are not allowed in the low-order 4096 bytes of
1098 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1099 * If the offset is larger than 4095 bytes, a compile-time error will
1100 * be generated in __kfree_rcu().  If this error is triggered, you can
1101 * either fall back to use of call_rcu() or rearrange the structure to
1102 * position the rcu_head structure into the first 4096 bytes.
1103 *
1104 * Note that the allowable offset might decrease in the future, for example,
1105 * to allow something like kmem_cache_free_rcu().
1106 *
1107 * The BUILD_BUG_ON check must not involve any function calls, hence the
1108 * checks are done in macros here.
1109 */
1110#define kfree_rcu(ptr, rcu_head)                                        \
1111        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1112
1113#ifdef CONFIG_TINY_RCU
1114static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1115{
1116        *nextevt = KTIME_MAX;
1117        return 0;
1118}
1119#endif /* #ifdef CONFIG_TINY_RCU */
1120
1121#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1122static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1123#elif defined(CONFIG_RCU_NOCB_CPU)
1124bool rcu_is_nocb_cpu(int cpu);
1125#else
1126static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1127#endif
1128
1129
1130/* Only for use by adaptive-ticks code. */
1131#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1132bool rcu_sys_is_idle(void);
1133void rcu_sysidle_force_exit(void);
1134#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1135
1136static inline bool rcu_sys_is_idle(void)
1137{
1138        return false;
1139}
1140
1141static inline void rcu_sysidle_force_exit(void)
1142{
1143}
1144
1145#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1146
1147
1148/*
1149 * Dump the ftrace buffer, but only one time per callsite per boot.
1150 */
1151#define rcu_ftrace_dump(oops_dump_mode) \
1152do { \
1153        static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
1154        \
1155        if (!atomic_read(&___rfd_beenhere) && \
1156            !atomic_xchg(&___rfd_beenhere, 1)) \
1157                ftrace_dump(oops_dump_mode); \
1158} while (0)
1159
1160
1161#endif /* __LINUX_RCUPDATE_H */
1162