linux/kernel/audit.c
<<
>>
Prefs
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *        2) Minimal run-time overhead:
  26 *           a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *           b) Small when syscall auditing is enabled and no audit record
  28 *              is generated (defer as much work as possible to record
  29 *              generation time):
  30 *              i) context is allocated,
  31 *              ii) names from getname are stored without a copy, and
  32 *              iii) inode information stored from path_lookup.
  33 *        3) Ability to disable syscall auditing at boot time (audit=0).
  34 *        4) Usable by other parts of the kernel (if audit_log* is called,
  35 *           then a syscall record will be generated automatically for the
  36 *           current syscall).
  37 *        5) Netlink interface to user-space.
  38 *        6) Support low-overhead kernel-based filtering to minimize the
  39 *           information that must be passed to user-space.
  40 *
  41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/file.h>
  47#include <linux/init.h>
  48#include <linux/types.h>
  49#include <linux/atomic.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/err.h>
  54#include <linux/kthread.h>
  55#include <linux/kernel.h>
  56#include <linux/syscalls.h>
  57
  58#include <linux/audit.h>
  59
  60#include <net/sock.h>
  61#include <net/netlink.h>
  62#include <linux/skbuff.h>
  63#ifdef CONFIG_SECURITY
  64#include <linux/security.h>
  65#endif
  66#include <linux/freezer.h>
  67#include <linux/pid_namespace.h>
  68#include <net/netns/generic.h>
  69
  70#include "audit.h"
  71
  72/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  73 * (Initialization happens after skb_init is called.) */
  74#define AUDIT_DISABLED          -1
  75#define AUDIT_UNINITIALIZED     0
  76#define AUDIT_INITIALIZED       1
  77static int      audit_initialized;
  78
  79#define AUDIT_OFF       0
  80#define AUDIT_ON        1
  81#define AUDIT_LOCKED    2
  82u32             audit_enabled;
  83u32             audit_ever_enabled;
  84
  85EXPORT_SYMBOL_GPL(audit_enabled);
  86
  87/* Default state when kernel boots without any parameters. */
  88static u32      audit_default;
  89
  90/* If auditing cannot proceed, audit_failure selects what happens. */
  91static u32      audit_failure = AUDIT_FAIL_PRINTK;
  92
  93/*
  94 * If audit records are to be written to the netlink socket, audit_pid
  95 * contains the pid of the auditd process and audit_nlk_portid contains
  96 * the portid to use to send netlink messages to that process.
  97 */
  98int             audit_pid;
  99static __u32    audit_nlk_portid;
 100
 101/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 102 * to that number per second.  This prevents DoS attacks, but results in
 103 * audit records being dropped. */
 104static u32      audit_rate_limit;
 105
 106/* Number of outstanding audit_buffers allowed.
 107 * When set to zero, this means unlimited. */
 108static u32      audit_backlog_limit = 64;
 109#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 110static u32      audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
 111static u32      audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 112
 113/* The identity of the user shutting down the audit system. */
 114kuid_t          audit_sig_uid = INVALID_UID;
 115pid_t           audit_sig_pid = -1;
 116u32             audit_sig_sid = 0;
 117
 118/* Records can be lost in several ways:
 119   0) [suppressed in audit_alloc]
 120   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 121   2) out of memory in audit_log_move [alloc_skb]
 122   3) suppressed due to audit_rate_limit
 123   4) suppressed due to audit_backlog_limit
 124*/
 125static atomic_t    audit_lost = ATOMIC_INIT(0);
 126
 127/* The netlink socket. */
 128static struct sock *audit_sock;
 129static int audit_net_id;
 130
 131/* Hash for inode-based rules */
 132struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 133
 134/* The audit_freelist is a list of pre-allocated audit buffers (if more
 135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
 136 * being placed on the freelist). */
 137static DEFINE_SPINLOCK(audit_freelist_lock);
 138static int         audit_freelist_count;
 139static LIST_HEAD(audit_freelist);
 140
 141static struct sk_buff_head audit_skb_queue;
 142/* queue of skbs to send to auditd when/if it comes back */
 143static struct sk_buff_head audit_skb_hold_queue;
 144static struct task_struct *kauditd_task;
 145static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 146static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 147
 148static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 149                                   .mask = -1,
 150                                   .features = 0,
 151                                   .lock = 0,};
 152
 153static char *audit_feature_names[2] = {
 154        "only_unset_loginuid",
 155        "loginuid_immutable",
 156};
 157
 158
 159/* Serialize requests from userspace. */
 160DEFINE_MUTEX(audit_cmd_mutex);
 161
 162/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 163 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 164 * should be at least that large. */
 165#define AUDIT_BUFSIZ 1024
 166
 167/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
 168 * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
 169#define AUDIT_MAXFREE  (2*NR_CPUS)
 170
 171/* The audit_buffer is used when formatting an audit record.  The caller
 172 * locks briefly to get the record off the freelist or to allocate the
 173 * buffer, and locks briefly to send the buffer to the netlink layer or
 174 * to place it on a transmit queue.  Multiple audit_buffers can be in
 175 * use simultaneously. */
 176struct audit_buffer {
 177        struct list_head     list;
 178        struct sk_buff       *skb;      /* formatted skb ready to send */
 179        struct audit_context *ctx;      /* NULL or associated context */
 180        gfp_t                gfp_mask;
 181};
 182
 183struct audit_reply {
 184        __u32 portid;
 185        struct net *net;
 186        struct sk_buff *skb;
 187};
 188
 189static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
 190{
 191        if (ab) {
 192                struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
 193                nlh->nlmsg_pid = portid;
 194        }
 195}
 196
 197void audit_panic(const char *message)
 198{
 199        switch (audit_failure) {
 200        case AUDIT_FAIL_SILENT:
 201                break;
 202        case AUDIT_FAIL_PRINTK:
 203                if (printk_ratelimit())
 204                        pr_err("%s\n", message);
 205                break;
 206        case AUDIT_FAIL_PANIC:
 207                /* test audit_pid since printk is always losey, why bother? */
 208                if (audit_pid)
 209                        panic("audit: %s\n", message);
 210                break;
 211        }
 212}
 213
 214static inline int audit_rate_check(void)
 215{
 216        static unsigned long    last_check = 0;
 217        static int              messages   = 0;
 218        static DEFINE_SPINLOCK(lock);
 219        unsigned long           flags;
 220        unsigned long           now;
 221        unsigned long           elapsed;
 222        int                     retval     = 0;
 223
 224        if (!audit_rate_limit) return 1;
 225
 226        spin_lock_irqsave(&lock, flags);
 227        if (++messages < audit_rate_limit) {
 228                retval = 1;
 229        } else {
 230                now     = jiffies;
 231                elapsed = now - last_check;
 232                if (elapsed > HZ) {
 233                        last_check = now;
 234                        messages   = 0;
 235                        retval     = 1;
 236                }
 237        }
 238        spin_unlock_irqrestore(&lock, flags);
 239
 240        return retval;
 241}
 242
 243/**
 244 * audit_log_lost - conditionally log lost audit message event
 245 * @message: the message stating reason for lost audit message
 246 *
 247 * Emit at least 1 message per second, even if audit_rate_check is
 248 * throttling.
 249 * Always increment the lost messages counter.
 250*/
 251void audit_log_lost(const char *message)
 252{
 253        static unsigned long    last_msg = 0;
 254        static DEFINE_SPINLOCK(lock);
 255        unsigned long           flags;
 256        unsigned long           now;
 257        int                     print;
 258
 259        atomic_inc(&audit_lost);
 260
 261        print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 262
 263        if (!print) {
 264                spin_lock_irqsave(&lock, flags);
 265                now = jiffies;
 266                if (now - last_msg > HZ) {
 267                        print = 1;
 268                        last_msg = now;
 269                }
 270                spin_unlock_irqrestore(&lock, flags);
 271        }
 272
 273        if (print) {
 274                if (printk_ratelimit())
 275                        pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 276                                atomic_read(&audit_lost),
 277                                audit_rate_limit,
 278                                audit_backlog_limit);
 279                audit_panic(message);
 280        }
 281}
 282
 283static int audit_log_config_change(char *function_name, u32 new, u32 old,
 284                                   int allow_changes)
 285{
 286        struct audit_buffer *ab;
 287        int rc = 0;
 288
 289        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 290        if (unlikely(!ab))
 291                return rc;
 292        audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 293        audit_log_session_info(ab);
 294        rc = audit_log_task_context(ab);
 295        if (rc)
 296                allow_changes = 0; /* Something weird, deny request */
 297        audit_log_format(ab, " res=%d", allow_changes);
 298        audit_log_end(ab);
 299        return rc;
 300}
 301
 302static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 303{
 304        int allow_changes, rc = 0;
 305        u32 old = *to_change;
 306
 307        /* check if we are locked */
 308        if (audit_enabled == AUDIT_LOCKED)
 309                allow_changes = 0;
 310        else
 311                allow_changes = 1;
 312
 313        if (audit_enabled != AUDIT_OFF) {
 314                rc = audit_log_config_change(function_name, new, old, allow_changes);
 315                if (rc)
 316                        allow_changes = 0;
 317        }
 318
 319        /* If we are allowed, make the change */
 320        if (allow_changes == 1)
 321                *to_change = new;
 322        /* Not allowed, update reason */
 323        else if (rc == 0)
 324                rc = -EPERM;
 325        return rc;
 326}
 327
 328static int audit_set_rate_limit(u32 limit)
 329{
 330        return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 331}
 332
 333static int audit_set_backlog_limit(u32 limit)
 334{
 335        return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 336}
 337
 338static int audit_set_backlog_wait_time(u32 timeout)
 339{
 340        return audit_do_config_change("audit_backlog_wait_time",
 341                                      &audit_backlog_wait_time_master, timeout);
 342}
 343
 344static int audit_set_enabled(u32 state)
 345{
 346        int rc;
 347        if (state > AUDIT_LOCKED)
 348                return -EINVAL;
 349
 350        rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 351        if (!rc)
 352                audit_ever_enabled |= !!state;
 353
 354        return rc;
 355}
 356
 357static int audit_set_failure(u32 state)
 358{
 359        if (state != AUDIT_FAIL_SILENT
 360            && state != AUDIT_FAIL_PRINTK
 361            && state != AUDIT_FAIL_PANIC)
 362                return -EINVAL;
 363
 364        return audit_do_config_change("audit_failure", &audit_failure, state);
 365}
 366
 367/*
 368 * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
 369 * already have been sent via prink/syslog and so if these messages are dropped
 370 * it is not a huge concern since we already passed the audit_log_lost()
 371 * notification and stuff.  This is just nice to get audit messages during
 372 * boot before auditd is running or messages generated while auditd is stopped.
 373 * This only holds messages is audit_default is set, aka booting with audit=1
 374 * or building your kernel that way.
 375 */
 376static void audit_hold_skb(struct sk_buff *skb)
 377{
 378        if (audit_default &&
 379            (!audit_backlog_limit ||
 380             skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
 381                skb_queue_tail(&audit_skb_hold_queue, skb);
 382        else
 383                kfree_skb(skb);
 384}
 385
 386/*
 387 * For one reason or another this nlh isn't getting delivered to the userspace
 388 * audit daemon, just send it to printk.
 389 */
 390static void audit_printk_skb(struct sk_buff *skb)
 391{
 392        struct nlmsghdr *nlh = nlmsg_hdr(skb);
 393        char *data = nlmsg_data(nlh);
 394
 395        if (nlh->nlmsg_type != AUDIT_EOE) {
 396                if (printk_ratelimit())
 397                        pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 398                else
 399                        audit_log_lost("printk limit exceeded");
 400        }
 401
 402        audit_hold_skb(skb);
 403}
 404
 405static void kauditd_send_skb(struct sk_buff *skb)
 406{
 407        int err;
 408        int attempts = 0;
 409#define AUDITD_RETRIES 5
 410
 411restart:
 412        /* take a reference in case we can't send it and we want to hold it */
 413        skb_get(skb);
 414        err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 415        if (err < 0) {
 416                pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
 417                       audit_pid, err);
 418                if (audit_pid) {
 419                        if (err == -ECONNREFUSED || err == -EPERM
 420                            || ++attempts >= AUDITD_RETRIES) {
 421                                char s[32];
 422
 423                                snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
 424                                audit_log_lost(s);
 425                                audit_pid = 0;
 426                                audit_sock = NULL;
 427                        } else {
 428                                pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
 429                                        attempts, audit_pid);
 430                                set_current_state(TASK_INTERRUPTIBLE);
 431                                schedule();
 432                                goto restart;
 433                        }
 434                }
 435                /* we might get lucky and get this in the next auditd */
 436                audit_hold_skb(skb);
 437        } else
 438                /* drop the extra reference if sent ok */
 439                consume_skb(skb);
 440}
 441
 442/*
 443 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
 444 *
 445 * This function doesn't consume an skb as might be expected since it has to
 446 * copy it anyways.
 447 */
 448static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
 449{
 450        struct sk_buff          *copy;
 451        struct audit_net        *aunet = net_generic(&init_net, audit_net_id);
 452        struct sock             *sock = aunet->nlsk;
 453
 454        if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 455                return;
 456
 457        /*
 458         * The seemingly wasteful skb_copy() rather than bumping the refcount
 459         * using skb_get() is necessary because non-standard mods are made to
 460         * the skb by the original kaudit unicast socket send routine.  The
 461         * existing auditd daemon assumes this breakage.  Fixing this would
 462         * require co-ordinating a change in the established protocol between
 463         * the kaudit kernel subsystem and the auditd userspace code.  There is
 464         * no reason for new multicast clients to continue with this
 465         * non-compliance.
 466         */
 467        copy = skb_copy(skb, gfp_mask);
 468        if (!copy)
 469                return;
 470
 471        nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
 472}
 473
 474/*
 475 * flush_hold_queue - empty the hold queue if auditd appears
 476 *
 477 * If auditd just started, drain the queue of messages already
 478 * sent to syslog/printk.  Remember loss here is ok.  We already
 479 * called audit_log_lost() if it didn't go out normally.  so the
 480 * race between the skb_dequeue and the next check for audit_pid
 481 * doesn't matter.
 482 *
 483 * If you ever find kauditd to be too slow we can get a perf win
 484 * by doing our own locking and keeping better track if there
 485 * are messages in this queue.  I don't see the need now, but
 486 * in 5 years when I want to play with this again I'll see this
 487 * note and still have no friggin idea what i'm thinking today.
 488 */
 489static void flush_hold_queue(void)
 490{
 491        struct sk_buff *skb;
 492
 493        if (!audit_default || !audit_pid)
 494                return;
 495
 496        skb = skb_dequeue(&audit_skb_hold_queue);
 497        if (likely(!skb))
 498                return;
 499
 500        while (skb && audit_pid) {
 501                kauditd_send_skb(skb);
 502                skb = skb_dequeue(&audit_skb_hold_queue);
 503        }
 504
 505        /*
 506         * if auditd just disappeared but we
 507         * dequeued an skb we need to drop ref
 508         */
 509        consume_skb(skb);
 510}
 511
 512static int kauditd_thread(void *dummy)
 513{
 514        set_freezable();
 515        while (!kthread_should_stop()) {
 516                struct sk_buff *skb;
 517
 518                flush_hold_queue();
 519
 520                skb = skb_dequeue(&audit_skb_queue);
 521
 522                if (skb) {
 523                        if (!audit_backlog_limit ||
 524                            (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
 525                                wake_up(&audit_backlog_wait);
 526                        if (audit_pid)
 527                                kauditd_send_skb(skb);
 528                        else
 529                                audit_printk_skb(skb);
 530                        continue;
 531                }
 532
 533                wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
 534        }
 535        return 0;
 536}
 537
 538int audit_send_list(void *_dest)
 539{
 540        struct audit_netlink_list *dest = _dest;
 541        struct sk_buff *skb;
 542        struct net *net = dest->net;
 543        struct audit_net *aunet = net_generic(net, audit_net_id);
 544
 545        /* wait for parent to finish and send an ACK */
 546        mutex_lock(&audit_cmd_mutex);
 547        mutex_unlock(&audit_cmd_mutex);
 548
 549        while ((skb = __skb_dequeue(&dest->q)) != NULL)
 550                netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
 551
 552        put_net(net);
 553        kfree(dest);
 554
 555        return 0;
 556}
 557
 558struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
 559                                 int multi, const void *payload, int size)
 560{
 561        struct sk_buff  *skb;
 562        struct nlmsghdr *nlh;
 563        void            *data;
 564        int             flags = multi ? NLM_F_MULTI : 0;
 565        int             t     = done  ? NLMSG_DONE  : type;
 566
 567        skb = nlmsg_new(size, GFP_KERNEL);
 568        if (!skb)
 569                return NULL;
 570
 571        nlh     = nlmsg_put(skb, portid, seq, t, size, flags);
 572        if (!nlh)
 573                goto out_kfree_skb;
 574        data = nlmsg_data(nlh);
 575        memcpy(data, payload, size);
 576        return skb;
 577
 578out_kfree_skb:
 579        kfree_skb(skb);
 580        return NULL;
 581}
 582
 583static int audit_send_reply_thread(void *arg)
 584{
 585        struct audit_reply *reply = (struct audit_reply *)arg;
 586        struct net *net = reply->net;
 587        struct audit_net *aunet = net_generic(net, audit_net_id);
 588
 589        mutex_lock(&audit_cmd_mutex);
 590        mutex_unlock(&audit_cmd_mutex);
 591
 592        /* Ignore failure. It'll only happen if the sender goes away,
 593           because our timeout is set to infinite. */
 594        netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
 595        put_net(net);
 596        kfree(reply);
 597        return 0;
 598}
 599/**
 600 * audit_send_reply - send an audit reply message via netlink
 601 * @request_skb: skb of request we are replying to (used to target the reply)
 602 * @seq: sequence number
 603 * @type: audit message type
 604 * @done: done (last) flag
 605 * @multi: multi-part message flag
 606 * @payload: payload data
 607 * @size: payload size
 608 *
 609 * Allocates an skb, builds the netlink message, and sends it to the port id.
 610 * No failure notifications.
 611 */
 612static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 613                             int multi, const void *payload, int size)
 614{
 615        u32 portid = NETLINK_CB(request_skb).portid;
 616        struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 617        struct sk_buff *skb;
 618        struct task_struct *tsk;
 619        struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 620                                            GFP_KERNEL);
 621
 622        if (!reply)
 623                return;
 624
 625        skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
 626        if (!skb)
 627                goto out;
 628
 629        reply->net = get_net(net);
 630        reply->portid = portid;
 631        reply->skb = skb;
 632
 633        tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 634        if (!IS_ERR(tsk))
 635                return;
 636        kfree_skb(skb);
 637out:
 638        kfree(reply);
 639}
 640
 641/*
 642 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 643 * control messages.
 644 */
 645static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
 646{
 647        int err = 0;
 648
 649        /* Only support initial user namespace for now. */
 650        /*
 651         * We return ECONNREFUSED because it tricks userspace into thinking
 652         * that audit was not configured into the kernel.  Lots of users
 653         * configure their PAM stack (because that's what the distro does)
 654         * to reject login if unable to send messages to audit.  If we return
 655         * ECONNREFUSED the PAM stack thinks the kernel does not have audit
 656         * configured in and will let login proceed.  If we return EPERM
 657         * userspace will reject all logins.  This should be removed when we
 658         * support non init namespaces!!
 659         */
 660        if (current_user_ns() != &init_user_ns)
 661                return -ECONNREFUSED;
 662
 663        switch (msg_type) {
 664        case AUDIT_LIST:
 665        case AUDIT_ADD:
 666        case AUDIT_DEL:
 667                return -EOPNOTSUPP;
 668        case AUDIT_GET:
 669        case AUDIT_SET:
 670        case AUDIT_GET_FEATURE:
 671        case AUDIT_SET_FEATURE:
 672        case AUDIT_LIST_RULES:
 673        case AUDIT_ADD_RULE:
 674        case AUDIT_DEL_RULE:
 675        case AUDIT_SIGNAL_INFO:
 676        case AUDIT_TTY_GET:
 677        case AUDIT_TTY_SET:
 678        case AUDIT_TRIM:
 679        case AUDIT_MAKE_EQUIV:
 680                /* Only support auditd and auditctl in initial pid namespace
 681                 * for now. */
 682                if (task_active_pid_ns(current) != &init_pid_ns)
 683                        return -EPERM;
 684
 685                if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
 686                        err = -EPERM;
 687                break;
 688        case AUDIT_USER:
 689        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 690        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 691                if (!netlink_capable(skb, CAP_AUDIT_WRITE))
 692                        err = -EPERM;
 693                break;
 694        default:  /* bad msg */
 695                err = -EINVAL;
 696        }
 697
 698        return err;
 699}
 700
 701static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
 702{
 703        uid_t uid = from_kuid(&init_user_ns, current_uid());
 704        pid_t pid = task_tgid_nr(current);
 705
 706        if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
 707                *ab = NULL;
 708                return;
 709        }
 710
 711        *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
 712        if (unlikely(!*ab))
 713                return;
 714        audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
 715        audit_log_session_info(*ab);
 716        audit_log_task_context(*ab);
 717}
 718
 719int is_audit_feature_set(int i)
 720{
 721        return af.features & AUDIT_FEATURE_TO_MASK(i);
 722}
 723
 724
 725static int audit_get_feature(struct sk_buff *skb)
 726{
 727        u32 seq;
 728
 729        seq = nlmsg_hdr(skb)->nlmsg_seq;
 730
 731        audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
 732
 733        return 0;
 734}
 735
 736static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
 737                                     u32 old_lock, u32 new_lock, int res)
 738{
 739        struct audit_buffer *ab;
 740
 741        if (audit_enabled == AUDIT_OFF)
 742                return;
 743
 744        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
 745        audit_log_task_info(ab, current);
 746        audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
 747                         audit_feature_names[which], !!old_feature, !!new_feature,
 748                         !!old_lock, !!new_lock, res);
 749        audit_log_end(ab);
 750}
 751
 752static int audit_set_feature(struct sk_buff *skb)
 753{
 754        struct audit_features *uaf;
 755        int i;
 756
 757        BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
 758        uaf = nlmsg_data(nlmsg_hdr(skb));
 759
 760        /* if there is ever a version 2 we should handle that here */
 761
 762        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 763                u32 feature = AUDIT_FEATURE_TO_MASK(i);
 764                u32 old_feature, new_feature, old_lock, new_lock;
 765
 766                /* if we are not changing this feature, move along */
 767                if (!(feature & uaf->mask))
 768                        continue;
 769
 770                old_feature = af.features & feature;
 771                new_feature = uaf->features & feature;
 772                new_lock = (uaf->lock | af.lock) & feature;
 773                old_lock = af.lock & feature;
 774
 775                /* are we changing a locked feature? */
 776                if (old_lock && (new_feature != old_feature)) {
 777                        audit_log_feature_change(i, old_feature, new_feature,
 778                                                 old_lock, new_lock, 0);
 779                        return -EPERM;
 780                }
 781        }
 782        /* nothing invalid, do the changes */
 783        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 784                u32 feature = AUDIT_FEATURE_TO_MASK(i);
 785                u32 old_feature, new_feature, old_lock, new_lock;
 786
 787                /* if we are not changing this feature, move along */
 788                if (!(feature & uaf->mask))
 789                        continue;
 790
 791                old_feature = af.features & feature;
 792                new_feature = uaf->features & feature;
 793                old_lock = af.lock & feature;
 794                new_lock = (uaf->lock | af.lock) & feature;
 795
 796                if (new_feature != old_feature)
 797                        audit_log_feature_change(i, old_feature, new_feature,
 798                                                 old_lock, new_lock, 1);
 799
 800                if (new_feature)
 801                        af.features |= feature;
 802                else
 803                        af.features &= ~feature;
 804                af.lock |= new_lock;
 805        }
 806
 807        return 0;
 808}
 809
 810static int audit_replace(pid_t pid)
 811{
 812        struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
 813                                               &pid, sizeof(pid));
 814
 815        if (!skb)
 816                return -ENOMEM;
 817        return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 818}
 819
 820static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
 821{
 822        u32                     seq;
 823        void                    *data;
 824        int                     err;
 825        struct audit_buffer     *ab;
 826        u16                     msg_type = nlh->nlmsg_type;
 827        struct audit_sig_info   *sig_data;
 828        char                    *ctx = NULL;
 829        u32                     len;
 830
 831        err = audit_netlink_ok(skb, msg_type);
 832        if (err)
 833                return err;
 834
 835        /* As soon as there's any sign of userspace auditd,
 836         * start kauditd to talk to it */
 837        if (!kauditd_task) {
 838                kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
 839                if (IS_ERR(kauditd_task)) {
 840                        err = PTR_ERR(kauditd_task);
 841                        kauditd_task = NULL;
 842                        return err;
 843                }
 844        }
 845        seq  = nlh->nlmsg_seq;
 846        data = nlmsg_data(nlh);
 847
 848        switch (msg_type) {
 849        case AUDIT_GET: {
 850                struct audit_status     s;
 851                memset(&s, 0, sizeof(s));
 852                s.enabled               = audit_enabled;
 853                s.failure               = audit_failure;
 854                s.pid                   = audit_pid;
 855                s.rate_limit            = audit_rate_limit;
 856                s.backlog_limit         = audit_backlog_limit;
 857                s.lost                  = atomic_read(&audit_lost);
 858                s.backlog               = skb_queue_len(&audit_skb_queue);
 859                s.feature_bitmap        = AUDIT_FEATURE_BITMAP_ALL;
 860                s.backlog_wait_time     = audit_backlog_wait_time_master;
 861                audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
 862                break;
 863        }
 864        case AUDIT_SET: {
 865                struct audit_status     s;
 866                memset(&s, 0, sizeof(s));
 867                /* guard against past and future API changes */
 868                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
 869                if (s.mask & AUDIT_STATUS_ENABLED) {
 870                        err = audit_set_enabled(s.enabled);
 871                        if (err < 0)
 872                                return err;
 873                }
 874                if (s.mask & AUDIT_STATUS_FAILURE) {
 875                        err = audit_set_failure(s.failure);
 876                        if (err < 0)
 877                                return err;
 878                }
 879                if (s.mask & AUDIT_STATUS_PID) {
 880                        /* NOTE: we are using task_tgid_vnr() below because
 881                         *       the s.pid value is relative to the namespace
 882                         *       of the caller; at present this doesn't matter
 883                         *       much since you can really only run auditd
 884                         *       from the initial pid namespace, but something
 885                         *       to keep in mind if this changes */
 886                        int new_pid = s.pid;
 887                        pid_t requesting_pid = task_tgid_vnr(current);
 888
 889                        if ((!new_pid) && (requesting_pid != audit_pid)) {
 890                                audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
 891                                return -EACCES;
 892                        }
 893                        if (audit_pid && new_pid &&
 894                            audit_replace(requesting_pid) != -ECONNREFUSED) {
 895                                audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
 896                                return -EEXIST;
 897                        }
 898                        if (audit_enabled != AUDIT_OFF)
 899                                audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
 900                        audit_pid = new_pid;
 901                        audit_nlk_portid = NETLINK_CB(skb).portid;
 902                        audit_sock = skb->sk;
 903                }
 904                if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
 905                        err = audit_set_rate_limit(s.rate_limit);
 906                        if (err < 0)
 907                                return err;
 908                }
 909                if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
 910                        err = audit_set_backlog_limit(s.backlog_limit);
 911                        if (err < 0)
 912                                return err;
 913                }
 914                if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
 915                        if (sizeof(s) > (size_t)nlh->nlmsg_len)
 916                                return -EINVAL;
 917                        if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
 918                                return -EINVAL;
 919                        err = audit_set_backlog_wait_time(s.backlog_wait_time);
 920                        if (err < 0)
 921                                return err;
 922                }
 923                break;
 924        }
 925        case AUDIT_GET_FEATURE:
 926                err = audit_get_feature(skb);
 927                if (err)
 928                        return err;
 929                break;
 930        case AUDIT_SET_FEATURE:
 931                err = audit_set_feature(skb);
 932                if (err)
 933                        return err;
 934                break;
 935        case AUDIT_USER:
 936        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 937        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 938                if (!audit_enabled && msg_type != AUDIT_USER_AVC)
 939                        return 0;
 940
 941                err = audit_filter(msg_type, AUDIT_FILTER_USER);
 942                if (err == 1) { /* match or error */
 943                        err = 0;
 944                        if (msg_type == AUDIT_USER_TTY) {
 945                                err = tty_audit_push();
 946                                if (err)
 947                                        break;
 948                        }
 949                        mutex_unlock(&audit_cmd_mutex);
 950                        audit_log_common_recv_msg(&ab, msg_type);
 951                        if (msg_type != AUDIT_USER_TTY)
 952                                audit_log_format(ab, " msg='%.*s'",
 953                                                 AUDIT_MESSAGE_TEXT_MAX,
 954                                                 (char *)data);
 955                        else {
 956                                int size;
 957
 958                                audit_log_format(ab, " data=");
 959                                size = nlmsg_len(nlh);
 960                                if (size > 0 &&
 961                                    ((unsigned char *)data)[size - 1] == '\0')
 962                                        size--;
 963                                audit_log_n_untrustedstring(ab, data, size);
 964                        }
 965                        audit_set_portid(ab, NETLINK_CB(skb).portid);
 966                        audit_log_end(ab);
 967                        mutex_lock(&audit_cmd_mutex);
 968                }
 969                break;
 970        case AUDIT_ADD_RULE:
 971        case AUDIT_DEL_RULE:
 972                if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
 973                        return -EINVAL;
 974                if (audit_enabled == AUDIT_LOCKED) {
 975                        audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 976                        audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
 977                        audit_log_end(ab);
 978                        return -EPERM;
 979                }
 980                err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
 981                                           seq, data, nlmsg_len(nlh));
 982                break;
 983        case AUDIT_LIST_RULES:
 984                err = audit_list_rules_send(skb, seq);
 985                break;
 986        case AUDIT_TRIM:
 987                audit_trim_trees();
 988                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 989                audit_log_format(ab, " op=trim res=1");
 990                audit_log_end(ab);
 991                break;
 992        case AUDIT_MAKE_EQUIV: {
 993                void *bufp = data;
 994                u32 sizes[2];
 995                size_t msglen = nlmsg_len(nlh);
 996                char *old, *new;
 997
 998                err = -EINVAL;
 999                if (msglen < 2 * sizeof(u32))
1000                        break;
1001                memcpy(sizes, bufp, 2 * sizeof(u32));
1002                bufp += 2 * sizeof(u32);
1003                msglen -= 2 * sizeof(u32);
1004                old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1005                if (IS_ERR(old)) {
1006                        err = PTR_ERR(old);
1007                        break;
1008                }
1009                new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1010                if (IS_ERR(new)) {
1011                        err = PTR_ERR(new);
1012                        kfree(old);
1013                        break;
1014                }
1015                /* OK, here comes... */
1016                err = audit_tag_tree(old, new);
1017
1018                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1019
1020                audit_log_format(ab, " op=make_equiv old=");
1021                audit_log_untrustedstring(ab, old);
1022                audit_log_format(ab, " new=");
1023                audit_log_untrustedstring(ab, new);
1024                audit_log_format(ab, " res=%d", !err);
1025                audit_log_end(ab);
1026                kfree(old);
1027                kfree(new);
1028                break;
1029        }
1030        case AUDIT_SIGNAL_INFO:
1031                len = 0;
1032                if (audit_sig_sid) {
1033                        err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1034                        if (err)
1035                                return err;
1036                }
1037                sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1038                if (!sig_data) {
1039                        if (audit_sig_sid)
1040                                security_release_secctx(ctx, len);
1041                        return -ENOMEM;
1042                }
1043                sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1044                sig_data->pid = audit_sig_pid;
1045                if (audit_sig_sid) {
1046                        memcpy(sig_data->ctx, ctx, len);
1047                        security_release_secctx(ctx, len);
1048                }
1049                audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1050                                 sig_data, sizeof(*sig_data) + len);
1051                kfree(sig_data);
1052                break;
1053        case AUDIT_TTY_GET: {
1054                struct audit_tty_status s;
1055                unsigned int t;
1056
1057                t = READ_ONCE(current->signal->audit_tty);
1058                s.enabled = t & AUDIT_TTY_ENABLE;
1059                s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1060
1061                audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1062                break;
1063        }
1064        case AUDIT_TTY_SET: {
1065                struct audit_tty_status s, old;
1066                struct audit_buffer     *ab;
1067                unsigned int t;
1068
1069                memset(&s, 0, sizeof(s));
1070                /* guard against past and future API changes */
1071                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1072                /* check if new data is valid */
1073                if ((s.enabled != 0 && s.enabled != 1) ||
1074                    (s.log_passwd != 0 && s.log_passwd != 1))
1075                        err = -EINVAL;
1076
1077                if (err)
1078                        t = READ_ONCE(current->signal->audit_tty);
1079                else {
1080                        t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1081                        t = xchg(&current->signal->audit_tty, t);
1082                }
1083                old.enabled = t & AUDIT_TTY_ENABLE;
1084                old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1085
1086                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1087                audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1088                                 " old-log_passwd=%d new-log_passwd=%d res=%d",
1089                                 old.enabled, s.enabled, old.log_passwd,
1090                                 s.log_passwd, !err);
1091                audit_log_end(ab);
1092                break;
1093        }
1094        default:
1095                err = -EINVAL;
1096                break;
1097        }
1098
1099        return err < 0 ? err : 0;
1100}
1101
1102/*
1103 * Get message from skb.  Each message is processed by audit_receive_msg.
1104 * Malformed skbs with wrong length are discarded silently.
1105 */
1106static void audit_receive_skb(struct sk_buff *skb)
1107{
1108        struct nlmsghdr *nlh;
1109        /*
1110         * len MUST be signed for nlmsg_next to be able to dec it below 0
1111         * if the nlmsg_len was not aligned
1112         */
1113        int len;
1114        int err;
1115
1116        nlh = nlmsg_hdr(skb);
1117        len = skb->len;
1118
1119        while (nlmsg_ok(nlh, len)) {
1120                err = audit_receive_msg(skb, nlh);
1121                /* if err or if this message says it wants a response */
1122                if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1123                        netlink_ack(skb, nlh, err);
1124
1125                nlh = nlmsg_next(nlh, &len);
1126        }
1127}
1128
1129/* Receive messages from netlink socket. */
1130static void audit_receive(struct sk_buff  *skb)
1131{
1132        mutex_lock(&audit_cmd_mutex);
1133        audit_receive_skb(skb);
1134        mutex_unlock(&audit_cmd_mutex);
1135}
1136
1137/* Run custom bind function on netlink socket group connect or bind requests. */
1138static int audit_bind(struct net *net, int group)
1139{
1140        if (!capable(CAP_AUDIT_READ))
1141                return -EPERM;
1142
1143        return 0;
1144}
1145
1146static int __net_init audit_net_init(struct net *net)
1147{
1148        struct netlink_kernel_cfg cfg = {
1149                .input  = audit_receive,
1150                .bind   = audit_bind,
1151                .flags  = NL_CFG_F_NONROOT_RECV,
1152                .groups = AUDIT_NLGRP_MAX,
1153        };
1154
1155        struct audit_net *aunet = net_generic(net, audit_net_id);
1156
1157        aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1158        if (aunet->nlsk == NULL) {
1159                audit_panic("cannot initialize netlink socket in namespace");
1160                return -ENOMEM;
1161        }
1162        aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1163        return 0;
1164}
1165
1166static void __net_exit audit_net_exit(struct net *net)
1167{
1168        struct audit_net *aunet = net_generic(net, audit_net_id);
1169        struct sock *sock = aunet->nlsk;
1170        if (sock == audit_sock) {
1171                audit_pid = 0;
1172                audit_sock = NULL;
1173        }
1174
1175        RCU_INIT_POINTER(aunet->nlsk, NULL);
1176        synchronize_net();
1177        netlink_kernel_release(sock);
1178}
1179
1180static struct pernet_operations audit_net_ops __net_initdata = {
1181        .init = audit_net_init,
1182        .exit = audit_net_exit,
1183        .id = &audit_net_id,
1184        .size = sizeof(struct audit_net),
1185};
1186
1187/* Initialize audit support at boot time. */
1188static int __init audit_init(void)
1189{
1190        int i;
1191
1192        if (audit_initialized == AUDIT_DISABLED)
1193                return 0;
1194
1195        pr_info("initializing netlink subsys (%s)\n",
1196                audit_default ? "enabled" : "disabled");
1197        register_pernet_subsys(&audit_net_ops);
1198
1199        skb_queue_head_init(&audit_skb_queue);
1200        skb_queue_head_init(&audit_skb_hold_queue);
1201        audit_initialized = AUDIT_INITIALIZED;
1202        audit_enabled = audit_default;
1203        audit_ever_enabled |= !!audit_default;
1204
1205        audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1206
1207        for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1208                INIT_LIST_HEAD(&audit_inode_hash[i]);
1209
1210        return 0;
1211}
1212__initcall(audit_init);
1213
1214/* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1215static int __init audit_enable(char *str)
1216{
1217        audit_default = !!simple_strtol(str, NULL, 0);
1218        if (!audit_default)
1219                audit_initialized = AUDIT_DISABLED;
1220
1221        pr_info("%s\n", audit_default ?
1222                "enabled (after initialization)" : "disabled (until reboot)");
1223
1224        return 1;
1225}
1226__setup("audit=", audit_enable);
1227
1228/* Process kernel command-line parameter at boot time.
1229 * audit_backlog_limit=<n> */
1230static int __init audit_backlog_limit_set(char *str)
1231{
1232        u32 audit_backlog_limit_arg;
1233
1234        pr_info("audit_backlog_limit: ");
1235        if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1236                pr_cont("using default of %u, unable to parse %s\n",
1237                        audit_backlog_limit, str);
1238                return 1;
1239        }
1240
1241        audit_backlog_limit = audit_backlog_limit_arg;
1242        pr_cont("%d\n", audit_backlog_limit);
1243
1244        return 1;
1245}
1246__setup("audit_backlog_limit=", audit_backlog_limit_set);
1247
1248static void audit_buffer_free(struct audit_buffer *ab)
1249{
1250        unsigned long flags;
1251
1252        if (!ab)
1253                return;
1254
1255        kfree_skb(ab->skb);
1256        spin_lock_irqsave(&audit_freelist_lock, flags);
1257        if (audit_freelist_count > AUDIT_MAXFREE)
1258                kfree(ab);
1259        else {
1260                audit_freelist_count++;
1261                list_add(&ab->list, &audit_freelist);
1262        }
1263        spin_unlock_irqrestore(&audit_freelist_lock, flags);
1264}
1265
1266static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1267                                                gfp_t gfp_mask, int type)
1268{
1269        unsigned long flags;
1270        struct audit_buffer *ab = NULL;
1271        struct nlmsghdr *nlh;
1272
1273        spin_lock_irqsave(&audit_freelist_lock, flags);
1274        if (!list_empty(&audit_freelist)) {
1275                ab = list_entry(audit_freelist.next,
1276                                struct audit_buffer, list);
1277                list_del(&ab->list);
1278                --audit_freelist_count;
1279        }
1280        spin_unlock_irqrestore(&audit_freelist_lock, flags);
1281
1282        if (!ab) {
1283                ab = kmalloc(sizeof(*ab), gfp_mask);
1284                if (!ab)
1285                        goto err;
1286        }
1287
1288        ab->ctx = ctx;
1289        ab->gfp_mask = gfp_mask;
1290
1291        ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1292        if (!ab->skb)
1293                goto err;
1294
1295        nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1296        if (!nlh)
1297                goto out_kfree_skb;
1298
1299        return ab;
1300
1301out_kfree_skb:
1302        kfree_skb(ab->skb);
1303        ab->skb = NULL;
1304err:
1305        audit_buffer_free(ab);
1306        return NULL;
1307}
1308
1309/**
1310 * audit_serial - compute a serial number for the audit record
1311 *
1312 * Compute a serial number for the audit record.  Audit records are
1313 * written to user-space as soon as they are generated, so a complete
1314 * audit record may be written in several pieces.  The timestamp of the
1315 * record and this serial number are used by the user-space tools to
1316 * determine which pieces belong to the same audit record.  The
1317 * (timestamp,serial) tuple is unique for each syscall and is live from
1318 * syscall entry to syscall exit.
1319 *
1320 * NOTE: Another possibility is to store the formatted records off the
1321 * audit context (for those records that have a context), and emit them
1322 * all at syscall exit.  However, this could delay the reporting of
1323 * significant errors until syscall exit (or never, if the system
1324 * halts).
1325 */
1326unsigned int audit_serial(void)
1327{
1328        static atomic_t serial = ATOMIC_INIT(0);
1329
1330        return atomic_add_return(1, &serial);
1331}
1332
1333static inline void audit_get_stamp(struct audit_context *ctx,
1334                                   struct timespec *t, unsigned int *serial)
1335{
1336        if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1337                *t = CURRENT_TIME;
1338                *serial = audit_serial();
1339        }
1340}
1341
1342/*
1343 * Wait for auditd to drain the queue a little
1344 */
1345static long wait_for_auditd(long sleep_time)
1346{
1347        DECLARE_WAITQUEUE(wait, current);
1348
1349        if (audit_backlog_limit &&
1350            skb_queue_len(&audit_skb_queue) > audit_backlog_limit) {
1351                add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1352                set_current_state(TASK_UNINTERRUPTIBLE);
1353                sleep_time = schedule_timeout(sleep_time);
1354                remove_wait_queue(&audit_backlog_wait, &wait);
1355        }
1356
1357        return sleep_time;
1358}
1359
1360/**
1361 * audit_log_start - obtain an audit buffer
1362 * @ctx: audit_context (may be NULL)
1363 * @gfp_mask: type of allocation
1364 * @type: audit message type
1365 *
1366 * Returns audit_buffer pointer on success or NULL on error.
1367 *
1368 * Obtain an audit buffer.  This routine does locking to obtain the
1369 * audit buffer, but then no locking is required for calls to
1370 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1371 * syscall, then the syscall is marked as auditable and an audit record
1372 * will be written at syscall exit.  If there is no associated task, then
1373 * task context (ctx) should be NULL.
1374 */
1375struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1376                                     int type)
1377{
1378        struct audit_buffer     *ab     = NULL;
1379        struct timespec         t;
1380        unsigned int            uninitialized_var(serial);
1381        int reserve = 5; /* Allow atomic callers to go up to five
1382                            entries over the normal backlog limit */
1383        unsigned long timeout_start = jiffies;
1384
1385        if (audit_initialized != AUDIT_INITIALIZED)
1386                return NULL;
1387
1388        if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1389                return NULL;
1390
1391        if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1392                if (audit_pid && audit_pid == current->tgid)
1393                        gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1394                else
1395                        reserve = 0;
1396        }
1397
1398        while (audit_backlog_limit
1399               && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1400                if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1401                        long sleep_time;
1402
1403                        sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1404                        if (sleep_time > 0) {
1405                                sleep_time = wait_for_auditd(sleep_time);
1406                                if (sleep_time > 0)
1407                                        continue;
1408                        }
1409                }
1410                if (audit_rate_check() && printk_ratelimit())
1411                        pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1412                                skb_queue_len(&audit_skb_queue),
1413                                audit_backlog_limit);
1414                audit_log_lost("backlog limit exceeded");
1415                audit_backlog_wait_time = 0;
1416                wake_up(&audit_backlog_wait);
1417                return NULL;
1418        }
1419
1420        if (!reserve && !audit_backlog_wait_time)
1421                audit_backlog_wait_time = audit_backlog_wait_time_master;
1422
1423        ab = audit_buffer_alloc(ctx, gfp_mask, type);
1424        if (!ab) {
1425                audit_log_lost("out of memory in audit_log_start");
1426                return NULL;
1427        }
1428
1429        audit_get_stamp(ab->ctx, &t, &serial);
1430
1431        audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1432                         t.tv_sec, t.tv_nsec/1000000, serial);
1433        return ab;
1434}
1435
1436/**
1437 * audit_expand - expand skb in the audit buffer
1438 * @ab: audit_buffer
1439 * @extra: space to add at tail of the skb
1440 *
1441 * Returns 0 (no space) on failed expansion, or available space if
1442 * successful.
1443 */
1444static inline int audit_expand(struct audit_buffer *ab, int extra)
1445{
1446        struct sk_buff *skb = ab->skb;
1447        int oldtail = skb_tailroom(skb);
1448        int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1449        int newtail = skb_tailroom(skb);
1450
1451        if (ret < 0) {
1452                audit_log_lost("out of memory in audit_expand");
1453                return 0;
1454        }
1455
1456        skb->truesize += newtail - oldtail;
1457        return newtail;
1458}
1459
1460/*
1461 * Format an audit message into the audit buffer.  If there isn't enough
1462 * room in the audit buffer, more room will be allocated and vsnprint
1463 * will be called a second time.  Currently, we assume that a printk
1464 * can't format message larger than 1024 bytes, so we don't either.
1465 */
1466static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1467                              va_list args)
1468{
1469        int len, avail;
1470        struct sk_buff *skb;
1471        va_list args2;
1472
1473        if (!ab)
1474                return;
1475
1476        BUG_ON(!ab->skb);
1477        skb = ab->skb;
1478        avail = skb_tailroom(skb);
1479        if (avail == 0) {
1480                avail = audit_expand(ab, AUDIT_BUFSIZ);
1481                if (!avail)
1482                        goto out;
1483        }
1484        va_copy(args2, args);
1485        len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1486        if (len >= avail) {
1487                /* The printk buffer is 1024 bytes long, so if we get
1488                 * here and AUDIT_BUFSIZ is at least 1024, then we can
1489                 * log everything that printk could have logged. */
1490                avail = audit_expand(ab,
1491                        max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1492                if (!avail)
1493                        goto out_va_end;
1494                len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1495        }
1496        if (len > 0)
1497                skb_put(skb, len);
1498out_va_end:
1499        va_end(args2);
1500out:
1501        return;
1502}
1503
1504/**
1505 * audit_log_format - format a message into the audit buffer.
1506 * @ab: audit_buffer
1507 * @fmt: format string
1508 * @...: optional parameters matching @fmt string
1509 *
1510 * All the work is done in audit_log_vformat.
1511 */
1512void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1513{
1514        va_list args;
1515
1516        if (!ab)
1517                return;
1518        va_start(args, fmt);
1519        audit_log_vformat(ab, fmt, args);
1520        va_end(args);
1521}
1522
1523/**
1524 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1525 * @ab: the audit_buffer
1526 * @buf: buffer to convert to hex
1527 * @len: length of @buf to be converted
1528 *
1529 * No return value; failure to expand is silently ignored.
1530 *
1531 * This function will take the passed buf and convert it into a string of
1532 * ascii hex digits. The new string is placed onto the skb.
1533 */
1534void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1535                size_t len)
1536{
1537        int i, avail, new_len;
1538        unsigned char *ptr;
1539        struct sk_buff *skb;
1540
1541        if (!ab)
1542                return;
1543
1544        BUG_ON(!ab->skb);
1545        skb = ab->skb;
1546        avail = skb_tailroom(skb);
1547        new_len = len<<1;
1548        if (new_len >= avail) {
1549                /* Round the buffer request up to the next multiple */
1550                new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1551                avail = audit_expand(ab, new_len);
1552                if (!avail)
1553                        return;
1554        }
1555
1556        ptr = skb_tail_pointer(skb);
1557        for (i = 0; i < len; i++)
1558                ptr = hex_byte_pack_upper(ptr, buf[i]);
1559        *ptr = 0;
1560        skb_put(skb, len << 1); /* new string is twice the old string */
1561}
1562
1563/*
1564 * Format a string of no more than slen characters into the audit buffer,
1565 * enclosed in quote marks.
1566 */
1567void audit_log_n_string(struct audit_buffer *ab, const char *string,
1568                        size_t slen)
1569{
1570        int avail, new_len;
1571        unsigned char *ptr;
1572        struct sk_buff *skb;
1573
1574        if (!ab)
1575                return;
1576
1577        BUG_ON(!ab->skb);
1578        skb = ab->skb;
1579        avail = skb_tailroom(skb);
1580        new_len = slen + 3;     /* enclosing quotes + null terminator */
1581        if (new_len > avail) {
1582                avail = audit_expand(ab, new_len);
1583                if (!avail)
1584                        return;
1585        }
1586        ptr = skb_tail_pointer(skb);
1587        *ptr++ = '"';
1588        memcpy(ptr, string, slen);
1589        ptr += slen;
1590        *ptr++ = '"';
1591        *ptr = 0;
1592        skb_put(skb, slen + 2); /* don't include null terminator */
1593}
1594
1595/**
1596 * audit_string_contains_control - does a string need to be logged in hex
1597 * @string: string to be checked
1598 * @len: max length of the string to check
1599 */
1600bool audit_string_contains_control(const char *string, size_t len)
1601{
1602        const unsigned char *p;
1603        for (p = string; p < (const unsigned char *)string + len; p++) {
1604                if (*p == '"' || *p < 0x21 || *p > 0x7e)
1605                        return true;
1606        }
1607        return false;
1608}
1609
1610/**
1611 * audit_log_n_untrustedstring - log a string that may contain random characters
1612 * @ab: audit_buffer
1613 * @len: length of string (not including trailing null)
1614 * @string: string to be logged
1615 *
1616 * This code will escape a string that is passed to it if the string
1617 * contains a control character, unprintable character, double quote mark,
1618 * or a space. Unescaped strings will start and end with a double quote mark.
1619 * Strings that are escaped are printed in hex (2 digits per char).
1620 *
1621 * The caller specifies the number of characters in the string to log, which may
1622 * or may not be the entire string.
1623 */
1624void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1625                                 size_t len)
1626{
1627        if (audit_string_contains_control(string, len))
1628                audit_log_n_hex(ab, string, len);
1629        else
1630                audit_log_n_string(ab, string, len);
1631}
1632
1633/**
1634 * audit_log_untrustedstring - log a string that may contain random characters
1635 * @ab: audit_buffer
1636 * @string: string to be logged
1637 *
1638 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1639 * determine string length.
1640 */
1641void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1642{
1643        audit_log_n_untrustedstring(ab, string, strlen(string));
1644}
1645
1646/* This is a helper-function to print the escaped d_path */
1647void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1648                      const struct path *path)
1649{
1650        char *p, *pathname;
1651
1652        if (prefix)
1653                audit_log_format(ab, "%s", prefix);
1654
1655        /* We will allow 11 spaces for ' (deleted)' to be appended */
1656        pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1657        if (!pathname) {
1658                audit_log_string(ab, "<no_memory>");
1659                return;
1660        }
1661        p = d_path(path, pathname, PATH_MAX+11);
1662        if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1663                /* FIXME: can we save some information here? */
1664                audit_log_string(ab, "<too_long>");
1665        } else
1666                audit_log_untrustedstring(ab, p);
1667        kfree(pathname);
1668}
1669
1670void audit_log_session_info(struct audit_buffer *ab)
1671{
1672        unsigned int sessionid = audit_get_sessionid(current);
1673        uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1674
1675        audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1676}
1677
1678void audit_log_key(struct audit_buffer *ab, char *key)
1679{
1680        audit_log_format(ab, " key=");
1681        if (key)
1682                audit_log_untrustedstring(ab, key);
1683        else
1684                audit_log_format(ab, "(null)");
1685}
1686
1687void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1688{
1689        int i;
1690
1691        audit_log_format(ab, " %s=", prefix);
1692        CAP_FOR_EACH_U32(i) {
1693                audit_log_format(ab, "%08x",
1694                                 cap->cap[CAP_LAST_U32 - i]);
1695        }
1696}
1697
1698static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1699{
1700        kernel_cap_t *perm = &name->fcap.permitted;
1701        kernel_cap_t *inh = &name->fcap.inheritable;
1702        int log = 0;
1703
1704        if (!cap_isclear(*perm)) {
1705                audit_log_cap(ab, "cap_fp", perm);
1706                log = 1;
1707        }
1708        if (!cap_isclear(*inh)) {
1709                audit_log_cap(ab, "cap_fi", inh);
1710                log = 1;
1711        }
1712
1713        if (log)
1714                audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1715                                 name->fcap.fE, name->fcap_ver);
1716}
1717
1718static inline int audit_copy_fcaps(struct audit_names *name,
1719                                   const struct dentry *dentry)
1720{
1721        struct cpu_vfs_cap_data caps;
1722        int rc;
1723
1724        if (!dentry)
1725                return 0;
1726
1727        rc = get_vfs_caps_from_disk(dentry, &caps);
1728        if (rc)
1729                return rc;
1730
1731        name->fcap.permitted = caps.permitted;
1732        name->fcap.inheritable = caps.inheritable;
1733        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1734        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1735                                VFS_CAP_REVISION_SHIFT;
1736
1737        return 0;
1738}
1739
1740/* Copy inode data into an audit_names. */
1741void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1742                      struct inode *inode)
1743{
1744        name->ino   = inode->i_ino;
1745        name->dev   = inode->i_sb->s_dev;
1746        name->mode  = inode->i_mode;
1747        name->uid   = inode->i_uid;
1748        name->gid   = inode->i_gid;
1749        name->rdev  = inode->i_rdev;
1750        security_inode_getsecid(inode, &name->osid);
1751        audit_copy_fcaps(name, dentry);
1752}
1753
1754/**
1755 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1756 * @context: audit_context for the task
1757 * @n: audit_names structure with reportable details
1758 * @path: optional path to report instead of audit_names->name
1759 * @record_num: record number to report when handling a list of names
1760 * @call_panic: optional pointer to int that will be updated if secid fails
1761 */
1762void audit_log_name(struct audit_context *context, struct audit_names *n,
1763                    struct path *path, int record_num, int *call_panic)
1764{
1765        struct audit_buffer *ab;
1766        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1767        if (!ab)
1768                return;
1769
1770        audit_log_format(ab, "item=%d", record_num);
1771
1772        if (path)
1773                audit_log_d_path(ab, " name=", path);
1774        else if (n->name) {
1775                switch (n->name_len) {
1776                case AUDIT_NAME_FULL:
1777                        /* log the full path */
1778                        audit_log_format(ab, " name=");
1779                        audit_log_untrustedstring(ab, n->name->name);
1780                        break;
1781                case 0:
1782                        /* name was specified as a relative path and the
1783                         * directory component is the cwd */
1784                        audit_log_d_path(ab, " name=", &context->pwd);
1785                        break;
1786                default:
1787                        /* log the name's directory component */
1788                        audit_log_format(ab, " name=");
1789                        audit_log_n_untrustedstring(ab, n->name->name,
1790                                                    n->name_len);
1791                }
1792        } else
1793                audit_log_format(ab, " name=(null)");
1794
1795        if (n->ino != AUDIT_INO_UNSET)
1796                audit_log_format(ab, " inode=%lu"
1797                                 " dev=%02x:%02x mode=%#ho"
1798                                 " ouid=%u ogid=%u rdev=%02x:%02x",
1799                                 n->ino,
1800                                 MAJOR(n->dev),
1801                                 MINOR(n->dev),
1802                                 n->mode,
1803                                 from_kuid(&init_user_ns, n->uid),
1804                                 from_kgid(&init_user_ns, n->gid),
1805                                 MAJOR(n->rdev),
1806                                 MINOR(n->rdev));
1807        if (n->osid != 0) {
1808                char *ctx = NULL;
1809                u32 len;
1810                if (security_secid_to_secctx(
1811                        n->osid, &ctx, &len)) {
1812                        audit_log_format(ab, " osid=%u", n->osid);
1813                        if (call_panic)
1814                                *call_panic = 2;
1815                } else {
1816                        audit_log_format(ab, " obj=%s", ctx);
1817                        security_release_secctx(ctx, len);
1818                }
1819        }
1820
1821        /* log the audit_names record type */
1822        audit_log_format(ab, " nametype=");
1823        switch(n->type) {
1824        case AUDIT_TYPE_NORMAL:
1825                audit_log_format(ab, "NORMAL");
1826                break;
1827        case AUDIT_TYPE_PARENT:
1828                audit_log_format(ab, "PARENT");
1829                break;
1830        case AUDIT_TYPE_CHILD_DELETE:
1831                audit_log_format(ab, "DELETE");
1832                break;
1833        case AUDIT_TYPE_CHILD_CREATE:
1834                audit_log_format(ab, "CREATE");
1835                break;
1836        default:
1837                audit_log_format(ab, "UNKNOWN");
1838                break;
1839        }
1840
1841        audit_log_fcaps(ab, n);
1842        audit_log_end(ab);
1843}
1844
1845int audit_log_task_context(struct audit_buffer *ab)
1846{
1847        char *ctx = NULL;
1848        unsigned len;
1849        int error;
1850        u32 sid;
1851
1852        security_task_getsecid(current, &sid);
1853        if (!sid)
1854                return 0;
1855
1856        error = security_secid_to_secctx(sid, &ctx, &len);
1857        if (error) {
1858                if (error != -EINVAL)
1859                        goto error_path;
1860                return 0;
1861        }
1862
1863        audit_log_format(ab, " subj=%s", ctx);
1864        security_release_secctx(ctx, len);
1865        return 0;
1866
1867error_path:
1868        audit_panic("error in audit_log_task_context");
1869        return error;
1870}
1871EXPORT_SYMBOL(audit_log_task_context);
1872
1873void audit_log_d_path_exe(struct audit_buffer *ab,
1874                          struct mm_struct *mm)
1875{
1876        struct file *exe_file;
1877
1878        if (!mm)
1879                goto out_null;
1880
1881        exe_file = get_mm_exe_file(mm);
1882        if (!exe_file)
1883                goto out_null;
1884
1885        audit_log_d_path(ab, " exe=", &exe_file->f_path);
1886        fput(exe_file);
1887        return;
1888out_null:
1889        audit_log_format(ab, " exe=(null)");
1890}
1891
1892struct tty_struct *audit_get_tty(struct task_struct *tsk)
1893{
1894        struct tty_struct *tty = NULL;
1895        unsigned long flags;
1896
1897        spin_lock_irqsave(&tsk->sighand->siglock, flags);
1898        if (tsk->signal)
1899                tty = tty_kref_get(tsk->signal->tty);
1900        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1901        return tty;
1902}
1903
1904void audit_put_tty(struct tty_struct *tty)
1905{
1906        tty_kref_put(tty);
1907}
1908
1909void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1910{
1911        const struct cred *cred;
1912        char comm[sizeof(tsk->comm)];
1913        struct tty_struct *tty;
1914
1915        if (!ab)
1916                return;
1917
1918        /* tsk == current */
1919        cred = current_cred();
1920        tty = audit_get_tty(tsk);
1921        audit_log_format(ab,
1922                         " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1923                         " euid=%u suid=%u fsuid=%u"
1924                         " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1925                         task_ppid_nr(tsk),
1926                         task_tgid_nr(tsk),
1927                         from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1928                         from_kuid(&init_user_ns, cred->uid),
1929                         from_kgid(&init_user_ns, cred->gid),
1930                         from_kuid(&init_user_ns, cred->euid),
1931                         from_kuid(&init_user_ns, cred->suid),
1932                         from_kuid(&init_user_ns, cred->fsuid),
1933                         from_kgid(&init_user_ns, cred->egid),
1934                         from_kgid(&init_user_ns, cred->sgid),
1935                         from_kgid(&init_user_ns, cred->fsgid),
1936                         tty ? tty_name(tty) : "(none)",
1937                         audit_get_sessionid(tsk));
1938        audit_put_tty(tty);
1939        audit_log_format(ab, " comm=");
1940        audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1941        audit_log_d_path_exe(ab, tsk->mm);
1942        audit_log_task_context(ab);
1943}
1944EXPORT_SYMBOL(audit_log_task_info);
1945
1946/**
1947 * audit_log_link_denied - report a link restriction denial
1948 * @operation: specific link operation
1949 * @link: the path that triggered the restriction
1950 */
1951void audit_log_link_denied(const char *operation, struct path *link)
1952{
1953        struct audit_buffer *ab;
1954        struct audit_names *name;
1955
1956        name = kzalloc(sizeof(*name), GFP_NOFS);
1957        if (!name)
1958                return;
1959
1960        /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1961        ab = audit_log_start(current->audit_context, GFP_KERNEL,
1962                             AUDIT_ANOM_LINK);
1963        if (!ab)
1964                goto out;
1965        audit_log_format(ab, "op=%s", operation);
1966        audit_log_task_info(ab, current);
1967        audit_log_format(ab, " res=0");
1968        audit_log_end(ab);
1969
1970        /* Generate AUDIT_PATH record with object. */
1971        name->type = AUDIT_TYPE_NORMAL;
1972        audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1973        audit_log_name(current->audit_context, name, link, 0, NULL);
1974out:
1975        kfree(name);
1976}
1977
1978/**
1979 * audit_log_end - end one audit record
1980 * @ab: the audit_buffer
1981 *
1982 * netlink_unicast() cannot be called inside an irq context because it blocks
1983 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1984 * on a queue and a tasklet is scheduled to remove them from the queue outside
1985 * the irq context.  May be called in any context.
1986 */
1987void audit_log_end(struct audit_buffer *ab)
1988{
1989        if (!ab)
1990                return;
1991        if (!audit_rate_check()) {
1992                audit_log_lost("rate limit exceeded");
1993        } else {
1994                struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1995
1996                nlh->nlmsg_len = ab->skb->len;
1997                kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1998
1999                /*
2000                 * The original kaudit unicast socket sends up messages with
2001                 * nlmsg_len set to the payload length rather than the entire
2002                 * message length.  This breaks the standard set by netlink.
2003                 * The existing auditd daemon assumes this breakage.  Fixing
2004                 * this would require co-ordinating a change in the established
2005                 * protocol between the kaudit kernel subsystem and the auditd
2006                 * userspace code.
2007                 */
2008                nlh->nlmsg_len -= NLMSG_HDRLEN;
2009
2010                if (audit_pid) {
2011                        skb_queue_tail(&audit_skb_queue, ab->skb);
2012                        wake_up_interruptible(&kauditd_wait);
2013                } else {
2014                        audit_printk_skb(ab->skb);
2015                }
2016                ab->skb = NULL;
2017        }
2018        audit_buffer_free(ab);
2019}
2020
2021/**
2022 * audit_log - Log an audit record
2023 * @ctx: audit context
2024 * @gfp_mask: type of allocation
2025 * @type: audit message type
2026 * @fmt: format string to use
2027 * @...: variable parameters matching the format string
2028 *
2029 * This is a convenience function that calls audit_log_start,
2030 * audit_log_vformat, and audit_log_end.  It may be called
2031 * in any context.
2032 */
2033void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2034               const char *fmt, ...)
2035{
2036        struct audit_buffer *ab;
2037        va_list args;
2038
2039        ab = audit_log_start(ctx, gfp_mask, type);
2040        if (ab) {
2041                va_start(args, fmt);
2042                audit_log_vformat(ab, fmt, args);
2043                va_end(args);
2044                audit_log_end(ab);
2045        }
2046}
2047
2048#ifdef CONFIG_SECURITY
2049/**
2050 * audit_log_secctx - Converts and logs SELinux context
2051 * @ab: audit_buffer
2052 * @secid: security number
2053 *
2054 * This is a helper function that calls security_secid_to_secctx to convert
2055 * secid to secctx and then adds the (converted) SELinux context to the audit
2056 * log by calling audit_log_format, thus also preventing leak of internal secid
2057 * to userspace. If secid cannot be converted audit_panic is called.
2058 */
2059void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2060{
2061        u32 len;
2062        char *secctx;
2063
2064        if (security_secid_to_secctx(secid, &secctx, &len)) {
2065                audit_panic("Cannot convert secid to context");
2066        } else {
2067                audit_log_format(ab, " obj=%s", secctx);
2068                security_release_secctx(secctx, len);
2069        }
2070}
2071EXPORT_SYMBOL(audit_log_secctx);
2072#endif
2073
2074EXPORT_SYMBOL(audit_log_start);
2075EXPORT_SYMBOL(audit_log_end);
2076EXPORT_SYMBOL(audit_log_format);
2077EXPORT_SYMBOL(audit_log);
2078