1
2
3
4
5
6
7
8
9
10
11
12#include <linux/perf_event.h>
13#include <linux/slab.h>
14#include "internal.h"
15
16struct callchain_cpus_entries {
17 struct rcu_head rcu_head;
18 struct perf_callchain_entry *cpu_entries[0];
19};
20
21int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
22int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
23
24static inline size_t perf_callchain_entry__sizeof(void)
25{
26 return (sizeof(struct perf_callchain_entry) +
27 sizeof(__u64) * (sysctl_perf_event_max_stack +
28 sysctl_perf_event_max_contexts_per_stack));
29}
30
31static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
32static atomic_t nr_callchain_events;
33static DEFINE_MUTEX(callchain_mutex);
34static struct callchain_cpus_entries *callchain_cpus_entries;
35
36
37__weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
38 struct pt_regs *regs)
39{
40}
41
42__weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
43 struct pt_regs *regs)
44{
45}
46
47static void release_callchain_buffers_rcu(struct rcu_head *head)
48{
49 struct callchain_cpus_entries *entries;
50 int cpu;
51
52 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
53
54 for_each_possible_cpu(cpu)
55 kfree(entries->cpu_entries[cpu]);
56
57 kfree(entries);
58}
59
60static void release_callchain_buffers(void)
61{
62 struct callchain_cpus_entries *entries;
63
64 entries = callchain_cpus_entries;
65 RCU_INIT_POINTER(callchain_cpus_entries, NULL);
66 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
67}
68
69static int alloc_callchain_buffers(void)
70{
71 int cpu;
72 int size;
73 struct callchain_cpus_entries *entries;
74
75
76
77
78
79
80 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
81
82 entries = kzalloc(size, GFP_KERNEL);
83 if (!entries)
84 return -ENOMEM;
85
86 size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
87
88 for_each_possible_cpu(cpu) {
89 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
90 cpu_to_node(cpu));
91 if (!entries->cpu_entries[cpu])
92 goto fail;
93 }
94
95 rcu_assign_pointer(callchain_cpus_entries, entries);
96
97 return 0;
98
99fail:
100 for_each_possible_cpu(cpu)
101 kfree(entries->cpu_entries[cpu]);
102 kfree(entries);
103
104 return -ENOMEM;
105}
106
107int get_callchain_buffers(int event_max_stack)
108{
109 int err = 0;
110 int count;
111
112 mutex_lock(&callchain_mutex);
113
114 count = atomic_inc_return(&nr_callchain_events);
115 if (WARN_ON_ONCE(count < 1)) {
116 err = -EINVAL;
117 goto exit;
118 }
119
120 if (count > 1) {
121
122 if (!callchain_cpus_entries)
123 err = -ENOMEM;
124
125
126
127
128
129
130
131 if (event_max_stack > sysctl_perf_event_max_stack)
132 err = -EOVERFLOW;
133 goto exit;
134 }
135
136 err = alloc_callchain_buffers();
137exit:
138 if (err)
139 atomic_dec(&nr_callchain_events);
140
141 mutex_unlock(&callchain_mutex);
142
143 return err;
144}
145
146void put_callchain_buffers(void)
147{
148 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
149 release_callchain_buffers();
150 mutex_unlock(&callchain_mutex);
151 }
152}
153
154static struct perf_callchain_entry *get_callchain_entry(int *rctx)
155{
156 int cpu;
157 struct callchain_cpus_entries *entries;
158
159 *rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
160 if (*rctx == -1)
161 return NULL;
162
163 entries = rcu_dereference(callchain_cpus_entries);
164 if (!entries)
165 return NULL;
166
167 cpu = smp_processor_id();
168
169 return (((void *)entries->cpu_entries[cpu]) +
170 (*rctx * perf_callchain_entry__sizeof()));
171}
172
173static void
174put_callchain_entry(int rctx)
175{
176 put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
177}
178
179struct perf_callchain_entry *
180perf_callchain(struct perf_event *event, struct pt_regs *regs)
181{
182 bool kernel = !event->attr.exclude_callchain_kernel;
183 bool user = !event->attr.exclude_callchain_user;
184
185 bool crosstask = event->ctx->task && event->ctx->task != current;
186 const u32 max_stack = event->attr.sample_max_stack;
187
188 if (!kernel && !user)
189 return NULL;
190
191 return get_perf_callchain(regs, 0, kernel, user, max_stack, crosstask, true);
192}
193
194struct perf_callchain_entry *
195get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
196 u32 max_stack, bool crosstask, bool add_mark)
197{
198 struct perf_callchain_entry *entry;
199 struct perf_callchain_entry_ctx ctx;
200 int rctx;
201
202 entry = get_callchain_entry(&rctx);
203 if (rctx == -1)
204 return NULL;
205
206 if (!entry)
207 goto exit_put;
208
209 ctx.entry = entry;
210 ctx.max_stack = max_stack;
211 ctx.nr = entry->nr = init_nr;
212 ctx.contexts = 0;
213 ctx.contexts_maxed = false;
214
215 if (kernel && !user_mode(regs)) {
216 if (add_mark)
217 perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
218 perf_callchain_kernel(&ctx, regs);
219 }
220
221 if (user) {
222 if (!user_mode(regs)) {
223 if (current->mm)
224 regs = task_pt_regs(current);
225 else
226 regs = NULL;
227 }
228
229 if (regs) {
230 if (crosstask)
231 goto exit_put;
232
233 if (add_mark)
234 perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
235 perf_callchain_user(&ctx, regs);
236 }
237 }
238
239exit_put:
240 put_callchain_entry(rctx);
241
242 return entry;
243}
244
245
246
247
248
249int perf_event_max_stack_handler(struct ctl_table *table, int write,
250 void __user *buffer, size_t *lenp, loff_t *ppos)
251{
252 int *value = table->data;
253 int new_value = *value, ret;
254 struct ctl_table new_table = *table;
255
256 new_table.data = &new_value;
257 ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
258 if (ret || !write)
259 return ret;
260
261 mutex_lock(&callchain_mutex);
262 if (atomic_read(&nr_callchain_events))
263 ret = -EBUSY;
264 else
265 *value = new_value;
266
267 mutex_unlock(&callchain_mutex);
268
269 return ret;
270}
271