linux/mm/huge_memory.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/dax.h>
  21#include <linux/khugepaged.h>
  22#include <linux/freezer.h>
  23#include <linux/pfn_t.h>
  24#include <linux/mman.h>
  25#include <linux/memremap.h>
  26#include <linux/pagemap.h>
  27#include <linux/debugfs.h>
  28#include <linux/migrate.h>
  29#include <linux/hashtable.h>
  30#include <linux/userfaultfd_k.h>
  31#include <linux/page_idle.h>
  32#include <linux/shmem_fs.h>
  33
  34#include <asm/tlb.h>
  35#include <asm/pgalloc.h>
  36#include "internal.h"
  37
  38/*
  39 * By default transparent hugepage support is disabled in order that avoid
  40 * to risk increase the memory footprint of applications without a guaranteed
  41 * benefit. When transparent hugepage support is enabled, is for all mappings,
  42 * and khugepaged scans all mappings.
  43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  44 * for all hugepage allocations.
  45 */
  46unsigned long transparent_hugepage_flags __read_mostly =
  47#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  48        (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  49#endif
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  51        (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  52#endif
  53        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  54        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  55        (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  56
  57static struct shrinker deferred_split_shrinker;
  58
  59static atomic_t huge_zero_refcount;
  60struct page *huge_zero_page __read_mostly;
  61
  62static struct page *get_huge_zero_page(void)
  63{
  64        struct page *zero_page;
  65retry:
  66        if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  67                return READ_ONCE(huge_zero_page);
  68
  69        zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  70                        HPAGE_PMD_ORDER);
  71        if (!zero_page) {
  72                count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  73                return NULL;
  74        }
  75        count_vm_event(THP_ZERO_PAGE_ALLOC);
  76        preempt_disable();
  77        if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  78                preempt_enable();
  79                __free_pages(zero_page, compound_order(zero_page));
  80                goto retry;
  81        }
  82
  83        /* We take additional reference here. It will be put back by shrinker */
  84        atomic_set(&huge_zero_refcount, 2);
  85        preempt_enable();
  86        return READ_ONCE(huge_zero_page);
  87}
  88
  89static void put_huge_zero_page(void)
  90{
  91        /*
  92         * Counter should never go to zero here. Only shrinker can put
  93         * last reference.
  94         */
  95        BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  96}
  97
  98struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  99{
 100        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 101                return READ_ONCE(huge_zero_page);
 102
 103        if (!get_huge_zero_page())
 104                return NULL;
 105
 106        if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 107                put_huge_zero_page();
 108
 109        return READ_ONCE(huge_zero_page);
 110}
 111
 112void mm_put_huge_zero_page(struct mm_struct *mm)
 113{
 114        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 115                put_huge_zero_page();
 116}
 117
 118static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 119                                        struct shrink_control *sc)
 120{
 121        /* we can free zero page only if last reference remains */
 122        return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 123}
 124
 125static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 126                                       struct shrink_control *sc)
 127{
 128        if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 129                struct page *zero_page = xchg(&huge_zero_page, NULL);
 130                BUG_ON(zero_page == NULL);
 131                __free_pages(zero_page, compound_order(zero_page));
 132                return HPAGE_PMD_NR;
 133        }
 134
 135        return 0;
 136}
 137
 138static struct shrinker huge_zero_page_shrinker = {
 139        .count_objects = shrink_huge_zero_page_count,
 140        .scan_objects = shrink_huge_zero_page_scan,
 141        .seeks = DEFAULT_SEEKS,
 142};
 143
 144#ifdef CONFIG_SYSFS
 145
 146static ssize_t triple_flag_store(struct kobject *kobj,
 147                                 struct kobj_attribute *attr,
 148                                 const char *buf, size_t count,
 149                                 enum transparent_hugepage_flag enabled,
 150                                 enum transparent_hugepage_flag deferred,
 151                                 enum transparent_hugepage_flag req_madv)
 152{
 153        if (!memcmp("defer", buf,
 154                    min(sizeof("defer")-1, count))) {
 155                if (enabled == deferred)
 156                        return -EINVAL;
 157                clear_bit(enabled, &transparent_hugepage_flags);
 158                clear_bit(req_madv, &transparent_hugepage_flags);
 159                set_bit(deferred, &transparent_hugepage_flags);
 160        } else if (!memcmp("always", buf,
 161                    min(sizeof("always")-1, count))) {
 162                clear_bit(deferred, &transparent_hugepage_flags);
 163                clear_bit(req_madv, &transparent_hugepage_flags);
 164                set_bit(enabled, &transparent_hugepage_flags);
 165        } else if (!memcmp("madvise", buf,
 166                           min(sizeof("madvise")-1, count))) {
 167                clear_bit(enabled, &transparent_hugepage_flags);
 168                clear_bit(deferred, &transparent_hugepage_flags);
 169                set_bit(req_madv, &transparent_hugepage_flags);
 170        } else if (!memcmp("never", buf,
 171                           min(sizeof("never")-1, count))) {
 172                clear_bit(enabled, &transparent_hugepage_flags);
 173                clear_bit(req_madv, &transparent_hugepage_flags);
 174                clear_bit(deferred, &transparent_hugepage_flags);
 175        } else
 176                return -EINVAL;
 177
 178        return count;
 179}
 180
 181static ssize_t enabled_show(struct kobject *kobj,
 182                            struct kobj_attribute *attr, char *buf)
 183{
 184        if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 185                return sprintf(buf, "[always] madvise never\n");
 186        else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 187                return sprintf(buf, "always [madvise] never\n");
 188        else
 189                return sprintf(buf, "always madvise [never]\n");
 190}
 191
 192static ssize_t enabled_store(struct kobject *kobj,
 193                             struct kobj_attribute *attr,
 194                             const char *buf, size_t count)
 195{
 196        ssize_t ret;
 197
 198        ret = triple_flag_store(kobj, attr, buf, count,
 199                                TRANSPARENT_HUGEPAGE_FLAG,
 200                                TRANSPARENT_HUGEPAGE_FLAG,
 201                                TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 202
 203        if (ret > 0) {
 204                int err = start_stop_khugepaged();
 205                if (err)
 206                        ret = err;
 207        }
 208
 209        return ret;
 210}
 211static struct kobj_attribute enabled_attr =
 212        __ATTR(enabled, 0644, enabled_show, enabled_store);
 213
 214ssize_t single_hugepage_flag_show(struct kobject *kobj,
 215                                struct kobj_attribute *attr, char *buf,
 216                                enum transparent_hugepage_flag flag)
 217{
 218        return sprintf(buf, "%d\n",
 219                       !!test_bit(flag, &transparent_hugepage_flags));
 220}
 221
 222ssize_t single_hugepage_flag_store(struct kobject *kobj,
 223                                 struct kobj_attribute *attr,
 224                                 const char *buf, size_t count,
 225                                 enum transparent_hugepage_flag flag)
 226{
 227        unsigned long value;
 228        int ret;
 229
 230        ret = kstrtoul(buf, 10, &value);
 231        if (ret < 0)
 232                return ret;
 233        if (value > 1)
 234                return -EINVAL;
 235
 236        if (value)
 237                set_bit(flag, &transparent_hugepage_flags);
 238        else
 239                clear_bit(flag, &transparent_hugepage_flags);
 240
 241        return count;
 242}
 243
 244/*
 245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 247 * memory just to allocate one more hugepage.
 248 */
 249static ssize_t defrag_show(struct kobject *kobj,
 250                           struct kobj_attribute *attr, char *buf)
 251{
 252        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 253                return sprintf(buf, "[always] defer madvise never\n");
 254        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 255                return sprintf(buf, "always [defer] madvise never\n");
 256        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 257                return sprintf(buf, "always defer [madvise] never\n");
 258        else
 259                return sprintf(buf, "always defer madvise [never]\n");
 260
 261}
 262static ssize_t defrag_store(struct kobject *kobj,
 263                            struct kobj_attribute *attr,
 264                            const char *buf, size_t count)
 265{
 266        return triple_flag_store(kobj, attr, buf, count,
 267                                 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 268                                 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 269                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 270}
 271static struct kobj_attribute defrag_attr =
 272        __ATTR(defrag, 0644, defrag_show, defrag_store);
 273
 274static ssize_t use_zero_page_show(struct kobject *kobj,
 275                struct kobj_attribute *attr, char *buf)
 276{
 277        return single_hugepage_flag_show(kobj, attr, buf,
 278                                TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 279}
 280static ssize_t use_zero_page_store(struct kobject *kobj,
 281                struct kobj_attribute *attr, const char *buf, size_t count)
 282{
 283        return single_hugepage_flag_store(kobj, attr, buf, count,
 284                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 285}
 286static struct kobj_attribute use_zero_page_attr =
 287        __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 288#ifdef CONFIG_DEBUG_VM
 289static ssize_t debug_cow_show(struct kobject *kobj,
 290                                struct kobj_attribute *attr, char *buf)
 291{
 292        return single_hugepage_flag_show(kobj, attr, buf,
 293                                TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 294}
 295static ssize_t debug_cow_store(struct kobject *kobj,
 296                               struct kobj_attribute *attr,
 297                               const char *buf, size_t count)
 298{
 299        return single_hugepage_flag_store(kobj, attr, buf, count,
 300                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 301}
 302static struct kobj_attribute debug_cow_attr =
 303        __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 304#endif /* CONFIG_DEBUG_VM */
 305
 306static struct attribute *hugepage_attr[] = {
 307        &enabled_attr.attr,
 308        &defrag_attr.attr,
 309        &use_zero_page_attr.attr,
 310#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 311        &shmem_enabled_attr.attr,
 312#endif
 313#ifdef CONFIG_DEBUG_VM
 314        &debug_cow_attr.attr,
 315#endif
 316        NULL,
 317};
 318
 319static struct attribute_group hugepage_attr_group = {
 320        .attrs = hugepage_attr,
 321};
 322
 323static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 324{
 325        int err;
 326
 327        *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 328        if (unlikely(!*hugepage_kobj)) {
 329                pr_err("failed to create transparent hugepage kobject\n");
 330                return -ENOMEM;
 331        }
 332
 333        err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 334        if (err) {
 335                pr_err("failed to register transparent hugepage group\n");
 336                goto delete_obj;
 337        }
 338
 339        err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 340        if (err) {
 341                pr_err("failed to register transparent hugepage group\n");
 342                goto remove_hp_group;
 343        }
 344
 345        return 0;
 346
 347remove_hp_group:
 348        sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 349delete_obj:
 350        kobject_put(*hugepage_kobj);
 351        return err;
 352}
 353
 354static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 355{
 356        sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 357        sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 358        kobject_put(hugepage_kobj);
 359}
 360#else
 361static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 362{
 363        return 0;
 364}
 365
 366static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368}
 369#endif /* CONFIG_SYSFS */
 370
 371static int __init hugepage_init(void)
 372{
 373        int err;
 374        struct kobject *hugepage_kobj;
 375
 376        if (!has_transparent_hugepage()) {
 377                transparent_hugepage_flags = 0;
 378                return -EINVAL;
 379        }
 380
 381        /*
 382         * hugepages can't be allocated by the buddy allocator
 383         */
 384        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 385        /*
 386         * we use page->mapping and page->index in second tail page
 387         * as list_head: assuming THP order >= 2
 388         */
 389        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 390
 391        err = hugepage_init_sysfs(&hugepage_kobj);
 392        if (err)
 393                goto err_sysfs;
 394
 395        err = khugepaged_init();
 396        if (err)
 397                goto err_slab;
 398
 399        err = register_shrinker(&huge_zero_page_shrinker);
 400        if (err)
 401                goto err_hzp_shrinker;
 402        err = register_shrinker(&deferred_split_shrinker);
 403        if (err)
 404                goto err_split_shrinker;
 405
 406        /*
 407         * By default disable transparent hugepages on smaller systems,
 408         * where the extra memory used could hurt more than TLB overhead
 409         * is likely to save.  The admin can still enable it through /sys.
 410         */
 411        if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 412                transparent_hugepage_flags = 0;
 413                return 0;
 414        }
 415
 416        err = start_stop_khugepaged();
 417        if (err)
 418                goto err_khugepaged;
 419
 420        return 0;
 421err_khugepaged:
 422        unregister_shrinker(&deferred_split_shrinker);
 423err_split_shrinker:
 424        unregister_shrinker(&huge_zero_page_shrinker);
 425err_hzp_shrinker:
 426        khugepaged_destroy();
 427err_slab:
 428        hugepage_exit_sysfs(hugepage_kobj);
 429err_sysfs:
 430        return err;
 431}
 432subsys_initcall(hugepage_init);
 433
 434static int __init setup_transparent_hugepage(char *str)
 435{
 436        int ret = 0;
 437        if (!str)
 438                goto out;
 439        if (!strcmp(str, "always")) {
 440                set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 441                        &transparent_hugepage_flags);
 442                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 443                          &transparent_hugepage_flags);
 444                ret = 1;
 445        } else if (!strcmp(str, "madvise")) {
 446                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 447                          &transparent_hugepage_flags);
 448                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 449                        &transparent_hugepage_flags);
 450                ret = 1;
 451        } else if (!strcmp(str, "never")) {
 452                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453                          &transparent_hugepage_flags);
 454                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455                          &transparent_hugepage_flags);
 456                ret = 1;
 457        }
 458out:
 459        if (!ret)
 460                pr_warn("transparent_hugepage= cannot parse, ignored\n");
 461        return ret;
 462}
 463__setup("transparent_hugepage=", setup_transparent_hugepage);
 464
 465pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 466{
 467        if (likely(vma->vm_flags & VM_WRITE))
 468                pmd = pmd_mkwrite(pmd);
 469        return pmd;
 470}
 471
 472static inline struct list_head *page_deferred_list(struct page *page)
 473{
 474        /*
 475         * ->lru in the tail pages is occupied by compound_head.
 476         * Let's use ->mapping + ->index in the second tail page as list_head.
 477         */
 478        return (struct list_head *)&page[2].mapping;
 479}
 480
 481void prep_transhuge_page(struct page *page)
 482{
 483        /*
 484         * we use page->mapping and page->indexlru in second tail page
 485         * as list_head: assuming THP order >= 2
 486         */
 487
 488        INIT_LIST_HEAD(page_deferred_list(page));
 489        set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 490}
 491
 492unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 493                loff_t off, unsigned long flags, unsigned long size)
 494{
 495        unsigned long addr;
 496        loff_t off_end = off + len;
 497        loff_t off_align = round_up(off, size);
 498        unsigned long len_pad;
 499
 500        if (off_end <= off_align || (off_end - off_align) < size)
 501                return 0;
 502
 503        len_pad = len + size;
 504        if (len_pad < len || (off + len_pad) < off)
 505                return 0;
 506
 507        addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 508                                              off >> PAGE_SHIFT, flags);
 509        if (IS_ERR_VALUE(addr))
 510                return 0;
 511
 512        addr += (off - addr) & (size - 1);
 513        return addr;
 514}
 515
 516unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 517                unsigned long len, unsigned long pgoff, unsigned long flags)
 518{
 519        loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 520
 521        if (addr)
 522                goto out;
 523        if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 524                goto out;
 525
 526        addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 527        if (addr)
 528                return addr;
 529
 530 out:
 531        return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 532}
 533EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 534
 535static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
 536                gfp_t gfp)
 537{
 538        struct vm_area_struct *vma = fe->vma;
 539        struct mem_cgroup *memcg;
 540        pgtable_t pgtable;
 541        unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 542
 543        VM_BUG_ON_PAGE(!PageCompound(page), page);
 544
 545        if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 546                put_page(page);
 547                count_vm_event(THP_FAULT_FALLBACK);
 548                return VM_FAULT_FALLBACK;
 549        }
 550
 551        pgtable = pte_alloc_one(vma->vm_mm, haddr);
 552        if (unlikely(!pgtable)) {
 553                mem_cgroup_cancel_charge(page, memcg, true);
 554                put_page(page);
 555                return VM_FAULT_OOM;
 556        }
 557
 558        clear_huge_page(page, haddr, HPAGE_PMD_NR);
 559        /*
 560         * The memory barrier inside __SetPageUptodate makes sure that
 561         * clear_huge_page writes become visible before the set_pmd_at()
 562         * write.
 563         */
 564        __SetPageUptodate(page);
 565
 566        fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 567        if (unlikely(!pmd_none(*fe->pmd))) {
 568                spin_unlock(fe->ptl);
 569                mem_cgroup_cancel_charge(page, memcg, true);
 570                put_page(page);
 571                pte_free(vma->vm_mm, pgtable);
 572        } else {
 573                pmd_t entry;
 574
 575                /* Deliver the page fault to userland */
 576                if (userfaultfd_missing(vma)) {
 577                        int ret;
 578
 579                        spin_unlock(fe->ptl);
 580                        mem_cgroup_cancel_charge(page, memcg, true);
 581                        put_page(page);
 582                        pte_free(vma->vm_mm, pgtable);
 583                        ret = handle_userfault(fe, VM_UFFD_MISSING);
 584                        VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 585                        return ret;
 586                }
 587
 588                entry = mk_huge_pmd(page, vma->vm_page_prot);
 589                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 590                page_add_new_anon_rmap(page, vma, haddr, true);
 591                mem_cgroup_commit_charge(page, memcg, false, true);
 592                lru_cache_add_active_or_unevictable(page, vma);
 593                pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
 594                set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
 595                add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 596                atomic_long_inc(&vma->vm_mm->nr_ptes);
 597                spin_unlock(fe->ptl);
 598                count_vm_event(THP_FAULT_ALLOC);
 599        }
 600
 601        return 0;
 602}
 603
 604/*
 605 * If THP defrag is set to always then directly reclaim/compact as necessary
 606 * If set to defer then do only background reclaim/compact and defer to khugepaged
 607 * If set to madvise and the VMA is flagged then directly reclaim/compact
 608 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
 609 */
 610static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 611{
 612        bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 613
 614        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 615                                &transparent_hugepage_flags) && vma_madvised)
 616                return GFP_TRANSHUGE;
 617        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 618                                                &transparent_hugepage_flags))
 619                return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 620        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 621                                                &transparent_hugepage_flags))
 622                return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 623
 624        return GFP_TRANSHUGE_LIGHT;
 625}
 626
 627/* Caller must hold page table lock. */
 628static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 629                struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 630                struct page *zero_page)
 631{
 632        pmd_t entry;
 633        if (!pmd_none(*pmd))
 634                return false;
 635        entry = mk_pmd(zero_page, vma->vm_page_prot);
 636        entry = pmd_mkhuge(entry);
 637        if (pgtable)
 638                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 639        set_pmd_at(mm, haddr, pmd, entry);
 640        atomic_long_inc(&mm->nr_ptes);
 641        return true;
 642}
 643
 644int do_huge_pmd_anonymous_page(struct fault_env *fe)
 645{
 646        struct vm_area_struct *vma = fe->vma;
 647        gfp_t gfp;
 648        struct page *page;
 649        unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 650
 651        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 652                return VM_FAULT_FALLBACK;
 653        if (unlikely(anon_vma_prepare(vma)))
 654                return VM_FAULT_OOM;
 655        if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 656                return VM_FAULT_OOM;
 657        if (!(fe->flags & FAULT_FLAG_WRITE) &&
 658                        !mm_forbids_zeropage(vma->vm_mm) &&
 659                        transparent_hugepage_use_zero_page()) {
 660                pgtable_t pgtable;
 661                struct page *zero_page;
 662                bool set;
 663                int ret;
 664                pgtable = pte_alloc_one(vma->vm_mm, haddr);
 665                if (unlikely(!pgtable))
 666                        return VM_FAULT_OOM;
 667                zero_page = mm_get_huge_zero_page(vma->vm_mm);
 668                if (unlikely(!zero_page)) {
 669                        pte_free(vma->vm_mm, pgtable);
 670                        count_vm_event(THP_FAULT_FALLBACK);
 671                        return VM_FAULT_FALLBACK;
 672                }
 673                fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 674                ret = 0;
 675                set = false;
 676                if (pmd_none(*fe->pmd)) {
 677                        if (userfaultfd_missing(vma)) {
 678                                spin_unlock(fe->ptl);
 679                                ret = handle_userfault(fe, VM_UFFD_MISSING);
 680                                VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 681                        } else {
 682                                set_huge_zero_page(pgtable, vma->vm_mm, vma,
 683                                                   haddr, fe->pmd, zero_page);
 684                                spin_unlock(fe->ptl);
 685                                set = true;
 686                        }
 687                } else
 688                        spin_unlock(fe->ptl);
 689                if (!set)
 690                        pte_free(vma->vm_mm, pgtable);
 691                return ret;
 692        }
 693        gfp = alloc_hugepage_direct_gfpmask(vma);
 694        page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 695        if (unlikely(!page)) {
 696                count_vm_event(THP_FAULT_FALLBACK);
 697                return VM_FAULT_FALLBACK;
 698        }
 699        prep_transhuge_page(page);
 700        return __do_huge_pmd_anonymous_page(fe, page, gfp);
 701}
 702
 703static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 704                pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 705{
 706        struct mm_struct *mm = vma->vm_mm;
 707        pmd_t entry;
 708        spinlock_t *ptl;
 709
 710        ptl = pmd_lock(mm, pmd);
 711        entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 712        if (pfn_t_devmap(pfn))
 713                entry = pmd_mkdevmap(entry);
 714        if (write) {
 715                entry = pmd_mkyoung(pmd_mkdirty(entry));
 716                entry = maybe_pmd_mkwrite(entry, vma);
 717        }
 718        set_pmd_at(mm, addr, pmd, entry);
 719        update_mmu_cache_pmd(vma, addr, pmd);
 720        spin_unlock(ptl);
 721}
 722
 723int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 724                        pmd_t *pmd, pfn_t pfn, bool write)
 725{
 726        pgprot_t pgprot = vma->vm_page_prot;
 727        /*
 728         * If we had pmd_special, we could avoid all these restrictions,
 729         * but we need to be consistent with PTEs and architectures that
 730         * can't support a 'special' bit.
 731         */
 732        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 733        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 734                                                (VM_PFNMAP|VM_MIXEDMAP));
 735        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 736        BUG_ON(!pfn_t_devmap(pfn));
 737
 738        if (addr < vma->vm_start || addr >= vma->vm_end)
 739                return VM_FAULT_SIGBUS;
 740        if (track_pfn_insert(vma, &pgprot, pfn))
 741                return VM_FAULT_SIGBUS;
 742        insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
 743        return VM_FAULT_NOPAGE;
 744}
 745EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 746
 747static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 748                pmd_t *pmd)
 749{
 750        pmd_t _pmd;
 751
 752        /*
 753         * We should set the dirty bit only for FOLL_WRITE but for now
 754         * the dirty bit in the pmd is meaningless.  And if the dirty
 755         * bit will become meaningful and we'll only set it with
 756         * FOLL_WRITE, an atomic set_bit will be required on the pmd to
 757         * set the young bit, instead of the current set_pmd_at.
 758         */
 759        _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 760        if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 761                                pmd, _pmd,  1))
 762                update_mmu_cache_pmd(vma, addr, pmd);
 763}
 764
 765struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 766                pmd_t *pmd, int flags)
 767{
 768        unsigned long pfn = pmd_pfn(*pmd);
 769        struct mm_struct *mm = vma->vm_mm;
 770        struct dev_pagemap *pgmap;
 771        struct page *page;
 772
 773        assert_spin_locked(pmd_lockptr(mm, pmd));
 774
 775        if (flags & FOLL_WRITE && !pmd_write(*pmd))
 776                return NULL;
 777
 778        if (pmd_present(*pmd) && pmd_devmap(*pmd))
 779                /* pass */;
 780        else
 781                return NULL;
 782
 783        if (flags & FOLL_TOUCH)
 784                touch_pmd(vma, addr, pmd);
 785
 786        /*
 787         * device mapped pages can only be returned if the
 788         * caller will manage the page reference count.
 789         */
 790        if (!(flags & FOLL_GET))
 791                return ERR_PTR(-EEXIST);
 792
 793        pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 794        pgmap = get_dev_pagemap(pfn, NULL);
 795        if (!pgmap)
 796                return ERR_PTR(-EFAULT);
 797        page = pfn_to_page(pfn);
 798        get_page(page);
 799        put_dev_pagemap(pgmap);
 800
 801        return page;
 802}
 803
 804int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 805                  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 806                  struct vm_area_struct *vma)
 807{
 808        spinlock_t *dst_ptl, *src_ptl;
 809        struct page *src_page;
 810        pmd_t pmd;
 811        pgtable_t pgtable = NULL;
 812        int ret = -ENOMEM;
 813
 814        /* Skip if can be re-fill on fault */
 815        if (!vma_is_anonymous(vma))
 816                return 0;
 817
 818        pgtable = pte_alloc_one(dst_mm, addr);
 819        if (unlikely(!pgtable))
 820                goto out;
 821
 822        dst_ptl = pmd_lock(dst_mm, dst_pmd);
 823        src_ptl = pmd_lockptr(src_mm, src_pmd);
 824        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 825
 826        ret = -EAGAIN;
 827        pmd = *src_pmd;
 828        if (unlikely(!pmd_trans_huge(pmd))) {
 829                pte_free(dst_mm, pgtable);
 830                goto out_unlock;
 831        }
 832        /*
 833         * When page table lock is held, the huge zero pmd should not be
 834         * under splitting since we don't split the page itself, only pmd to
 835         * a page table.
 836         */
 837        if (is_huge_zero_pmd(pmd)) {
 838                struct page *zero_page;
 839                /*
 840                 * get_huge_zero_page() will never allocate a new page here,
 841                 * since we already have a zero page to copy. It just takes a
 842                 * reference.
 843                 */
 844                zero_page = mm_get_huge_zero_page(dst_mm);
 845                set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 846                                zero_page);
 847                ret = 0;
 848                goto out_unlock;
 849        }
 850
 851        src_page = pmd_page(pmd);
 852        VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 853        get_page(src_page);
 854        page_dup_rmap(src_page, true);
 855        add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 856        atomic_long_inc(&dst_mm->nr_ptes);
 857        pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 858
 859        pmdp_set_wrprotect(src_mm, addr, src_pmd);
 860        pmd = pmd_mkold(pmd_wrprotect(pmd));
 861        set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 862
 863        ret = 0;
 864out_unlock:
 865        spin_unlock(src_ptl);
 866        spin_unlock(dst_ptl);
 867out:
 868        return ret;
 869}
 870
 871void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
 872{
 873        pmd_t entry;
 874        unsigned long haddr;
 875
 876        fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
 877        if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
 878                goto unlock;
 879
 880        entry = pmd_mkyoung(orig_pmd);
 881        haddr = fe->address & HPAGE_PMD_MASK;
 882        if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
 883                                fe->flags & FAULT_FLAG_WRITE))
 884                update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
 885
 886unlock:
 887        spin_unlock(fe->ptl);
 888}
 889
 890static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
 891                struct page *page)
 892{
 893        struct vm_area_struct *vma = fe->vma;
 894        unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 895        struct mem_cgroup *memcg;
 896        pgtable_t pgtable;
 897        pmd_t _pmd;
 898        int ret = 0, i;
 899        struct page **pages;
 900        unsigned long mmun_start;       /* For mmu_notifiers */
 901        unsigned long mmun_end;         /* For mmu_notifiers */
 902
 903        pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 904                        GFP_KERNEL);
 905        if (unlikely(!pages)) {
 906                ret |= VM_FAULT_OOM;
 907                goto out;
 908        }
 909
 910        for (i = 0; i < HPAGE_PMD_NR; i++) {
 911                pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 912                                               __GFP_OTHER_NODE, vma,
 913                                               fe->address, page_to_nid(page));
 914                if (unlikely(!pages[i] ||
 915                             mem_cgroup_try_charge(pages[i], vma->vm_mm,
 916                                     GFP_KERNEL, &memcg, false))) {
 917                        if (pages[i])
 918                                put_page(pages[i]);
 919                        while (--i >= 0) {
 920                                memcg = (void *)page_private(pages[i]);
 921                                set_page_private(pages[i], 0);
 922                                mem_cgroup_cancel_charge(pages[i], memcg,
 923                                                false);
 924                                put_page(pages[i]);
 925                        }
 926                        kfree(pages);
 927                        ret |= VM_FAULT_OOM;
 928                        goto out;
 929                }
 930                set_page_private(pages[i], (unsigned long)memcg);
 931        }
 932
 933        for (i = 0; i < HPAGE_PMD_NR; i++) {
 934                copy_user_highpage(pages[i], page + i,
 935                                   haddr + PAGE_SIZE * i, vma);
 936                __SetPageUptodate(pages[i]);
 937                cond_resched();
 938        }
 939
 940        mmun_start = haddr;
 941        mmun_end   = haddr + HPAGE_PMD_SIZE;
 942        mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
 943
 944        fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 945        if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
 946                goto out_free_pages;
 947        VM_BUG_ON_PAGE(!PageHead(page), page);
 948
 949        pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
 950        /* leave pmd empty until pte is filled */
 951
 952        pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
 953        pmd_populate(vma->vm_mm, &_pmd, pgtable);
 954
 955        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 956                pte_t entry;
 957                entry = mk_pte(pages[i], vma->vm_page_prot);
 958                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 959                memcg = (void *)page_private(pages[i]);
 960                set_page_private(pages[i], 0);
 961                page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
 962                mem_cgroup_commit_charge(pages[i], memcg, false, false);
 963                lru_cache_add_active_or_unevictable(pages[i], vma);
 964                fe->pte = pte_offset_map(&_pmd, haddr);
 965                VM_BUG_ON(!pte_none(*fe->pte));
 966                set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
 967                pte_unmap(fe->pte);
 968        }
 969        kfree(pages);
 970
 971        smp_wmb(); /* make pte visible before pmd */
 972        pmd_populate(vma->vm_mm, fe->pmd, pgtable);
 973        page_remove_rmap(page, true);
 974        spin_unlock(fe->ptl);
 975
 976        mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 977
 978        ret |= VM_FAULT_WRITE;
 979        put_page(page);
 980
 981out:
 982        return ret;
 983
 984out_free_pages:
 985        spin_unlock(fe->ptl);
 986        mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 987        for (i = 0; i < HPAGE_PMD_NR; i++) {
 988                memcg = (void *)page_private(pages[i]);
 989                set_page_private(pages[i], 0);
 990                mem_cgroup_cancel_charge(pages[i], memcg, false);
 991                put_page(pages[i]);
 992        }
 993        kfree(pages);
 994        goto out;
 995}
 996
 997int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
 998{
 999        struct vm_area_struct *vma = fe->vma;
1000        struct page *page = NULL, *new_page;
1001        struct mem_cgroup *memcg;
1002        unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1003        unsigned long mmun_start;       /* For mmu_notifiers */
1004        unsigned long mmun_end;         /* For mmu_notifiers */
1005        gfp_t huge_gfp;                 /* for allocation and charge */
1006        int ret = 0;
1007
1008        fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1009        VM_BUG_ON_VMA(!vma->anon_vma, vma);
1010        if (is_huge_zero_pmd(orig_pmd))
1011                goto alloc;
1012        spin_lock(fe->ptl);
1013        if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1014                goto out_unlock;
1015
1016        page = pmd_page(orig_pmd);
1017        VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1018        /*
1019         * We can only reuse the page if nobody else maps the huge page or it's
1020         * part.
1021         */
1022        if (page_trans_huge_mapcount(page, NULL) == 1) {
1023                pmd_t entry;
1024                entry = pmd_mkyoung(orig_pmd);
1025                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1026                if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
1027                        update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1028                ret |= VM_FAULT_WRITE;
1029                goto out_unlock;
1030        }
1031        get_page(page);
1032        spin_unlock(fe->ptl);
1033alloc:
1034        if (transparent_hugepage_enabled(vma) &&
1035            !transparent_hugepage_debug_cow()) {
1036                huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1037                new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1038        } else
1039                new_page = NULL;
1040
1041        if (likely(new_page)) {
1042                prep_transhuge_page(new_page);
1043        } else {
1044                if (!page) {
1045                        split_huge_pmd(vma, fe->pmd, fe->address);
1046                        ret |= VM_FAULT_FALLBACK;
1047                } else {
1048                        ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1049                        if (ret & VM_FAULT_OOM) {
1050                                split_huge_pmd(vma, fe->pmd, fe->address);
1051                                ret |= VM_FAULT_FALLBACK;
1052                        }
1053                        put_page(page);
1054                }
1055                count_vm_event(THP_FAULT_FALLBACK);
1056                goto out;
1057        }
1058
1059        if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1060                                        huge_gfp, &memcg, true))) {
1061                put_page(new_page);
1062                split_huge_pmd(vma, fe->pmd, fe->address);
1063                if (page)
1064                        put_page(page);
1065                ret |= VM_FAULT_FALLBACK;
1066                count_vm_event(THP_FAULT_FALLBACK);
1067                goto out;
1068        }
1069
1070        count_vm_event(THP_FAULT_ALLOC);
1071
1072        if (!page)
1073                clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1074        else
1075                copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1076        __SetPageUptodate(new_page);
1077
1078        mmun_start = haddr;
1079        mmun_end   = haddr + HPAGE_PMD_SIZE;
1080        mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1081
1082        spin_lock(fe->ptl);
1083        if (page)
1084                put_page(page);
1085        if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1086                spin_unlock(fe->ptl);
1087                mem_cgroup_cancel_charge(new_page, memcg, true);
1088                put_page(new_page);
1089                goto out_mn;
1090        } else {
1091                pmd_t entry;
1092                entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1093                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1094                pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1095                page_add_new_anon_rmap(new_page, vma, haddr, true);
1096                mem_cgroup_commit_charge(new_page, memcg, false, true);
1097                lru_cache_add_active_or_unevictable(new_page, vma);
1098                set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1099                update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1100                if (!page) {
1101                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1102                } else {
1103                        VM_BUG_ON_PAGE(!PageHead(page), page);
1104                        page_remove_rmap(page, true);
1105                        put_page(page);
1106                }
1107                ret |= VM_FAULT_WRITE;
1108        }
1109        spin_unlock(fe->ptl);
1110out_mn:
1111        mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1112out:
1113        return ret;
1114out_unlock:
1115        spin_unlock(fe->ptl);
1116        return ret;
1117}
1118
1119struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1120                                   unsigned long addr,
1121                                   pmd_t *pmd,
1122                                   unsigned int flags)
1123{
1124        struct mm_struct *mm = vma->vm_mm;
1125        struct page *page = NULL;
1126
1127        assert_spin_locked(pmd_lockptr(mm, pmd));
1128
1129        if (flags & FOLL_WRITE && !pmd_write(*pmd))
1130                goto out;
1131
1132        /* Avoid dumping huge zero page */
1133        if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1134                return ERR_PTR(-EFAULT);
1135
1136        /* Full NUMA hinting faults to serialise migration in fault paths */
1137        if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1138                goto out;
1139
1140        page = pmd_page(*pmd);
1141        VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1142        if (flags & FOLL_TOUCH)
1143                touch_pmd(vma, addr, pmd);
1144        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1145                /*
1146                 * We don't mlock() pte-mapped THPs. This way we can avoid
1147                 * leaking mlocked pages into non-VM_LOCKED VMAs.
1148                 *
1149                 * For anon THP:
1150                 *
1151                 * In most cases the pmd is the only mapping of the page as we
1152                 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1153                 * writable private mappings in populate_vma_page_range().
1154                 *
1155                 * The only scenario when we have the page shared here is if we
1156                 * mlocking read-only mapping shared over fork(). We skip
1157                 * mlocking such pages.
1158                 *
1159                 * For file THP:
1160                 *
1161                 * We can expect PageDoubleMap() to be stable under page lock:
1162                 * for file pages we set it in page_add_file_rmap(), which
1163                 * requires page to be locked.
1164                 */
1165
1166                if (PageAnon(page) && compound_mapcount(page) != 1)
1167                        goto skip_mlock;
1168                if (PageDoubleMap(page) || !page->mapping)
1169                        goto skip_mlock;
1170                if (!trylock_page(page))
1171                        goto skip_mlock;
1172                lru_add_drain();
1173                if (page->mapping && !PageDoubleMap(page))
1174                        mlock_vma_page(page);
1175                unlock_page(page);
1176        }
1177skip_mlock:
1178        page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1179        VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1180        if (flags & FOLL_GET)
1181                get_page(page);
1182
1183out:
1184        return page;
1185}
1186
1187/* NUMA hinting page fault entry point for trans huge pmds */
1188int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1189{
1190        struct vm_area_struct *vma = fe->vma;
1191        struct anon_vma *anon_vma = NULL;
1192        struct page *page;
1193        unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1194        int page_nid = -1, this_nid = numa_node_id();
1195        int target_nid, last_cpupid = -1;
1196        bool page_locked;
1197        bool migrated = false;
1198        bool was_writable;
1199        int flags = 0;
1200
1201        fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1202        if (unlikely(!pmd_same(pmd, *fe->pmd)))
1203                goto out_unlock;
1204
1205        /*
1206         * If there are potential migrations, wait for completion and retry
1207         * without disrupting NUMA hinting information. Do not relock and
1208         * check_same as the page may no longer be mapped.
1209         */
1210        if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1211                page = pmd_page(*fe->pmd);
1212                spin_unlock(fe->ptl);
1213                wait_on_page_locked(page);
1214                goto out;
1215        }
1216
1217        page = pmd_page(pmd);
1218        BUG_ON(is_huge_zero_page(page));
1219        page_nid = page_to_nid(page);
1220        last_cpupid = page_cpupid_last(page);
1221        count_vm_numa_event(NUMA_HINT_FAULTS);
1222        if (page_nid == this_nid) {
1223                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1224                flags |= TNF_FAULT_LOCAL;
1225        }
1226
1227        /* See similar comment in do_numa_page for explanation */
1228        if (!pmd_write(pmd))
1229                flags |= TNF_NO_GROUP;
1230
1231        /*
1232         * Acquire the page lock to serialise THP migrations but avoid dropping
1233         * page_table_lock if at all possible
1234         */
1235        page_locked = trylock_page(page);
1236        target_nid = mpol_misplaced(page, vma, haddr);
1237        if (target_nid == -1) {
1238                /* If the page was locked, there are no parallel migrations */
1239                if (page_locked)
1240                        goto clear_pmdnuma;
1241        }
1242
1243        /* Migration could have started since the pmd_trans_migrating check */
1244        if (!page_locked) {
1245                spin_unlock(fe->ptl);
1246                wait_on_page_locked(page);
1247                page_nid = -1;
1248                goto out;
1249        }
1250
1251        /*
1252         * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1253         * to serialises splits
1254         */
1255        get_page(page);
1256        spin_unlock(fe->ptl);
1257        anon_vma = page_lock_anon_vma_read(page);
1258
1259        /* Confirm the PMD did not change while page_table_lock was released */
1260        spin_lock(fe->ptl);
1261        if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1262                unlock_page(page);
1263                put_page(page);
1264                page_nid = -1;
1265                goto out_unlock;
1266        }
1267
1268        /* Bail if we fail to protect against THP splits for any reason */
1269        if (unlikely(!anon_vma)) {
1270                put_page(page);
1271                page_nid = -1;
1272                goto clear_pmdnuma;
1273        }
1274
1275        /*
1276         * Migrate the THP to the requested node, returns with page unlocked
1277         * and access rights restored.
1278         */
1279        spin_unlock(fe->ptl);
1280        migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1281                                fe->pmd, pmd, fe->address, page, target_nid);
1282        if (migrated) {
1283                flags |= TNF_MIGRATED;
1284                page_nid = target_nid;
1285        } else
1286                flags |= TNF_MIGRATE_FAIL;
1287
1288        goto out;
1289clear_pmdnuma:
1290        BUG_ON(!PageLocked(page));
1291        was_writable = pmd_write(pmd);
1292        pmd = pmd_modify(pmd, vma->vm_page_prot);
1293        pmd = pmd_mkyoung(pmd);
1294        if (was_writable)
1295                pmd = pmd_mkwrite(pmd);
1296        set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1297        update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1298        unlock_page(page);
1299out_unlock:
1300        spin_unlock(fe->ptl);
1301
1302out:
1303        if (anon_vma)
1304                page_unlock_anon_vma_read(anon_vma);
1305
1306        if (page_nid != -1)
1307                task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1308
1309        return 0;
1310}
1311
1312/*
1313 * Return true if we do MADV_FREE successfully on entire pmd page.
1314 * Otherwise, return false.
1315 */
1316bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1317                pmd_t *pmd, unsigned long addr, unsigned long next)
1318{
1319        spinlock_t *ptl;
1320        pmd_t orig_pmd;
1321        struct page *page;
1322        struct mm_struct *mm = tlb->mm;
1323        bool ret = false;
1324
1325        ptl = pmd_trans_huge_lock(pmd, vma);
1326        if (!ptl)
1327                goto out_unlocked;
1328
1329        orig_pmd = *pmd;
1330        if (is_huge_zero_pmd(orig_pmd))
1331                goto out;
1332
1333        page = pmd_page(orig_pmd);
1334        /*
1335         * If other processes are mapping this page, we couldn't discard
1336         * the page unless they all do MADV_FREE so let's skip the page.
1337         */
1338        if (page_mapcount(page) != 1)
1339                goto out;
1340
1341        if (!trylock_page(page))
1342                goto out;
1343
1344        /*
1345         * If user want to discard part-pages of THP, split it so MADV_FREE
1346         * will deactivate only them.
1347         */
1348        if (next - addr != HPAGE_PMD_SIZE) {
1349                get_page(page);
1350                spin_unlock(ptl);
1351                split_huge_page(page);
1352                put_page(page);
1353                unlock_page(page);
1354                goto out_unlocked;
1355        }
1356
1357        if (PageDirty(page))
1358                ClearPageDirty(page);
1359        unlock_page(page);
1360
1361        if (PageActive(page))
1362                deactivate_page(page);
1363
1364        if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1365                orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1366                        tlb->fullmm);
1367                orig_pmd = pmd_mkold(orig_pmd);
1368                orig_pmd = pmd_mkclean(orig_pmd);
1369
1370                set_pmd_at(mm, addr, pmd, orig_pmd);
1371                tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1372        }
1373        ret = true;
1374out:
1375        spin_unlock(ptl);
1376out_unlocked:
1377        return ret;
1378}
1379
1380int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1381                 pmd_t *pmd, unsigned long addr)
1382{
1383        pmd_t orig_pmd;
1384        spinlock_t *ptl;
1385
1386        ptl = __pmd_trans_huge_lock(pmd, vma);
1387        if (!ptl)
1388                return 0;
1389        /*
1390         * For architectures like ppc64 we look at deposited pgtable
1391         * when calling pmdp_huge_get_and_clear. So do the
1392         * pgtable_trans_huge_withdraw after finishing pmdp related
1393         * operations.
1394         */
1395        orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1396                        tlb->fullmm);
1397        tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1398        if (vma_is_dax(vma)) {
1399                spin_unlock(ptl);
1400                if (is_huge_zero_pmd(orig_pmd))
1401                        tlb_remove_page(tlb, pmd_page(orig_pmd));
1402        } else if (is_huge_zero_pmd(orig_pmd)) {
1403                pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1404                atomic_long_dec(&tlb->mm->nr_ptes);
1405                spin_unlock(ptl);
1406                tlb_remove_page(tlb, pmd_page(orig_pmd));
1407        } else {
1408                struct page *page = pmd_page(orig_pmd);
1409                page_remove_rmap(page, true);
1410                VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1411                VM_BUG_ON_PAGE(!PageHead(page), page);
1412                if (PageAnon(page)) {
1413                        pgtable_t pgtable;
1414                        pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1415                        pte_free(tlb->mm, pgtable);
1416                        atomic_long_dec(&tlb->mm->nr_ptes);
1417                        add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1418                } else {
1419                        add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1420                }
1421                spin_unlock(ptl);
1422                tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1423        }
1424        return 1;
1425}
1426
1427bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1428                  unsigned long new_addr, unsigned long old_end,
1429                  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1430{
1431        spinlock_t *old_ptl, *new_ptl;
1432        pmd_t pmd;
1433        struct mm_struct *mm = vma->vm_mm;
1434        bool force_flush = false;
1435
1436        if ((old_addr & ~HPAGE_PMD_MASK) ||
1437            (new_addr & ~HPAGE_PMD_MASK) ||
1438            old_end - old_addr < HPAGE_PMD_SIZE)
1439                return false;
1440
1441        /*
1442         * The destination pmd shouldn't be established, free_pgtables()
1443         * should have release it.
1444         */
1445        if (WARN_ON(!pmd_none(*new_pmd))) {
1446                VM_BUG_ON(pmd_trans_huge(*new_pmd));
1447                return false;
1448        }
1449
1450        /*
1451         * We don't have to worry about the ordering of src and dst
1452         * ptlocks because exclusive mmap_sem prevents deadlock.
1453         */
1454        old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1455        if (old_ptl) {
1456                new_ptl = pmd_lockptr(mm, new_pmd);
1457                if (new_ptl != old_ptl)
1458                        spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1459                pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1460                if (pmd_present(pmd) && pmd_dirty(pmd))
1461                        force_flush = true;
1462                VM_BUG_ON(!pmd_none(*new_pmd));
1463
1464                if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1465                                vma_is_anonymous(vma)) {
1466                        pgtable_t pgtable;
1467                        pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1468                        pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1469                }
1470                set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1471                if (new_ptl != old_ptl)
1472                        spin_unlock(new_ptl);
1473                if (force_flush)
1474                        flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1475                else
1476                        *need_flush = true;
1477                spin_unlock(old_ptl);
1478                return true;
1479        }
1480        return false;
1481}
1482
1483/*
1484 * Returns
1485 *  - 0 if PMD could not be locked
1486 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1487 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1488 */
1489int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1490                unsigned long addr, pgprot_t newprot, int prot_numa)
1491{
1492        struct mm_struct *mm = vma->vm_mm;
1493        spinlock_t *ptl;
1494        int ret = 0;
1495
1496        ptl = __pmd_trans_huge_lock(pmd, vma);
1497        if (ptl) {
1498                pmd_t entry;
1499                bool preserve_write = prot_numa && pmd_write(*pmd);
1500                ret = 1;
1501
1502                /*
1503                 * Avoid trapping faults against the zero page. The read-only
1504                 * data is likely to be read-cached on the local CPU and
1505                 * local/remote hits to the zero page are not interesting.
1506                 */
1507                if (prot_numa && is_huge_zero_pmd(*pmd)) {
1508                        spin_unlock(ptl);
1509                        return ret;
1510                }
1511
1512                if (!prot_numa || !pmd_protnone(*pmd)) {
1513                        entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1514                        entry = pmd_modify(entry, newprot);
1515                        if (preserve_write)
1516                                entry = pmd_mkwrite(entry);
1517                        ret = HPAGE_PMD_NR;
1518                        set_pmd_at(mm, addr, pmd, entry);
1519                        BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1520                                        pmd_write(entry));
1521                }
1522                spin_unlock(ptl);
1523        }
1524
1525        return ret;
1526}
1527
1528/*
1529 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1530 *
1531 * Note that if it returns page table lock pointer, this routine returns without
1532 * unlocking page table lock. So callers must unlock it.
1533 */
1534spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1535{
1536        spinlock_t *ptl;
1537        ptl = pmd_lock(vma->vm_mm, pmd);
1538        if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1539                return ptl;
1540        spin_unlock(ptl);
1541        return NULL;
1542}
1543
1544static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1545                unsigned long haddr, pmd_t *pmd)
1546{
1547        struct mm_struct *mm = vma->vm_mm;
1548        pgtable_t pgtable;
1549        pmd_t _pmd;
1550        int i;
1551
1552        /* leave pmd empty until pte is filled */
1553        pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1554
1555        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1556        pmd_populate(mm, &_pmd, pgtable);
1557
1558        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1559                pte_t *pte, entry;
1560                entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1561                entry = pte_mkspecial(entry);
1562                pte = pte_offset_map(&_pmd, haddr);
1563                VM_BUG_ON(!pte_none(*pte));
1564                set_pte_at(mm, haddr, pte, entry);
1565                pte_unmap(pte);
1566        }
1567        smp_wmb(); /* make pte visible before pmd */
1568        pmd_populate(mm, pmd, pgtable);
1569}
1570
1571static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1572                unsigned long haddr, bool freeze)
1573{
1574        struct mm_struct *mm = vma->vm_mm;
1575        struct page *page;
1576        pgtable_t pgtable;
1577        pmd_t _pmd;
1578        bool young, write, dirty, soft_dirty;
1579        unsigned long addr;
1580        int i;
1581
1582        VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1583        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1584        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1585        VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1586
1587        count_vm_event(THP_SPLIT_PMD);
1588
1589        if (!vma_is_anonymous(vma)) {
1590                _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1591                if (vma_is_dax(vma))
1592                        return;
1593                page = pmd_page(_pmd);
1594                if (!PageReferenced(page) && pmd_young(_pmd))
1595                        SetPageReferenced(page);
1596                page_remove_rmap(page, true);
1597                put_page(page);
1598                add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1599                return;
1600        } else if (is_huge_zero_pmd(*pmd)) {
1601                return __split_huge_zero_page_pmd(vma, haddr, pmd);
1602        }
1603
1604        page = pmd_page(*pmd);
1605        VM_BUG_ON_PAGE(!page_count(page), page);
1606        page_ref_add(page, HPAGE_PMD_NR - 1);
1607        write = pmd_write(*pmd);
1608        young = pmd_young(*pmd);
1609        dirty = pmd_dirty(*pmd);
1610        soft_dirty = pmd_soft_dirty(*pmd);
1611
1612        pmdp_huge_split_prepare(vma, haddr, pmd);
1613        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1614        pmd_populate(mm, &_pmd, pgtable);
1615
1616        for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1617                pte_t entry, *pte;
1618                /*
1619                 * Note that NUMA hinting access restrictions are not
1620                 * transferred to avoid any possibility of altering
1621                 * permissions across VMAs.
1622                 */
1623                if (freeze) {
1624                        swp_entry_t swp_entry;
1625                        swp_entry = make_migration_entry(page + i, write);
1626                        entry = swp_entry_to_pte(swp_entry);
1627                        if (soft_dirty)
1628                                entry = pte_swp_mksoft_dirty(entry);
1629                } else {
1630                        entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1631                        entry = maybe_mkwrite(entry, vma);
1632                        if (!write)
1633                                entry = pte_wrprotect(entry);
1634                        if (!young)
1635                                entry = pte_mkold(entry);
1636                        if (soft_dirty)
1637                                entry = pte_mksoft_dirty(entry);
1638                }
1639                if (dirty)
1640                        SetPageDirty(page + i);
1641                pte = pte_offset_map(&_pmd, addr);
1642                BUG_ON(!pte_none(*pte));
1643                set_pte_at(mm, addr, pte, entry);
1644                atomic_inc(&page[i]._mapcount);
1645                pte_unmap(pte);
1646        }
1647
1648        /*
1649         * Set PG_double_map before dropping compound_mapcount to avoid
1650         * false-negative page_mapped().
1651         */
1652        if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1653                for (i = 0; i < HPAGE_PMD_NR; i++)
1654                        atomic_inc(&page[i]._mapcount);
1655        }
1656
1657        if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1658                /* Last compound_mapcount is gone. */
1659                __dec_node_page_state(page, NR_ANON_THPS);
1660                if (TestClearPageDoubleMap(page)) {
1661                        /* No need in mapcount reference anymore */
1662                        for (i = 0; i < HPAGE_PMD_NR; i++)
1663                                atomic_dec(&page[i]._mapcount);
1664                }
1665        }
1666
1667        smp_wmb(); /* make pte visible before pmd */
1668        /*
1669         * Up to this point the pmd is present and huge and userland has the
1670         * whole access to the hugepage during the split (which happens in
1671         * place). If we overwrite the pmd with the not-huge version pointing
1672         * to the pte here (which of course we could if all CPUs were bug
1673         * free), userland could trigger a small page size TLB miss on the
1674         * small sized TLB while the hugepage TLB entry is still established in
1675         * the huge TLB. Some CPU doesn't like that.
1676         * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1677         * 383 on page 93. Intel should be safe but is also warns that it's
1678         * only safe if the permission and cache attributes of the two entries
1679         * loaded in the two TLB is identical (which should be the case here).
1680         * But it is generally safer to never allow small and huge TLB entries
1681         * for the same virtual address to be loaded simultaneously. So instead
1682         * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1683         * current pmd notpresent (atomically because here the pmd_trans_huge
1684         * and pmd_trans_splitting must remain set at all times on the pmd
1685         * until the split is complete for this pmd), then we flush the SMP TLB
1686         * and finally we write the non-huge version of the pmd entry with
1687         * pmd_populate.
1688         */
1689        pmdp_invalidate(vma, haddr, pmd);
1690        pmd_populate(mm, pmd, pgtable);
1691
1692        if (freeze) {
1693                for (i = 0; i < HPAGE_PMD_NR; i++) {
1694                        page_remove_rmap(page + i, false);
1695                        put_page(page + i);
1696                }
1697        }
1698}
1699
1700void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1701                unsigned long address, bool freeze, struct page *page)
1702{
1703        spinlock_t *ptl;
1704        struct mm_struct *mm = vma->vm_mm;
1705        unsigned long haddr = address & HPAGE_PMD_MASK;
1706
1707        mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1708        ptl = pmd_lock(mm, pmd);
1709
1710        /*
1711         * If caller asks to setup a migration entries, we need a page to check
1712         * pmd against. Otherwise we can end up replacing wrong page.
1713         */
1714        VM_BUG_ON(freeze && !page);
1715        if (page && page != pmd_page(*pmd))
1716                goto out;
1717
1718        if (pmd_trans_huge(*pmd)) {
1719                page = pmd_page(*pmd);
1720                if (PageMlocked(page))
1721                        clear_page_mlock(page);
1722        } else if (!pmd_devmap(*pmd))
1723                goto out;
1724        __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1725out:
1726        spin_unlock(ptl);
1727        mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1728}
1729
1730void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1731                bool freeze, struct page *page)
1732{
1733        pgd_t *pgd;
1734        pud_t *pud;
1735        pmd_t *pmd;
1736
1737        pgd = pgd_offset(vma->vm_mm, address);
1738        if (!pgd_present(*pgd))
1739                return;
1740
1741        pud = pud_offset(pgd, address);
1742        if (!pud_present(*pud))
1743                return;
1744
1745        pmd = pmd_offset(pud, address);
1746
1747        __split_huge_pmd(vma, pmd, address, freeze, page);
1748}
1749
1750void vma_adjust_trans_huge(struct vm_area_struct *vma,
1751                             unsigned long start,
1752                             unsigned long end,
1753                             long adjust_next)
1754{
1755        /*
1756         * If the new start address isn't hpage aligned and it could
1757         * previously contain an hugepage: check if we need to split
1758         * an huge pmd.
1759         */
1760        if (start & ~HPAGE_PMD_MASK &&
1761            (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1762            (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1763                split_huge_pmd_address(vma, start, false, NULL);
1764
1765        /*
1766         * If the new end address isn't hpage aligned and it could
1767         * previously contain an hugepage: check if we need to split
1768         * an huge pmd.
1769         */
1770        if (end & ~HPAGE_PMD_MASK &&
1771            (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1772            (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1773                split_huge_pmd_address(vma, end, false, NULL);
1774
1775        /*
1776         * If we're also updating the vma->vm_next->vm_start, if the new
1777         * vm_next->vm_start isn't page aligned and it could previously
1778         * contain an hugepage: check if we need to split an huge pmd.
1779         */
1780        if (adjust_next > 0) {
1781                struct vm_area_struct *next = vma->vm_next;
1782                unsigned long nstart = next->vm_start;
1783                nstart += adjust_next << PAGE_SHIFT;
1784                if (nstart & ~HPAGE_PMD_MASK &&
1785                    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1786                    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1787                        split_huge_pmd_address(next, nstart, false, NULL);
1788        }
1789}
1790
1791static void freeze_page(struct page *page)
1792{
1793        enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1794                TTU_RMAP_LOCKED;
1795        int i, ret;
1796
1797        VM_BUG_ON_PAGE(!PageHead(page), page);
1798
1799        if (PageAnon(page))
1800                ttu_flags |= TTU_MIGRATION;
1801
1802        /* We only need TTU_SPLIT_HUGE_PMD once */
1803        ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1804        for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1805                /* Cut short if the page is unmapped */
1806                if (page_count(page) == 1)
1807                        return;
1808
1809                ret = try_to_unmap(page + i, ttu_flags);
1810        }
1811        VM_BUG_ON_PAGE(ret, page + i - 1);
1812}
1813
1814static void unfreeze_page(struct page *page)
1815{
1816        int i;
1817
1818        for (i = 0; i < HPAGE_PMD_NR; i++)
1819                remove_migration_ptes(page + i, page + i, true);
1820}
1821
1822static void __split_huge_page_tail(struct page *head, int tail,
1823                struct lruvec *lruvec, struct list_head *list)
1824{
1825        struct page *page_tail = head + tail;
1826
1827        VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1828        VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1829
1830        /*
1831         * tail_page->_refcount is zero and not changing from under us. But
1832         * get_page_unless_zero() may be running from under us on the
1833         * tail_page. If we used atomic_set() below instead of atomic_inc() or
1834         * atomic_add(), we would then run atomic_set() concurrently with
1835         * get_page_unless_zero(), and atomic_set() is implemented in C not
1836         * using locked ops. spin_unlock on x86 sometime uses locked ops
1837         * because of PPro errata 66, 92, so unless somebody can guarantee
1838         * atomic_set() here would be safe on all archs (and not only on x86),
1839         * it's safer to use atomic_inc()/atomic_add().
1840         */
1841        if (PageAnon(head)) {
1842                page_ref_inc(page_tail);
1843        } else {
1844                /* Additional pin to radix tree */
1845                page_ref_add(page_tail, 2);
1846        }
1847
1848        page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1849        page_tail->flags |= (head->flags &
1850                        ((1L << PG_referenced) |
1851                         (1L << PG_swapbacked) |
1852                         (1L << PG_mlocked) |
1853                         (1L << PG_uptodate) |
1854                         (1L << PG_active) |
1855                         (1L << PG_locked) |
1856                         (1L << PG_unevictable) |
1857                         (1L << PG_dirty)));
1858
1859        /*
1860         * After clearing PageTail the gup refcount can be released.
1861         * Page flags also must be visible before we make the page non-compound.
1862         */
1863        smp_wmb();
1864
1865        clear_compound_head(page_tail);
1866
1867        if (page_is_young(head))
1868                set_page_young(page_tail);
1869        if (page_is_idle(head))
1870                set_page_idle(page_tail);
1871
1872        /* ->mapping in first tail page is compound_mapcount */
1873        VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1874                        page_tail);
1875        page_tail->mapping = head->mapping;
1876
1877        page_tail->index = head->index + tail;
1878        page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1879        lru_add_page_tail(head, page_tail, lruvec, list);
1880}
1881
1882static void __split_huge_page(struct page *page, struct list_head *list,
1883                unsigned long flags)
1884{
1885        struct page *head = compound_head(page);
1886        struct zone *zone = page_zone(head);
1887        struct lruvec *lruvec;
1888        pgoff_t end = -1;
1889        int i;
1890
1891        lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1892
1893        /* complete memcg works before add pages to LRU */
1894        mem_cgroup_split_huge_fixup(head);
1895
1896        if (!PageAnon(page))
1897                end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1898
1899        for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1900                __split_huge_page_tail(head, i, lruvec, list);
1901                /* Some pages can be beyond i_size: drop them from page cache */
1902                if (head[i].index >= end) {
1903                        __ClearPageDirty(head + i);
1904                        __delete_from_page_cache(head + i, NULL);
1905                        if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1906                                shmem_uncharge(head->mapping->host, 1);
1907                        put_page(head + i);
1908                }
1909        }
1910
1911        ClearPageCompound(head);
1912        /* See comment in __split_huge_page_tail() */
1913        if (PageAnon(head)) {
1914                page_ref_inc(head);
1915        } else {
1916                /* Additional pin to radix tree */
1917                page_ref_add(head, 2);
1918                spin_unlock(&head->mapping->tree_lock);
1919        }
1920
1921        spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1922
1923        unfreeze_page(head);
1924
1925        for (i = 0; i < HPAGE_PMD_NR; i++) {
1926                struct page *subpage = head + i;
1927                if (subpage == page)
1928                        continue;
1929                unlock_page(subpage);
1930
1931                /*
1932                 * Subpages may be freed if there wasn't any mapping
1933                 * like if add_to_swap() is running on a lru page that
1934                 * had its mapping zapped. And freeing these pages
1935                 * requires taking the lru_lock so we do the put_page
1936                 * of the tail pages after the split is complete.
1937                 */
1938                put_page(subpage);
1939        }
1940}
1941
1942int total_mapcount(struct page *page)
1943{
1944        int i, compound, ret;
1945
1946        VM_BUG_ON_PAGE(PageTail(page), page);
1947
1948        if (likely(!PageCompound(page)))
1949                return atomic_read(&page->_mapcount) + 1;
1950
1951        compound = compound_mapcount(page);
1952        if (PageHuge(page))
1953                return compound;
1954        ret = compound;
1955        for (i = 0; i < HPAGE_PMD_NR; i++)
1956                ret += atomic_read(&page[i]._mapcount) + 1;
1957        /* File pages has compound_mapcount included in _mapcount */
1958        if (!PageAnon(page))
1959                return ret - compound * HPAGE_PMD_NR;
1960        if (PageDoubleMap(page))
1961                ret -= HPAGE_PMD_NR;
1962        return ret;
1963}
1964
1965/*
1966 * This calculates accurately how many mappings a transparent hugepage
1967 * has (unlike page_mapcount() which isn't fully accurate). This full
1968 * accuracy is primarily needed to know if copy-on-write faults can
1969 * reuse the page and change the mapping to read-write instead of
1970 * copying them. At the same time this returns the total_mapcount too.
1971 *
1972 * The function returns the highest mapcount any one of the subpages
1973 * has. If the return value is one, even if different processes are
1974 * mapping different subpages of the transparent hugepage, they can
1975 * all reuse it, because each process is reusing a different subpage.
1976 *
1977 * The total_mapcount is instead counting all virtual mappings of the
1978 * subpages. If the total_mapcount is equal to "one", it tells the
1979 * caller all mappings belong to the same "mm" and in turn the
1980 * anon_vma of the transparent hugepage can become the vma->anon_vma
1981 * local one as no other process may be mapping any of the subpages.
1982 *
1983 * It would be more accurate to replace page_mapcount() with
1984 * page_trans_huge_mapcount(), however we only use
1985 * page_trans_huge_mapcount() in the copy-on-write faults where we
1986 * need full accuracy to avoid breaking page pinning, because
1987 * page_trans_huge_mapcount() is slower than page_mapcount().
1988 */
1989int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1990{
1991        int i, ret, _total_mapcount, mapcount;
1992
1993        /* hugetlbfs shouldn't call it */
1994        VM_BUG_ON_PAGE(PageHuge(page), page);
1995
1996        if (likely(!PageTransCompound(page))) {
1997                mapcount = atomic_read(&page->_mapcount) + 1;
1998                if (total_mapcount)
1999                        *total_mapcount = mapcount;
2000                return mapcount;
2001        }
2002
2003        page = compound_head(page);
2004
2005        _total_mapcount = ret = 0;
2006        for (i = 0; i < HPAGE_PMD_NR; i++) {
2007                mapcount = atomic_read(&page[i]._mapcount) + 1;
2008                ret = max(ret, mapcount);
2009                _total_mapcount += mapcount;
2010        }
2011        if (PageDoubleMap(page)) {
2012                ret -= 1;
2013                _total_mapcount -= HPAGE_PMD_NR;
2014        }
2015        mapcount = compound_mapcount(page);
2016        ret += mapcount;
2017        _total_mapcount += mapcount;
2018        if (total_mapcount)
2019                *total_mapcount = _total_mapcount;
2020        return ret;
2021}
2022
2023/*
2024 * This function splits huge page into normal pages. @page can point to any
2025 * subpage of huge page to split. Split doesn't change the position of @page.
2026 *
2027 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2028 * The huge page must be locked.
2029 *
2030 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2031 *
2032 * Both head page and tail pages will inherit mapping, flags, and so on from
2033 * the hugepage.
2034 *
2035 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2036 * they are not mapped.
2037 *
2038 * Returns 0 if the hugepage is split successfully.
2039 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2040 * us.
2041 */
2042int split_huge_page_to_list(struct page *page, struct list_head *list)
2043{
2044        struct page *head = compound_head(page);
2045        struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2046        struct anon_vma *anon_vma = NULL;
2047        struct address_space *mapping = NULL;
2048        int count, mapcount, extra_pins, ret;
2049        bool mlocked;
2050        unsigned long flags;
2051
2052        VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2053        VM_BUG_ON_PAGE(!PageLocked(page), page);
2054        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2055        VM_BUG_ON_PAGE(!PageCompound(page), page);
2056
2057        if (PageAnon(head)) {
2058                /*
2059                 * The caller does not necessarily hold an mmap_sem that would
2060                 * prevent the anon_vma disappearing so we first we take a
2061                 * reference to it and then lock the anon_vma for write. This
2062                 * is similar to page_lock_anon_vma_read except the write lock
2063                 * is taken to serialise against parallel split or collapse
2064                 * operations.
2065                 */
2066                anon_vma = page_get_anon_vma(head);
2067                if (!anon_vma) {
2068                        ret = -EBUSY;
2069                        goto out;
2070                }
2071                extra_pins = 0;
2072                mapping = NULL;
2073                anon_vma_lock_write(anon_vma);
2074        } else {
2075                mapping = head->mapping;
2076
2077                /* Truncated ? */
2078                if (!mapping) {
2079                        ret = -EBUSY;
2080                        goto out;
2081                }
2082
2083                /* Addidional pins from radix tree */
2084                extra_pins = HPAGE_PMD_NR;
2085                anon_vma = NULL;
2086                i_mmap_lock_read(mapping);
2087        }
2088
2089        /*
2090         * Racy check if we can split the page, before freeze_page() will
2091         * split PMDs
2092         */
2093        if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2094                ret = -EBUSY;
2095                goto out_unlock;
2096        }
2097
2098        mlocked = PageMlocked(page);
2099        freeze_page(head);
2100        VM_BUG_ON_PAGE(compound_mapcount(head), head);
2101
2102        /* Make sure the page is not on per-CPU pagevec as it takes pin */
2103        if (mlocked)
2104                lru_add_drain();
2105
2106        /* prevent PageLRU to go away from under us, and freeze lru stats */
2107        spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2108
2109        if (mapping) {
2110                void **pslot;
2111
2112                spin_lock(&mapping->tree_lock);
2113                pslot = radix_tree_lookup_slot(&mapping->page_tree,
2114                                page_index(head));
2115                /*
2116                 * Check if the head page is present in radix tree.
2117                 * We assume all tail are present too, if head is there.
2118                 */
2119                if (radix_tree_deref_slot_protected(pslot,
2120                                        &mapping->tree_lock) != head)
2121                        goto fail;
2122        }
2123
2124        /* Prevent deferred_split_scan() touching ->_refcount */
2125        spin_lock(&pgdata->split_queue_lock);
2126        count = page_count(head);
2127        mapcount = total_mapcount(head);
2128        if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2129                if (!list_empty(page_deferred_list(head))) {
2130                        pgdata->split_queue_len--;
2131                        list_del(page_deferred_list(head));
2132                }
2133                if (mapping)
2134                        __dec_node_page_state(page, NR_SHMEM_THPS);
2135                spin_unlock(&pgdata->split_queue_lock);
2136                __split_huge_page(page, list, flags);
2137                ret = 0;
2138        } else {
2139                if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2140                        pr_alert("total_mapcount: %u, page_count(): %u\n",
2141                                        mapcount, count);
2142                        if (PageTail(page))
2143                                dump_page(head, NULL);
2144                        dump_page(page, "total_mapcount(head) > 0");
2145                        BUG();
2146                }
2147                spin_unlock(&pgdata->split_queue_lock);
2148fail:           if (mapping)
2149                        spin_unlock(&mapping->tree_lock);
2150                spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2151                unfreeze_page(head);
2152                ret = -EBUSY;
2153        }
2154
2155out_unlock:
2156        if (anon_vma) {
2157                anon_vma_unlock_write(anon_vma);
2158                put_anon_vma(anon_vma);
2159        }
2160        if (mapping)
2161                i_mmap_unlock_read(mapping);
2162out:
2163        count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2164        return ret;
2165}
2166
2167void free_transhuge_page(struct page *page)
2168{
2169        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2170        unsigned long flags;
2171
2172        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2173        if (!list_empty(page_deferred_list(page))) {
2174                pgdata->split_queue_len--;
2175                list_del(page_deferred_list(page));
2176        }
2177        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2178        free_compound_page(page);
2179}
2180
2181void deferred_split_huge_page(struct page *page)
2182{
2183        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2184        unsigned long flags;
2185
2186        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2187
2188        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2189        if (list_empty(page_deferred_list(page))) {
2190                count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2191                list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2192                pgdata->split_queue_len++;
2193        }
2194        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2195}
2196
2197static unsigned long deferred_split_count(struct shrinker *shrink,
2198                struct shrink_control *sc)
2199{
2200        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2201        return ACCESS_ONCE(pgdata->split_queue_len);
2202}
2203
2204static unsigned long deferred_split_scan(struct shrinker *shrink,
2205                struct shrink_control *sc)
2206{
2207        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2208        unsigned long flags;
2209        LIST_HEAD(list), *pos, *next;
2210        struct page *page;
2211        int split = 0;
2212
2213        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2214        /* Take pin on all head pages to avoid freeing them under us */
2215        list_for_each_safe(pos, next, &pgdata->split_queue) {
2216                page = list_entry((void *)pos, struct page, mapping);
2217                page = compound_head(page);
2218                if (get_page_unless_zero(page)) {
2219                        list_move(page_deferred_list(page), &list);
2220                } else {
2221                        /* We lost race with put_compound_page() */
2222                        list_del_init(page_deferred_list(page));
2223                        pgdata->split_queue_len--;
2224                }
2225                if (!--sc->nr_to_scan)
2226                        break;
2227        }
2228        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2229
2230        list_for_each_safe(pos, next, &list) {
2231                page = list_entry((void *)pos, struct page, mapping);
2232                lock_page(page);
2233                /* split_huge_page() removes page from list on success */
2234                if (!split_huge_page(page))
2235                        split++;
2236                unlock_page(page);
2237                put_page(page);
2238        }
2239
2240        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2241        list_splice_tail(&list, &pgdata->split_queue);
2242        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2243
2244        /*
2245         * Stop shrinker if we didn't split any page, but the queue is empty.
2246         * This can happen if pages were freed under us.
2247         */
2248        if (!split && list_empty(&pgdata->split_queue))
2249                return SHRINK_STOP;
2250        return split;
2251}
2252
2253static struct shrinker deferred_split_shrinker = {
2254        .count_objects = deferred_split_count,
2255        .scan_objects = deferred_split_scan,
2256        .seeks = DEFAULT_SEEKS,
2257        .flags = SHRINKER_NUMA_AWARE,
2258};
2259
2260#ifdef CONFIG_DEBUG_FS
2261static int split_huge_pages_set(void *data, u64 val)
2262{
2263        struct zone *zone;
2264        struct page *page;
2265        unsigned long pfn, max_zone_pfn;
2266        unsigned long total = 0, split = 0;
2267
2268        if (val != 1)
2269                return -EINVAL;
2270
2271        for_each_populated_zone(zone) {
2272                max_zone_pfn = zone_end_pfn(zone);
2273                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2274                        if (!pfn_valid(pfn))
2275                                continue;
2276
2277                        page = pfn_to_page(pfn);
2278                        if (!get_page_unless_zero(page))
2279                                continue;
2280
2281                        if (zone != page_zone(page))
2282                                goto next;
2283
2284                        if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2285                                goto next;
2286
2287                        total++;
2288                        lock_page(page);
2289                        if (!split_huge_page(page))
2290                                split++;
2291                        unlock_page(page);
2292next:
2293                        put_page(page);
2294                }
2295        }
2296
2297        pr_info("%lu of %lu THP split\n", split, total);
2298
2299        return 0;
2300}
2301DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2302                "%llu\n");
2303
2304static int __init split_huge_pages_debugfs(void)
2305{
2306        void *ret;
2307
2308        ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2309                        &split_huge_pages_fops);
2310        if (!ret)
2311                pr_warn("Failed to create split_huge_pages in debugfs");
2312        return 0;
2313}
2314late_initcall(split_huge_pages_debugfs);
2315#endif
2316