linux/mm/migrate.c
<<
>>
Prefs
   1/*
   2 * Memory Migration functionality - linux/mm/migrate.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
  34#include <linux/compaction.h>
  35#include <linux/syscalls.h>
  36#include <linux/hugetlb.h>
  37#include <linux/hugetlb_cgroup.h>
  38#include <linux/gfp.h>
  39#include <linux/balloon_compaction.h>
  40#include <linux/mmu_notifier.h>
  41#include <linux/page_idle.h>
  42#include <linux/page_owner.h>
  43
  44#include <asm/tlbflush.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/migrate.h>
  48
  49#include "internal.h"
  50
  51/*
  52 * migrate_prep() needs to be called before we start compiling a list of pages
  53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  54 * undesirable, use migrate_prep_local()
  55 */
  56int migrate_prep(void)
  57{
  58        /*
  59         * Clear the LRU lists so pages can be isolated.
  60         * Note that pages may be moved off the LRU after we have
  61         * drained them. Those pages will fail to migrate like other
  62         * pages that may be busy.
  63         */
  64        lru_add_drain_all();
  65
  66        return 0;
  67}
  68
  69/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  70int migrate_prep_local(void)
  71{
  72        lru_add_drain();
  73
  74        return 0;
  75}
  76
  77bool isolate_movable_page(struct page *page, isolate_mode_t mode)
  78{
  79        struct address_space *mapping;
  80
  81        /*
  82         * Avoid burning cycles with pages that are yet under __free_pages(),
  83         * or just got freed under us.
  84         *
  85         * In case we 'win' a race for a movable page being freed under us and
  86         * raise its refcount preventing __free_pages() from doing its job
  87         * the put_page() at the end of this block will take care of
  88         * release this page, thus avoiding a nasty leakage.
  89         */
  90        if (unlikely(!get_page_unless_zero(page)))
  91                goto out;
  92
  93        /*
  94         * Check PageMovable before holding a PG_lock because page's owner
  95         * assumes anybody doesn't touch PG_lock of newly allocated page
  96         * so unconditionally grapping the lock ruins page's owner side.
  97         */
  98        if (unlikely(!__PageMovable(page)))
  99                goto out_putpage;
 100        /*
 101         * As movable pages are not isolated from LRU lists, concurrent
 102         * compaction threads can race against page migration functions
 103         * as well as race against the releasing a page.
 104         *
 105         * In order to avoid having an already isolated movable page
 106         * being (wrongly) re-isolated while it is under migration,
 107         * or to avoid attempting to isolate pages being released,
 108         * lets be sure we have the page lock
 109         * before proceeding with the movable page isolation steps.
 110         */
 111        if (unlikely(!trylock_page(page)))
 112                goto out_putpage;
 113
 114        if (!PageMovable(page) || PageIsolated(page))
 115                goto out_no_isolated;
 116
 117        mapping = page_mapping(page);
 118        VM_BUG_ON_PAGE(!mapping, page);
 119
 120        if (!mapping->a_ops->isolate_page(page, mode))
 121                goto out_no_isolated;
 122
 123        /* Driver shouldn't use PG_isolated bit of page->flags */
 124        WARN_ON_ONCE(PageIsolated(page));
 125        __SetPageIsolated(page);
 126        unlock_page(page);
 127
 128        return true;
 129
 130out_no_isolated:
 131        unlock_page(page);
 132out_putpage:
 133        put_page(page);
 134out:
 135        return false;
 136}
 137
 138/* It should be called on page which is PG_movable */
 139void putback_movable_page(struct page *page)
 140{
 141        struct address_space *mapping;
 142
 143        VM_BUG_ON_PAGE(!PageLocked(page), page);
 144        VM_BUG_ON_PAGE(!PageMovable(page), page);
 145        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 146
 147        mapping = page_mapping(page);
 148        mapping->a_ops->putback_page(page);
 149        __ClearPageIsolated(page);
 150}
 151
 152/*
 153 * Put previously isolated pages back onto the appropriate lists
 154 * from where they were once taken off for compaction/migration.
 155 *
 156 * This function shall be used whenever the isolated pageset has been
 157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 158 * and isolate_huge_page().
 159 */
 160void putback_movable_pages(struct list_head *l)
 161{
 162        struct page *page;
 163        struct page *page2;
 164
 165        list_for_each_entry_safe(page, page2, l, lru) {
 166                if (unlikely(PageHuge(page))) {
 167                        putback_active_hugepage(page);
 168                        continue;
 169                }
 170                list_del(&page->lru);
 171                dec_node_page_state(page, NR_ISOLATED_ANON +
 172                                page_is_file_cache(page));
 173                /*
 174                 * We isolated non-lru movable page so here we can use
 175                 * __PageMovable because LRU page's mapping cannot have
 176                 * PAGE_MAPPING_MOVABLE.
 177                 */
 178                if (unlikely(__PageMovable(page))) {
 179                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 180                        lock_page(page);
 181                        if (PageMovable(page))
 182                                putback_movable_page(page);
 183                        else
 184                                __ClearPageIsolated(page);
 185                        unlock_page(page);
 186                        put_page(page);
 187                } else {
 188                        putback_lru_page(page);
 189                }
 190        }
 191}
 192
 193/*
 194 * Restore a potential migration pte to a working pte entry
 195 */
 196static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 197                                 unsigned long addr, void *old)
 198{
 199        struct mm_struct *mm = vma->vm_mm;
 200        swp_entry_t entry;
 201        pmd_t *pmd;
 202        pte_t *ptep, pte;
 203        spinlock_t *ptl;
 204
 205        if (unlikely(PageHuge(new))) {
 206                ptep = huge_pte_offset(mm, addr);
 207                if (!ptep)
 208                        goto out;
 209                ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 210        } else {
 211                pmd = mm_find_pmd(mm, addr);
 212                if (!pmd)
 213                        goto out;
 214
 215                ptep = pte_offset_map(pmd, addr);
 216
 217                /*
 218                 * Peek to check is_swap_pte() before taking ptlock?  No, we
 219                 * can race mremap's move_ptes(), which skips anon_vma lock.
 220                 */
 221
 222                ptl = pte_lockptr(mm, pmd);
 223        }
 224
 225        spin_lock(ptl);
 226        pte = *ptep;
 227        if (!is_swap_pte(pte))
 228                goto unlock;
 229
 230        entry = pte_to_swp_entry(pte);
 231
 232        if (!is_migration_entry(entry) ||
 233            migration_entry_to_page(entry) != old)
 234                goto unlock;
 235
 236        get_page(new);
 237        pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 238        if (pte_swp_soft_dirty(*ptep))
 239                pte = pte_mksoft_dirty(pte);
 240
 241        /* Recheck VMA as permissions can change since migration started  */
 242        if (is_write_migration_entry(entry))
 243                pte = maybe_mkwrite(pte, vma);
 244
 245#ifdef CONFIG_HUGETLB_PAGE
 246        if (PageHuge(new)) {
 247                pte = pte_mkhuge(pte);
 248                pte = arch_make_huge_pte(pte, vma, new, 0);
 249        }
 250#endif
 251        flush_dcache_page(new);
 252        set_pte_at(mm, addr, ptep, pte);
 253
 254        if (PageHuge(new)) {
 255                if (PageAnon(new))
 256                        hugepage_add_anon_rmap(new, vma, addr);
 257                else
 258                        page_dup_rmap(new, true);
 259        } else if (PageAnon(new))
 260                page_add_anon_rmap(new, vma, addr, false);
 261        else
 262                page_add_file_rmap(new, false);
 263
 264        if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 265                mlock_vma_page(new);
 266
 267        /* No need to invalidate - it was non-present before */
 268        update_mmu_cache(vma, addr, ptep);
 269unlock:
 270        pte_unmap_unlock(ptep, ptl);
 271out:
 272        return SWAP_AGAIN;
 273}
 274
 275/*
 276 * Get rid of all migration entries and replace them by
 277 * references to the indicated page.
 278 */
 279void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 280{
 281        struct rmap_walk_control rwc = {
 282                .rmap_one = remove_migration_pte,
 283                .arg = old,
 284        };
 285
 286        if (locked)
 287                rmap_walk_locked(new, &rwc);
 288        else
 289                rmap_walk(new, &rwc);
 290}
 291
 292/*
 293 * Something used the pte of a page under migration. We need to
 294 * get to the page and wait until migration is finished.
 295 * When we return from this function the fault will be retried.
 296 */
 297void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 298                                spinlock_t *ptl)
 299{
 300        pte_t pte;
 301        swp_entry_t entry;
 302        struct page *page;
 303
 304        spin_lock(ptl);
 305        pte = *ptep;
 306        if (!is_swap_pte(pte))
 307                goto out;
 308
 309        entry = pte_to_swp_entry(pte);
 310        if (!is_migration_entry(entry))
 311                goto out;
 312
 313        page = migration_entry_to_page(entry);
 314
 315        /*
 316         * Once radix-tree replacement of page migration started, page_count
 317         * *must* be zero. And, we don't want to call wait_on_page_locked()
 318         * against a page without get_page().
 319         * So, we use get_page_unless_zero(), here. Even failed, page fault
 320         * will occur again.
 321         */
 322        if (!get_page_unless_zero(page))
 323                goto out;
 324        pte_unmap_unlock(ptep, ptl);
 325        wait_on_page_locked(page);
 326        put_page(page);
 327        return;
 328out:
 329        pte_unmap_unlock(ptep, ptl);
 330}
 331
 332void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 333                                unsigned long address)
 334{
 335        spinlock_t *ptl = pte_lockptr(mm, pmd);
 336        pte_t *ptep = pte_offset_map(pmd, address);
 337        __migration_entry_wait(mm, ptep, ptl);
 338}
 339
 340void migration_entry_wait_huge(struct vm_area_struct *vma,
 341                struct mm_struct *mm, pte_t *pte)
 342{
 343        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 344        __migration_entry_wait(mm, pte, ptl);
 345}
 346
 347#ifdef CONFIG_BLOCK
 348/* Returns true if all buffers are successfully locked */
 349static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 350                                                        enum migrate_mode mode)
 351{
 352        struct buffer_head *bh = head;
 353
 354        /* Simple case, sync compaction */
 355        if (mode != MIGRATE_ASYNC) {
 356                do {
 357                        get_bh(bh);
 358                        lock_buffer(bh);
 359                        bh = bh->b_this_page;
 360
 361                } while (bh != head);
 362
 363                return true;
 364        }
 365
 366        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 367        do {
 368                get_bh(bh);
 369                if (!trylock_buffer(bh)) {
 370                        /*
 371                         * We failed to lock the buffer and cannot stall in
 372                         * async migration. Release the taken locks
 373                         */
 374                        struct buffer_head *failed_bh = bh;
 375                        put_bh(failed_bh);
 376                        bh = head;
 377                        while (bh != failed_bh) {
 378                                unlock_buffer(bh);
 379                                put_bh(bh);
 380                                bh = bh->b_this_page;
 381                        }
 382                        return false;
 383                }
 384
 385                bh = bh->b_this_page;
 386        } while (bh != head);
 387        return true;
 388}
 389#else
 390static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 391                                                        enum migrate_mode mode)
 392{
 393        return true;
 394}
 395#endif /* CONFIG_BLOCK */
 396
 397/*
 398 * Replace the page in the mapping.
 399 *
 400 * The number of remaining references must be:
 401 * 1 for anonymous pages without a mapping
 402 * 2 for pages with a mapping
 403 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 404 */
 405int migrate_page_move_mapping(struct address_space *mapping,
 406                struct page *newpage, struct page *page,
 407                struct buffer_head *head, enum migrate_mode mode,
 408                int extra_count)
 409{
 410        struct zone *oldzone, *newzone;
 411        int dirty;
 412        int expected_count = 1 + extra_count;
 413        void **pslot;
 414
 415        if (!mapping) {
 416                /* Anonymous page without mapping */
 417                if (page_count(page) != expected_count)
 418                        return -EAGAIN;
 419
 420                /* No turning back from here */
 421                newpage->index = page->index;
 422                newpage->mapping = page->mapping;
 423                if (PageSwapBacked(page))
 424                        __SetPageSwapBacked(newpage);
 425
 426                return MIGRATEPAGE_SUCCESS;
 427        }
 428
 429        oldzone = page_zone(page);
 430        newzone = page_zone(newpage);
 431
 432        spin_lock_irq(&mapping->tree_lock);
 433
 434        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 435                                        page_index(page));
 436
 437        expected_count += 1 + page_has_private(page);
 438        if (page_count(page) != expected_count ||
 439                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 440                spin_unlock_irq(&mapping->tree_lock);
 441                return -EAGAIN;
 442        }
 443
 444        if (!page_ref_freeze(page, expected_count)) {
 445                spin_unlock_irq(&mapping->tree_lock);
 446                return -EAGAIN;
 447        }
 448
 449        /*
 450         * In the async migration case of moving a page with buffers, lock the
 451         * buffers using trylock before the mapping is moved. If the mapping
 452         * was moved, we later failed to lock the buffers and could not move
 453         * the mapping back due to an elevated page count, we would have to
 454         * block waiting on other references to be dropped.
 455         */
 456        if (mode == MIGRATE_ASYNC && head &&
 457                        !buffer_migrate_lock_buffers(head, mode)) {
 458                page_ref_unfreeze(page, expected_count);
 459                spin_unlock_irq(&mapping->tree_lock);
 460                return -EAGAIN;
 461        }
 462
 463        /*
 464         * Now we know that no one else is looking at the page:
 465         * no turning back from here.
 466         */
 467        newpage->index = page->index;
 468        newpage->mapping = page->mapping;
 469        if (PageSwapBacked(page))
 470                __SetPageSwapBacked(newpage);
 471
 472        get_page(newpage);      /* add cache reference */
 473        if (PageSwapCache(page)) {
 474                SetPageSwapCache(newpage);
 475                set_page_private(newpage, page_private(page));
 476        }
 477
 478        /* Move dirty while page refs frozen and newpage not yet exposed */
 479        dirty = PageDirty(page);
 480        if (dirty) {
 481                ClearPageDirty(page);
 482                SetPageDirty(newpage);
 483        }
 484
 485        radix_tree_replace_slot(pslot, newpage);
 486
 487        /*
 488         * Drop cache reference from old page by unfreezing
 489         * to one less reference.
 490         * We know this isn't the last reference.
 491         */
 492        page_ref_unfreeze(page, expected_count - 1);
 493
 494        spin_unlock(&mapping->tree_lock);
 495        /* Leave irq disabled to prevent preemption while updating stats */
 496
 497        /*
 498         * If moved to a different zone then also account
 499         * the page for that zone. Other VM counters will be
 500         * taken care of when we establish references to the
 501         * new page and drop references to the old page.
 502         *
 503         * Note that anonymous pages are accounted for
 504         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 505         * are mapped to swap space.
 506         */
 507        if (newzone != oldzone) {
 508                __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 509                __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 510                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 511                        __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 512                        __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 513                }
 514                if (dirty && mapping_cap_account_dirty(mapping)) {
 515                        __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 516                        __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 517                        __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 518                        __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 519                }
 520        }
 521        local_irq_enable();
 522
 523        return MIGRATEPAGE_SUCCESS;
 524}
 525EXPORT_SYMBOL(migrate_page_move_mapping);
 526
 527/*
 528 * The expected number of remaining references is the same as that
 529 * of migrate_page_move_mapping().
 530 */
 531int migrate_huge_page_move_mapping(struct address_space *mapping,
 532                                   struct page *newpage, struct page *page)
 533{
 534        int expected_count;
 535        void **pslot;
 536
 537        spin_lock_irq(&mapping->tree_lock);
 538
 539        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 540                                        page_index(page));
 541
 542        expected_count = 2 + page_has_private(page);
 543        if (page_count(page) != expected_count ||
 544                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 545                spin_unlock_irq(&mapping->tree_lock);
 546                return -EAGAIN;
 547        }
 548
 549        if (!page_ref_freeze(page, expected_count)) {
 550                spin_unlock_irq(&mapping->tree_lock);
 551                return -EAGAIN;
 552        }
 553
 554        newpage->index = page->index;
 555        newpage->mapping = page->mapping;
 556
 557        get_page(newpage);
 558
 559        radix_tree_replace_slot(pslot, newpage);
 560
 561        page_ref_unfreeze(page, expected_count - 1);
 562
 563        spin_unlock_irq(&mapping->tree_lock);
 564
 565        return MIGRATEPAGE_SUCCESS;
 566}
 567
 568/*
 569 * Gigantic pages are so large that we do not guarantee that page++ pointer
 570 * arithmetic will work across the entire page.  We need something more
 571 * specialized.
 572 */
 573static void __copy_gigantic_page(struct page *dst, struct page *src,
 574                                int nr_pages)
 575{
 576        int i;
 577        struct page *dst_base = dst;
 578        struct page *src_base = src;
 579
 580        for (i = 0; i < nr_pages; ) {
 581                cond_resched();
 582                copy_highpage(dst, src);
 583
 584                i++;
 585                dst = mem_map_next(dst, dst_base, i);
 586                src = mem_map_next(src, src_base, i);
 587        }
 588}
 589
 590static void copy_huge_page(struct page *dst, struct page *src)
 591{
 592        int i;
 593        int nr_pages;
 594
 595        if (PageHuge(src)) {
 596                /* hugetlbfs page */
 597                struct hstate *h = page_hstate(src);
 598                nr_pages = pages_per_huge_page(h);
 599
 600                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 601                        __copy_gigantic_page(dst, src, nr_pages);
 602                        return;
 603                }
 604        } else {
 605                /* thp page */
 606                BUG_ON(!PageTransHuge(src));
 607                nr_pages = hpage_nr_pages(src);
 608        }
 609
 610        for (i = 0; i < nr_pages; i++) {
 611                cond_resched();
 612                copy_highpage(dst + i, src + i);
 613        }
 614}
 615
 616/*
 617 * Copy the page to its new location
 618 */
 619void migrate_page_copy(struct page *newpage, struct page *page)
 620{
 621        int cpupid;
 622
 623        if (PageHuge(page) || PageTransHuge(page))
 624                copy_huge_page(newpage, page);
 625        else
 626                copy_highpage(newpage, page);
 627
 628        if (PageError(page))
 629                SetPageError(newpage);
 630        if (PageReferenced(page))
 631                SetPageReferenced(newpage);
 632        if (PageUptodate(page))
 633                SetPageUptodate(newpage);
 634        if (TestClearPageActive(page)) {
 635                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 636                SetPageActive(newpage);
 637        } else if (TestClearPageUnevictable(page))
 638                SetPageUnevictable(newpage);
 639        if (PageChecked(page))
 640                SetPageChecked(newpage);
 641        if (PageMappedToDisk(page))
 642                SetPageMappedToDisk(newpage);
 643
 644        /* Move dirty on pages not done by migrate_page_move_mapping() */
 645        if (PageDirty(page))
 646                SetPageDirty(newpage);
 647
 648        if (page_is_young(page))
 649                set_page_young(newpage);
 650        if (page_is_idle(page))
 651                set_page_idle(newpage);
 652
 653        /*
 654         * Copy NUMA information to the new page, to prevent over-eager
 655         * future migrations of this same page.
 656         */
 657        cpupid = page_cpupid_xchg_last(page, -1);
 658        page_cpupid_xchg_last(newpage, cpupid);
 659
 660        ksm_migrate_page(newpage, page);
 661        /*
 662         * Please do not reorder this without considering how mm/ksm.c's
 663         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 664         */
 665        if (PageSwapCache(page))
 666                ClearPageSwapCache(page);
 667        ClearPagePrivate(page);
 668        set_page_private(page, 0);
 669
 670        /*
 671         * If any waiters have accumulated on the new page then
 672         * wake them up.
 673         */
 674        if (PageWriteback(newpage))
 675                end_page_writeback(newpage);
 676
 677        copy_page_owner(page, newpage);
 678
 679        mem_cgroup_migrate(page, newpage);
 680}
 681EXPORT_SYMBOL(migrate_page_copy);
 682
 683/************************************************************
 684 *                    Migration functions
 685 ***********************************************************/
 686
 687/*
 688 * Common logic to directly migrate a single LRU page suitable for
 689 * pages that do not use PagePrivate/PagePrivate2.
 690 *
 691 * Pages are locked upon entry and exit.
 692 */
 693int migrate_page(struct address_space *mapping,
 694                struct page *newpage, struct page *page,
 695                enum migrate_mode mode)
 696{
 697        int rc;
 698
 699        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 700
 701        rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 702
 703        if (rc != MIGRATEPAGE_SUCCESS)
 704                return rc;
 705
 706        migrate_page_copy(newpage, page);
 707        return MIGRATEPAGE_SUCCESS;
 708}
 709EXPORT_SYMBOL(migrate_page);
 710
 711#ifdef CONFIG_BLOCK
 712/*
 713 * Migration function for pages with buffers. This function can only be used
 714 * if the underlying filesystem guarantees that no other references to "page"
 715 * exist.
 716 */
 717int buffer_migrate_page(struct address_space *mapping,
 718                struct page *newpage, struct page *page, enum migrate_mode mode)
 719{
 720        struct buffer_head *bh, *head;
 721        int rc;
 722
 723        if (!page_has_buffers(page))
 724                return migrate_page(mapping, newpage, page, mode);
 725
 726        head = page_buffers(page);
 727
 728        rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 729
 730        if (rc != MIGRATEPAGE_SUCCESS)
 731                return rc;
 732
 733        /*
 734         * In the async case, migrate_page_move_mapping locked the buffers
 735         * with an IRQ-safe spinlock held. In the sync case, the buffers
 736         * need to be locked now
 737         */
 738        if (mode != MIGRATE_ASYNC)
 739                BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 740
 741        ClearPagePrivate(page);
 742        set_page_private(newpage, page_private(page));
 743        set_page_private(page, 0);
 744        put_page(page);
 745        get_page(newpage);
 746
 747        bh = head;
 748        do {
 749                set_bh_page(bh, newpage, bh_offset(bh));
 750                bh = bh->b_this_page;
 751
 752        } while (bh != head);
 753
 754        SetPagePrivate(newpage);
 755
 756        migrate_page_copy(newpage, page);
 757
 758        bh = head;
 759        do {
 760                unlock_buffer(bh);
 761                put_bh(bh);
 762                bh = bh->b_this_page;
 763
 764        } while (bh != head);
 765
 766        return MIGRATEPAGE_SUCCESS;
 767}
 768EXPORT_SYMBOL(buffer_migrate_page);
 769#endif
 770
 771/*
 772 * Writeback a page to clean the dirty state
 773 */
 774static int writeout(struct address_space *mapping, struct page *page)
 775{
 776        struct writeback_control wbc = {
 777                .sync_mode = WB_SYNC_NONE,
 778                .nr_to_write = 1,
 779                .range_start = 0,
 780                .range_end = LLONG_MAX,
 781                .for_reclaim = 1
 782        };
 783        int rc;
 784
 785        if (!mapping->a_ops->writepage)
 786                /* No write method for the address space */
 787                return -EINVAL;
 788
 789        if (!clear_page_dirty_for_io(page))
 790                /* Someone else already triggered a write */
 791                return -EAGAIN;
 792
 793        /*
 794         * A dirty page may imply that the underlying filesystem has
 795         * the page on some queue. So the page must be clean for
 796         * migration. Writeout may mean we loose the lock and the
 797         * page state is no longer what we checked for earlier.
 798         * At this point we know that the migration attempt cannot
 799         * be successful.
 800         */
 801        remove_migration_ptes(page, page, false);
 802
 803        rc = mapping->a_ops->writepage(page, &wbc);
 804
 805        if (rc != AOP_WRITEPAGE_ACTIVATE)
 806                /* unlocked. Relock */
 807                lock_page(page);
 808
 809        return (rc < 0) ? -EIO : -EAGAIN;
 810}
 811
 812/*
 813 * Default handling if a filesystem does not provide a migration function.
 814 */
 815static int fallback_migrate_page(struct address_space *mapping,
 816        struct page *newpage, struct page *page, enum migrate_mode mode)
 817{
 818        if (PageDirty(page)) {
 819                /* Only writeback pages in full synchronous migration */
 820                if (mode != MIGRATE_SYNC)
 821                        return -EBUSY;
 822                return writeout(mapping, page);
 823        }
 824
 825        /*
 826         * Buffers may be managed in a filesystem specific way.
 827         * We must have no buffers or drop them.
 828         */
 829        if (page_has_private(page) &&
 830            !try_to_release_page(page, GFP_KERNEL))
 831                return -EAGAIN;
 832
 833        return migrate_page(mapping, newpage, page, mode);
 834}
 835
 836/*
 837 * Move a page to a newly allocated page
 838 * The page is locked and all ptes have been successfully removed.
 839 *
 840 * The new page will have replaced the old page if this function
 841 * is successful.
 842 *
 843 * Return value:
 844 *   < 0 - error code
 845 *  MIGRATEPAGE_SUCCESS - success
 846 */
 847static int move_to_new_page(struct page *newpage, struct page *page,
 848                                enum migrate_mode mode)
 849{
 850        struct address_space *mapping;
 851        int rc = -EAGAIN;
 852        bool is_lru = !__PageMovable(page);
 853
 854        VM_BUG_ON_PAGE(!PageLocked(page), page);
 855        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 856
 857        mapping = page_mapping(page);
 858
 859        if (likely(is_lru)) {
 860                if (!mapping)
 861                        rc = migrate_page(mapping, newpage, page, mode);
 862                else if (mapping->a_ops->migratepage)
 863                        /*
 864                         * Most pages have a mapping and most filesystems
 865                         * provide a migratepage callback. Anonymous pages
 866                         * are part of swap space which also has its own
 867                         * migratepage callback. This is the most common path
 868                         * for page migration.
 869                         */
 870                        rc = mapping->a_ops->migratepage(mapping, newpage,
 871                                                        page, mode);
 872                else
 873                        rc = fallback_migrate_page(mapping, newpage,
 874                                                        page, mode);
 875        } else {
 876                /*
 877                 * In case of non-lru page, it could be released after
 878                 * isolation step. In that case, we shouldn't try migration.
 879                 */
 880                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 881                if (!PageMovable(page)) {
 882                        rc = MIGRATEPAGE_SUCCESS;
 883                        __ClearPageIsolated(page);
 884                        goto out;
 885                }
 886
 887                rc = mapping->a_ops->migratepage(mapping, newpage,
 888                                                page, mode);
 889                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 890                        !PageIsolated(page));
 891        }
 892
 893        /*
 894         * When successful, old pagecache page->mapping must be cleared before
 895         * page is freed; but stats require that PageAnon be left as PageAnon.
 896         */
 897        if (rc == MIGRATEPAGE_SUCCESS) {
 898                if (__PageMovable(page)) {
 899                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 900
 901                        /*
 902                         * We clear PG_movable under page_lock so any compactor
 903                         * cannot try to migrate this page.
 904                         */
 905                        __ClearPageIsolated(page);
 906                }
 907
 908                /*
 909                 * Anonymous and movable page->mapping will be cleard by
 910                 * free_pages_prepare so don't reset it here for keeping
 911                 * the type to work PageAnon, for example.
 912                 */
 913                if (!PageMappingFlags(page))
 914                        page->mapping = NULL;
 915        }
 916out:
 917        return rc;
 918}
 919
 920static int __unmap_and_move(struct page *page, struct page *newpage,
 921                                int force, enum migrate_mode mode)
 922{
 923        int rc = -EAGAIN;
 924        int page_was_mapped = 0;
 925        struct anon_vma *anon_vma = NULL;
 926        bool is_lru = !__PageMovable(page);
 927
 928        if (!trylock_page(page)) {
 929                if (!force || mode == MIGRATE_ASYNC)
 930                        goto out;
 931
 932                /*
 933                 * It's not safe for direct compaction to call lock_page.
 934                 * For example, during page readahead pages are added locked
 935                 * to the LRU. Later, when the IO completes the pages are
 936                 * marked uptodate and unlocked. However, the queueing
 937                 * could be merging multiple pages for one bio (e.g.
 938                 * mpage_readpages). If an allocation happens for the
 939                 * second or third page, the process can end up locking
 940                 * the same page twice and deadlocking. Rather than
 941                 * trying to be clever about what pages can be locked,
 942                 * avoid the use of lock_page for direct compaction
 943                 * altogether.
 944                 */
 945                if (current->flags & PF_MEMALLOC)
 946                        goto out;
 947
 948                lock_page(page);
 949        }
 950
 951        if (PageWriteback(page)) {
 952                /*
 953                 * Only in the case of a full synchronous migration is it
 954                 * necessary to wait for PageWriteback. In the async case,
 955                 * the retry loop is too short and in the sync-light case,
 956                 * the overhead of stalling is too much
 957                 */
 958                if (mode != MIGRATE_SYNC) {
 959                        rc = -EBUSY;
 960                        goto out_unlock;
 961                }
 962                if (!force)
 963                        goto out_unlock;
 964                wait_on_page_writeback(page);
 965        }
 966
 967        /*
 968         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 969         * we cannot notice that anon_vma is freed while we migrates a page.
 970         * This get_anon_vma() delays freeing anon_vma pointer until the end
 971         * of migration. File cache pages are no problem because of page_lock()
 972         * File Caches may use write_page() or lock_page() in migration, then,
 973         * just care Anon page here.
 974         *
 975         * Only page_get_anon_vma() understands the subtleties of
 976         * getting a hold on an anon_vma from outside one of its mms.
 977         * But if we cannot get anon_vma, then we won't need it anyway,
 978         * because that implies that the anon page is no longer mapped
 979         * (and cannot be remapped so long as we hold the page lock).
 980         */
 981        if (PageAnon(page) && !PageKsm(page))
 982                anon_vma = page_get_anon_vma(page);
 983
 984        /*
 985         * Block others from accessing the new page when we get around to
 986         * establishing additional references. We are usually the only one
 987         * holding a reference to newpage at this point. We used to have a BUG
 988         * here if trylock_page(newpage) fails, but would like to allow for
 989         * cases where there might be a race with the previous use of newpage.
 990         * This is much like races on refcount of oldpage: just don't BUG().
 991         */
 992        if (unlikely(!trylock_page(newpage)))
 993                goto out_unlock;
 994
 995        if (unlikely(!is_lru)) {
 996                rc = move_to_new_page(newpage, page, mode);
 997                goto out_unlock_both;
 998        }
 999
1000        /*
1001         * Corner case handling:
1002         * 1. When a new swap-cache page is read into, it is added to the LRU
1003         * and treated as swapcache but it has no rmap yet.
1004         * Calling try_to_unmap() against a page->mapping==NULL page will
1005         * trigger a BUG.  So handle it here.
1006         * 2. An orphaned page (see truncate_complete_page) might have
1007         * fs-private metadata. The page can be picked up due to memory
1008         * offlining.  Everywhere else except page reclaim, the page is
1009         * invisible to the vm, so the page can not be migrated.  So try to
1010         * free the metadata, so the page can be freed.
1011         */
1012        if (!page->mapping) {
1013                VM_BUG_ON_PAGE(PageAnon(page), page);
1014                if (page_has_private(page)) {
1015                        try_to_free_buffers(page);
1016                        goto out_unlock_both;
1017                }
1018        } else if (page_mapped(page)) {
1019                /* Establish migration ptes */
1020                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1021                                page);
1022                try_to_unmap(page,
1023                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1024                page_was_mapped = 1;
1025        }
1026
1027        if (!page_mapped(page))
1028                rc = move_to_new_page(newpage, page, mode);
1029
1030        if (page_was_mapped)
1031                remove_migration_ptes(page,
1032                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1033
1034out_unlock_both:
1035        unlock_page(newpage);
1036out_unlock:
1037        /* Drop an anon_vma reference if we took one */
1038        if (anon_vma)
1039                put_anon_vma(anon_vma);
1040        unlock_page(page);
1041out:
1042        /*
1043         * If migration is successful, decrease refcount of the newpage
1044         * which will not free the page because new page owner increased
1045         * refcounter. As well, if it is LRU page, add the page to LRU
1046         * list in here.
1047         */
1048        if (rc == MIGRATEPAGE_SUCCESS) {
1049                if (unlikely(__PageMovable(newpage)))
1050                        put_page(newpage);
1051                else
1052                        putback_lru_page(newpage);
1053        }
1054
1055        return rc;
1056}
1057
1058/*
1059 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1060 * around it.
1061 */
1062#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1063#define ICE_noinline noinline
1064#else
1065#define ICE_noinline
1066#endif
1067
1068/*
1069 * Obtain the lock on page, remove all ptes and migrate the page
1070 * to the newly allocated page in newpage.
1071 */
1072static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1073                                   free_page_t put_new_page,
1074                                   unsigned long private, struct page *page,
1075                                   int force, enum migrate_mode mode,
1076                                   enum migrate_reason reason)
1077{
1078        int rc = MIGRATEPAGE_SUCCESS;
1079        int *result = NULL;
1080        struct page *newpage;
1081
1082        newpage = get_new_page(page, private, &result);
1083        if (!newpage)
1084                return -ENOMEM;
1085
1086        if (page_count(page) == 1) {
1087                /* page was freed from under us. So we are done. */
1088                ClearPageActive(page);
1089                ClearPageUnevictable(page);
1090                if (unlikely(__PageMovable(page))) {
1091                        lock_page(page);
1092                        if (!PageMovable(page))
1093                                __ClearPageIsolated(page);
1094                        unlock_page(page);
1095                }
1096                if (put_new_page)
1097                        put_new_page(newpage, private);
1098                else
1099                        put_page(newpage);
1100                goto out;
1101        }
1102
1103        if (unlikely(PageTransHuge(page))) {
1104                lock_page(page);
1105                rc = split_huge_page(page);
1106                unlock_page(page);
1107                if (rc)
1108                        goto out;
1109        }
1110
1111        rc = __unmap_and_move(page, newpage, force, mode);
1112        if (rc == MIGRATEPAGE_SUCCESS)
1113                set_page_owner_migrate_reason(newpage, reason);
1114
1115out:
1116        if (rc != -EAGAIN) {
1117                /*
1118                 * A page that has been migrated has all references
1119                 * removed and will be freed. A page that has not been
1120                 * migrated will have kepts its references and be
1121                 * restored.
1122                 */
1123                list_del(&page->lru);
1124                dec_node_page_state(page, NR_ISOLATED_ANON +
1125                                page_is_file_cache(page));
1126        }
1127
1128        /*
1129         * If migration is successful, releases reference grabbed during
1130         * isolation. Otherwise, restore the page to right list unless
1131         * we want to retry.
1132         */
1133        if (rc == MIGRATEPAGE_SUCCESS) {
1134                put_page(page);
1135                if (reason == MR_MEMORY_FAILURE) {
1136                        /*
1137                         * Set PG_HWPoison on just freed page
1138                         * intentionally. Although it's rather weird,
1139                         * it's how HWPoison flag works at the moment.
1140                         */
1141                        if (!test_set_page_hwpoison(page))
1142                                num_poisoned_pages_inc();
1143                }
1144        } else {
1145                if (rc != -EAGAIN) {
1146                        if (likely(!__PageMovable(page))) {
1147                                putback_lru_page(page);
1148                                goto put_new;
1149                        }
1150
1151                        lock_page(page);
1152                        if (PageMovable(page))
1153                                putback_movable_page(page);
1154                        else
1155                                __ClearPageIsolated(page);
1156                        unlock_page(page);
1157                        put_page(page);
1158                }
1159put_new:
1160                if (put_new_page)
1161                        put_new_page(newpage, private);
1162                else
1163                        put_page(newpage);
1164        }
1165
1166        if (result) {
1167                if (rc)
1168                        *result = rc;
1169                else
1170                        *result = page_to_nid(newpage);
1171        }
1172        return rc;
1173}
1174
1175/*
1176 * Counterpart of unmap_and_move_page() for hugepage migration.
1177 *
1178 * This function doesn't wait the completion of hugepage I/O
1179 * because there is no race between I/O and migration for hugepage.
1180 * Note that currently hugepage I/O occurs only in direct I/O
1181 * where no lock is held and PG_writeback is irrelevant,
1182 * and writeback status of all subpages are counted in the reference
1183 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1184 * under direct I/O, the reference of the head page is 512 and a bit more.)
1185 * This means that when we try to migrate hugepage whose subpages are
1186 * doing direct I/O, some references remain after try_to_unmap() and
1187 * hugepage migration fails without data corruption.
1188 *
1189 * There is also no race when direct I/O is issued on the page under migration,
1190 * because then pte is replaced with migration swap entry and direct I/O code
1191 * will wait in the page fault for migration to complete.
1192 */
1193static int unmap_and_move_huge_page(new_page_t get_new_page,
1194                                free_page_t put_new_page, unsigned long private,
1195                                struct page *hpage, int force,
1196                                enum migrate_mode mode, int reason)
1197{
1198        int rc = -EAGAIN;
1199        int *result = NULL;
1200        int page_was_mapped = 0;
1201        struct page *new_hpage;
1202        struct anon_vma *anon_vma = NULL;
1203
1204        /*
1205         * Movability of hugepages depends on architectures and hugepage size.
1206         * This check is necessary because some callers of hugepage migration
1207         * like soft offline and memory hotremove don't walk through page
1208         * tables or check whether the hugepage is pmd-based or not before
1209         * kicking migration.
1210         */
1211        if (!hugepage_migration_supported(page_hstate(hpage))) {
1212                putback_active_hugepage(hpage);
1213                return -ENOSYS;
1214        }
1215
1216        new_hpage = get_new_page(hpage, private, &result);
1217        if (!new_hpage)
1218                return -ENOMEM;
1219
1220        if (!trylock_page(hpage)) {
1221                if (!force || mode != MIGRATE_SYNC)
1222                        goto out;
1223                lock_page(hpage);
1224        }
1225
1226        if (PageAnon(hpage))
1227                anon_vma = page_get_anon_vma(hpage);
1228
1229        if (unlikely(!trylock_page(new_hpage)))
1230                goto put_anon;
1231
1232        if (page_mapped(hpage)) {
1233                try_to_unmap(hpage,
1234                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1235                page_was_mapped = 1;
1236        }
1237
1238        if (!page_mapped(hpage))
1239                rc = move_to_new_page(new_hpage, hpage, mode);
1240
1241        if (page_was_mapped)
1242                remove_migration_ptes(hpage,
1243                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1244
1245        unlock_page(new_hpage);
1246
1247put_anon:
1248        if (anon_vma)
1249                put_anon_vma(anon_vma);
1250
1251        if (rc == MIGRATEPAGE_SUCCESS) {
1252                hugetlb_cgroup_migrate(hpage, new_hpage);
1253                put_new_page = NULL;
1254                set_page_owner_migrate_reason(new_hpage, reason);
1255        }
1256
1257        unlock_page(hpage);
1258out:
1259        if (rc != -EAGAIN)
1260                putback_active_hugepage(hpage);
1261
1262        /*
1263         * If migration was not successful and there's a freeing callback, use
1264         * it.  Otherwise, put_page() will drop the reference grabbed during
1265         * isolation.
1266         */
1267        if (put_new_page)
1268                put_new_page(new_hpage, private);
1269        else
1270                putback_active_hugepage(new_hpage);
1271
1272        if (result) {
1273                if (rc)
1274                        *result = rc;
1275                else
1276                        *result = page_to_nid(new_hpage);
1277        }
1278        return rc;
1279}
1280
1281/*
1282 * migrate_pages - migrate the pages specified in a list, to the free pages
1283 *                 supplied as the target for the page migration
1284 *
1285 * @from:               The list of pages to be migrated.
1286 * @get_new_page:       The function used to allocate free pages to be used
1287 *                      as the target of the page migration.
1288 * @put_new_page:       The function used to free target pages if migration
1289 *                      fails, or NULL if no special handling is necessary.
1290 * @private:            Private data to be passed on to get_new_page()
1291 * @mode:               The migration mode that specifies the constraints for
1292 *                      page migration, if any.
1293 * @reason:             The reason for page migration.
1294 *
1295 * The function returns after 10 attempts or if no pages are movable any more
1296 * because the list has become empty or no retryable pages exist any more.
1297 * The caller should call putback_movable_pages() to return pages to the LRU
1298 * or free list only if ret != 0.
1299 *
1300 * Returns the number of pages that were not migrated, or an error code.
1301 */
1302int migrate_pages(struct list_head *from, new_page_t get_new_page,
1303                free_page_t put_new_page, unsigned long private,
1304                enum migrate_mode mode, int reason)
1305{
1306        int retry = 1;
1307        int nr_failed = 0;
1308        int nr_succeeded = 0;
1309        int pass = 0;
1310        struct page *page;
1311        struct page *page2;
1312        int swapwrite = current->flags & PF_SWAPWRITE;
1313        int rc;
1314
1315        if (!swapwrite)
1316                current->flags |= PF_SWAPWRITE;
1317
1318        for(pass = 0; pass < 10 && retry; pass++) {
1319                retry = 0;
1320
1321                list_for_each_entry_safe(page, page2, from, lru) {
1322                        cond_resched();
1323
1324                        if (PageHuge(page))
1325                                rc = unmap_and_move_huge_page(get_new_page,
1326                                                put_new_page, private, page,
1327                                                pass > 2, mode, reason);
1328                        else
1329                                rc = unmap_and_move(get_new_page, put_new_page,
1330                                                private, page, pass > 2, mode,
1331                                                reason);
1332
1333                        switch(rc) {
1334                        case -ENOMEM:
1335                                nr_failed++;
1336                                goto out;
1337                        case -EAGAIN:
1338                                retry++;
1339                                break;
1340                        case MIGRATEPAGE_SUCCESS:
1341                                nr_succeeded++;
1342                                break;
1343                        default:
1344                                /*
1345                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1346                                 * unlike -EAGAIN case, the failed page is
1347                                 * removed from migration page list and not
1348                                 * retried in the next outer loop.
1349                                 */
1350                                nr_failed++;
1351                                break;
1352                        }
1353                }
1354        }
1355        nr_failed += retry;
1356        rc = nr_failed;
1357out:
1358        if (nr_succeeded)
1359                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1360        if (nr_failed)
1361                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1362        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1363
1364        if (!swapwrite)
1365                current->flags &= ~PF_SWAPWRITE;
1366
1367        return rc;
1368}
1369
1370#ifdef CONFIG_NUMA
1371/*
1372 * Move a list of individual pages
1373 */
1374struct page_to_node {
1375        unsigned long addr;
1376        struct page *page;
1377        int node;
1378        int status;
1379};
1380
1381static struct page *new_page_node(struct page *p, unsigned long private,
1382                int **result)
1383{
1384        struct page_to_node *pm = (struct page_to_node *)private;
1385
1386        while (pm->node != MAX_NUMNODES && pm->page != p)
1387                pm++;
1388
1389        if (pm->node == MAX_NUMNODES)
1390                return NULL;
1391
1392        *result = &pm->status;
1393
1394        if (PageHuge(p))
1395                return alloc_huge_page_node(page_hstate(compound_head(p)),
1396                                        pm->node);
1397        else
1398                return __alloc_pages_node(pm->node,
1399                                GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1400}
1401
1402/*
1403 * Move a set of pages as indicated in the pm array. The addr
1404 * field must be set to the virtual address of the page to be moved
1405 * and the node number must contain a valid target node.
1406 * The pm array ends with node = MAX_NUMNODES.
1407 */
1408static int do_move_page_to_node_array(struct mm_struct *mm,
1409                                      struct page_to_node *pm,
1410                                      int migrate_all)
1411{
1412        int err;
1413        struct page_to_node *pp;
1414        LIST_HEAD(pagelist);
1415
1416        down_read(&mm->mmap_sem);
1417
1418        /*
1419         * Build a list of pages to migrate
1420         */
1421        for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1422                struct vm_area_struct *vma;
1423                struct page *page;
1424
1425                err = -EFAULT;
1426                vma = find_vma(mm, pp->addr);
1427                if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1428                        goto set_status;
1429
1430                /* FOLL_DUMP to ignore special (like zero) pages */
1431                page = follow_page(vma, pp->addr,
1432                                FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1433
1434                err = PTR_ERR(page);
1435                if (IS_ERR(page))
1436                        goto set_status;
1437
1438                err = -ENOENT;
1439                if (!page)
1440                        goto set_status;
1441
1442                pp->page = page;
1443                err = page_to_nid(page);
1444
1445                if (err == pp->node)
1446                        /*
1447                         * Node already in the right place
1448                         */
1449                        goto put_and_set;
1450
1451                err = -EACCES;
1452                if (page_mapcount(page) > 1 &&
1453                                !migrate_all)
1454                        goto put_and_set;
1455
1456                if (PageHuge(page)) {
1457                        if (PageHead(page))
1458                                isolate_huge_page(page, &pagelist);
1459                        goto put_and_set;
1460                }
1461
1462                err = isolate_lru_page(page);
1463                if (!err) {
1464                        list_add_tail(&page->lru, &pagelist);
1465                        inc_node_page_state(page, NR_ISOLATED_ANON +
1466                                            page_is_file_cache(page));
1467                }
1468put_and_set:
1469                /*
1470                 * Either remove the duplicate refcount from
1471                 * isolate_lru_page() or drop the page ref if it was
1472                 * not isolated.
1473                 */
1474                put_page(page);
1475set_status:
1476                pp->status = err;
1477        }
1478
1479        err = 0;
1480        if (!list_empty(&pagelist)) {
1481                err = migrate_pages(&pagelist, new_page_node, NULL,
1482                                (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1483                if (err)
1484                        putback_movable_pages(&pagelist);
1485        }
1486
1487        up_read(&mm->mmap_sem);
1488        return err;
1489}
1490
1491/*
1492 * Migrate an array of page address onto an array of nodes and fill
1493 * the corresponding array of status.
1494 */
1495static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1496                         unsigned long nr_pages,
1497                         const void __user * __user *pages,
1498                         const int __user *nodes,
1499                         int __user *status, int flags)
1500{
1501        struct page_to_node *pm;
1502        unsigned long chunk_nr_pages;
1503        unsigned long chunk_start;
1504        int err;
1505
1506        err = -ENOMEM;
1507        pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1508        if (!pm)
1509                goto out;
1510
1511        migrate_prep();
1512
1513        /*
1514         * Store a chunk of page_to_node array in a page,
1515         * but keep the last one as a marker
1516         */
1517        chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1518
1519        for (chunk_start = 0;
1520             chunk_start < nr_pages;
1521             chunk_start += chunk_nr_pages) {
1522                int j;
1523
1524                if (chunk_start + chunk_nr_pages > nr_pages)
1525                        chunk_nr_pages = nr_pages - chunk_start;
1526
1527                /* fill the chunk pm with addrs and nodes from user-space */
1528                for (j = 0; j < chunk_nr_pages; j++) {
1529                        const void __user *p;
1530                        int node;
1531
1532                        err = -EFAULT;
1533                        if (get_user(p, pages + j + chunk_start))
1534                                goto out_pm;
1535                        pm[j].addr = (unsigned long) p;
1536
1537                        if (get_user(node, nodes + j + chunk_start))
1538                                goto out_pm;
1539
1540                        err = -ENODEV;
1541                        if (node < 0 || node >= MAX_NUMNODES)
1542                                goto out_pm;
1543
1544                        if (!node_state(node, N_MEMORY))
1545                                goto out_pm;
1546
1547                        err = -EACCES;
1548                        if (!node_isset(node, task_nodes))
1549                                goto out_pm;
1550
1551                        pm[j].node = node;
1552                }
1553
1554                /* End marker for this chunk */
1555                pm[chunk_nr_pages].node = MAX_NUMNODES;
1556
1557                /* Migrate this chunk */
1558                err = do_move_page_to_node_array(mm, pm,
1559                                                 flags & MPOL_MF_MOVE_ALL);
1560                if (err < 0)
1561                        goto out_pm;
1562
1563                /* Return status information */
1564                for (j = 0; j < chunk_nr_pages; j++)
1565                        if (put_user(pm[j].status, status + j + chunk_start)) {
1566                                err = -EFAULT;
1567                                goto out_pm;
1568                        }
1569        }
1570        err = 0;
1571
1572out_pm:
1573        free_page((unsigned long)pm);
1574out:
1575        return err;
1576}
1577
1578/*
1579 * Determine the nodes of an array of pages and store it in an array of status.
1580 */
1581static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1582                                const void __user **pages, int *status)
1583{
1584        unsigned long i;
1585
1586        down_read(&mm->mmap_sem);
1587
1588        for (i = 0; i < nr_pages; i++) {
1589                unsigned long addr = (unsigned long)(*pages);
1590                struct vm_area_struct *vma;
1591                struct page *page;
1592                int err = -EFAULT;
1593
1594                vma = find_vma(mm, addr);
1595                if (!vma || addr < vma->vm_start)
1596                        goto set_status;
1597
1598                /* FOLL_DUMP to ignore special (like zero) pages */
1599                page = follow_page(vma, addr, FOLL_DUMP);
1600
1601                err = PTR_ERR(page);
1602                if (IS_ERR(page))
1603                        goto set_status;
1604
1605                err = page ? page_to_nid(page) : -ENOENT;
1606set_status:
1607                *status = err;
1608
1609                pages++;
1610                status++;
1611        }
1612
1613        up_read(&mm->mmap_sem);
1614}
1615
1616/*
1617 * Determine the nodes of a user array of pages and store it in
1618 * a user array of status.
1619 */
1620static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1621                         const void __user * __user *pages,
1622                         int __user *status)
1623{
1624#define DO_PAGES_STAT_CHUNK_NR 16
1625        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1626        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1627
1628        while (nr_pages) {
1629                unsigned long chunk_nr;
1630
1631                chunk_nr = nr_pages;
1632                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1633                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1634
1635                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1636                        break;
1637
1638                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1639
1640                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1641                        break;
1642
1643                pages += chunk_nr;
1644                status += chunk_nr;
1645                nr_pages -= chunk_nr;
1646        }
1647        return nr_pages ? -EFAULT : 0;
1648}
1649
1650/*
1651 * Move a list of pages in the address space of the currently executing
1652 * process.
1653 */
1654SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1655                const void __user * __user *, pages,
1656                const int __user *, nodes,
1657                int __user *, status, int, flags)
1658{
1659        const struct cred *cred = current_cred(), *tcred;
1660        struct task_struct *task;
1661        struct mm_struct *mm;
1662        int err;
1663        nodemask_t task_nodes;
1664
1665        /* Check flags */
1666        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1667                return -EINVAL;
1668
1669        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1670                return -EPERM;
1671
1672        /* Find the mm_struct */
1673        rcu_read_lock();
1674        task = pid ? find_task_by_vpid(pid) : current;
1675        if (!task) {
1676                rcu_read_unlock();
1677                return -ESRCH;
1678        }
1679        get_task_struct(task);
1680
1681        /*
1682         * Check if this process has the right to modify the specified
1683         * process. The right exists if the process has administrative
1684         * capabilities, superuser privileges or the same
1685         * userid as the target process.
1686         */
1687        tcred = __task_cred(task);
1688        if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1689            !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1690            !capable(CAP_SYS_NICE)) {
1691                rcu_read_unlock();
1692                err = -EPERM;
1693                goto out;
1694        }
1695        rcu_read_unlock();
1696
1697        err = security_task_movememory(task);
1698        if (err)
1699                goto out;
1700
1701        task_nodes = cpuset_mems_allowed(task);
1702        mm = get_task_mm(task);
1703        put_task_struct(task);
1704
1705        if (!mm)
1706                return -EINVAL;
1707
1708        if (nodes)
1709                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1710                                    nodes, status, flags);
1711        else
1712                err = do_pages_stat(mm, nr_pages, pages, status);
1713
1714        mmput(mm);
1715        return err;
1716
1717out:
1718        put_task_struct(task);
1719        return err;
1720}
1721
1722#ifdef CONFIG_NUMA_BALANCING
1723/*
1724 * Returns true if this is a safe migration target node for misplaced NUMA
1725 * pages. Currently it only checks the watermarks which crude
1726 */
1727static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1728                                   unsigned long nr_migrate_pages)
1729{
1730        int z;
1731
1732        if (!pgdat_reclaimable(pgdat))
1733                return false;
1734
1735        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1736                struct zone *zone = pgdat->node_zones + z;
1737
1738                if (!populated_zone(zone))
1739                        continue;
1740
1741                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1742                if (!zone_watermark_ok(zone, 0,
1743                                       high_wmark_pages(zone) +
1744                                       nr_migrate_pages,
1745                                       0, 0))
1746                        continue;
1747                return true;
1748        }
1749        return false;
1750}
1751
1752static struct page *alloc_misplaced_dst_page(struct page *page,
1753                                           unsigned long data,
1754                                           int **result)
1755{
1756        int nid = (int) data;
1757        struct page *newpage;
1758
1759        newpage = __alloc_pages_node(nid,
1760                                         (GFP_HIGHUSER_MOVABLE |
1761                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1762                                          __GFP_NORETRY | __GFP_NOWARN) &
1763                                         ~__GFP_RECLAIM, 0);
1764
1765        return newpage;
1766}
1767
1768/*
1769 * page migration rate limiting control.
1770 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1771 * window of time. Default here says do not migrate more than 1280M per second.
1772 */
1773static unsigned int migrate_interval_millisecs __read_mostly = 100;
1774static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1775
1776/* Returns true if the node is migrate rate-limited after the update */
1777static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1778                                        unsigned long nr_pages)
1779{
1780        /*
1781         * Rate-limit the amount of data that is being migrated to a node.
1782         * Optimal placement is no good if the memory bus is saturated and
1783         * all the time is being spent migrating!
1784         */
1785        if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1786                spin_lock(&pgdat->numabalancing_migrate_lock);
1787                pgdat->numabalancing_migrate_nr_pages = 0;
1788                pgdat->numabalancing_migrate_next_window = jiffies +
1789                        msecs_to_jiffies(migrate_interval_millisecs);
1790                spin_unlock(&pgdat->numabalancing_migrate_lock);
1791        }
1792        if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1793                trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1794                                                                nr_pages);
1795                return true;
1796        }
1797
1798        /*
1799         * This is an unlocked non-atomic update so errors are possible.
1800         * The consequences are failing to migrate when we potentiall should
1801         * have which is not severe enough to warrant locking. If it is ever
1802         * a problem, it can be converted to a per-cpu counter.
1803         */
1804        pgdat->numabalancing_migrate_nr_pages += nr_pages;
1805        return false;
1806}
1807
1808static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1809{
1810        int page_lru;
1811
1812        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1813
1814        /* Avoid migrating to a node that is nearly full */
1815        if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1816                return 0;
1817
1818        if (isolate_lru_page(page))
1819                return 0;
1820
1821        /*
1822         * migrate_misplaced_transhuge_page() skips page migration's usual
1823         * check on page_count(), so we must do it here, now that the page
1824         * has been isolated: a GUP pin, or any other pin, prevents migration.
1825         * The expected page count is 3: 1 for page's mapcount and 1 for the
1826         * caller's pin and 1 for the reference taken by isolate_lru_page().
1827         */
1828        if (PageTransHuge(page) && page_count(page) != 3) {
1829                putback_lru_page(page);
1830                return 0;
1831        }
1832
1833        page_lru = page_is_file_cache(page);
1834        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1835                                hpage_nr_pages(page));
1836
1837        /*
1838         * Isolating the page has taken another reference, so the
1839         * caller's reference can be safely dropped without the page
1840         * disappearing underneath us during migration.
1841         */
1842        put_page(page);
1843        return 1;
1844}
1845
1846bool pmd_trans_migrating(pmd_t pmd)
1847{
1848        struct page *page = pmd_page(pmd);
1849        return PageLocked(page);
1850}
1851
1852/*
1853 * Attempt to migrate a misplaced page to the specified destination
1854 * node. Caller is expected to have an elevated reference count on
1855 * the page that will be dropped by this function before returning.
1856 */
1857int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1858                           int node)
1859{
1860        pg_data_t *pgdat = NODE_DATA(node);
1861        int isolated;
1862        int nr_remaining;
1863        LIST_HEAD(migratepages);
1864
1865        /*
1866         * Don't migrate file pages that are mapped in multiple processes
1867         * with execute permissions as they are probably shared libraries.
1868         */
1869        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1870            (vma->vm_flags & VM_EXEC))
1871                goto out;
1872
1873        /*
1874         * Rate-limit the amount of data that is being migrated to a node.
1875         * Optimal placement is no good if the memory bus is saturated and
1876         * all the time is being spent migrating!
1877         */
1878        if (numamigrate_update_ratelimit(pgdat, 1))
1879                goto out;
1880
1881        isolated = numamigrate_isolate_page(pgdat, page);
1882        if (!isolated)
1883                goto out;
1884
1885        list_add(&page->lru, &migratepages);
1886        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1887                                     NULL, node, MIGRATE_ASYNC,
1888                                     MR_NUMA_MISPLACED);
1889        if (nr_remaining) {
1890                if (!list_empty(&migratepages)) {
1891                        list_del(&page->lru);
1892                        dec_node_page_state(page, NR_ISOLATED_ANON +
1893                                        page_is_file_cache(page));
1894                        putback_lru_page(page);
1895                }
1896                isolated = 0;
1897        } else
1898                count_vm_numa_event(NUMA_PAGE_MIGRATE);
1899        BUG_ON(!list_empty(&migratepages));
1900        return isolated;
1901
1902out:
1903        put_page(page);
1904        return 0;
1905}
1906#endif /* CONFIG_NUMA_BALANCING */
1907
1908#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1909/*
1910 * Migrates a THP to a given target node. page must be locked and is unlocked
1911 * before returning.
1912 */
1913int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1914                                struct vm_area_struct *vma,
1915                                pmd_t *pmd, pmd_t entry,
1916                                unsigned long address,
1917                                struct page *page, int node)
1918{
1919        spinlock_t *ptl;
1920        pg_data_t *pgdat = NODE_DATA(node);
1921        int isolated = 0;
1922        struct page *new_page = NULL;
1923        int page_lru = page_is_file_cache(page);
1924        unsigned long mmun_start = address & HPAGE_PMD_MASK;
1925        unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1926        pmd_t orig_entry;
1927
1928        /*
1929         * Rate-limit the amount of data that is being migrated to a node.
1930         * Optimal placement is no good if the memory bus is saturated and
1931         * all the time is being spent migrating!
1932         */
1933        if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1934                goto out_dropref;
1935
1936        new_page = alloc_pages_node(node,
1937                (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1938                HPAGE_PMD_ORDER);
1939        if (!new_page)
1940                goto out_fail;
1941        prep_transhuge_page(new_page);
1942
1943        isolated = numamigrate_isolate_page(pgdat, page);
1944        if (!isolated) {
1945                put_page(new_page);
1946                goto out_fail;
1947        }
1948        /*
1949         * We are not sure a pending tlb flush here is for a huge page
1950         * mapping or not. Hence use the tlb range variant
1951         */
1952        if (mm_tlb_flush_pending(mm))
1953                flush_tlb_range(vma, mmun_start, mmun_end);
1954
1955        /* Prepare a page as a migration target */
1956        __SetPageLocked(new_page);
1957        __SetPageSwapBacked(new_page);
1958
1959        /* anon mapping, we can simply copy page->mapping to the new page: */
1960        new_page->mapping = page->mapping;
1961        new_page->index = page->index;
1962        migrate_page_copy(new_page, page);
1963        WARN_ON(PageLRU(new_page));
1964
1965        /* Recheck the target PMD */
1966        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1967        ptl = pmd_lock(mm, pmd);
1968        if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1969fail_putback:
1970                spin_unlock(ptl);
1971                mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1972
1973                /* Reverse changes made by migrate_page_copy() */
1974                if (TestClearPageActive(new_page))
1975                        SetPageActive(page);
1976                if (TestClearPageUnevictable(new_page))
1977                        SetPageUnevictable(page);
1978
1979                unlock_page(new_page);
1980                put_page(new_page);             /* Free it */
1981
1982                /* Retake the callers reference and putback on LRU */
1983                get_page(page);
1984                putback_lru_page(page);
1985                mod_node_page_state(page_pgdat(page),
1986                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1987
1988                goto out_unlock;
1989        }
1990
1991        orig_entry = *pmd;
1992        entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1993        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1994
1995        /*
1996         * Clear the old entry under pagetable lock and establish the new PTE.
1997         * Any parallel GUP will either observe the old page blocking on the
1998         * page lock, block on the page table lock or observe the new page.
1999         * The SetPageUptodate on the new page and page_add_new_anon_rmap
2000         * guarantee the copy is visible before the pagetable update.
2001         */
2002        flush_cache_range(vma, mmun_start, mmun_end);
2003        page_add_anon_rmap(new_page, vma, mmun_start, true);
2004        pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2005        set_pmd_at(mm, mmun_start, pmd, entry);
2006        update_mmu_cache_pmd(vma, address, &entry);
2007
2008        if (page_count(page) != 2) {
2009                set_pmd_at(mm, mmun_start, pmd, orig_entry);
2010                flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2011                mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2012                update_mmu_cache_pmd(vma, address, &entry);
2013                page_remove_rmap(new_page, true);
2014                goto fail_putback;
2015        }
2016
2017        mlock_migrate_page(new_page, page);
2018        page_remove_rmap(page, true);
2019        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2020
2021        spin_unlock(ptl);
2022        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2023
2024        /* Take an "isolate" reference and put new page on the LRU. */
2025        get_page(new_page);
2026        putback_lru_page(new_page);
2027
2028        unlock_page(new_page);
2029        unlock_page(page);
2030        put_page(page);                 /* Drop the rmap reference */
2031        put_page(page);                 /* Drop the LRU isolation reference */
2032
2033        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2034        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2035
2036        mod_node_page_state(page_pgdat(page),
2037                        NR_ISOLATED_ANON + page_lru,
2038                        -HPAGE_PMD_NR);
2039        return isolated;
2040
2041out_fail:
2042        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2043out_dropref:
2044        ptl = pmd_lock(mm, pmd);
2045        if (pmd_same(*pmd, entry)) {
2046                entry = pmd_modify(entry, vma->vm_page_prot);
2047                set_pmd_at(mm, mmun_start, pmd, entry);
2048                update_mmu_cache_pmd(vma, address, &entry);
2049        }
2050        spin_unlock(ptl);
2051
2052out_unlock:
2053        unlock_page(page);
2054        put_page(page);
2055        return 0;
2056}
2057#endif /* CONFIG_NUMA_BALANCING */
2058
2059#endif /* CONFIG_NUMA */
2060