linux/security/keys/encrypted-keys/encrypted.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2010 IBM Corporation
   3 * Copyright (C) 2010 Politecnico di Torino, Italy
   4 *                    TORSEC group -- http://security.polito.it
   5 *
   6 * Authors:
   7 * Mimi Zohar <zohar@us.ibm.com>
   8 * Roberto Sassu <roberto.sassu@polito.it>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation, version 2 of the License.
  13 *
  14 * See Documentation/security/keys-trusted-encrypted.txt
  15 */
  16
  17#include <linux/uaccess.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/slab.h>
  21#include <linux/parser.h>
  22#include <linux/string.h>
  23#include <linux/err.h>
  24#include <keys/user-type.h>
  25#include <keys/trusted-type.h>
  26#include <keys/encrypted-type.h>
  27#include <linux/key-type.h>
  28#include <linux/random.h>
  29#include <linux/rcupdate.h>
  30#include <linux/scatterlist.h>
  31#include <linux/ctype.h>
  32#include <crypto/aes.h>
  33#include <crypto/hash.h>
  34#include <crypto/sha.h>
  35#include <crypto/skcipher.h>
  36
  37#include "encrypted.h"
  38#include "ecryptfs_format.h"
  39
  40static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  41static const char KEY_USER_PREFIX[] = "user:";
  42static const char hash_alg[] = "sha256";
  43static const char hmac_alg[] = "hmac(sha256)";
  44static const char blkcipher_alg[] = "cbc(aes)";
  45static const char key_format_default[] = "default";
  46static const char key_format_ecryptfs[] = "ecryptfs";
  47static unsigned int ivsize;
  48static int blksize;
  49
  50#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  51#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  52#define KEY_ECRYPTFS_DESC_LEN 16
  53#define HASH_SIZE SHA256_DIGEST_SIZE
  54#define MAX_DATA_SIZE 4096
  55#define MIN_DATA_SIZE  20
  56
  57struct sdesc {
  58        struct shash_desc shash;
  59        char ctx[];
  60};
  61
  62static struct crypto_shash *hashalg;
  63static struct crypto_shash *hmacalg;
  64
  65enum {
  66        Opt_err = -1, Opt_new, Opt_load, Opt_update
  67};
  68
  69enum {
  70        Opt_error = -1, Opt_default, Opt_ecryptfs
  71};
  72
  73static const match_table_t key_format_tokens = {
  74        {Opt_default, "default"},
  75        {Opt_ecryptfs, "ecryptfs"},
  76        {Opt_error, NULL}
  77};
  78
  79static const match_table_t key_tokens = {
  80        {Opt_new, "new"},
  81        {Opt_load, "load"},
  82        {Opt_update, "update"},
  83        {Opt_err, NULL}
  84};
  85
  86static int aes_get_sizes(void)
  87{
  88        struct crypto_skcipher *tfm;
  89
  90        tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  91        if (IS_ERR(tfm)) {
  92                pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  93                       PTR_ERR(tfm));
  94                return PTR_ERR(tfm);
  95        }
  96        ivsize = crypto_skcipher_ivsize(tfm);
  97        blksize = crypto_skcipher_blocksize(tfm);
  98        crypto_free_skcipher(tfm);
  99        return 0;
 100}
 101
 102/*
 103 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
 104 *
 105 * The description of a encrypted key with format 'ecryptfs' must contain
 106 * exactly 16 hexadecimal characters.
 107 *
 108 */
 109static int valid_ecryptfs_desc(const char *ecryptfs_desc)
 110{
 111        int i;
 112
 113        if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
 114                pr_err("encrypted_key: key description must be %d hexadecimal "
 115                       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
 116                return -EINVAL;
 117        }
 118
 119        for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
 120                if (!isxdigit(ecryptfs_desc[i])) {
 121                        pr_err("encrypted_key: key description must contain "
 122                               "only hexadecimal characters\n");
 123                        return -EINVAL;
 124                }
 125        }
 126
 127        return 0;
 128}
 129
 130/*
 131 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
 132 *
 133 * key-type:= "trusted:" | "user:"
 134 * desc:= master-key description
 135 *
 136 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
 137 * only the master key description is permitted to change, not the key-type.
 138 * The key-type remains constant.
 139 *
 140 * On success returns 0, otherwise -EINVAL.
 141 */
 142static int valid_master_desc(const char *new_desc, const char *orig_desc)
 143{
 144        if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
 145                if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
 146                        goto out;
 147                if (orig_desc)
 148                        if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
 149                                goto out;
 150        } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
 151                if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
 152                        goto out;
 153                if (orig_desc)
 154                        if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
 155                                goto out;
 156        } else
 157                goto out;
 158        return 0;
 159out:
 160        return -EINVAL;
 161}
 162
 163/*
 164 * datablob_parse - parse the keyctl data
 165 *
 166 * datablob format:
 167 * new [<format>] <master-key name> <decrypted data length>
 168 * load [<format>] <master-key name> <decrypted data length>
 169 *     <encrypted iv + data>
 170 * update <new-master-key name>
 171 *
 172 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
 173 * which is null terminated.
 174 *
 175 * On success returns 0, otherwise -EINVAL.
 176 */
 177static int datablob_parse(char *datablob, const char **format,
 178                          char **master_desc, char **decrypted_datalen,
 179                          char **hex_encoded_iv)
 180{
 181        substring_t args[MAX_OPT_ARGS];
 182        int ret = -EINVAL;
 183        int key_cmd;
 184        int key_format;
 185        char *p, *keyword;
 186
 187        keyword = strsep(&datablob, " \t");
 188        if (!keyword) {
 189                pr_info("encrypted_key: insufficient parameters specified\n");
 190                return ret;
 191        }
 192        key_cmd = match_token(keyword, key_tokens, args);
 193
 194        /* Get optional format: default | ecryptfs */
 195        p = strsep(&datablob, " \t");
 196        if (!p) {
 197                pr_err("encrypted_key: insufficient parameters specified\n");
 198                return ret;
 199        }
 200
 201        key_format = match_token(p, key_format_tokens, args);
 202        switch (key_format) {
 203        case Opt_ecryptfs:
 204        case Opt_default:
 205                *format = p;
 206                *master_desc = strsep(&datablob, " \t");
 207                break;
 208        case Opt_error:
 209                *master_desc = p;
 210                break;
 211        }
 212
 213        if (!*master_desc) {
 214                pr_info("encrypted_key: master key parameter is missing\n");
 215                goto out;
 216        }
 217
 218        if (valid_master_desc(*master_desc, NULL) < 0) {
 219                pr_info("encrypted_key: master key parameter \'%s\' "
 220                        "is invalid\n", *master_desc);
 221                goto out;
 222        }
 223
 224        if (decrypted_datalen) {
 225                *decrypted_datalen = strsep(&datablob, " \t");
 226                if (!*decrypted_datalen) {
 227                        pr_info("encrypted_key: keylen parameter is missing\n");
 228                        goto out;
 229                }
 230        }
 231
 232        switch (key_cmd) {
 233        case Opt_new:
 234                if (!decrypted_datalen) {
 235                        pr_info("encrypted_key: keyword \'%s\' not allowed "
 236                                "when called from .update method\n", keyword);
 237                        break;
 238                }
 239                ret = 0;
 240                break;
 241        case Opt_load:
 242                if (!decrypted_datalen) {
 243                        pr_info("encrypted_key: keyword \'%s\' not allowed "
 244                                "when called from .update method\n", keyword);
 245                        break;
 246                }
 247                *hex_encoded_iv = strsep(&datablob, " \t");
 248                if (!*hex_encoded_iv) {
 249                        pr_info("encrypted_key: hex blob is missing\n");
 250                        break;
 251                }
 252                ret = 0;
 253                break;
 254        case Opt_update:
 255                if (decrypted_datalen) {
 256                        pr_info("encrypted_key: keyword \'%s\' not allowed "
 257                                "when called from .instantiate method\n",
 258                                keyword);
 259                        break;
 260                }
 261                ret = 0;
 262                break;
 263        case Opt_err:
 264                pr_info("encrypted_key: keyword \'%s\' not recognized\n",
 265                        keyword);
 266                break;
 267        }
 268out:
 269        return ret;
 270}
 271
 272/*
 273 * datablob_format - format as an ascii string, before copying to userspace
 274 */
 275static char *datablob_format(struct encrypted_key_payload *epayload,
 276                             size_t asciiblob_len)
 277{
 278        char *ascii_buf, *bufp;
 279        u8 *iv = epayload->iv;
 280        int len;
 281        int i;
 282
 283        ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
 284        if (!ascii_buf)
 285                goto out;
 286
 287        ascii_buf[asciiblob_len] = '\0';
 288
 289        /* copy datablob master_desc and datalen strings */
 290        len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
 291                      epayload->master_desc, epayload->datalen);
 292
 293        /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
 294        bufp = &ascii_buf[len];
 295        for (i = 0; i < (asciiblob_len - len) / 2; i++)
 296                bufp = hex_byte_pack(bufp, iv[i]);
 297out:
 298        return ascii_buf;
 299}
 300
 301/*
 302 * request_user_key - request the user key
 303 *
 304 * Use a user provided key to encrypt/decrypt an encrypted-key.
 305 */
 306static struct key *request_user_key(const char *master_desc, const u8 **master_key,
 307                                    size_t *master_keylen)
 308{
 309        const struct user_key_payload *upayload;
 310        struct key *ukey;
 311
 312        ukey = request_key(&key_type_user, master_desc, NULL);
 313        if (IS_ERR(ukey))
 314                goto error;
 315
 316        down_read(&ukey->sem);
 317        upayload = user_key_payload(ukey);
 318        *master_key = upayload->data;
 319        *master_keylen = upayload->datalen;
 320error:
 321        return ukey;
 322}
 323
 324static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
 325{
 326        struct sdesc *sdesc;
 327        int size;
 328
 329        size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
 330        sdesc = kmalloc(size, GFP_KERNEL);
 331        if (!sdesc)
 332                return ERR_PTR(-ENOMEM);
 333        sdesc->shash.tfm = alg;
 334        sdesc->shash.flags = 0x0;
 335        return sdesc;
 336}
 337
 338static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
 339                     const u8 *buf, unsigned int buflen)
 340{
 341        struct sdesc *sdesc;
 342        int ret;
 343
 344        sdesc = alloc_sdesc(hmacalg);
 345        if (IS_ERR(sdesc)) {
 346                pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
 347                return PTR_ERR(sdesc);
 348        }
 349
 350        ret = crypto_shash_setkey(hmacalg, key, keylen);
 351        if (!ret)
 352                ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
 353        kfree(sdesc);
 354        return ret;
 355}
 356
 357static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
 358{
 359        struct sdesc *sdesc;
 360        int ret;
 361
 362        sdesc = alloc_sdesc(hashalg);
 363        if (IS_ERR(sdesc)) {
 364                pr_info("encrypted_key: can't alloc %s\n", hash_alg);
 365                return PTR_ERR(sdesc);
 366        }
 367
 368        ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
 369        kfree(sdesc);
 370        return ret;
 371}
 372
 373enum derived_key_type { ENC_KEY, AUTH_KEY };
 374
 375/* Derive authentication/encryption key from trusted key */
 376static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
 377                           const u8 *master_key, size_t master_keylen)
 378{
 379        u8 *derived_buf;
 380        unsigned int derived_buf_len;
 381        int ret;
 382
 383        derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
 384        if (derived_buf_len < HASH_SIZE)
 385                derived_buf_len = HASH_SIZE;
 386
 387        derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
 388        if (!derived_buf) {
 389                pr_err("encrypted_key: out of memory\n");
 390                return -ENOMEM;
 391        }
 392        if (key_type)
 393                strcpy(derived_buf, "AUTH_KEY");
 394        else
 395                strcpy(derived_buf, "ENC_KEY");
 396
 397        memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
 398               master_keylen);
 399        ret = calc_hash(derived_key, derived_buf, derived_buf_len);
 400        kfree(derived_buf);
 401        return ret;
 402}
 403
 404static struct skcipher_request *init_skcipher_req(const u8 *key,
 405                                                  unsigned int key_len)
 406{
 407        struct skcipher_request *req;
 408        struct crypto_skcipher *tfm;
 409        int ret;
 410
 411        tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
 412        if (IS_ERR(tfm)) {
 413                pr_err("encrypted_key: failed to load %s transform (%ld)\n",
 414                       blkcipher_alg, PTR_ERR(tfm));
 415                return ERR_CAST(tfm);
 416        }
 417
 418        ret = crypto_skcipher_setkey(tfm, key, key_len);
 419        if (ret < 0) {
 420                pr_err("encrypted_key: failed to setkey (%d)\n", ret);
 421                crypto_free_skcipher(tfm);
 422                return ERR_PTR(ret);
 423        }
 424
 425        req = skcipher_request_alloc(tfm, GFP_KERNEL);
 426        if (!req) {
 427                pr_err("encrypted_key: failed to allocate request for %s\n",
 428                       blkcipher_alg);
 429                crypto_free_skcipher(tfm);
 430                return ERR_PTR(-ENOMEM);
 431        }
 432
 433        skcipher_request_set_callback(req, 0, NULL, NULL);
 434        return req;
 435}
 436
 437static struct key *request_master_key(struct encrypted_key_payload *epayload,
 438                                      const u8 **master_key, size_t *master_keylen)
 439{
 440        struct key *mkey = NULL;
 441
 442        if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
 443                     KEY_TRUSTED_PREFIX_LEN)) {
 444                mkey = request_trusted_key(epayload->master_desc +
 445                                           KEY_TRUSTED_PREFIX_LEN,
 446                                           master_key, master_keylen);
 447        } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
 448                            KEY_USER_PREFIX_LEN)) {
 449                mkey = request_user_key(epayload->master_desc +
 450                                        KEY_USER_PREFIX_LEN,
 451                                        master_key, master_keylen);
 452        } else
 453                goto out;
 454
 455        if (IS_ERR(mkey)) {
 456                int ret = PTR_ERR(mkey);
 457
 458                if (ret == -ENOTSUPP)
 459                        pr_info("encrypted_key: key %s not supported",
 460                                epayload->master_desc);
 461                else
 462                        pr_info("encrypted_key: key %s not found",
 463                                epayload->master_desc);
 464                goto out;
 465        }
 466
 467        dump_master_key(*master_key, *master_keylen);
 468out:
 469        return mkey;
 470}
 471
 472/* Before returning data to userspace, encrypt decrypted data. */
 473static int derived_key_encrypt(struct encrypted_key_payload *epayload,
 474                               const u8 *derived_key,
 475                               unsigned int derived_keylen)
 476{
 477        struct scatterlist sg_in[2];
 478        struct scatterlist sg_out[1];
 479        struct crypto_skcipher *tfm;
 480        struct skcipher_request *req;
 481        unsigned int encrypted_datalen;
 482        u8 iv[AES_BLOCK_SIZE];
 483        unsigned int padlen;
 484        char pad[16];
 485        int ret;
 486
 487        encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 488        padlen = encrypted_datalen - epayload->decrypted_datalen;
 489
 490        req = init_skcipher_req(derived_key, derived_keylen);
 491        ret = PTR_ERR(req);
 492        if (IS_ERR(req))
 493                goto out;
 494        dump_decrypted_data(epayload);
 495
 496        memset(pad, 0, sizeof pad);
 497        sg_init_table(sg_in, 2);
 498        sg_set_buf(&sg_in[0], epayload->decrypted_data,
 499                   epayload->decrypted_datalen);
 500        sg_set_buf(&sg_in[1], pad, padlen);
 501
 502        sg_init_table(sg_out, 1);
 503        sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
 504
 505        memcpy(iv, epayload->iv, sizeof(iv));
 506        skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
 507        ret = crypto_skcipher_encrypt(req);
 508        tfm = crypto_skcipher_reqtfm(req);
 509        skcipher_request_free(req);
 510        crypto_free_skcipher(tfm);
 511        if (ret < 0)
 512                pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
 513        else
 514                dump_encrypted_data(epayload, encrypted_datalen);
 515out:
 516        return ret;
 517}
 518
 519static int datablob_hmac_append(struct encrypted_key_payload *epayload,
 520                                const u8 *master_key, size_t master_keylen)
 521{
 522        u8 derived_key[HASH_SIZE];
 523        u8 *digest;
 524        int ret;
 525
 526        ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 527        if (ret < 0)
 528                goto out;
 529
 530        digest = epayload->format + epayload->datablob_len;
 531        ret = calc_hmac(digest, derived_key, sizeof derived_key,
 532                        epayload->format, epayload->datablob_len);
 533        if (!ret)
 534                dump_hmac(NULL, digest, HASH_SIZE);
 535out:
 536        return ret;
 537}
 538
 539/* verify HMAC before decrypting encrypted key */
 540static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
 541                                const u8 *format, const u8 *master_key,
 542                                size_t master_keylen)
 543{
 544        u8 derived_key[HASH_SIZE];
 545        u8 digest[HASH_SIZE];
 546        int ret;
 547        char *p;
 548        unsigned short len;
 549
 550        ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 551        if (ret < 0)
 552                goto out;
 553
 554        len = epayload->datablob_len;
 555        if (!format) {
 556                p = epayload->master_desc;
 557                len -= strlen(epayload->format) + 1;
 558        } else
 559                p = epayload->format;
 560
 561        ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
 562        if (ret < 0)
 563                goto out;
 564        ret = memcmp(digest, epayload->format + epayload->datablob_len,
 565                     sizeof digest);
 566        if (ret) {
 567                ret = -EINVAL;
 568                dump_hmac("datablob",
 569                          epayload->format + epayload->datablob_len,
 570                          HASH_SIZE);
 571                dump_hmac("calc", digest, HASH_SIZE);
 572        }
 573out:
 574        return ret;
 575}
 576
 577static int derived_key_decrypt(struct encrypted_key_payload *epayload,
 578                               const u8 *derived_key,
 579                               unsigned int derived_keylen)
 580{
 581        struct scatterlist sg_in[1];
 582        struct scatterlist sg_out[2];
 583        struct crypto_skcipher *tfm;
 584        struct skcipher_request *req;
 585        unsigned int encrypted_datalen;
 586        u8 iv[AES_BLOCK_SIZE];
 587        char pad[16];
 588        int ret;
 589
 590        encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 591        req = init_skcipher_req(derived_key, derived_keylen);
 592        ret = PTR_ERR(req);
 593        if (IS_ERR(req))
 594                goto out;
 595        dump_encrypted_data(epayload, encrypted_datalen);
 596
 597        memset(pad, 0, sizeof pad);
 598        sg_init_table(sg_in, 1);
 599        sg_init_table(sg_out, 2);
 600        sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
 601        sg_set_buf(&sg_out[0], epayload->decrypted_data,
 602                   epayload->decrypted_datalen);
 603        sg_set_buf(&sg_out[1], pad, sizeof pad);
 604
 605        memcpy(iv, epayload->iv, sizeof(iv));
 606        skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
 607        ret = crypto_skcipher_decrypt(req);
 608        tfm = crypto_skcipher_reqtfm(req);
 609        skcipher_request_free(req);
 610        crypto_free_skcipher(tfm);
 611        if (ret < 0)
 612                goto out;
 613        dump_decrypted_data(epayload);
 614out:
 615        return ret;
 616}
 617
 618/* Allocate memory for decrypted key and datablob. */
 619static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
 620                                                         const char *format,
 621                                                         const char *master_desc,
 622                                                         const char *datalen)
 623{
 624        struct encrypted_key_payload *epayload = NULL;
 625        unsigned short datablob_len;
 626        unsigned short decrypted_datalen;
 627        unsigned short payload_datalen;
 628        unsigned int encrypted_datalen;
 629        unsigned int format_len;
 630        long dlen;
 631        int ret;
 632
 633        ret = kstrtol(datalen, 10, &dlen);
 634        if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
 635                return ERR_PTR(-EINVAL);
 636
 637        format_len = (!format) ? strlen(key_format_default) : strlen(format);
 638        decrypted_datalen = dlen;
 639        payload_datalen = decrypted_datalen;
 640        if (format && !strcmp(format, key_format_ecryptfs)) {
 641                if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
 642                        pr_err("encrypted_key: keylen for the ecryptfs format "
 643                               "must be equal to %d bytes\n",
 644                               ECRYPTFS_MAX_KEY_BYTES);
 645                        return ERR_PTR(-EINVAL);
 646                }
 647                decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
 648                payload_datalen = sizeof(struct ecryptfs_auth_tok);
 649        }
 650
 651        encrypted_datalen = roundup(decrypted_datalen, blksize);
 652
 653        datablob_len = format_len + 1 + strlen(master_desc) + 1
 654            + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
 655
 656        ret = key_payload_reserve(key, payload_datalen + datablob_len
 657                                  + HASH_SIZE + 1);
 658        if (ret < 0)
 659                return ERR_PTR(ret);
 660
 661        epayload = kzalloc(sizeof(*epayload) + payload_datalen +
 662                           datablob_len + HASH_SIZE + 1, GFP_KERNEL);
 663        if (!epayload)
 664                return ERR_PTR(-ENOMEM);
 665
 666        epayload->payload_datalen = payload_datalen;
 667        epayload->decrypted_datalen = decrypted_datalen;
 668        epayload->datablob_len = datablob_len;
 669        return epayload;
 670}
 671
 672static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
 673                                 const char *format, const char *hex_encoded_iv)
 674{
 675        struct key *mkey;
 676        u8 derived_key[HASH_SIZE];
 677        const u8 *master_key;
 678        u8 *hmac;
 679        const char *hex_encoded_data;
 680        unsigned int encrypted_datalen;
 681        size_t master_keylen;
 682        size_t asciilen;
 683        int ret;
 684
 685        encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 686        asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
 687        if (strlen(hex_encoded_iv) != asciilen)
 688                return -EINVAL;
 689
 690        hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
 691        ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
 692        if (ret < 0)
 693                return -EINVAL;
 694        ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
 695                      encrypted_datalen);
 696        if (ret < 0)
 697                return -EINVAL;
 698
 699        hmac = epayload->format + epayload->datablob_len;
 700        ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
 701                      HASH_SIZE);
 702        if (ret < 0)
 703                return -EINVAL;
 704
 705        mkey = request_master_key(epayload, &master_key, &master_keylen);
 706        if (IS_ERR(mkey))
 707                return PTR_ERR(mkey);
 708
 709        ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
 710        if (ret < 0) {
 711                pr_err("encrypted_key: bad hmac (%d)\n", ret);
 712                goto out;
 713        }
 714
 715        ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 716        if (ret < 0)
 717                goto out;
 718
 719        ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
 720        if (ret < 0)
 721                pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
 722out:
 723        up_read(&mkey->sem);
 724        key_put(mkey);
 725        return ret;
 726}
 727
 728static void __ekey_init(struct encrypted_key_payload *epayload,
 729                        const char *format, const char *master_desc,
 730                        const char *datalen)
 731{
 732        unsigned int format_len;
 733
 734        format_len = (!format) ? strlen(key_format_default) : strlen(format);
 735        epayload->format = epayload->payload_data + epayload->payload_datalen;
 736        epayload->master_desc = epayload->format + format_len + 1;
 737        epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
 738        epayload->iv = epayload->datalen + strlen(datalen) + 1;
 739        epayload->encrypted_data = epayload->iv + ivsize + 1;
 740        epayload->decrypted_data = epayload->payload_data;
 741
 742        if (!format)
 743                memcpy(epayload->format, key_format_default, format_len);
 744        else {
 745                if (!strcmp(format, key_format_ecryptfs))
 746                        epayload->decrypted_data =
 747                                ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
 748
 749                memcpy(epayload->format, format, format_len);
 750        }
 751
 752        memcpy(epayload->master_desc, master_desc, strlen(master_desc));
 753        memcpy(epayload->datalen, datalen, strlen(datalen));
 754}
 755
 756/*
 757 * encrypted_init - initialize an encrypted key
 758 *
 759 * For a new key, use a random number for both the iv and data
 760 * itself.  For an old key, decrypt the hex encoded data.
 761 */
 762static int encrypted_init(struct encrypted_key_payload *epayload,
 763                          const char *key_desc, const char *format,
 764                          const char *master_desc, const char *datalen,
 765                          const char *hex_encoded_iv)
 766{
 767        int ret = 0;
 768
 769        if (format && !strcmp(format, key_format_ecryptfs)) {
 770                ret = valid_ecryptfs_desc(key_desc);
 771                if (ret < 0)
 772                        return ret;
 773
 774                ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
 775                                       key_desc);
 776        }
 777
 778        __ekey_init(epayload, format, master_desc, datalen);
 779        if (!hex_encoded_iv) {
 780                get_random_bytes(epayload->iv, ivsize);
 781
 782                get_random_bytes(epayload->decrypted_data,
 783                                 epayload->decrypted_datalen);
 784        } else
 785                ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
 786        return ret;
 787}
 788
 789/*
 790 * encrypted_instantiate - instantiate an encrypted key
 791 *
 792 * Decrypt an existing encrypted datablob or create a new encrypted key
 793 * based on a kernel random number.
 794 *
 795 * On success, return 0. Otherwise return errno.
 796 */
 797static int encrypted_instantiate(struct key *key,
 798                                 struct key_preparsed_payload *prep)
 799{
 800        struct encrypted_key_payload *epayload = NULL;
 801        char *datablob = NULL;
 802        const char *format = NULL;
 803        char *master_desc = NULL;
 804        char *decrypted_datalen = NULL;
 805        char *hex_encoded_iv = NULL;
 806        size_t datalen = prep->datalen;
 807        int ret;
 808
 809        if (datalen <= 0 || datalen > 32767 || !prep->data)
 810                return -EINVAL;
 811
 812        datablob = kmalloc(datalen + 1, GFP_KERNEL);
 813        if (!datablob)
 814                return -ENOMEM;
 815        datablob[datalen] = 0;
 816        memcpy(datablob, prep->data, datalen);
 817        ret = datablob_parse(datablob, &format, &master_desc,
 818                             &decrypted_datalen, &hex_encoded_iv);
 819        if (ret < 0)
 820                goto out;
 821
 822        epayload = encrypted_key_alloc(key, format, master_desc,
 823                                       decrypted_datalen);
 824        if (IS_ERR(epayload)) {
 825                ret = PTR_ERR(epayload);
 826                goto out;
 827        }
 828        ret = encrypted_init(epayload, key->description, format, master_desc,
 829                             decrypted_datalen, hex_encoded_iv);
 830        if (ret < 0) {
 831                kfree(epayload);
 832                goto out;
 833        }
 834
 835        rcu_assign_keypointer(key, epayload);
 836out:
 837        kfree(datablob);
 838        return ret;
 839}
 840
 841static void encrypted_rcu_free(struct rcu_head *rcu)
 842{
 843        struct encrypted_key_payload *epayload;
 844
 845        epayload = container_of(rcu, struct encrypted_key_payload, rcu);
 846        memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
 847        kfree(epayload);
 848}
 849
 850/*
 851 * encrypted_update - update the master key description
 852 *
 853 * Change the master key description for an existing encrypted key.
 854 * The next read will return an encrypted datablob using the new
 855 * master key description.
 856 *
 857 * On success, return 0. Otherwise return errno.
 858 */
 859static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
 860{
 861        struct encrypted_key_payload *epayload = key->payload.data[0];
 862        struct encrypted_key_payload *new_epayload;
 863        char *buf;
 864        char *new_master_desc = NULL;
 865        const char *format = NULL;
 866        size_t datalen = prep->datalen;
 867        int ret = 0;
 868
 869        if (test_bit(KEY_FLAG_NEGATIVE, &key->flags))
 870                return -ENOKEY;
 871        if (datalen <= 0 || datalen > 32767 || !prep->data)
 872                return -EINVAL;
 873
 874        buf = kmalloc(datalen + 1, GFP_KERNEL);
 875        if (!buf)
 876                return -ENOMEM;
 877
 878        buf[datalen] = 0;
 879        memcpy(buf, prep->data, datalen);
 880        ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
 881        if (ret < 0)
 882                goto out;
 883
 884        ret = valid_master_desc(new_master_desc, epayload->master_desc);
 885        if (ret < 0)
 886                goto out;
 887
 888        new_epayload = encrypted_key_alloc(key, epayload->format,
 889                                           new_master_desc, epayload->datalen);
 890        if (IS_ERR(new_epayload)) {
 891                ret = PTR_ERR(new_epayload);
 892                goto out;
 893        }
 894
 895        __ekey_init(new_epayload, epayload->format, new_master_desc,
 896                    epayload->datalen);
 897
 898        memcpy(new_epayload->iv, epayload->iv, ivsize);
 899        memcpy(new_epayload->payload_data, epayload->payload_data,
 900               epayload->payload_datalen);
 901
 902        rcu_assign_keypointer(key, new_epayload);
 903        call_rcu(&epayload->rcu, encrypted_rcu_free);
 904out:
 905        kfree(buf);
 906        return ret;
 907}
 908
 909/*
 910 * encrypted_read - format and copy the encrypted data to userspace
 911 *
 912 * The resulting datablob format is:
 913 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
 914 *
 915 * On success, return to userspace the encrypted key datablob size.
 916 */
 917static long encrypted_read(const struct key *key, char __user *buffer,
 918                           size_t buflen)
 919{
 920        struct encrypted_key_payload *epayload;
 921        struct key *mkey;
 922        const u8 *master_key;
 923        size_t master_keylen;
 924        char derived_key[HASH_SIZE];
 925        char *ascii_buf;
 926        size_t asciiblob_len;
 927        int ret;
 928
 929        epayload = rcu_dereference_key(key);
 930
 931        /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
 932        asciiblob_len = epayload->datablob_len + ivsize + 1
 933            + roundup(epayload->decrypted_datalen, blksize)
 934            + (HASH_SIZE * 2);
 935
 936        if (!buffer || buflen < asciiblob_len)
 937                return asciiblob_len;
 938
 939        mkey = request_master_key(epayload, &master_key, &master_keylen);
 940        if (IS_ERR(mkey))
 941                return PTR_ERR(mkey);
 942
 943        ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 944        if (ret < 0)
 945                goto out;
 946
 947        ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
 948        if (ret < 0)
 949                goto out;
 950
 951        ret = datablob_hmac_append(epayload, master_key, master_keylen);
 952        if (ret < 0)
 953                goto out;
 954
 955        ascii_buf = datablob_format(epayload, asciiblob_len);
 956        if (!ascii_buf) {
 957                ret = -ENOMEM;
 958                goto out;
 959        }
 960
 961        up_read(&mkey->sem);
 962        key_put(mkey);
 963
 964        if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
 965                ret = -EFAULT;
 966        kfree(ascii_buf);
 967
 968        return asciiblob_len;
 969out:
 970        up_read(&mkey->sem);
 971        key_put(mkey);
 972        return ret;
 973}
 974
 975/*
 976 * encrypted_destroy - before freeing the key, clear the decrypted data
 977 *
 978 * Before freeing the key, clear the memory containing the decrypted
 979 * key data.
 980 */
 981static void encrypted_destroy(struct key *key)
 982{
 983        struct encrypted_key_payload *epayload = key->payload.data[0];
 984
 985        if (!epayload)
 986                return;
 987
 988        memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
 989        kfree(key->payload.data[0]);
 990}
 991
 992struct key_type key_type_encrypted = {
 993        .name = "encrypted",
 994        .instantiate = encrypted_instantiate,
 995        .update = encrypted_update,
 996        .destroy = encrypted_destroy,
 997        .describe = user_describe,
 998        .read = encrypted_read,
 999};
1000EXPORT_SYMBOL_GPL(key_type_encrypted);
1001
1002static void encrypted_shash_release(void)
1003{
1004        if (hashalg)
1005                crypto_free_shash(hashalg);
1006        if (hmacalg)
1007                crypto_free_shash(hmacalg);
1008}
1009
1010static int __init encrypted_shash_alloc(void)
1011{
1012        int ret;
1013
1014        hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
1015        if (IS_ERR(hmacalg)) {
1016                pr_info("encrypted_key: could not allocate crypto %s\n",
1017                        hmac_alg);
1018                return PTR_ERR(hmacalg);
1019        }
1020
1021        hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1022        if (IS_ERR(hashalg)) {
1023                pr_info("encrypted_key: could not allocate crypto %s\n",
1024                        hash_alg);
1025                ret = PTR_ERR(hashalg);
1026                goto hashalg_fail;
1027        }
1028
1029        return 0;
1030
1031hashalg_fail:
1032        crypto_free_shash(hmacalg);
1033        return ret;
1034}
1035
1036static int __init init_encrypted(void)
1037{
1038        int ret;
1039
1040        ret = encrypted_shash_alloc();
1041        if (ret < 0)
1042                return ret;
1043        ret = aes_get_sizes();
1044        if (ret < 0)
1045                goto out;
1046        ret = register_key_type(&key_type_encrypted);
1047        if (ret < 0)
1048                goto out;
1049        return 0;
1050out:
1051        encrypted_shash_release();
1052        return ret;
1053
1054}
1055
1056static void __exit cleanup_encrypted(void)
1057{
1058        encrypted_shash_release();
1059        unregister_key_type(&key_type_encrypted);
1060}
1061
1062late_initcall(init_encrypted);
1063module_exit(cleanup_encrypted);
1064
1065MODULE_LICENSE("GPL");
1066