linux/arch/arm/kvm/arm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/cpu_pm.h>
  20#include <linux/errno.h>
  21#include <linux/err.h>
  22#include <linux/kvm_host.h>
  23#include <linux/list.h>
  24#include <linux/module.h>
  25#include <linux/vmalloc.h>
  26#include <linux/fs.h>
  27#include <linux/mman.h>
  28#include <linux/sched.h>
  29#include <linux/kvm.h>
  30#include <trace/events/kvm.h>
  31#include <kvm/arm_pmu.h>
  32
  33#define CREATE_TRACE_POINTS
  34#include "trace.h"
  35
  36#include <asm/uaccess.h>
  37#include <asm/ptrace.h>
  38#include <asm/mman.h>
  39#include <asm/tlbflush.h>
  40#include <asm/cacheflush.h>
  41#include <asm/virt.h>
  42#include <asm/kvm_arm.h>
  43#include <asm/kvm_asm.h>
  44#include <asm/kvm_mmu.h>
  45#include <asm/kvm_emulate.h>
  46#include <asm/kvm_coproc.h>
  47#include <asm/kvm_psci.h>
  48#include <asm/sections.h>
  49
  50#ifdef REQUIRES_VIRT
  51__asm__(".arch_extension        virt");
  52#endif
  53
  54static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  55static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
  56static unsigned long hyp_default_vectors;
  57
  58/* Per-CPU variable containing the currently running vcpu. */
  59static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  60
  61/* The VMID used in the VTTBR */
  62static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  63static u32 kvm_next_vmid;
  64static unsigned int kvm_vmid_bits __read_mostly;
  65static DEFINE_SPINLOCK(kvm_vmid_lock);
  66
  67static bool vgic_present;
  68
  69static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
  70
  71static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  72{
  73        BUG_ON(preemptible());
  74        __this_cpu_write(kvm_arm_running_vcpu, vcpu);
  75}
  76
  77/**
  78 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  79 * Must be called from non-preemptible context
  80 */
  81struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  82{
  83        BUG_ON(preemptible());
  84        return __this_cpu_read(kvm_arm_running_vcpu);
  85}
  86
  87/**
  88 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  89 */
  90struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
  91{
  92        return &kvm_arm_running_vcpu;
  93}
  94
  95int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  96{
  97        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  98}
  99
 100int kvm_arch_hardware_setup(void)
 101{
 102        return 0;
 103}
 104
 105void kvm_arch_check_processor_compat(void *rtn)
 106{
 107        *(int *)rtn = 0;
 108}
 109
 110
 111/**
 112 * kvm_arch_init_vm - initializes a VM data structure
 113 * @kvm:        pointer to the KVM struct
 114 */
 115int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 116{
 117        int ret, cpu;
 118
 119        if (type)
 120                return -EINVAL;
 121
 122        kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
 123        if (!kvm->arch.last_vcpu_ran)
 124                return -ENOMEM;
 125
 126        for_each_possible_cpu(cpu)
 127                *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
 128
 129        ret = kvm_alloc_stage2_pgd(kvm);
 130        if (ret)
 131                goto out_fail_alloc;
 132
 133        ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
 134        if (ret)
 135                goto out_free_stage2_pgd;
 136
 137        kvm_vgic_early_init(kvm);
 138        kvm_timer_init(kvm);
 139
 140        /* Mark the initial VMID generation invalid */
 141        kvm->arch.vmid_gen = 0;
 142
 143        /* The maximum number of VCPUs is limited by the host's GIC model */
 144        kvm->arch.max_vcpus = vgic_present ?
 145                                kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
 146
 147        return ret;
 148out_free_stage2_pgd:
 149        kvm_free_stage2_pgd(kvm);
 150out_fail_alloc:
 151        free_percpu(kvm->arch.last_vcpu_ran);
 152        kvm->arch.last_vcpu_ran = NULL;
 153        return ret;
 154}
 155
 156bool kvm_arch_has_vcpu_debugfs(void)
 157{
 158        return false;
 159}
 160
 161int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
 162{
 163        return 0;
 164}
 165
 166int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 167{
 168        return VM_FAULT_SIGBUS;
 169}
 170
 171
 172/**
 173 * kvm_arch_destroy_vm - destroy the VM data structure
 174 * @kvm:        pointer to the KVM struct
 175 */
 176void kvm_arch_destroy_vm(struct kvm *kvm)
 177{
 178        int i;
 179
 180        free_percpu(kvm->arch.last_vcpu_ran);
 181        kvm->arch.last_vcpu_ran = NULL;
 182
 183        for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 184                if (kvm->vcpus[i]) {
 185                        kvm_arch_vcpu_free(kvm->vcpus[i]);
 186                        kvm->vcpus[i] = NULL;
 187                }
 188        }
 189
 190        kvm_vgic_destroy(kvm);
 191}
 192
 193int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 194{
 195        int r;
 196        switch (ext) {
 197        case KVM_CAP_IRQCHIP:
 198                r = vgic_present;
 199                break;
 200        case KVM_CAP_IOEVENTFD:
 201        case KVM_CAP_DEVICE_CTRL:
 202        case KVM_CAP_USER_MEMORY:
 203        case KVM_CAP_SYNC_MMU:
 204        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 205        case KVM_CAP_ONE_REG:
 206        case KVM_CAP_ARM_PSCI:
 207        case KVM_CAP_ARM_PSCI_0_2:
 208        case KVM_CAP_READONLY_MEM:
 209        case KVM_CAP_MP_STATE:
 210                r = 1;
 211                break;
 212        case KVM_CAP_COALESCED_MMIO:
 213                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 214                break;
 215        case KVM_CAP_ARM_SET_DEVICE_ADDR:
 216                r = 1;
 217                break;
 218        case KVM_CAP_NR_VCPUS:
 219                r = num_online_cpus();
 220                break;
 221        case KVM_CAP_MAX_VCPUS:
 222                r = KVM_MAX_VCPUS;
 223                break;
 224        default:
 225                r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
 226                break;
 227        }
 228        return r;
 229}
 230
 231long kvm_arch_dev_ioctl(struct file *filp,
 232                        unsigned int ioctl, unsigned long arg)
 233{
 234        return -EINVAL;
 235}
 236
 237
 238struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 239{
 240        int err;
 241        struct kvm_vcpu *vcpu;
 242
 243        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
 244                err = -EBUSY;
 245                goto out;
 246        }
 247
 248        if (id >= kvm->arch.max_vcpus) {
 249                err = -EINVAL;
 250                goto out;
 251        }
 252
 253        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 254        if (!vcpu) {
 255                err = -ENOMEM;
 256                goto out;
 257        }
 258
 259        err = kvm_vcpu_init(vcpu, kvm, id);
 260        if (err)
 261                goto free_vcpu;
 262
 263        err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
 264        if (err)
 265                goto vcpu_uninit;
 266
 267        return vcpu;
 268vcpu_uninit:
 269        kvm_vcpu_uninit(vcpu);
 270free_vcpu:
 271        kmem_cache_free(kvm_vcpu_cache, vcpu);
 272out:
 273        return ERR_PTR(err);
 274}
 275
 276void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 277{
 278        kvm_vgic_vcpu_early_init(vcpu);
 279}
 280
 281void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 282{
 283        kvm_mmu_free_memory_caches(vcpu);
 284        kvm_timer_vcpu_terminate(vcpu);
 285        kvm_vgic_vcpu_destroy(vcpu);
 286        kvm_pmu_vcpu_destroy(vcpu);
 287        kvm_vcpu_uninit(vcpu);
 288        kmem_cache_free(kvm_vcpu_cache, vcpu);
 289}
 290
 291void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 292{
 293        kvm_arch_vcpu_free(vcpu);
 294}
 295
 296int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 297{
 298        return kvm_timer_should_fire(vcpu);
 299}
 300
 301void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
 302{
 303        kvm_timer_schedule(vcpu);
 304}
 305
 306void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
 307{
 308        kvm_timer_unschedule(vcpu);
 309}
 310
 311int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 312{
 313        /* Force users to call KVM_ARM_VCPU_INIT */
 314        vcpu->arch.target = -1;
 315        bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
 316
 317        /* Set up the timer */
 318        kvm_timer_vcpu_init(vcpu);
 319
 320        kvm_arm_reset_debug_ptr(vcpu);
 321
 322        return 0;
 323}
 324
 325void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 326{
 327        int *last_ran;
 328
 329        last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
 330
 331        /*
 332         * We might get preempted before the vCPU actually runs, but
 333         * over-invalidation doesn't affect correctness.
 334         */
 335        if (*last_ran != vcpu->vcpu_id) {
 336                kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
 337                *last_ran = vcpu->vcpu_id;
 338        }
 339
 340        vcpu->cpu = cpu;
 341        vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
 342
 343        kvm_arm_set_running_vcpu(vcpu);
 344}
 345
 346void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 347{
 348        /*
 349         * The arch-generic KVM code expects the cpu field of a vcpu to be -1
 350         * if the vcpu is no longer assigned to a cpu.  This is used for the
 351         * optimized make_all_cpus_request path.
 352         */
 353        vcpu->cpu = -1;
 354
 355        kvm_arm_set_running_vcpu(NULL);
 356        kvm_timer_vcpu_put(vcpu);
 357}
 358
 359int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 360                                    struct kvm_mp_state *mp_state)
 361{
 362        if (vcpu->arch.power_off)
 363                mp_state->mp_state = KVM_MP_STATE_STOPPED;
 364        else
 365                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 366
 367        return 0;
 368}
 369
 370int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 371                                    struct kvm_mp_state *mp_state)
 372{
 373        switch (mp_state->mp_state) {
 374        case KVM_MP_STATE_RUNNABLE:
 375                vcpu->arch.power_off = false;
 376                break;
 377        case KVM_MP_STATE_STOPPED:
 378                vcpu->arch.power_off = true;
 379                break;
 380        default:
 381                return -EINVAL;
 382        }
 383
 384        return 0;
 385}
 386
 387/**
 388 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 389 * @v:          The VCPU pointer
 390 *
 391 * If the guest CPU is not waiting for interrupts or an interrupt line is
 392 * asserted, the CPU is by definition runnable.
 393 */
 394int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 395{
 396        return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
 397                && !v->arch.power_off && !v->arch.pause);
 398}
 399
 400/* Just ensure a guest exit from a particular CPU */
 401static void exit_vm_noop(void *info)
 402{
 403}
 404
 405void force_vm_exit(const cpumask_t *mask)
 406{
 407        preempt_disable();
 408        smp_call_function_many(mask, exit_vm_noop, NULL, true);
 409        preempt_enable();
 410}
 411
 412/**
 413 * need_new_vmid_gen - check that the VMID is still valid
 414 * @kvm: The VM's VMID to check
 415 *
 416 * return true if there is a new generation of VMIDs being used
 417 *
 418 * The hardware supports only 256 values with the value zero reserved for the
 419 * host, so we check if an assigned value belongs to a previous generation,
 420 * which which requires us to assign a new value. If we're the first to use a
 421 * VMID for the new generation, we must flush necessary caches and TLBs on all
 422 * CPUs.
 423 */
 424static bool need_new_vmid_gen(struct kvm *kvm)
 425{
 426        return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
 427}
 428
 429/**
 430 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 431 * @kvm The guest that we are about to run
 432 *
 433 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 434 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 435 * caches and TLBs.
 436 */
 437static void update_vttbr(struct kvm *kvm)
 438{
 439        phys_addr_t pgd_phys;
 440        u64 vmid;
 441
 442        if (!need_new_vmid_gen(kvm))
 443                return;
 444
 445        spin_lock(&kvm_vmid_lock);
 446
 447        /*
 448         * We need to re-check the vmid_gen here to ensure that if another vcpu
 449         * already allocated a valid vmid for this vm, then this vcpu should
 450         * use the same vmid.
 451         */
 452        if (!need_new_vmid_gen(kvm)) {
 453                spin_unlock(&kvm_vmid_lock);
 454                return;
 455        }
 456
 457        /* First user of a new VMID generation? */
 458        if (unlikely(kvm_next_vmid == 0)) {
 459                atomic64_inc(&kvm_vmid_gen);
 460                kvm_next_vmid = 1;
 461
 462                /*
 463                 * On SMP we know no other CPUs can use this CPU's or each
 464                 * other's VMID after force_vm_exit returns since the
 465                 * kvm_vmid_lock blocks them from reentry to the guest.
 466                 */
 467                force_vm_exit(cpu_all_mask);
 468                /*
 469                 * Now broadcast TLB + ICACHE invalidation over the inner
 470                 * shareable domain to make sure all data structures are
 471                 * clean.
 472                 */
 473                kvm_call_hyp(__kvm_flush_vm_context);
 474        }
 475
 476        kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
 477        kvm->arch.vmid = kvm_next_vmid;
 478        kvm_next_vmid++;
 479        kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
 480
 481        /* update vttbr to be used with the new vmid */
 482        pgd_phys = virt_to_phys(kvm->arch.pgd);
 483        BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
 484        vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
 485        kvm->arch.vttbr = pgd_phys | vmid;
 486
 487        spin_unlock(&kvm_vmid_lock);
 488}
 489
 490static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 491{
 492        struct kvm *kvm = vcpu->kvm;
 493        int ret = 0;
 494
 495        if (likely(vcpu->arch.has_run_once))
 496                return 0;
 497
 498        vcpu->arch.has_run_once = true;
 499
 500        /*
 501         * Map the VGIC hardware resources before running a vcpu the first
 502         * time on this VM.
 503         */
 504        if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
 505                ret = kvm_vgic_map_resources(kvm);
 506                if (ret)
 507                        return ret;
 508        }
 509
 510        /*
 511         * Enable the arch timers only if we have an in-kernel VGIC
 512         * and it has been properly initialized, since we cannot handle
 513         * interrupts from the virtual timer with a userspace gic.
 514         */
 515        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
 516                ret = kvm_timer_enable(vcpu);
 517
 518        return ret;
 519}
 520
 521bool kvm_arch_intc_initialized(struct kvm *kvm)
 522{
 523        return vgic_initialized(kvm);
 524}
 525
 526void kvm_arm_halt_guest(struct kvm *kvm)
 527{
 528        int i;
 529        struct kvm_vcpu *vcpu;
 530
 531        kvm_for_each_vcpu(i, vcpu, kvm)
 532                vcpu->arch.pause = true;
 533        kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
 534}
 535
 536void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
 537{
 538        vcpu->arch.pause = true;
 539        kvm_vcpu_kick(vcpu);
 540}
 541
 542void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
 543{
 544        struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
 545
 546        vcpu->arch.pause = false;
 547        swake_up(wq);
 548}
 549
 550void kvm_arm_resume_guest(struct kvm *kvm)
 551{
 552        int i;
 553        struct kvm_vcpu *vcpu;
 554
 555        kvm_for_each_vcpu(i, vcpu, kvm)
 556                kvm_arm_resume_vcpu(vcpu);
 557}
 558
 559static void vcpu_sleep(struct kvm_vcpu *vcpu)
 560{
 561        struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
 562
 563        swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
 564                                       (!vcpu->arch.pause)));
 565}
 566
 567static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 568{
 569        return vcpu->arch.target >= 0;
 570}
 571
 572/**
 573 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 574 * @vcpu:       The VCPU pointer
 575 * @run:        The kvm_run structure pointer used for userspace state exchange
 576 *
 577 * This function is called through the VCPU_RUN ioctl called from user space. It
 578 * will execute VM code in a loop until the time slice for the process is used
 579 * or some emulation is needed from user space in which case the function will
 580 * return with return value 0 and with the kvm_run structure filled in with the
 581 * required data for the requested emulation.
 582 */
 583int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 584{
 585        int ret;
 586        sigset_t sigsaved;
 587
 588        if (unlikely(!kvm_vcpu_initialized(vcpu)))
 589                return -ENOEXEC;
 590
 591        ret = kvm_vcpu_first_run_init(vcpu);
 592        if (ret)
 593                return ret;
 594
 595        if (run->exit_reason == KVM_EXIT_MMIO) {
 596                ret = kvm_handle_mmio_return(vcpu, vcpu->run);
 597                if (ret)
 598                        return ret;
 599        }
 600
 601        if (vcpu->sigset_active)
 602                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 603
 604        ret = 1;
 605        run->exit_reason = KVM_EXIT_UNKNOWN;
 606        while (ret > 0) {
 607                /*
 608                 * Check conditions before entering the guest
 609                 */
 610                cond_resched();
 611
 612                update_vttbr(vcpu->kvm);
 613
 614                if (vcpu->arch.power_off || vcpu->arch.pause)
 615                        vcpu_sleep(vcpu);
 616
 617                /*
 618                 * Preparing the interrupts to be injected also
 619                 * involves poking the GIC, which must be done in a
 620                 * non-preemptible context.
 621                 */
 622                preempt_disable();
 623                kvm_pmu_flush_hwstate(vcpu);
 624                kvm_timer_flush_hwstate(vcpu);
 625                kvm_vgic_flush_hwstate(vcpu);
 626
 627                local_irq_disable();
 628
 629                /*
 630                 * Re-check atomic conditions
 631                 */
 632                if (signal_pending(current)) {
 633                        ret = -EINTR;
 634                        run->exit_reason = KVM_EXIT_INTR;
 635                }
 636
 637                if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
 638                        vcpu->arch.power_off || vcpu->arch.pause) {
 639                        local_irq_enable();
 640                        kvm_pmu_sync_hwstate(vcpu);
 641                        kvm_timer_sync_hwstate(vcpu);
 642                        kvm_vgic_sync_hwstate(vcpu);
 643                        preempt_enable();
 644                        continue;
 645                }
 646
 647                kvm_arm_setup_debug(vcpu);
 648
 649                /**************************************************************
 650                 * Enter the guest
 651                 */
 652                trace_kvm_entry(*vcpu_pc(vcpu));
 653                guest_enter_irqoff();
 654                vcpu->mode = IN_GUEST_MODE;
 655
 656                ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
 657
 658                vcpu->mode = OUTSIDE_GUEST_MODE;
 659                vcpu->stat.exits++;
 660                /*
 661                 * Back from guest
 662                 *************************************************************/
 663
 664                kvm_arm_clear_debug(vcpu);
 665
 666                /*
 667                 * We may have taken a host interrupt in HYP mode (ie
 668                 * while executing the guest). This interrupt is still
 669                 * pending, as we haven't serviced it yet!
 670                 *
 671                 * We're now back in SVC mode, with interrupts
 672                 * disabled.  Enabling the interrupts now will have
 673                 * the effect of taking the interrupt again, in SVC
 674                 * mode this time.
 675                 */
 676                local_irq_enable();
 677
 678                /*
 679                 * We do local_irq_enable() before calling guest_exit() so
 680                 * that if a timer interrupt hits while running the guest we
 681                 * account that tick as being spent in the guest.  We enable
 682                 * preemption after calling guest_exit() so that if we get
 683                 * preempted we make sure ticks after that is not counted as
 684                 * guest time.
 685                 */
 686                guest_exit();
 687                trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
 688
 689                /*
 690                 * We must sync the PMU and timer state before the vgic state so
 691                 * that the vgic can properly sample the updated state of the
 692                 * interrupt line.
 693                 */
 694                kvm_pmu_sync_hwstate(vcpu);
 695                kvm_timer_sync_hwstate(vcpu);
 696
 697                kvm_vgic_sync_hwstate(vcpu);
 698
 699                preempt_enable();
 700
 701                ret = handle_exit(vcpu, run, ret);
 702        }
 703
 704        if (vcpu->sigset_active)
 705                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 706        return ret;
 707}
 708
 709static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 710{
 711        int bit_index;
 712        bool set;
 713        unsigned long *ptr;
 714
 715        if (number == KVM_ARM_IRQ_CPU_IRQ)
 716                bit_index = __ffs(HCR_VI);
 717        else /* KVM_ARM_IRQ_CPU_FIQ */
 718                bit_index = __ffs(HCR_VF);
 719
 720        ptr = (unsigned long *)&vcpu->arch.irq_lines;
 721        if (level)
 722                set = test_and_set_bit(bit_index, ptr);
 723        else
 724                set = test_and_clear_bit(bit_index, ptr);
 725
 726        /*
 727         * If we didn't change anything, no need to wake up or kick other CPUs
 728         */
 729        if (set == level)
 730                return 0;
 731
 732        /*
 733         * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 734         * trigger a world-switch round on the running physical CPU to set the
 735         * virtual IRQ/FIQ fields in the HCR appropriately.
 736         */
 737        kvm_vcpu_kick(vcpu);
 738
 739        return 0;
 740}
 741
 742int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 743                          bool line_status)
 744{
 745        u32 irq = irq_level->irq;
 746        unsigned int irq_type, vcpu_idx, irq_num;
 747        int nrcpus = atomic_read(&kvm->online_vcpus);
 748        struct kvm_vcpu *vcpu = NULL;
 749        bool level = irq_level->level;
 750
 751        irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
 752        vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
 753        irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
 754
 755        trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
 756
 757        switch (irq_type) {
 758        case KVM_ARM_IRQ_TYPE_CPU:
 759                if (irqchip_in_kernel(kvm))
 760                        return -ENXIO;
 761
 762                if (vcpu_idx >= nrcpus)
 763                        return -EINVAL;
 764
 765                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 766                if (!vcpu)
 767                        return -EINVAL;
 768
 769                if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
 770                        return -EINVAL;
 771
 772                return vcpu_interrupt_line(vcpu, irq_num, level);
 773        case KVM_ARM_IRQ_TYPE_PPI:
 774                if (!irqchip_in_kernel(kvm))
 775                        return -ENXIO;
 776
 777                if (vcpu_idx >= nrcpus)
 778                        return -EINVAL;
 779
 780                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 781                if (!vcpu)
 782                        return -EINVAL;
 783
 784                if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
 785                        return -EINVAL;
 786
 787                return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
 788        case KVM_ARM_IRQ_TYPE_SPI:
 789                if (!irqchip_in_kernel(kvm))
 790                        return -ENXIO;
 791
 792                if (irq_num < VGIC_NR_PRIVATE_IRQS)
 793                        return -EINVAL;
 794
 795                return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
 796        }
 797
 798        return -EINVAL;
 799}
 800
 801static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
 802                               const struct kvm_vcpu_init *init)
 803{
 804        unsigned int i;
 805        int phys_target = kvm_target_cpu();
 806
 807        if (init->target != phys_target)
 808                return -EINVAL;
 809
 810        /*
 811         * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 812         * use the same target.
 813         */
 814        if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
 815                return -EINVAL;
 816
 817        /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
 818        for (i = 0; i < sizeof(init->features) * 8; i++) {
 819                bool set = (init->features[i / 32] & (1 << (i % 32)));
 820
 821                if (set && i >= KVM_VCPU_MAX_FEATURES)
 822                        return -ENOENT;
 823
 824                /*
 825                 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 826                 * use the same feature set.
 827                 */
 828                if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
 829                    test_bit(i, vcpu->arch.features) != set)
 830                        return -EINVAL;
 831
 832                if (set)
 833                        set_bit(i, vcpu->arch.features);
 834        }
 835
 836        vcpu->arch.target = phys_target;
 837
 838        /* Now we know what it is, we can reset it. */
 839        return kvm_reset_vcpu(vcpu);
 840}
 841
 842
 843static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
 844                                         struct kvm_vcpu_init *init)
 845{
 846        int ret;
 847
 848        ret = kvm_vcpu_set_target(vcpu, init);
 849        if (ret)
 850                return ret;
 851
 852        /*
 853         * Ensure a rebooted VM will fault in RAM pages and detect if the
 854         * guest MMU is turned off and flush the caches as needed.
 855         */
 856        if (vcpu->arch.has_run_once)
 857                stage2_unmap_vm(vcpu->kvm);
 858
 859        vcpu_reset_hcr(vcpu);
 860
 861        /*
 862         * Handle the "start in power-off" case.
 863         */
 864        if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
 865                vcpu->arch.power_off = true;
 866        else
 867                vcpu->arch.power_off = false;
 868
 869        return 0;
 870}
 871
 872static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
 873                                 struct kvm_device_attr *attr)
 874{
 875        int ret = -ENXIO;
 876
 877        switch (attr->group) {
 878        default:
 879                ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
 880                break;
 881        }
 882
 883        return ret;
 884}
 885
 886static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
 887                                 struct kvm_device_attr *attr)
 888{
 889        int ret = -ENXIO;
 890
 891        switch (attr->group) {
 892        default:
 893                ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
 894                break;
 895        }
 896
 897        return ret;
 898}
 899
 900static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
 901                                 struct kvm_device_attr *attr)
 902{
 903        int ret = -ENXIO;
 904
 905        switch (attr->group) {
 906        default:
 907                ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
 908                break;
 909        }
 910
 911        return ret;
 912}
 913
 914long kvm_arch_vcpu_ioctl(struct file *filp,
 915                         unsigned int ioctl, unsigned long arg)
 916{
 917        struct kvm_vcpu *vcpu = filp->private_data;
 918        void __user *argp = (void __user *)arg;
 919        struct kvm_device_attr attr;
 920
 921        switch (ioctl) {
 922        case KVM_ARM_VCPU_INIT: {
 923                struct kvm_vcpu_init init;
 924
 925                if (copy_from_user(&init, argp, sizeof(init)))
 926                        return -EFAULT;
 927
 928                return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
 929        }
 930        case KVM_SET_ONE_REG:
 931        case KVM_GET_ONE_REG: {
 932                struct kvm_one_reg reg;
 933
 934                if (unlikely(!kvm_vcpu_initialized(vcpu)))
 935                        return -ENOEXEC;
 936
 937                if (copy_from_user(&reg, argp, sizeof(reg)))
 938                        return -EFAULT;
 939                if (ioctl == KVM_SET_ONE_REG)
 940                        return kvm_arm_set_reg(vcpu, &reg);
 941                else
 942                        return kvm_arm_get_reg(vcpu, &reg);
 943        }
 944        case KVM_GET_REG_LIST: {
 945                struct kvm_reg_list __user *user_list = argp;
 946                struct kvm_reg_list reg_list;
 947                unsigned n;
 948
 949                if (unlikely(!kvm_vcpu_initialized(vcpu)))
 950                        return -ENOEXEC;
 951
 952                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 953                        return -EFAULT;
 954                n = reg_list.n;
 955                reg_list.n = kvm_arm_num_regs(vcpu);
 956                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 957                        return -EFAULT;
 958                if (n < reg_list.n)
 959                        return -E2BIG;
 960                return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
 961        }
 962        case KVM_SET_DEVICE_ATTR: {
 963                if (copy_from_user(&attr, argp, sizeof(attr)))
 964                        return -EFAULT;
 965                return kvm_arm_vcpu_set_attr(vcpu, &attr);
 966        }
 967        case KVM_GET_DEVICE_ATTR: {
 968                if (copy_from_user(&attr, argp, sizeof(attr)))
 969                        return -EFAULT;
 970                return kvm_arm_vcpu_get_attr(vcpu, &attr);
 971        }
 972        case KVM_HAS_DEVICE_ATTR: {
 973                if (copy_from_user(&attr, argp, sizeof(attr)))
 974                        return -EFAULT;
 975                return kvm_arm_vcpu_has_attr(vcpu, &attr);
 976        }
 977        default:
 978                return -EINVAL;
 979        }
 980}
 981
 982/**
 983 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 984 * @kvm: kvm instance
 985 * @log: slot id and address to which we copy the log
 986 *
 987 * Steps 1-4 below provide general overview of dirty page logging. See
 988 * kvm_get_dirty_log_protect() function description for additional details.
 989 *
 990 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 991 * always flush the TLB (step 4) even if previous step failed  and the dirty
 992 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 993 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 994 * writes will be marked dirty for next log read.
 995 *
 996 *   1. Take a snapshot of the bit and clear it if needed.
 997 *   2. Write protect the corresponding page.
 998 *   3. Copy the snapshot to the userspace.
 999 *   4. Flush TLB's if needed.
1000 */
1001int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1002{
1003        bool is_dirty = false;
1004        int r;
1005
1006        mutex_lock(&kvm->slots_lock);
1007
1008        r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1009
1010        if (is_dirty)
1011                kvm_flush_remote_tlbs(kvm);
1012
1013        mutex_unlock(&kvm->slots_lock);
1014        return r;
1015}
1016
1017static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1018                                        struct kvm_arm_device_addr *dev_addr)
1019{
1020        unsigned long dev_id, type;
1021
1022        dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1023                KVM_ARM_DEVICE_ID_SHIFT;
1024        type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1025                KVM_ARM_DEVICE_TYPE_SHIFT;
1026
1027        switch (dev_id) {
1028        case KVM_ARM_DEVICE_VGIC_V2:
1029                if (!vgic_present)
1030                        return -ENXIO;
1031                return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1032        default:
1033                return -ENODEV;
1034        }
1035}
1036
1037long kvm_arch_vm_ioctl(struct file *filp,
1038                       unsigned int ioctl, unsigned long arg)
1039{
1040        struct kvm *kvm = filp->private_data;
1041        void __user *argp = (void __user *)arg;
1042
1043        switch (ioctl) {
1044        case KVM_CREATE_IRQCHIP: {
1045                int ret;
1046                if (!vgic_present)
1047                        return -ENXIO;
1048                mutex_lock(&kvm->lock);
1049                ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1050                mutex_unlock(&kvm->lock);
1051                return ret;
1052        }
1053        case KVM_ARM_SET_DEVICE_ADDR: {
1054                struct kvm_arm_device_addr dev_addr;
1055
1056                if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1057                        return -EFAULT;
1058                return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1059        }
1060        case KVM_ARM_PREFERRED_TARGET: {
1061                int err;
1062                struct kvm_vcpu_init init;
1063
1064                err = kvm_vcpu_preferred_target(&init);
1065                if (err)
1066                        return err;
1067
1068                if (copy_to_user(argp, &init, sizeof(init)))
1069                        return -EFAULT;
1070
1071                return 0;
1072        }
1073        default:
1074                return -EINVAL;
1075        }
1076}
1077
1078static void cpu_init_hyp_mode(void *dummy)
1079{
1080        phys_addr_t pgd_ptr;
1081        unsigned long hyp_stack_ptr;
1082        unsigned long stack_page;
1083        unsigned long vector_ptr;
1084
1085        /* Switch from the HYP stub to our own HYP init vector */
1086        __hyp_set_vectors(kvm_get_idmap_vector());
1087
1088        pgd_ptr = kvm_mmu_get_httbr();
1089        stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1090        hyp_stack_ptr = stack_page + PAGE_SIZE;
1091        vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1092
1093        __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1094        __cpu_init_stage2();
1095
1096        kvm_arm_init_debug();
1097}
1098
1099static void cpu_hyp_reinit(void)
1100{
1101        if (is_kernel_in_hyp_mode()) {
1102                /*
1103                 * __cpu_init_stage2() is safe to call even if the PM
1104                 * event was cancelled before the CPU was reset.
1105                 */
1106                __cpu_init_stage2();
1107        } else {
1108                if (__hyp_get_vectors() == hyp_default_vectors)
1109                        cpu_init_hyp_mode(NULL);
1110        }
1111}
1112
1113static void cpu_hyp_reset(void)
1114{
1115        if (!is_kernel_in_hyp_mode())
1116                __cpu_reset_hyp_mode(hyp_default_vectors,
1117                                     kvm_get_idmap_start());
1118}
1119
1120static void _kvm_arch_hardware_enable(void *discard)
1121{
1122        if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1123                cpu_hyp_reinit();
1124                __this_cpu_write(kvm_arm_hardware_enabled, 1);
1125        }
1126}
1127
1128int kvm_arch_hardware_enable(void)
1129{
1130        _kvm_arch_hardware_enable(NULL);
1131        return 0;
1132}
1133
1134static void _kvm_arch_hardware_disable(void *discard)
1135{
1136        if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1137                cpu_hyp_reset();
1138                __this_cpu_write(kvm_arm_hardware_enabled, 0);
1139        }
1140}
1141
1142void kvm_arch_hardware_disable(void)
1143{
1144        _kvm_arch_hardware_disable(NULL);
1145}
1146
1147#ifdef CONFIG_CPU_PM
1148static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1149                                    unsigned long cmd,
1150                                    void *v)
1151{
1152        /*
1153         * kvm_arm_hardware_enabled is left with its old value over
1154         * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1155         * re-enable hyp.
1156         */
1157        switch (cmd) {
1158        case CPU_PM_ENTER:
1159                if (__this_cpu_read(kvm_arm_hardware_enabled))
1160                        /*
1161                         * don't update kvm_arm_hardware_enabled here
1162                         * so that the hardware will be re-enabled
1163                         * when we resume. See below.
1164                         */
1165                        cpu_hyp_reset();
1166
1167                return NOTIFY_OK;
1168        case CPU_PM_EXIT:
1169                if (__this_cpu_read(kvm_arm_hardware_enabled))
1170                        /* The hardware was enabled before suspend. */
1171                        cpu_hyp_reinit();
1172
1173                return NOTIFY_OK;
1174
1175        default:
1176                return NOTIFY_DONE;
1177        }
1178}
1179
1180static struct notifier_block hyp_init_cpu_pm_nb = {
1181        .notifier_call = hyp_init_cpu_pm_notifier,
1182};
1183
1184static void __init hyp_cpu_pm_init(void)
1185{
1186        cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1187}
1188static void __init hyp_cpu_pm_exit(void)
1189{
1190        cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1191}
1192#else
1193static inline void hyp_cpu_pm_init(void)
1194{
1195}
1196static inline void hyp_cpu_pm_exit(void)
1197{
1198}
1199#endif
1200
1201static void teardown_common_resources(void)
1202{
1203        free_percpu(kvm_host_cpu_state);
1204}
1205
1206static int init_common_resources(void)
1207{
1208        kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1209        if (!kvm_host_cpu_state) {
1210                kvm_err("Cannot allocate host CPU state\n");
1211                return -ENOMEM;
1212        }
1213
1214        /* set size of VMID supported by CPU */
1215        kvm_vmid_bits = kvm_get_vmid_bits();
1216        kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1217
1218        return 0;
1219}
1220
1221static int init_subsystems(void)
1222{
1223        int err = 0;
1224
1225        /*
1226         * Enable hardware so that subsystem initialisation can access EL2.
1227         */
1228        on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1229
1230        /*
1231         * Register CPU lower-power notifier
1232         */
1233        hyp_cpu_pm_init();
1234
1235        /*
1236         * Init HYP view of VGIC
1237         */
1238        err = kvm_vgic_hyp_init();
1239        switch (err) {
1240        case 0:
1241                vgic_present = true;
1242                break;
1243        case -ENODEV:
1244        case -ENXIO:
1245                vgic_present = false;
1246                err = 0;
1247                break;
1248        default:
1249                goto out;
1250        }
1251
1252        /*
1253         * Init HYP architected timer support
1254         */
1255        err = kvm_timer_hyp_init();
1256        if (err)
1257                goto out;
1258
1259        kvm_perf_init();
1260        kvm_coproc_table_init();
1261
1262out:
1263        on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1264
1265        return err;
1266}
1267
1268static void teardown_hyp_mode(void)
1269{
1270        int cpu;
1271
1272        if (is_kernel_in_hyp_mode())
1273                return;
1274
1275        free_hyp_pgds();
1276        for_each_possible_cpu(cpu)
1277                free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1278        hyp_cpu_pm_exit();
1279}
1280
1281static int init_vhe_mode(void)
1282{
1283        kvm_info("VHE mode initialized successfully\n");
1284        return 0;
1285}
1286
1287/**
1288 * Inits Hyp-mode on all online CPUs
1289 */
1290static int init_hyp_mode(void)
1291{
1292        int cpu;
1293        int err = 0;
1294
1295        /*
1296         * Allocate Hyp PGD and setup Hyp identity mapping
1297         */
1298        err = kvm_mmu_init();
1299        if (err)
1300                goto out_err;
1301
1302        /*
1303         * It is probably enough to obtain the default on one
1304         * CPU. It's unlikely to be different on the others.
1305         */
1306        hyp_default_vectors = __hyp_get_vectors();
1307
1308        /*
1309         * Allocate stack pages for Hypervisor-mode
1310         */
1311        for_each_possible_cpu(cpu) {
1312                unsigned long stack_page;
1313
1314                stack_page = __get_free_page(GFP_KERNEL);
1315                if (!stack_page) {
1316                        err = -ENOMEM;
1317                        goto out_err;
1318                }
1319
1320                per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1321        }
1322
1323        /*
1324         * Map the Hyp-code called directly from the host
1325         */
1326        err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1327                                  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1328        if (err) {
1329                kvm_err("Cannot map world-switch code\n");
1330                goto out_err;
1331        }
1332
1333        err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1334                                  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1335        if (err) {
1336                kvm_err("Cannot map rodata section\n");
1337                goto out_err;
1338        }
1339
1340        err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1341                                  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1342        if (err) {
1343                kvm_err("Cannot map bss section\n");
1344                goto out_err;
1345        }
1346
1347        /*
1348         * Map the Hyp stack pages
1349         */
1350        for_each_possible_cpu(cpu) {
1351                char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1352                err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1353                                          PAGE_HYP);
1354
1355                if (err) {
1356                        kvm_err("Cannot map hyp stack\n");
1357                        goto out_err;
1358                }
1359        }
1360
1361        for_each_possible_cpu(cpu) {
1362                kvm_cpu_context_t *cpu_ctxt;
1363
1364                cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1365                err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1366
1367                if (err) {
1368                        kvm_err("Cannot map host CPU state: %d\n", err);
1369                        goto out_err;
1370                }
1371        }
1372
1373        kvm_info("Hyp mode initialized successfully\n");
1374
1375        return 0;
1376
1377out_err:
1378        teardown_hyp_mode();
1379        kvm_err("error initializing Hyp mode: %d\n", err);
1380        return err;
1381}
1382
1383static void check_kvm_target_cpu(void *ret)
1384{
1385        *(int *)ret = kvm_target_cpu();
1386}
1387
1388struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1389{
1390        struct kvm_vcpu *vcpu;
1391        int i;
1392
1393        mpidr &= MPIDR_HWID_BITMASK;
1394        kvm_for_each_vcpu(i, vcpu, kvm) {
1395                if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1396                        return vcpu;
1397        }
1398        return NULL;
1399}
1400
1401/**
1402 * Initialize Hyp-mode and memory mappings on all CPUs.
1403 */
1404int kvm_arch_init(void *opaque)
1405{
1406        int err;
1407        int ret, cpu;
1408
1409        if (!is_hyp_mode_available()) {
1410                kvm_err("HYP mode not available\n");
1411                return -ENODEV;
1412        }
1413
1414        for_each_online_cpu(cpu) {
1415                smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1416                if (ret < 0) {
1417                        kvm_err("Error, CPU %d not supported!\n", cpu);
1418                        return -ENODEV;
1419                }
1420        }
1421
1422        err = init_common_resources();
1423        if (err)
1424                return err;
1425
1426        if (is_kernel_in_hyp_mode())
1427                err = init_vhe_mode();
1428        else
1429                err = init_hyp_mode();
1430        if (err)
1431                goto out_err;
1432
1433        err = init_subsystems();
1434        if (err)
1435                goto out_hyp;
1436
1437        return 0;
1438
1439out_hyp:
1440        teardown_hyp_mode();
1441out_err:
1442        teardown_common_resources();
1443        return err;
1444}
1445
1446/* NOP: Compiling as a module not supported */
1447void kvm_arch_exit(void)
1448{
1449        kvm_perf_teardown();
1450}
1451
1452static int arm_init(void)
1453{
1454        int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1455        return rc;
1456}
1457
1458module_init(arm_init);
1459