linux/arch/arm/mach-bcm/platsmp.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2014-2015 Broadcom Corporation
   3 * Copyright 2014 Linaro Limited
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation version 2.
   8 *
   9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  10 * kind, whether express or implied; without even the implied warranty
  11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 */
  14
  15#include <linux/cpumask.h>
  16#include <linux/delay.h>
  17#include <linux/errno.h>
  18#include <linux/init.h>
  19#include <linux/io.h>
  20#include <linux/jiffies.h>
  21#include <linux/of.h>
  22#include <linux/of_address.h>
  23#include <linux/sched.h>
  24#include <linux/smp.h>
  25
  26#include <asm/cacheflush.h>
  27#include <asm/smp.h>
  28#include <asm/smp_plat.h>
  29#include <asm/smp_scu.h>
  30
  31/* Size of mapped Cortex A9 SCU address space */
  32#define CORTEX_A9_SCU_SIZE      0x58
  33
  34#define SECONDARY_TIMEOUT_NS    NSEC_PER_MSEC   /* 1 msec (in nanoseconds) */
  35#define BOOT_ADDR_CPUID_MASK    0x3
  36
  37/* Name of device node property defining secondary boot register location */
  38#define OF_SECONDARY_BOOT       "secondary-boot-reg"
  39#define MPIDR_CPUID_BITMASK     0x3
  40
  41/*
  42 * Enable the Cortex A9 Snoop Control Unit
  43 *
  44 * By the time this is called we already know there are multiple
  45 * cores present.  We assume we're running on a Cortex A9 processor,
  46 * so any trouble getting the base address register or getting the
  47 * SCU base is a problem.
  48 *
  49 * Return 0 if successful or an error code otherwise.
  50 */
  51static int __init scu_a9_enable(void)
  52{
  53        unsigned long config_base;
  54        void __iomem *scu_base;
  55
  56        if (!scu_a9_has_base()) {
  57                pr_err("no configuration base address register!\n");
  58                return -ENXIO;
  59        }
  60
  61        /* Config base address register value is zero for uniprocessor */
  62        config_base = scu_a9_get_base();
  63        if (!config_base) {
  64                pr_err("hardware reports only one core\n");
  65                return -ENOENT;
  66        }
  67
  68        scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
  69        if (!scu_base) {
  70                pr_err("failed to remap config base (%lu/%u) for SCU\n",
  71                        config_base, CORTEX_A9_SCU_SIZE);
  72                return -ENOMEM;
  73        }
  74
  75        scu_enable(scu_base);
  76
  77        iounmap(scu_base);      /* That's the last we'll need of this */
  78
  79        return 0;
  80}
  81
  82static u32 secondary_boot_addr_for(unsigned int cpu)
  83{
  84        u32 secondary_boot_addr = 0;
  85        struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
  86
  87        if (!cpu_node) {
  88                pr_err("Failed to find device tree node for CPU%u\n", cpu);
  89                return 0;
  90        }
  91
  92        if (of_property_read_u32(cpu_node,
  93                                 OF_SECONDARY_BOOT,
  94                                 &secondary_boot_addr))
  95                pr_err("required secondary boot register not specified for CPU%u\n",
  96                        cpu);
  97
  98        of_node_put(cpu_node);
  99
 100        return secondary_boot_addr;
 101}
 102
 103static int nsp_write_lut(unsigned int cpu)
 104{
 105        void __iomem *sku_rom_lut;
 106        phys_addr_t secondary_startup_phy;
 107        const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
 108
 109        if (!secondary_boot_addr)
 110                return -EINVAL;
 111
 112        sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
 113                                      sizeof(phys_addr_t));
 114        if (!sku_rom_lut) {
 115                pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
 116                return -ENOMEM;
 117        }
 118
 119        secondary_startup_phy = virt_to_phys(secondary_startup);
 120        BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
 121
 122        writel_relaxed(secondary_startup_phy, sku_rom_lut);
 123
 124        /* Ensure the write is visible to the secondary core */
 125        smp_wmb();
 126
 127        iounmap(sku_rom_lut);
 128
 129        return 0;
 130}
 131
 132static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
 133{
 134        const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
 135
 136        /* Enable the SCU on Cortex A9 based SoCs */
 137        if (scu_a9_enable()) {
 138                /* Update the CPU present map to reflect uniprocessor mode */
 139                pr_warn("failed to enable A9 SCU - disabling SMP\n");
 140                init_cpu_present(&only_cpu_0);
 141        }
 142}
 143
 144/*
 145 * The ROM code has the secondary cores looping, waiting for an event.
 146 * When an event occurs each core examines the bottom two bits of the
 147 * secondary boot register.  When a core finds those bits contain its
 148 * own core id, it performs initialization, including computing its boot
 149 * address by clearing the boot register value's bottom two bits.  The
 150 * core signals that it is beginning its execution by writing its boot
 151 * address back to the secondary boot register, and finally jumps to
 152 * that address.
 153 *
 154 * So to start a core executing we need to:
 155 * - Encode the (hardware) CPU id with the bottom bits of the secondary
 156 *   start address.
 157 * - Write that value into the secondary boot register.
 158 * - Generate an event to wake up the secondary CPU(s).
 159 * - Wait for the secondary boot register to be re-written, which
 160 *   indicates the secondary core has started.
 161 */
 162static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
 163{
 164        void __iomem *boot_reg;
 165        phys_addr_t boot_func;
 166        u64 start_clock;
 167        u32 cpu_id;
 168        u32 boot_val;
 169        bool timeout = false;
 170        const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
 171
 172        cpu_id = cpu_logical_map(cpu);
 173        if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
 174                pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
 175                return -EINVAL;
 176        }
 177
 178        if (!secondary_boot_addr)
 179                return -EINVAL;
 180
 181        boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
 182                                   sizeof(phys_addr_t));
 183        if (!boot_reg) {
 184                pr_err("unable to map boot register for cpu %u\n", cpu_id);
 185                return -ENOMEM;
 186        }
 187
 188        /*
 189         * Secondary cores will start in secondary_startup(),
 190         * defined in "arch/arm/kernel/head.S"
 191         */
 192        boot_func = virt_to_phys(secondary_startup);
 193        BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
 194        BUG_ON(boot_func > (phys_addr_t)U32_MAX);
 195
 196        /* The core to start is encoded in the low bits */
 197        boot_val = (u32)boot_func | cpu_id;
 198        writel_relaxed(boot_val, boot_reg);
 199
 200        sev();
 201
 202        /* The low bits will be cleared once the core has started */
 203        start_clock = local_clock();
 204        while (!timeout && readl_relaxed(boot_reg) == boot_val)
 205                timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
 206
 207        iounmap(boot_reg);
 208
 209        if (!timeout)
 210                return 0;
 211
 212        pr_err("timeout waiting for cpu %u to start\n", cpu_id);
 213
 214        return -ENXIO;
 215}
 216
 217/* Cluster Dormant Control command to bring CPU into a running state */
 218#define CDC_CMD                 6
 219#define CDC_CMD_OFFSET          0
 220#define CDC_CMD_REG(cpu)        (CDC_CMD_OFFSET + 4*(cpu))
 221
 222/*
 223 * BCM23550 has a Cluster Dormant Control block that keeps the core in
 224 * idle state. A command needs to be sent to the block to bring the CPU
 225 * into running state.
 226 */
 227static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
 228{
 229        void __iomem *cdc_base;
 230        struct device_node *dn;
 231        char *name;
 232        int ret;
 233
 234        /* Make sure a CDC node exists before booting the
 235         * secondary core.
 236         */
 237        name = "brcm,bcm23550-cdc";
 238        dn = of_find_compatible_node(NULL, NULL, name);
 239        if (!dn) {
 240                pr_err("unable to find cdc node\n");
 241                return -ENODEV;
 242        }
 243
 244        cdc_base = of_iomap(dn, 0);
 245        of_node_put(dn);
 246
 247        if (!cdc_base) {
 248                pr_err("unable to remap cdc base register\n");
 249                return -ENOMEM;
 250        }
 251
 252        /* Boot the secondary core */
 253        ret = kona_boot_secondary(cpu, idle);
 254        if (ret)
 255                goto out;
 256
 257        /* Bring this CPU to RUN state so that nIRQ nFIQ
 258         * signals are unblocked.
 259         */
 260        writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
 261
 262out:
 263        iounmap(cdc_base);
 264
 265        return ret;
 266}
 267
 268static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
 269{
 270        int ret;
 271
 272        /*
 273         * After wake up, secondary core branches to the startup
 274         * address programmed at SKU ROM LUT location.
 275         */
 276        ret = nsp_write_lut(cpu);
 277        if (ret) {
 278                pr_err("unable to write startup addr to SKU ROM LUT\n");
 279                goto out;
 280        }
 281
 282        /* Send a CPU wakeup interrupt to the secondary core */
 283        arch_send_wakeup_ipi_mask(cpumask_of(cpu));
 284
 285out:
 286        return ret;
 287}
 288
 289static const struct smp_operations kona_smp_ops __initconst = {
 290        .smp_prepare_cpus       = bcm_smp_prepare_cpus,
 291        .smp_boot_secondary     = kona_boot_secondary,
 292};
 293CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
 294                        &kona_smp_ops);
 295
 296static const struct smp_operations bcm23550_smp_ops __initconst = {
 297        .smp_boot_secondary     = bcm23550_boot_secondary,
 298};
 299CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
 300                        &bcm23550_smp_ops);
 301
 302static const struct smp_operations nsp_smp_ops __initconst = {
 303        .smp_prepare_cpus       = bcm_smp_prepare_cpus,
 304        .smp_boot_secondary     = nsp_boot_secondary,
 305};
 306CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
 307