linux/arch/arm64/kernel/topology.c
<<
>>
Prefs
   1/*
   2 * arch/arm64/kernel/topology.c
   3 *
   4 * Copyright (C) 2011,2013,2014 Linaro Limited.
   5 *
   6 * Based on the arm32 version written by Vincent Guittot in turn based on
   7 * arch/sh/kernel/topology.c
   8 *
   9 * This file is subject to the terms and conditions of the GNU General Public
  10 * License.  See the file "COPYING" in the main directory of this archive
  11 * for more details.
  12 */
  13
  14#include <linux/cpu.h>
  15#include <linux/cpumask.h>
  16#include <linux/init.h>
  17#include <linux/percpu.h>
  18#include <linux/node.h>
  19#include <linux/nodemask.h>
  20#include <linux/of.h>
  21#include <linux/sched.h>
  22
  23#include <asm/cputype.h>
  24#include <asm/topology.h>
  25
  26static int __init get_cpu_for_node(struct device_node *node)
  27{
  28        struct device_node *cpu_node;
  29        int cpu;
  30
  31        cpu_node = of_parse_phandle(node, "cpu", 0);
  32        if (!cpu_node)
  33                return -1;
  34
  35        for_each_possible_cpu(cpu) {
  36                if (of_get_cpu_node(cpu, NULL) == cpu_node) {
  37                        of_node_put(cpu_node);
  38                        return cpu;
  39                }
  40        }
  41
  42        pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
  43
  44        of_node_put(cpu_node);
  45        return -1;
  46}
  47
  48static int __init parse_core(struct device_node *core, int cluster_id,
  49                             int core_id)
  50{
  51        char name[10];
  52        bool leaf = true;
  53        int i = 0;
  54        int cpu;
  55        struct device_node *t;
  56
  57        do {
  58                snprintf(name, sizeof(name), "thread%d", i);
  59                t = of_get_child_by_name(core, name);
  60                if (t) {
  61                        leaf = false;
  62                        cpu = get_cpu_for_node(t);
  63                        if (cpu >= 0) {
  64                                cpu_topology[cpu].cluster_id = cluster_id;
  65                                cpu_topology[cpu].core_id = core_id;
  66                                cpu_topology[cpu].thread_id = i;
  67                        } else {
  68                                pr_err("%s: Can't get CPU for thread\n",
  69                                       t->full_name);
  70                                of_node_put(t);
  71                                return -EINVAL;
  72                        }
  73                        of_node_put(t);
  74                }
  75                i++;
  76        } while (t);
  77
  78        cpu = get_cpu_for_node(core);
  79        if (cpu >= 0) {
  80                if (!leaf) {
  81                        pr_err("%s: Core has both threads and CPU\n",
  82                               core->full_name);
  83                        return -EINVAL;
  84                }
  85
  86                cpu_topology[cpu].cluster_id = cluster_id;
  87                cpu_topology[cpu].core_id = core_id;
  88        } else if (leaf) {
  89                pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
  90                return -EINVAL;
  91        }
  92
  93        return 0;
  94}
  95
  96static int __init parse_cluster(struct device_node *cluster, int depth)
  97{
  98        char name[10];
  99        bool leaf = true;
 100        bool has_cores = false;
 101        struct device_node *c;
 102        static int cluster_id __initdata;
 103        int core_id = 0;
 104        int i, ret;
 105
 106        /*
 107         * First check for child clusters; we currently ignore any
 108         * information about the nesting of clusters and present the
 109         * scheduler with a flat list of them.
 110         */
 111        i = 0;
 112        do {
 113                snprintf(name, sizeof(name), "cluster%d", i);
 114                c = of_get_child_by_name(cluster, name);
 115                if (c) {
 116                        leaf = false;
 117                        ret = parse_cluster(c, depth + 1);
 118                        of_node_put(c);
 119                        if (ret != 0)
 120                                return ret;
 121                }
 122                i++;
 123        } while (c);
 124
 125        /* Now check for cores */
 126        i = 0;
 127        do {
 128                snprintf(name, sizeof(name), "core%d", i);
 129                c = of_get_child_by_name(cluster, name);
 130                if (c) {
 131                        has_cores = true;
 132
 133                        if (depth == 0) {
 134                                pr_err("%s: cpu-map children should be clusters\n",
 135                                       c->full_name);
 136                                of_node_put(c);
 137                                return -EINVAL;
 138                        }
 139
 140                        if (leaf) {
 141                                ret = parse_core(c, cluster_id, core_id++);
 142                        } else {
 143                                pr_err("%s: Non-leaf cluster with core %s\n",
 144                                       cluster->full_name, name);
 145                                ret = -EINVAL;
 146                        }
 147
 148                        of_node_put(c);
 149                        if (ret != 0)
 150                                return ret;
 151                }
 152                i++;
 153        } while (c);
 154
 155        if (leaf && !has_cores)
 156                pr_warn("%s: empty cluster\n", cluster->full_name);
 157
 158        if (leaf)
 159                cluster_id++;
 160
 161        return 0;
 162}
 163
 164static int __init parse_dt_topology(void)
 165{
 166        struct device_node *cn, *map;
 167        int ret = 0;
 168        int cpu;
 169
 170        cn = of_find_node_by_path("/cpus");
 171        if (!cn) {
 172                pr_err("No CPU information found in DT\n");
 173                return 0;
 174        }
 175
 176        /*
 177         * When topology is provided cpu-map is essentially a root
 178         * cluster with restricted subnodes.
 179         */
 180        map = of_get_child_by_name(cn, "cpu-map");
 181        if (!map)
 182                goto out;
 183
 184        ret = parse_cluster(map, 0);
 185        if (ret != 0)
 186                goto out_map;
 187
 188        /*
 189         * Check that all cores are in the topology; the SMP code will
 190         * only mark cores described in the DT as possible.
 191         */
 192        for_each_possible_cpu(cpu)
 193                if (cpu_topology[cpu].cluster_id == -1)
 194                        ret = -EINVAL;
 195
 196out_map:
 197        of_node_put(map);
 198out:
 199        of_node_put(cn);
 200        return ret;
 201}
 202
 203/*
 204 * cpu topology table
 205 */
 206struct cpu_topology cpu_topology[NR_CPUS];
 207EXPORT_SYMBOL_GPL(cpu_topology);
 208
 209const struct cpumask *cpu_coregroup_mask(int cpu)
 210{
 211        return &cpu_topology[cpu].core_sibling;
 212}
 213
 214static void update_siblings_masks(unsigned int cpuid)
 215{
 216        struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
 217        int cpu;
 218
 219        /* update core and thread sibling masks */
 220        for_each_possible_cpu(cpu) {
 221                cpu_topo = &cpu_topology[cpu];
 222
 223                if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
 224                        continue;
 225
 226                cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
 227                if (cpu != cpuid)
 228                        cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
 229
 230                if (cpuid_topo->core_id != cpu_topo->core_id)
 231                        continue;
 232
 233                cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
 234                if (cpu != cpuid)
 235                        cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
 236        }
 237}
 238
 239void store_cpu_topology(unsigned int cpuid)
 240{
 241        struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
 242        u64 mpidr;
 243
 244        if (cpuid_topo->cluster_id != -1)
 245                goto topology_populated;
 246
 247        mpidr = read_cpuid_mpidr();
 248
 249        /* Uniprocessor systems can rely on default topology values */
 250        if (mpidr & MPIDR_UP_BITMASK)
 251                return;
 252
 253        /* Create cpu topology mapping based on MPIDR. */
 254        if (mpidr & MPIDR_MT_BITMASK) {
 255                /* Multiprocessor system : Multi-threads per core */
 256                cpuid_topo->thread_id  = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 257                cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 258                cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
 259                                         MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
 260        } else {
 261                /* Multiprocessor system : Single-thread per core */
 262                cpuid_topo->thread_id  = -1;
 263                cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 264                cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
 265                                         MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
 266                                         MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
 267        }
 268
 269        pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
 270                 cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
 271                 cpuid_topo->thread_id, mpidr);
 272
 273topology_populated:
 274        update_siblings_masks(cpuid);
 275}
 276
 277static void __init reset_cpu_topology(void)
 278{
 279        unsigned int cpu;
 280
 281        for_each_possible_cpu(cpu) {
 282                struct cpu_topology *cpu_topo = &cpu_topology[cpu];
 283
 284                cpu_topo->thread_id = -1;
 285                cpu_topo->core_id = 0;
 286                cpu_topo->cluster_id = -1;
 287
 288                cpumask_clear(&cpu_topo->core_sibling);
 289                cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
 290                cpumask_clear(&cpu_topo->thread_sibling);
 291                cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
 292        }
 293}
 294
 295void __init init_cpu_topology(void)
 296{
 297        reset_cpu_topology();
 298
 299        /*
 300         * Discard anything that was parsed if we hit an error so we
 301         * don't use partial information.
 302         */
 303        if (of_have_populated_dt() && parse_dt_topology())
 304                reset_cpu_topology();
 305}
 306