linux/arch/powerpc/include/asm/nohash/32/pgtable.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
   2#define _ASM_POWERPC_NOHASH_32_PGTABLE_H
   3
   4#include <asm-generic/pgtable-nopmd.h>
   5
   6#ifndef __ASSEMBLY__
   7#include <linux/sched.h>
   8#include <linux/threads.h>
   9#include <asm/io.h>                     /* For sub-arch specific PPC_PIN_SIZE */
  10
  11extern unsigned long ioremap_bot;
  12
  13#ifdef CONFIG_44x
  14extern int icache_44x_need_flush;
  15#endif
  16
  17#endif /* __ASSEMBLY__ */
  18
  19/*
  20 * The normal case is that PTEs are 32-bits and we have a 1-page
  21 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
  22 *
  23 * For any >32-bit physical address platform, we can use the following
  24 * two level page table layout where the pgdir is 8KB and the MS 13 bits
  25 * are an index to the second level table.  The combined pgdir/pmd first
  26 * level has 2048 entries and the second level has 512 64-bit PTE entries.
  27 * -Matt
  28 */
  29/* PGDIR_SHIFT determines what a top-level page table entry can map */
  30#define PGDIR_SHIFT     (PAGE_SHIFT + PTE_SHIFT)
  31#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  32#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  33
  34/*
  35 * entries per page directory level: our page-table tree is two-level, so
  36 * we don't really have any PMD directory.
  37 */
  38#ifndef __ASSEMBLY__
  39#define PTE_TABLE_SIZE  (sizeof(pte_t) << PTE_SHIFT)
  40#define PGD_TABLE_SIZE  (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
  41#endif  /* __ASSEMBLY__ */
  42
  43#define PTRS_PER_PTE    (1 << PTE_SHIFT)
  44#define PTRS_PER_PMD    1
  45#define PTRS_PER_PGD    (1 << (32 - PGDIR_SHIFT))
  46
  47#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
  48#define FIRST_USER_ADDRESS      0UL
  49
  50#define pte_ERROR(e) \
  51        pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
  52                (unsigned long long)pte_val(e))
  53#define pgd_ERROR(e) \
  54        pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
  55
  56/*
  57 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
  58 * value (for now) on others, from where we can start layout kernel
  59 * virtual space that goes below PKMAP and FIXMAP
  60 */
  61#ifdef CONFIG_HIGHMEM
  62#define KVIRT_TOP       PKMAP_BASE
  63#else
  64#define KVIRT_TOP       (0xfe000000UL)  /* for now, could be FIXMAP_BASE ? */
  65#endif
  66
  67/*
  68 * ioremap_bot starts at that address. Early ioremaps move down from there,
  69 * until mem_init() at which point this becomes the top of the vmalloc
  70 * and ioremap space
  71 */
  72#ifdef CONFIG_NOT_COHERENT_CACHE
  73#define IOREMAP_TOP     ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
  74#else
  75#define IOREMAP_TOP     KVIRT_TOP
  76#endif
  77
  78/*
  79 * Just any arbitrary offset to the start of the vmalloc VM area: the
  80 * current 16MB value just means that there will be a 64MB "hole" after the
  81 * physical memory until the kernel virtual memory starts.  That means that
  82 * any out-of-bounds memory accesses will hopefully be caught.
  83 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  84 * area for the same reason. ;)
  85 *
  86 * We no longer map larger than phys RAM with the BATs so we don't have
  87 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
  88 * about clashes between our early calls to ioremap() that start growing down
  89 * from IOREMAP_TOP being run into the VM area allocations (growing upwards
  90 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
  91 * we actually run into our mappings setup in the early boot with the VM
  92 * system.  This really does become a problem for machines with good amounts
  93 * of RAM.  -- Cort
  94 */
  95#define VMALLOC_OFFSET (0x1000000) /* 16M */
  96#ifdef PPC_PIN_SIZE
  97#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
  98#else
  99#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
 100#endif
 101#define VMALLOC_END     ioremap_bot
 102
 103/*
 104 * Bits in a linux-style PTE.  These match the bits in the
 105 * (hardware-defined) PowerPC PTE as closely as possible.
 106 */
 107
 108#if defined(CONFIG_40x)
 109#include <asm/nohash/32/pte-40x.h>
 110#elif defined(CONFIG_44x)
 111#include <asm/nohash/32/pte-44x.h>
 112#elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
 113#include <asm/nohash/pte-book3e.h>
 114#elif defined(CONFIG_FSL_BOOKE)
 115#include <asm/nohash/32/pte-fsl-booke.h>
 116#elif defined(CONFIG_8xx)
 117#include <asm/nohash/32/pte-8xx.h>
 118#endif
 119
 120/* And here we include common definitions */
 121#include <asm/pte-common.h>
 122
 123#ifndef __ASSEMBLY__
 124
 125#define pte_clear(mm, addr, ptep) \
 126        do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
 127
 128#define pmd_none(pmd)           (!pmd_val(pmd))
 129#define pmd_bad(pmd)            (pmd_val(pmd) & _PMD_BAD)
 130#define pmd_present(pmd)        (pmd_val(pmd) & _PMD_PRESENT_MASK)
 131static inline void pmd_clear(pmd_t *pmdp)
 132{
 133        *pmdp = __pmd(0);
 134}
 135
 136
 137
 138/*
 139 * When flushing the tlb entry for a page, we also need to flush the hash
 140 * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
 141 */
 142extern int flush_hash_pages(unsigned context, unsigned long va,
 143                            unsigned long pmdval, int count);
 144
 145/* Add an HPTE to the hash table */
 146extern void add_hash_page(unsigned context, unsigned long va,
 147                          unsigned long pmdval);
 148
 149/* Flush an entry from the TLB/hash table */
 150extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
 151                             unsigned long address);
 152
 153/*
 154 * PTE updates. This function is called whenever an existing
 155 * valid PTE is updated. This does -not- include set_pte_at()
 156 * which nowadays only sets a new PTE.
 157 *
 158 * Depending on the type of MMU, we may need to use atomic updates
 159 * and the PTE may be either 32 or 64 bit wide. In the later case,
 160 * when using atomic updates, only the low part of the PTE is
 161 * accessed atomically.
 162 *
 163 * In addition, on 44x, we also maintain a global flag indicating
 164 * that an executable user mapping was modified, which is needed
 165 * to properly flush the virtually tagged instruction cache of
 166 * those implementations.
 167 */
 168#ifndef CONFIG_PTE_64BIT
 169static inline unsigned long pte_update(pte_t *p,
 170                                       unsigned long clr,
 171                                       unsigned long set)
 172{
 173#ifdef PTE_ATOMIC_UPDATES
 174        unsigned long old, tmp;
 175
 176        __asm__ __volatile__("\
 1771:      lwarx   %0,0,%3\n\
 178        andc    %1,%0,%4\n\
 179        or      %1,%1,%5\n"
 180        PPC405_ERR77(0,%3)
 181"       stwcx.  %1,0,%3\n\
 182        bne-    1b"
 183        : "=&r" (old), "=&r" (tmp), "=m" (*p)
 184        : "r" (p), "r" (clr), "r" (set), "m" (*p)
 185        : "cc" );
 186#else /* PTE_ATOMIC_UPDATES */
 187        unsigned long old = pte_val(*p);
 188        *p = __pte((old & ~clr) | set);
 189#endif /* !PTE_ATOMIC_UPDATES */
 190
 191#ifdef CONFIG_44x
 192        if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
 193                icache_44x_need_flush = 1;
 194#endif
 195        return old;
 196}
 197#else /* CONFIG_PTE_64BIT */
 198static inline unsigned long long pte_update(pte_t *p,
 199                                            unsigned long clr,
 200                                            unsigned long set)
 201{
 202#ifdef PTE_ATOMIC_UPDATES
 203        unsigned long long old;
 204        unsigned long tmp;
 205
 206        __asm__ __volatile__("\
 2071:      lwarx   %L0,0,%4\n\
 208        lwzx    %0,0,%3\n\
 209        andc    %1,%L0,%5\n\
 210        or      %1,%1,%6\n"
 211        PPC405_ERR77(0,%3)
 212"       stwcx.  %1,0,%4\n\
 213        bne-    1b"
 214        : "=&r" (old), "=&r" (tmp), "=m" (*p)
 215        : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
 216        : "cc" );
 217#else /* PTE_ATOMIC_UPDATES */
 218        unsigned long long old = pte_val(*p);
 219        *p = __pte((old & ~(unsigned long long)clr) | set);
 220#endif /* !PTE_ATOMIC_UPDATES */
 221
 222#ifdef CONFIG_44x
 223        if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
 224                icache_44x_need_flush = 1;
 225#endif
 226        return old;
 227}
 228#endif /* CONFIG_PTE_64BIT */
 229
 230/*
 231 * 2.6 calls this without flushing the TLB entry; this is wrong
 232 * for our hash-based implementation, we fix that up here.
 233 */
 234#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 235static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
 236{
 237        unsigned long old;
 238        old = pte_update(ptep, _PAGE_ACCESSED, 0);
 239#if _PAGE_HASHPTE != 0
 240        if (old & _PAGE_HASHPTE) {
 241                unsigned long ptephys = __pa(ptep) & PAGE_MASK;
 242                flush_hash_pages(context, addr, ptephys, 1);
 243        }
 244#endif
 245        return (old & _PAGE_ACCESSED) != 0;
 246}
 247#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
 248        __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
 249
 250#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 251static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
 252                                       pte_t *ptep)
 253{
 254        return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
 255}
 256
 257#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 258static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 259                                      pte_t *ptep)
 260{
 261        pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO);
 262}
 263static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 264                                           unsigned long addr, pte_t *ptep)
 265{
 266        ptep_set_wrprotect(mm, addr, ptep);
 267}
 268
 269
 270static inline void __ptep_set_access_flags(struct mm_struct *mm,
 271                                           pte_t *ptep, pte_t entry)
 272{
 273        unsigned long set = pte_val(entry) &
 274                (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
 275        unsigned long clr = ~pte_val(entry) & _PAGE_RO;
 276
 277        pte_update(ptep, clr, set);
 278}
 279
 280#define __HAVE_ARCH_PTE_SAME
 281#define pte_same(A,B)   (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
 282
 283/*
 284 * Note that on Book E processors, the pmd contains the kernel virtual
 285 * (lowmem) address of the pte page.  The physical address is less useful
 286 * because everything runs with translation enabled (even the TLB miss
 287 * handler).  On everything else the pmd contains the physical address
 288 * of the pte page.  -- paulus
 289 */
 290#ifndef CONFIG_BOOKE
 291#define pmd_page_vaddr(pmd)     \
 292        ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 293#define pmd_page(pmd)           \
 294        pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
 295#else
 296#define pmd_page_vaddr(pmd)     \
 297        ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
 298#define pmd_page(pmd)           \
 299        pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
 300#endif
 301
 302/* to find an entry in a kernel page-table-directory */
 303#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 304
 305/* to find an entry in a page-table-directory */
 306#define pgd_index(address)       ((address) >> PGDIR_SHIFT)
 307#define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
 308
 309/* Find an entry in the third-level page table.. */
 310#define pte_index(address)              \
 311        (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 312#define pte_offset_kernel(dir, addr)    \
 313        (pmd_bad(*(dir)) ? NULL : (pte_t *)pmd_page_vaddr(*(dir)) + \
 314                                  pte_index(addr))
 315#define pte_offset_map(dir, addr)               \
 316        ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
 317#define pte_unmap(pte)          kunmap_atomic(pte)
 318
 319/*
 320 * Encode and decode a swap entry.
 321 * Note that the bits we use in a PTE for representing a swap entry
 322 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
 323 *   -- paulus
 324 */
 325#define __swp_type(entry)               ((entry).val & 0x1f)
 326#define __swp_offset(entry)             ((entry).val >> 5)
 327#define __swp_entry(type, offset)       ((swp_entry_t) { (type) | ((offset) << 5) })
 328#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) >> 3 })
 329#define __swp_entry_to_pte(x)           ((pte_t) { (x).val << 3 })
 330
 331#ifndef CONFIG_PPC_4K_PAGES
 332void pgtable_cache_init(void);
 333#else
 334/*
 335 * No page table caches to initialise
 336 */
 337#define pgtable_cache_init()    do { } while (0)
 338#endif
 339
 340extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
 341                      pmd_t **pmdp);
 342
 343#endif /* !__ASSEMBLY__ */
 344
 345#endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */
 346