linux/arch/x86/include/asm/uv/uv_hub.h
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * SGI UV architectural definitions
   7 *
   8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
   9 */
  10
  11#ifndef _ASM_X86_UV_UV_HUB_H
  12#define _ASM_X86_UV_UV_HUB_H
  13
  14#ifdef CONFIG_X86_64
  15#include <linux/numa.h>
  16#include <linux/percpu.h>
  17#include <linux/timer.h>
  18#include <linux/io.h>
  19#include <linux/topology.h>
  20#include <asm/types.h>
  21#include <asm/percpu.h>
  22#include <asm/uv/uv_mmrs.h>
  23#include <asm/uv/bios.h>
  24#include <asm/irq_vectors.h>
  25#include <asm/io_apic.h>
  26
  27
  28/*
  29 * Addressing Terminology
  30 *
  31 *      M       - The low M bits of a physical address represent the offset
  32 *                into the blade local memory. RAM memory on a blade is physically
  33 *                contiguous (although various IO spaces may punch holes in
  34 *                it)..
  35 *
  36 *      N       - Number of bits in the node portion of a socket physical
  37 *                address.
  38 *
  39 *      NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
  40 *                routers always have low bit of 1, C/MBricks have low bit
  41 *                equal to 0. Most addressing macros that target UV hub chips
  42 *                right shift the NASID by 1 to exclude the always-zero bit.
  43 *                NASIDs contain up to 15 bits.
  44 *
  45 *      GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  46 *                of nasids.
  47 *
  48 *      PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
  49 *                of the nasid for socket usage.
  50 *
  51 *      GPA     - (global physical address) a socket physical address converted
  52 *                so that it can be used by the GRU as a global address. Socket
  53 *                physical addresses 1) need additional NASID (node) bits added
  54 *                to the high end of the address, and 2) unaliased if the
  55 *                partition does not have a physical address 0. In addition, on
  56 *                UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
  57 *
  58 *
  59 *  NumaLink Global Physical Address Format:
  60 *  +--------------------------------+---------------------+
  61 *  |00..000|      GNODE             |      NodeOffset     |
  62 *  +--------------------------------+---------------------+
  63 *          |<-------53 - M bits --->|<--------M bits ----->
  64 *
  65 *      M - number of node offset bits (35 .. 40)
  66 *
  67 *
  68 *  Memory/UV-HUB Processor Socket Address Format:
  69 *  +----------------+---------------+---------------------+
  70 *  |00..000000000000|   PNODE       |      NodeOffset     |
  71 *  +----------------+---------------+---------------------+
  72 *                   <--- N bits --->|<--------M bits ----->
  73 *
  74 *      M - number of node offset bits (35 .. 40)
  75 *      N - number of PNODE bits (0 .. 10)
  76 *
  77 *              Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  78 *              The actual values are configuration dependent and are set at
  79 *              boot time. M & N values are set by the hardware/BIOS at boot.
  80 *
  81 *
  82 * APICID format
  83 *      NOTE!!!!!! This is the current format of the APICID. However, code
  84 *      should assume that this will change in the future. Use functions
  85 *      in this file for all APICID bit manipulations and conversion.
  86 *
  87 *              1111110000000000
  88 *              5432109876543210
  89 *              pppppppppplc0cch        Nehalem-EX (12 bits in hdw reg)
  90 *              ppppppppplcc0cch        Westmere-EX (12 bits in hdw reg)
  91 *              pppppppppppcccch        SandyBridge (15 bits in hdw reg)
  92 *              sssssssssss
  93 *
  94 *                      p  = pnode bits
  95 *                      l =  socket number on board
  96 *                      c  = core
  97 *                      h  = hyperthread
  98 *                      s  = bits that are in the SOCKET_ID CSR
  99 *
 100 *      Note: Processor may support fewer bits in the APICID register. The ACPI
 101 *            tables hold all 16 bits. Software needs to be aware of this.
 102 *
 103 *            Unless otherwise specified, all references to APICID refer to
 104 *            the FULL value contained in ACPI tables, not the subset in the
 105 *            processor APICID register.
 106 */
 107
 108/*
 109 * Maximum number of bricks in all partitions and in all coherency domains.
 110 * This is the total number of bricks accessible in the numalink fabric. It
 111 * includes all C & M bricks. Routers are NOT included.
 112 *
 113 * This value is also the value of the maximum number of non-router NASIDs
 114 * in the numalink fabric.
 115 *
 116 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
 117 */
 118#define UV_MAX_NUMALINK_BLADES  16384
 119
 120/*
 121 * Maximum number of C/Mbricks within a software SSI (hardware may support
 122 * more).
 123 */
 124#define UV_MAX_SSI_BLADES       256
 125
 126/*
 127 * The largest possible NASID of a C or M brick (+ 2)
 128 */
 129#define UV_MAX_NASID_VALUE      (UV_MAX_NUMALINK_BLADES * 2)
 130
 131/* System Controller Interface Reg info */
 132struct uv_scir_s {
 133        struct timer_list timer;
 134        unsigned long   offset;
 135        unsigned long   last;
 136        unsigned long   idle_on;
 137        unsigned long   idle_off;
 138        unsigned char   state;
 139        unsigned char   enabled;
 140};
 141
 142/* GAM (globally addressed memory) range table */
 143struct uv_gam_range_s {
 144        u32     limit;          /* PA bits 56:26 (GAM_RANGE_SHFT) */
 145        u16     nasid;          /* node's global physical address */
 146        s8      base;           /* entry index of node's base addr */
 147        u8      reserved;
 148};
 149
 150/*
 151 * The following defines attributes of the HUB chip. These attributes are
 152 * frequently referenced and are kept in a common per hub struct.
 153 * After setup, the struct is read only, so it should be readily
 154 * available in the L3 cache on the cpu socket for the node.
 155 */
 156struct uv_hub_info_s {
 157        unsigned long           global_mmr_base;
 158        unsigned long           global_mmr_shift;
 159        unsigned long           gpa_mask;
 160        unsigned short          *socket_to_node;
 161        unsigned short          *socket_to_pnode;
 162        unsigned short          *pnode_to_socket;
 163        struct uv_gam_range_s   *gr_table;
 164        unsigned short          min_socket;
 165        unsigned short          min_pnode;
 166        unsigned char           m_val;
 167        unsigned char           n_val;
 168        unsigned char           gr_table_len;
 169        unsigned char           hub_revision;
 170        unsigned char           apic_pnode_shift;
 171        unsigned char           gpa_shift;
 172        unsigned char           m_shift;
 173        unsigned char           n_lshift;
 174        unsigned int            gnode_extra;
 175        unsigned long           gnode_upper;
 176        unsigned long           lowmem_remap_top;
 177        unsigned long           lowmem_remap_base;
 178        unsigned long           global_gru_base;
 179        unsigned long           global_gru_shift;
 180        unsigned short          pnode;
 181        unsigned short          pnode_mask;
 182        unsigned short          coherency_domain_number;
 183        unsigned short          numa_blade_id;
 184        unsigned short          nr_possible_cpus;
 185        unsigned short          nr_online_cpus;
 186        short                   memory_nid;
 187};
 188
 189/* CPU specific info with a pointer to the hub common info struct */
 190struct uv_cpu_info_s {
 191        void                    *p_uv_hub_info;
 192        unsigned char           blade_cpu_id;
 193        struct uv_scir_s        scir;
 194};
 195DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
 196
 197#define uv_cpu_info             this_cpu_ptr(&__uv_cpu_info)
 198#define uv_cpu_info_per(cpu)    (&per_cpu(__uv_cpu_info, cpu))
 199
 200#define uv_scir_info            (&uv_cpu_info->scir)
 201#define uv_cpu_scir_info(cpu)   (&uv_cpu_info_per(cpu)->scir)
 202
 203/* Node specific hub common info struct */
 204extern void **__uv_hub_info_list;
 205static inline struct uv_hub_info_s *uv_hub_info_list(int node)
 206{
 207        return (struct uv_hub_info_s *)__uv_hub_info_list[node];
 208}
 209
 210static inline struct uv_hub_info_s *_uv_hub_info(void)
 211{
 212        return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
 213}
 214#define uv_hub_info     _uv_hub_info()
 215
 216static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
 217{
 218        return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
 219}
 220
 221#define UV_HUB_INFO_VERSION     0x7150
 222extern int uv_hub_info_version(void);
 223static inline int uv_hub_info_check(int version)
 224{
 225        if (uv_hub_info_version() == version)
 226                return 0;
 227
 228        pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
 229                uv_hub_info_version(), version);
 230
 231        BUG();  /* Catastrophic - cannot continue on unknown UV system */
 232}
 233#define _uv_hub_info_check()    uv_hub_info_check(UV_HUB_INFO_VERSION)
 234
 235/*
 236 * HUB revision ranges for each UV HUB architecture.
 237 * This is a software convention - NOT the hardware revision numbers in
 238 * the hub chip.
 239 */
 240#define UV1_HUB_REVISION_BASE           1
 241#define UV2_HUB_REVISION_BASE           3
 242#define UV3_HUB_REVISION_BASE           5
 243#define UV4_HUB_REVISION_BASE           7
 244
 245#ifdef  UV1_HUB_IS_SUPPORTED
 246static inline int is_uv1_hub(void)
 247{
 248        return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
 249}
 250#else
 251static inline int is_uv1_hub(void)
 252{
 253        return 0;
 254}
 255#endif
 256
 257#ifdef  UV2_HUB_IS_SUPPORTED
 258static inline int is_uv2_hub(void)
 259{
 260        return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
 261                (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
 262}
 263#else
 264static inline int is_uv2_hub(void)
 265{
 266        return 0;
 267}
 268#endif
 269
 270#ifdef  UV3_HUB_IS_SUPPORTED
 271static inline int is_uv3_hub(void)
 272{
 273        return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
 274                (uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
 275}
 276#else
 277static inline int is_uv3_hub(void)
 278{
 279        return 0;
 280}
 281#endif
 282
 283#ifdef  UV4_HUB_IS_SUPPORTED
 284static inline int is_uv4_hub(void)
 285{
 286        return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
 287}
 288#else
 289static inline int is_uv4_hub(void)
 290{
 291        return 0;
 292}
 293#endif
 294
 295static inline int is_uvx_hub(void)
 296{
 297        if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
 298                return uv_hub_info->hub_revision;
 299
 300        return 0;
 301}
 302
 303static inline int is_uv_hub(void)
 304{
 305#ifdef  UV1_HUB_IS_SUPPORTED
 306        return uv_hub_info->hub_revision;
 307#endif
 308        return is_uvx_hub();
 309}
 310
 311union uvh_apicid {
 312    unsigned long       v;
 313    struct uvh_apicid_s {
 314        unsigned long   local_apic_mask  : 24;
 315        unsigned long   local_apic_shift :  5;
 316        unsigned long   unused1          :  3;
 317        unsigned long   pnode_mask       : 24;
 318        unsigned long   pnode_shift      :  5;
 319        unsigned long   unused2          :  3;
 320    } s;
 321};
 322
 323/*
 324 * Local & Global MMR space macros.
 325 *      Note: macros are intended to be used ONLY by inline functions
 326 *      in this file - not by other kernel code.
 327 *              n -  NASID (full 15-bit global nasid)
 328 *              g -  GNODE (full 15-bit global nasid, right shifted 1)
 329 *              p -  PNODE (local part of nsids, right shifted 1)
 330 */
 331#define UV_NASID_TO_PNODE(n)            (((n) >> 1) & uv_hub_info->pnode_mask)
 332#define UV_PNODE_TO_GNODE(p)            ((p) |uv_hub_info->gnode_extra)
 333#define UV_PNODE_TO_NASID(p)            (UV_PNODE_TO_GNODE(p) << 1)
 334
 335#define UV1_LOCAL_MMR_BASE              0xf4000000UL
 336#define UV1_GLOBAL_MMR32_BASE           0xf8000000UL
 337#define UV1_LOCAL_MMR_SIZE              (64UL * 1024 * 1024)
 338#define UV1_GLOBAL_MMR32_SIZE           (64UL * 1024 * 1024)
 339
 340#define UV2_LOCAL_MMR_BASE              0xfa000000UL
 341#define UV2_GLOBAL_MMR32_BASE           0xfc000000UL
 342#define UV2_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
 343#define UV2_GLOBAL_MMR32_SIZE           (32UL * 1024 * 1024)
 344
 345#define UV3_LOCAL_MMR_BASE              0xfa000000UL
 346#define UV3_GLOBAL_MMR32_BASE           0xfc000000UL
 347#define UV3_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
 348#define UV3_GLOBAL_MMR32_SIZE           (32UL * 1024 * 1024)
 349
 350#define UV4_LOCAL_MMR_BASE              0xfa000000UL
 351#define UV4_GLOBAL_MMR32_BASE           0xfc000000UL
 352#define UV4_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
 353#define UV4_GLOBAL_MMR32_SIZE           (16UL * 1024 * 1024)
 354
 355#define UV_LOCAL_MMR_BASE               (                               \
 356                                        is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
 357                                        is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
 358                                        is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
 359                                        /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
 360
 361#define UV_GLOBAL_MMR32_BASE            (                               \
 362                                        is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
 363                                        is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
 364                                        is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
 365                                        /*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
 366
 367#define UV_LOCAL_MMR_SIZE               (                               \
 368                                        is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
 369                                        is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
 370                                        is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
 371                                        /*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
 372
 373#define UV_GLOBAL_MMR32_SIZE            (                               \
 374                                        is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
 375                                        is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
 376                                        is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
 377                                        /*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
 378
 379#define UV_GLOBAL_MMR64_BASE            (uv_hub_info->global_mmr_base)
 380
 381#define UV_GLOBAL_GRU_MMR_BASE          0x4000000
 382
 383#define UV_GLOBAL_MMR32_PNODE_SHIFT     15
 384#define _UV_GLOBAL_MMR64_PNODE_SHIFT    26
 385#define UV_GLOBAL_MMR64_PNODE_SHIFT     (uv_hub_info->global_mmr_shift)
 386
 387#define UV_GLOBAL_MMR32_PNODE_BITS(p)   ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
 388
 389#define UV_GLOBAL_MMR64_PNODE_BITS(p)                                   \
 390        (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
 391
 392#define UVH_APICID              0x002D0E00L
 393#define UV_APIC_PNODE_SHIFT     6
 394
 395#define UV_APICID_HIBIT_MASK    0xffff0000
 396
 397/* Local Bus from cpu's perspective */
 398#define LOCAL_BUS_BASE          0x1c00000
 399#define LOCAL_BUS_SIZE          (4 * 1024 * 1024)
 400
 401/*
 402 * System Controller Interface Reg
 403 *
 404 * Note there are NO leds on a UV system.  This register is only
 405 * used by the system controller to monitor system-wide operation.
 406 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
 407 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 408 * a node.
 409 *
 410 * The window is located at top of ACPI MMR space
 411 */
 412#define SCIR_WINDOW_COUNT       64
 413#define SCIR_LOCAL_MMR_BASE     (LOCAL_BUS_BASE + \
 414                                 LOCAL_BUS_SIZE - \
 415                                 SCIR_WINDOW_COUNT)
 416
 417#define SCIR_CPU_HEARTBEAT      0x01    /* timer interrupt */
 418#define SCIR_CPU_ACTIVITY       0x02    /* not idle */
 419#define SCIR_CPU_HB_INTERVAL    (HZ)    /* once per second */
 420
 421/* Loop through all installed blades */
 422#define for_each_possible_blade(bid)            \
 423        for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
 424
 425/*
 426 * Macros for converting between kernel virtual addresses, socket local physical
 427 * addresses, and UV global physical addresses.
 428 *      Note: use the standard __pa() & __va() macros for converting
 429 *            between socket virtual and socket physical addresses.
 430 */
 431
 432/* global bits offset - number of local address bits in gpa for this UV arch */
 433static inline unsigned int uv_gpa_shift(void)
 434{
 435        return uv_hub_info->gpa_shift;
 436}
 437#define _uv_gpa_shift
 438
 439/* Find node that has the address range that contains global address  */
 440static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
 441{
 442        struct uv_gam_range_s *gr = uv_hub_info->gr_table;
 443        unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
 444        int i, num = uv_hub_info->gr_table_len;
 445
 446        if (gr) {
 447                for (i = 0; i < num; i++, gr++) {
 448                        if (pal < gr->limit)
 449                                return gr;
 450                }
 451        }
 452        pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
 453        BUG();
 454}
 455
 456/* Return base address of node that contains global address  */
 457static inline unsigned long uv_gam_range_base(unsigned long pa)
 458{
 459        struct uv_gam_range_s *gr = uv_gam_range(pa);
 460        int base = gr->base;
 461
 462        if (base < 0)
 463                return 0UL;
 464
 465        return uv_hub_info->gr_table[base].limit;
 466}
 467
 468/* socket phys RAM --> UV global NASID (UV4+) */
 469static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
 470{
 471        return uv_gam_range(paddr)->nasid;
 472}
 473#define _uv_soc_phys_ram_to_nasid
 474
 475/* socket virtual --> UV global NASID (UV4+) */
 476static inline unsigned long uv_gpa_nasid(void *v)
 477{
 478        return uv_soc_phys_ram_to_nasid(__pa(v));
 479}
 480
 481/* socket phys RAM --> UV global physical address */
 482static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
 483{
 484        unsigned int m_val = uv_hub_info->m_val;
 485
 486        if (paddr < uv_hub_info->lowmem_remap_top)
 487                paddr |= uv_hub_info->lowmem_remap_base;
 488        paddr |= uv_hub_info->gnode_upper;
 489        if (m_val)
 490                paddr = ((paddr << uv_hub_info->m_shift)
 491                                                >> uv_hub_info->m_shift) |
 492                        ((paddr >> uv_hub_info->m_val)
 493                                                << uv_hub_info->n_lshift);
 494        else
 495                paddr |= uv_soc_phys_ram_to_nasid(paddr)
 496                                                << uv_hub_info->gpa_shift;
 497        return paddr;
 498}
 499
 500/* socket virtual --> UV global physical address */
 501static inline unsigned long uv_gpa(void *v)
 502{
 503        return uv_soc_phys_ram_to_gpa(__pa(v));
 504}
 505
 506/* Top two bits indicate the requested address is in MMR space.  */
 507static inline int
 508uv_gpa_in_mmr_space(unsigned long gpa)
 509{
 510        return (gpa >> 62) == 0x3UL;
 511}
 512
 513/* UV global physical address --> socket phys RAM */
 514static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
 515{
 516        unsigned long paddr;
 517        unsigned long remap_base = uv_hub_info->lowmem_remap_base;
 518        unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
 519        unsigned int m_val = uv_hub_info->m_val;
 520
 521        if (m_val)
 522                gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
 523                        ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
 524
 525        paddr = gpa & uv_hub_info->gpa_mask;
 526        if (paddr >= remap_base && paddr < remap_base + remap_top)
 527                paddr -= remap_base;
 528        return paddr;
 529}
 530
 531/* gpa -> gnode */
 532static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
 533{
 534        unsigned int n_lshift = uv_hub_info->n_lshift;
 535
 536        if (n_lshift)
 537                return gpa >> n_lshift;
 538
 539        return uv_gam_range(gpa)->nasid >> 1;
 540}
 541
 542/* gpa -> pnode */
 543static inline int uv_gpa_to_pnode(unsigned long gpa)
 544{
 545        return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
 546}
 547
 548/* gpa -> node offset */
 549static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
 550{
 551        unsigned int m_shift = uv_hub_info->m_shift;
 552
 553        if (m_shift)
 554                return (gpa << m_shift) >> m_shift;
 555
 556        return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
 557}
 558
 559/* Convert socket to node */
 560static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
 561{
 562        return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
 563}
 564
 565static inline int uv_socket_to_node(int socket)
 566{
 567        return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
 568}
 569
 570/* pnode, offset --> socket virtual */
 571static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
 572{
 573        unsigned int m_val = uv_hub_info->m_val;
 574        unsigned long base;
 575        unsigned short sockid, node, *p2s;
 576
 577        if (m_val)
 578                return __va(((unsigned long)pnode << m_val) | offset);
 579
 580        p2s = uv_hub_info->pnode_to_socket;
 581        sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
 582        node = uv_socket_to_node(sockid);
 583
 584        /* limit address of previous socket is our base, except node 0 is 0 */
 585        if (!node)
 586                return __va((unsigned long)offset);
 587
 588        base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
 589        return __va(base << UV_GAM_RANGE_SHFT | offset);
 590}
 591
 592/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
 593static inline int uv_apicid_to_pnode(int apicid)
 594{
 595        int pnode = apicid >> uv_hub_info->apic_pnode_shift;
 596        unsigned short *s2pn = uv_hub_info->socket_to_pnode;
 597
 598        return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
 599}
 600
 601/* Convert an apicid to the socket number on the blade */
 602static inline int uv_apicid_to_socket(int apicid)
 603{
 604        if (is_uv1_hub())
 605                return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
 606        else
 607                return 0;
 608}
 609
 610/*
 611 * Access global MMRs using the low memory MMR32 space. This region supports
 612 * faster MMR access but not all MMRs are accessible in this space.
 613 */
 614static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
 615{
 616        return __va(UV_GLOBAL_MMR32_BASE |
 617                       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
 618}
 619
 620static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
 621{
 622        writeq(val, uv_global_mmr32_address(pnode, offset));
 623}
 624
 625static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
 626{
 627        return readq(uv_global_mmr32_address(pnode, offset));
 628}
 629
 630/*
 631 * Access Global MMR space using the MMR space located at the top of physical
 632 * memory.
 633 */
 634static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
 635{
 636        return __va(UV_GLOBAL_MMR64_BASE |
 637                    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
 638}
 639
 640static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
 641{
 642        writeq(val, uv_global_mmr64_address(pnode, offset));
 643}
 644
 645static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
 646{
 647        return readq(uv_global_mmr64_address(pnode, offset));
 648}
 649
 650static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
 651{
 652        writeb(val, uv_global_mmr64_address(pnode, offset));
 653}
 654
 655static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
 656{
 657        return readb(uv_global_mmr64_address(pnode, offset));
 658}
 659
 660/*
 661 * Access hub local MMRs. Faster than using global space but only local MMRs
 662 * are accessible.
 663 */
 664static inline unsigned long *uv_local_mmr_address(unsigned long offset)
 665{
 666        return __va(UV_LOCAL_MMR_BASE | offset);
 667}
 668
 669static inline unsigned long uv_read_local_mmr(unsigned long offset)
 670{
 671        return readq(uv_local_mmr_address(offset));
 672}
 673
 674static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
 675{
 676        writeq(val, uv_local_mmr_address(offset));
 677}
 678
 679static inline unsigned char uv_read_local_mmr8(unsigned long offset)
 680{
 681        return readb(uv_local_mmr_address(offset));
 682}
 683
 684static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
 685{
 686        writeb(val, uv_local_mmr_address(offset));
 687}
 688
 689/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
 690static inline int uv_blade_processor_id(void)
 691{
 692        return uv_cpu_info->blade_cpu_id;
 693}
 694
 695/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
 696static inline int uv_cpu_blade_processor_id(int cpu)
 697{
 698        return uv_cpu_info_per(cpu)->blade_cpu_id;
 699}
 700#define _uv_cpu_blade_processor_id 1    /* indicate function available */
 701
 702/* Blade number to Node number (UV1..UV4 is 1:1) */
 703static inline int uv_blade_to_node(int blade)
 704{
 705        return blade;
 706}
 707
 708/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
 709static inline int uv_numa_blade_id(void)
 710{
 711        return uv_hub_info->numa_blade_id;
 712}
 713
 714/*
 715 * Convert linux node number to the UV blade number.
 716 * .. Currently for UV1 thru UV4 the node and the blade are identical.
 717 * .. If this changes then you MUST check references to this function!
 718 */
 719static inline int uv_node_to_blade_id(int nid)
 720{
 721        return nid;
 722}
 723
 724/* Convert a cpu number to the the UV blade number */
 725static inline int uv_cpu_to_blade_id(int cpu)
 726{
 727        return uv_node_to_blade_id(cpu_to_node(cpu));
 728}
 729
 730/* Convert a blade id to the PNODE of the blade */
 731static inline int uv_blade_to_pnode(int bid)
 732{
 733        return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
 734}
 735
 736/* Nid of memory node on blade. -1 if no blade-local memory */
 737static inline int uv_blade_to_memory_nid(int bid)
 738{
 739        return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
 740}
 741
 742/* Determine the number of possible cpus on a blade */
 743static inline int uv_blade_nr_possible_cpus(int bid)
 744{
 745        return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
 746}
 747
 748/* Determine the number of online cpus on a blade */
 749static inline int uv_blade_nr_online_cpus(int bid)
 750{
 751        return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
 752}
 753
 754/* Convert a cpu id to the PNODE of the blade containing the cpu */
 755static inline int uv_cpu_to_pnode(int cpu)
 756{
 757        return uv_cpu_hub_info(cpu)->pnode;
 758}
 759
 760/* Convert a linux node number to the PNODE of the blade */
 761static inline int uv_node_to_pnode(int nid)
 762{
 763        return uv_hub_info_list(nid)->pnode;
 764}
 765
 766/* Maximum possible number of blades */
 767extern short uv_possible_blades;
 768static inline int uv_num_possible_blades(void)
 769{
 770        return uv_possible_blades;
 771}
 772
 773/* Per Hub NMI support */
 774extern void uv_nmi_setup(void);
 775
 776/* BMC sets a bit this MMR non-zero before sending an NMI */
 777#define UVH_NMI_MMR             UVH_SCRATCH5
 778#define UVH_NMI_MMR_CLEAR       UVH_SCRATCH5_ALIAS
 779#define UVH_NMI_MMR_SHIFT       63
 780#define UVH_NMI_MMR_TYPE        "SCRATCH5"
 781
 782/* Newer SMM NMI handler, not present in all systems */
 783#define UVH_NMI_MMRX            UVH_EVENT_OCCURRED0
 784#define UVH_NMI_MMRX_CLEAR      UVH_EVENT_OCCURRED0_ALIAS
 785#define UVH_NMI_MMRX_SHIFT      UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
 786#define UVH_NMI_MMRX_TYPE       "EXTIO_INT0"
 787
 788/* Non-zero indicates newer SMM NMI handler present */
 789#define UVH_NMI_MMRX_SUPPORTED  UVH_EXTIO_INT0_BROADCAST
 790
 791/* Indicates to BIOS that we want to use the newer SMM NMI handler */
 792#define UVH_NMI_MMRX_REQ        UVH_SCRATCH5_ALIAS_2
 793#define UVH_NMI_MMRX_REQ_SHIFT  62
 794
 795struct uv_hub_nmi_s {
 796        raw_spinlock_t  nmi_lock;
 797        atomic_t        in_nmi;         /* flag this node in UV NMI IRQ */
 798        atomic_t        cpu_owner;      /* last locker of this struct */
 799        atomic_t        read_mmr_count; /* count of MMR reads */
 800        atomic_t        nmi_count;      /* count of true UV NMIs */
 801        unsigned long   nmi_value;      /* last value read from NMI MMR */
 802};
 803
 804struct uv_cpu_nmi_s {
 805        struct uv_hub_nmi_s     *hub;
 806        int                     state;
 807        int                     pinging;
 808        int                     queries;
 809        int                     pings;
 810};
 811
 812DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
 813
 814#define uv_hub_nmi                      this_cpu_read(uv_cpu_nmi.hub)
 815#define uv_cpu_nmi_per(cpu)             (per_cpu(uv_cpu_nmi, cpu))
 816#define uv_hub_nmi_per(cpu)             (uv_cpu_nmi_per(cpu).hub)
 817
 818/* uv_cpu_nmi_states */
 819#define UV_NMI_STATE_OUT                0
 820#define UV_NMI_STATE_IN                 1
 821#define UV_NMI_STATE_DUMP               2
 822#define UV_NMI_STATE_DUMP_DONE          3
 823
 824/* Update SCIR state */
 825static inline void uv_set_scir_bits(unsigned char value)
 826{
 827        if (uv_scir_info->state != value) {
 828                uv_scir_info->state = value;
 829                uv_write_local_mmr8(uv_scir_info->offset, value);
 830        }
 831}
 832
 833static inline unsigned long uv_scir_offset(int apicid)
 834{
 835        return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
 836}
 837
 838static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
 839{
 840        if (uv_cpu_scir_info(cpu)->state != value) {
 841                uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
 842                                uv_cpu_scir_info(cpu)->offset, value);
 843                uv_cpu_scir_info(cpu)->state = value;
 844        }
 845}
 846
 847extern unsigned int uv_apicid_hibits;
 848static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
 849{
 850        apicid |= uv_apicid_hibits;
 851        return (1UL << UVH_IPI_INT_SEND_SHFT) |
 852                        ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
 853                        (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
 854                        (vector << UVH_IPI_INT_VECTOR_SHFT);
 855}
 856
 857static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
 858{
 859        unsigned long val;
 860        unsigned long dmode = dest_Fixed;
 861
 862        if (vector == NMI_VECTOR)
 863                dmode = dest_NMI;
 864
 865        val = uv_hub_ipi_value(apicid, vector, dmode);
 866        uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
 867}
 868
 869/*
 870 * Get the minimum revision number of the hub chips within the partition.
 871 * (See UVx_HUB_REVISION_BASE above for specific values.)
 872 */
 873static inline int uv_get_min_hub_revision_id(void)
 874{
 875        return uv_hub_info->hub_revision;
 876}
 877
 878#endif /* CONFIG_X86_64 */
 879#endif /* _ASM_X86_UV_UV_HUB_H */
 880