linux/drivers/acpi/cppc_acpi.c
<<
>>
Prefs
   1/*
   2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
   3 *
   4 * (C) Copyright 2014, 2015 Linaro Ltd.
   5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 *
  12 * CPPC describes a few methods for controlling CPU performance using
  13 * information from a per CPU table called CPC. This table is described in
  14 * the ACPI v5.0+ specification. The table consists of a list of
  15 * registers which may be memory mapped or hardware registers and also may
  16 * include some static integer values.
  17 *
  18 * CPU performance is on an abstract continuous scale as against a discretized
  19 * P-state scale which is tied to CPU frequency only. In brief, the basic
  20 * operation involves:
  21 *
  22 * - OS makes a CPU performance request. (Can provide min and max bounds)
  23 *
  24 * - Platform (such as BMC) is free to optimize request within requested bounds
  25 *   depending on power/thermal budgets etc.
  26 *
  27 * - Platform conveys its decision back to OS
  28 *
  29 * The communication between OS and platform occurs through another medium
  30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
  31 * mechanism which includes doorbell semantics to indicate register updates.
  32 * See drivers/mailbox/pcc.c for details on PCC.
  33 *
  34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
  35 * above specifications.
  36 */
  37
  38#define pr_fmt(fmt)     "ACPI CPPC: " fmt
  39
  40#include <linux/cpufreq.h>
  41#include <linux/delay.h>
  42#include <linux/ktime.h>
  43#include <linux/rwsem.h>
  44#include <linux/wait.h>
  45
  46#include <acpi/cppc_acpi.h>
  47
  48struct cppc_pcc_data {
  49        struct mbox_chan *pcc_channel;
  50        void __iomem *pcc_comm_addr;
  51        int pcc_subspace_idx;
  52        bool pcc_channel_acquired;
  53        ktime_t deadline;
  54        unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
  55
  56        bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
  57        bool platform_owns_pcc;         /* Ownership of PCC subspace */
  58        unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
  59
  60        /*
  61         * Lock to provide controlled access to the PCC channel.
  62         *
  63         * For performance critical usecases(currently cppc_set_perf)
  64         *      We need to take read_lock and check if channel belongs to OSPM
  65         * before reading or writing to PCC subspace
  66         *      We need to take write_lock before transferring the channel
  67         * ownership to the platform via a Doorbell
  68         *      This allows us to batch a number of CPPC requests if they happen
  69         * to originate in about the same time
  70         *
  71         * For non-performance critical usecases(init)
  72         *      Take write_lock for all purposes which gives exclusive access
  73         */
  74        struct rw_semaphore pcc_lock;
  75
  76        /* Wait queue for CPUs whose requests were batched */
  77        wait_queue_head_t pcc_write_wait_q;
  78};
  79
  80/* Structure to represent the single PCC channel */
  81static struct cppc_pcc_data pcc_data = {
  82        .pcc_subspace_idx = -1,
  83        .platform_owns_pcc = true,
  84};
  85
  86/*
  87 * The cpc_desc structure contains the ACPI register details
  88 * as described in the per CPU _CPC tables. The details
  89 * include the type of register (e.g. PCC, System IO, FFH etc.)
  90 * and destination addresses which lets us READ/WRITE CPU performance
  91 * information using the appropriate I/O methods.
  92 */
  93static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
  94
  95/* pcc mapped address + header size + offset within PCC subspace */
  96#define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
  97
  98/* Check if a CPC regsiter is in PCC */
  99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
 100                                (cpc)->cpc_entry.reg.space_id ==        \
 101                                ACPI_ADR_SPACE_PLATFORM_COMM)
 102
 103/* Evalutes to True if reg is a NULL register descriptor */
 104#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
 105                                (reg)->address == 0 &&                  \
 106                                (reg)->bit_width == 0 &&                \
 107                                (reg)->bit_offset == 0 &&               \
 108                                (reg)->access_width == 0)
 109
 110/* Evalutes to True if an optional cpc field is supported */
 111#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
 112                                !!(cpc)->cpc_entry.int_value :          \
 113                                !IS_NULL_REG(&(cpc)->cpc_entry.reg))
 114/*
 115 * Arbitrary Retries in case the remote processor is slow to respond
 116 * to PCC commands. Keeping it high enough to cover emulators where
 117 * the processors run painfully slow.
 118 */
 119#define NUM_RETRIES 500
 120
 121struct cppc_attr {
 122        struct attribute attr;
 123        ssize_t (*show)(struct kobject *kobj,
 124                        struct attribute *attr, char *buf);
 125        ssize_t (*store)(struct kobject *kobj,
 126                        struct attribute *attr, const char *c, ssize_t count);
 127};
 128
 129#define define_one_cppc_ro(_name)               \
 130static struct cppc_attr _name =                 \
 131__ATTR(_name, 0444, show_##_name, NULL)
 132
 133#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
 134
 135static ssize_t show_feedback_ctrs(struct kobject *kobj,
 136                struct attribute *attr, char *buf)
 137{
 138        struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
 139        struct cppc_perf_fb_ctrs fb_ctrs = {0};
 140
 141        cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
 142
 143        return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
 144                        fb_ctrs.reference, fb_ctrs.delivered);
 145}
 146define_one_cppc_ro(feedback_ctrs);
 147
 148static ssize_t show_reference_perf(struct kobject *kobj,
 149                struct attribute *attr, char *buf)
 150{
 151        struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
 152        struct cppc_perf_fb_ctrs fb_ctrs = {0};
 153
 154        cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
 155
 156        return scnprintf(buf, PAGE_SIZE, "%llu\n",
 157                        fb_ctrs.reference_perf);
 158}
 159define_one_cppc_ro(reference_perf);
 160
 161static ssize_t show_wraparound_time(struct kobject *kobj,
 162                                struct attribute *attr, char *buf)
 163{
 164        struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
 165        struct cppc_perf_fb_ctrs fb_ctrs = {0};
 166
 167        cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
 168
 169        return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
 170
 171}
 172define_one_cppc_ro(wraparound_time);
 173
 174static struct attribute *cppc_attrs[] = {
 175        &feedback_ctrs.attr,
 176        &reference_perf.attr,
 177        &wraparound_time.attr,
 178        NULL
 179};
 180
 181static struct kobj_type cppc_ktype = {
 182        .sysfs_ops = &kobj_sysfs_ops,
 183        .default_attrs = cppc_attrs,
 184};
 185
 186static int check_pcc_chan(bool chk_err_bit)
 187{
 188        int ret = -EIO, status = 0;
 189        struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
 190        ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
 191
 192        if (!pcc_data.platform_owns_pcc)
 193                return 0;
 194
 195        /* Retry in case the remote processor was too slow to catch up. */
 196        while (!ktime_after(ktime_get(), next_deadline)) {
 197                /*
 198                 * Per spec, prior to boot the PCC space wil be initialized by
 199                 * platform and should have set the command completion bit when
 200                 * PCC can be used by OSPM
 201                 */
 202                status = readw_relaxed(&generic_comm_base->status);
 203                if (status & PCC_CMD_COMPLETE_MASK) {
 204                        ret = 0;
 205                        if (chk_err_bit && (status & PCC_ERROR_MASK))
 206                                ret = -EIO;
 207                        break;
 208                }
 209                /*
 210                 * Reducing the bus traffic in case this loop takes longer than
 211                 * a few retries.
 212                 */
 213                udelay(3);
 214        }
 215
 216        if (likely(!ret))
 217                pcc_data.platform_owns_pcc = false;
 218        else
 219                pr_err("PCC check channel failed. Status=%x\n", status);
 220
 221        return ret;
 222}
 223
 224/*
 225 * This function transfers the ownership of the PCC to the platform
 226 * So it must be called while holding write_lock(pcc_lock)
 227 */
 228static int send_pcc_cmd(u16 cmd)
 229{
 230        int ret = -EIO, i;
 231        struct acpi_pcct_shared_memory *generic_comm_base =
 232                (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
 233        static ktime_t last_cmd_cmpl_time, last_mpar_reset;
 234        static int mpar_count;
 235        unsigned int time_delta;
 236
 237        /*
 238         * For CMD_WRITE we know for a fact the caller should have checked
 239         * the channel before writing to PCC space
 240         */
 241        if (cmd == CMD_READ) {
 242                /*
 243                 * If there are pending cpc_writes, then we stole the channel
 244                 * before write completion, so first send a WRITE command to
 245                 * platform
 246                 */
 247                if (pcc_data.pending_pcc_write_cmd)
 248                        send_pcc_cmd(CMD_WRITE);
 249
 250                ret = check_pcc_chan(false);
 251                if (ret)
 252                        goto end;
 253        } else /* CMD_WRITE */
 254                pcc_data.pending_pcc_write_cmd = FALSE;
 255
 256        /*
 257         * Handle the Minimum Request Turnaround Time(MRTT)
 258         * "The minimum amount of time that OSPM must wait after the completion
 259         * of a command before issuing the next command, in microseconds"
 260         */
 261        if (pcc_data.pcc_mrtt) {
 262                time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
 263                if (pcc_data.pcc_mrtt > time_delta)
 264                        udelay(pcc_data.pcc_mrtt - time_delta);
 265        }
 266
 267        /*
 268         * Handle the non-zero Maximum Periodic Access Rate(MPAR)
 269         * "The maximum number of periodic requests that the subspace channel can
 270         * support, reported in commands per minute. 0 indicates no limitation."
 271         *
 272         * This parameter should be ideally zero or large enough so that it can
 273         * handle maximum number of requests that all the cores in the system can
 274         * collectively generate. If it is not, we will follow the spec and just
 275         * not send the request to the platform after hitting the MPAR limit in
 276         * any 60s window
 277         */
 278        if (pcc_data.pcc_mpar) {
 279                if (mpar_count == 0) {
 280                        time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
 281                        if (time_delta < 60 * MSEC_PER_SEC) {
 282                                pr_debug("PCC cmd not sent due to MPAR limit");
 283                                ret = -EIO;
 284                                goto end;
 285                        }
 286                        last_mpar_reset = ktime_get();
 287                        mpar_count = pcc_data.pcc_mpar;
 288                }
 289                mpar_count--;
 290        }
 291
 292        /* Write to the shared comm region. */
 293        writew_relaxed(cmd, &generic_comm_base->command);
 294
 295        /* Flip CMD COMPLETE bit */
 296        writew_relaxed(0, &generic_comm_base->status);
 297
 298        pcc_data.platform_owns_pcc = true;
 299
 300        /* Ring doorbell */
 301        ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
 302        if (ret < 0) {
 303                pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
 304                                cmd, ret);
 305                goto end;
 306        }
 307
 308        /* wait for completion and check for PCC errro bit */
 309        ret = check_pcc_chan(true);
 310
 311        if (pcc_data.pcc_mrtt)
 312                last_cmd_cmpl_time = ktime_get();
 313
 314        if (pcc_data.pcc_channel->mbox->txdone_irq)
 315                mbox_chan_txdone(pcc_data.pcc_channel, ret);
 316        else
 317                mbox_client_txdone(pcc_data.pcc_channel, ret);
 318
 319end:
 320        if (cmd == CMD_WRITE) {
 321                if (unlikely(ret)) {
 322                        for_each_possible_cpu(i) {
 323                                struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
 324                                if (!desc)
 325                                        continue;
 326
 327                                if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
 328                                        desc->write_cmd_status = ret;
 329                        }
 330                }
 331                pcc_data.pcc_write_cnt++;
 332                wake_up_all(&pcc_data.pcc_write_wait_q);
 333        }
 334
 335        return ret;
 336}
 337
 338static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
 339{
 340        if (ret < 0)
 341                pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
 342                                *(u16 *)msg, ret);
 343        else
 344                pr_debug("TX completed. CMD sent:%x, ret:%d\n",
 345                                *(u16 *)msg, ret);
 346}
 347
 348struct mbox_client cppc_mbox_cl = {
 349        .tx_done = cppc_chan_tx_done,
 350        .knows_txdone = true,
 351};
 352
 353static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
 354{
 355        int result = -EFAULT;
 356        acpi_status status = AE_OK;
 357        struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
 358        struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
 359        struct acpi_buffer state = {0, NULL};
 360        union acpi_object  *psd = NULL;
 361        struct acpi_psd_package *pdomain;
 362
 363        status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
 364                        ACPI_TYPE_PACKAGE);
 365        if (ACPI_FAILURE(status))
 366                return -ENODEV;
 367
 368        psd = buffer.pointer;
 369        if (!psd || psd->package.count != 1) {
 370                pr_debug("Invalid _PSD data\n");
 371                goto end;
 372        }
 373
 374        pdomain = &(cpc_ptr->domain_info);
 375
 376        state.length = sizeof(struct acpi_psd_package);
 377        state.pointer = pdomain;
 378
 379        status = acpi_extract_package(&(psd->package.elements[0]),
 380                &format, &state);
 381        if (ACPI_FAILURE(status)) {
 382                pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
 383                goto end;
 384        }
 385
 386        if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
 387                pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
 388                goto end;
 389        }
 390
 391        if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
 392                pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
 393                goto end;
 394        }
 395
 396        if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
 397            pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
 398            pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
 399                pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
 400                goto end;
 401        }
 402
 403        result = 0;
 404end:
 405        kfree(buffer.pointer);
 406        return result;
 407}
 408
 409/**
 410 * acpi_get_psd_map - Map the CPUs in a common freq domain.
 411 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
 412 *
 413 *      Return: 0 for success or negative value for err.
 414 */
 415int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
 416{
 417        int count_target;
 418        int retval = 0;
 419        unsigned int i, j;
 420        cpumask_var_t covered_cpus;
 421        struct cppc_cpudata *pr, *match_pr;
 422        struct acpi_psd_package *pdomain;
 423        struct acpi_psd_package *match_pdomain;
 424        struct cpc_desc *cpc_ptr, *match_cpc_ptr;
 425
 426        if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
 427                return -ENOMEM;
 428
 429        /*
 430         * Now that we have _PSD data from all CPUs, lets setup P-state
 431         * domain info.
 432         */
 433        for_each_possible_cpu(i) {
 434                pr = all_cpu_data[i];
 435                if (!pr)
 436                        continue;
 437
 438                if (cpumask_test_cpu(i, covered_cpus))
 439                        continue;
 440
 441                cpc_ptr = per_cpu(cpc_desc_ptr, i);
 442                if (!cpc_ptr) {
 443                        retval = -EFAULT;
 444                        goto err_ret;
 445                }
 446
 447                pdomain = &(cpc_ptr->domain_info);
 448                cpumask_set_cpu(i, pr->shared_cpu_map);
 449                cpumask_set_cpu(i, covered_cpus);
 450                if (pdomain->num_processors <= 1)
 451                        continue;
 452
 453                /* Validate the Domain info */
 454                count_target = pdomain->num_processors;
 455                if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
 456                        pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 457                else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
 458                        pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
 459                else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
 460                        pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
 461
 462                for_each_possible_cpu(j) {
 463                        if (i == j)
 464                                continue;
 465
 466                        match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
 467                        if (!match_cpc_ptr) {
 468                                retval = -EFAULT;
 469                                goto err_ret;
 470                        }
 471
 472                        match_pdomain = &(match_cpc_ptr->domain_info);
 473                        if (match_pdomain->domain != pdomain->domain)
 474                                continue;
 475
 476                        /* Here i and j are in the same domain */
 477                        if (match_pdomain->num_processors != count_target) {
 478                                retval = -EFAULT;
 479                                goto err_ret;
 480                        }
 481
 482                        if (pdomain->coord_type != match_pdomain->coord_type) {
 483                                retval = -EFAULT;
 484                                goto err_ret;
 485                        }
 486
 487                        cpumask_set_cpu(j, covered_cpus);
 488                        cpumask_set_cpu(j, pr->shared_cpu_map);
 489                }
 490
 491                for_each_possible_cpu(j) {
 492                        if (i == j)
 493                                continue;
 494
 495                        match_pr = all_cpu_data[j];
 496                        if (!match_pr)
 497                                continue;
 498
 499                        match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
 500                        if (!match_cpc_ptr) {
 501                                retval = -EFAULT;
 502                                goto err_ret;
 503                        }
 504
 505                        match_pdomain = &(match_cpc_ptr->domain_info);
 506                        if (match_pdomain->domain != pdomain->domain)
 507                                continue;
 508
 509                        match_pr->shared_type = pr->shared_type;
 510                        cpumask_copy(match_pr->shared_cpu_map,
 511                                     pr->shared_cpu_map);
 512                }
 513        }
 514
 515err_ret:
 516        for_each_possible_cpu(i) {
 517                pr = all_cpu_data[i];
 518                if (!pr)
 519                        continue;
 520
 521                /* Assume no coordination on any error parsing domain info */
 522                if (retval) {
 523                        cpumask_clear(pr->shared_cpu_map);
 524                        cpumask_set_cpu(i, pr->shared_cpu_map);
 525                        pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 526                }
 527        }
 528
 529        free_cpumask_var(covered_cpus);
 530        return retval;
 531}
 532EXPORT_SYMBOL_GPL(acpi_get_psd_map);
 533
 534static int register_pcc_channel(int pcc_subspace_idx)
 535{
 536        struct acpi_pcct_hw_reduced *cppc_ss;
 537        u64 usecs_lat;
 538
 539        if (pcc_subspace_idx >= 0) {
 540                pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
 541                                pcc_subspace_idx);
 542
 543                if (IS_ERR(pcc_data.pcc_channel)) {
 544                        pr_err("Failed to find PCC communication channel\n");
 545                        return -ENODEV;
 546                }
 547
 548                /*
 549                 * The PCC mailbox controller driver should
 550                 * have parsed the PCCT (global table of all
 551                 * PCC channels) and stored pointers to the
 552                 * subspace communication region in con_priv.
 553                 */
 554                cppc_ss = (pcc_data.pcc_channel)->con_priv;
 555
 556                if (!cppc_ss) {
 557                        pr_err("No PCC subspace found for CPPC\n");
 558                        return -ENODEV;
 559                }
 560
 561                /*
 562                 * cppc_ss->latency is just a Nominal value. In reality
 563                 * the remote processor could be much slower to reply.
 564                 * So add an arbitrary amount of wait on top of Nominal.
 565                 */
 566                usecs_lat = NUM_RETRIES * cppc_ss->latency;
 567                pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
 568                pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
 569                pcc_data.pcc_mpar = cppc_ss->max_access_rate;
 570                pcc_data.pcc_nominal = cppc_ss->latency;
 571
 572                pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
 573                if (!pcc_data.pcc_comm_addr) {
 574                        pr_err("Failed to ioremap PCC comm region mem\n");
 575                        return -ENOMEM;
 576                }
 577
 578                /* Set flag so that we dont come here for each CPU. */
 579                pcc_data.pcc_channel_acquired = true;
 580        }
 581
 582        return 0;
 583}
 584
 585/**
 586 * cpc_ffh_supported() - check if FFH reading supported
 587 *
 588 * Check if the architecture has support for functional fixed hardware
 589 * read/write capability.
 590 *
 591 * Return: true for supported, false for not supported
 592 */
 593bool __weak cpc_ffh_supported(void)
 594{
 595        return false;
 596}
 597
 598/*
 599 * An example CPC table looks like the following.
 600 *
 601 *      Name(_CPC, Package()
 602 *                      {
 603 *                      17,
 604 *                      NumEntries
 605 *                      1,
 606 *                      // Revision
 607 *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 608 *                      // Highest Performance
 609 *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 610 *                      // Nominal Performance
 611 *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 612 *                      // Lowest Nonlinear Performance
 613 *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 614 *                      // Lowest Performance
 615 *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 616 *                      // Guaranteed Performance Register
 617 *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 618 *                      // Desired Performance Register
 619 *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 620 *                      ..
 621 *                      ..
 622 *                      ..
 623 *
 624 *              }
 625 * Each Register() encodes how to access that specific register.
 626 * e.g. a sample PCC entry has the following encoding:
 627 *
 628 *      Register (
 629 *              PCC,
 630 *              AddressSpaceKeyword
 631 *              8,
 632 *              //RegisterBitWidth
 633 *              8,
 634 *              //RegisterBitOffset
 635 *              0x30,
 636 *              //RegisterAddress
 637 *              9
 638 *              //AccessSize (subspace ID)
 639 *              0
 640 *              )
 641 *      }
 642 */
 643
 644/**
 645 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 646 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 647 *
 648 *      Return: 0 for success or negative value for err.
 649 */
 650int acpi_cppc_processor_probe(struct acpi_processor *pr)
 651{
 652        struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
 653        union acpi_object *out_obj, *cpc_obj;
 654        struct cpc_desc *cpc_ptr;
 655        struct cpc_reg *gas_t;
 656        struct device *cpu_dev;
 657        acpi_handle handle = pr->handle;
 658        unsigned int num_ent, i, cpc_rev;
 659        acpi_status status;
 660        int ret = -EFAULT;
 661
 662        /* Parse the ACPI _CPC table for this cpu. */
 663        status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
 664                        ACPI_TYPE_PACKAGE);
 665        if (ACPI_FAILURE(status)) {
 666                ret = -ENODEV;
 667                goto out_buf_free;
 668        }
 669
 670        out_obj = (union acpi_object *) output.pointer;
 671
 672        cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
 673        if (!cpc_ptr) {
 674                ret = -ENOMEM;
 675                goto out_buf_free;
 676        }
 677
 678        /* First entry is NumEntries. */
 679        cpc_obj = &out_obj->package.elements[0];
 680        if (cpc_obj->type == ACPI_TYPE_INTEGER) {
 681                num_ent = cpc_obj->integer.value;
 682        } else {
 683                pr_debug("Unexpected entry type(%d) for NumEntries\n",
 684                                cpc_obj->type);
 685                goto out_free;
 686        }
 687
 688        /* Only support CPPCv2. Bail otherwise. */
 689        if (num_ent != CPPC_NUM_ENT) {
 690                pr_debug("Firmware exports %d entries. Expected: %d\n",
 691                                num_ent, CPPC_NUM_ENT);
 692                goto out_free;
 693        }
 694
 695        cpc_ptr->num_entries = num_ent;
 696
 697        /* Second entry should be revision. */
 698        cpc_obj = &out_obj->package.elements[1];
 699        if (cpc_obj->type == ACPI_TYPE_INTEGER) {
 700                cpc_rev = cpc_obj->integer.value;
 701        } else {
 702                pr_debug("Unexpected entry type(%d) for Revision\n",
 703                                cpc_obj->type);
 704                goto out_free;
 705        }
 706
 707        if (cpc_rev != CPPC_REV) {
 708                pr_debug("Firmware exports revision:%d. Expected:%d\n",
 709                                cpc_rev, CPPC_REV);
 710                goto out_free;
 711        }
 712
 713        /* Iterate through remaining entries in _CPC */
 714        for (i = 2; i < num_ent; i++) {
 715                cpc_obj = &out_obj->package.elements[i];
 716
 717                if (cpc_obj->type == ACPI_TYPE_INTEGER) {
 718                        cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
 719                        cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
 720                } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
 721                        gas_t = (struct cpc_reg *)
 722                                cpc_obj->buffer.pointer;
 723
 724                        /*
 725                         * The PCC Subspace index is encoded inside
 726                         * the CPC table entries. The same PCC index
 727                         * will be used for all the PCC entries,
 728                         * so extract it only once.
 729                         */
 730                        if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
 731                                if (pcc_data.pcc_subspace_idx < 0)
 732                                        pcc_data.pcc_subspace_idx = gas_t->access_width;
 733                                else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
 734                                        pr_debug("Mismatched PCC ids.\n");
 735                                        goto out_free;
 736                                }
 737                        } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
 738                                if (gas_t->address) {
 739                                        void __iomem *addr;
 740
 741                                        addr = ioremap(gas_t->address, gas_t->bit_width/8);
 742                                        if (!addr)
 743                                                goto out_free;
 744                                        cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
 745                                }
 746                        } else {
 747                                if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
 748                                        /* Support only PCC ,SYS MEM and FFH type regs */
 749                                        pr_debug("Unsupported register type: %d\n", gas_t->space_id);
 750                                        goto out_free;
 751                                }
 752                        }
 753
 754                        cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
 755                        memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
 756                } else {
 757                        pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
 758                        goto out_free;
 759                }
 760        }
 761        /* Store CPU Logical ID */
 762        cpc_ptr->cpu_id = pr->id;
 763
 764        /* Parse PSD data for this CPU */
 765        ret = acpi_get_psd(cpc_ptr, handle);
 766        if (ret)
 767                goto out_free;
 768
 769        /* Register PCC channel once for all CPUs. */
 770        if (!pcc_data.pcc_channel_acquired) {
 771                ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
 772                if (ret)
 773                        goto out_free;
 774
 775                init_rwsem(&pcc_data.pcc_lock);
 776                init_waitqueue_head(&pcc_data.pcc_write_wait_q);
 777        }
 778
 779        /* Plug PSD data into this CPUs CPC descriptor. */
 780        per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
 781
 782        /* Everything looks okay */
 783        pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
 784
 785        /* Add per logical CPU nodes for reading its feedback counters. */
 786        cpu_dev = get_cpu_device(pr->id);
 787        if (!cpu_dev)
 788                goto out_free;
 789
 790        ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
 791                        "acpi_cppc");
 792        if (ret)
 793                goto out_free;
 794
 795        kfree(output.pointer);
 796        return 0;
 797
 798out_free:
 799        /* Free all the mapped sys mem areas for this CPU */
 800        for (i = 2; i < cpc_ptr->num_entries; i++) {
 801                void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
 802
 803                if (addr)
 804                        iounmap(addr);
 805        }
 806        kfree(cpc_ptr);
 807
 808out_buf_free:
 809        kfree(output.pointer);
 810        return ret;
 811}
 812EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
 813
 814/**
 815 * acpi_cppc_processor_exit - Cleanup CPC structs.
 816 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 817 *
 818 * Return: Void
 819 */
 820void acpi_cppc_processor_exit(struct acpi_processor *pr)
 821{
 822        struct cpc_desc *cpc_ptr;
 823        unsigned int i;
 824        void __iomem *addr;
 825
 826        cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
 827
 828        /* Free all the mapped sys mem areas for this CPU */
 829        for (i = 2; i < cpc_ptr->num_entries; i++) {
 830                addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
 831                if (addr)
 832                        iounmap(addr);
 833        }
 834
 835        kobject_put(&cpc_ptr->kobj);
 836        kfree(cpc_ptr);
 837}
 838EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
 839
 840/**
 841 * cpc_read_ffh() - Read FFH register
 842 * @cpunum:     cpu number to read
 843 * @reg:        cppc register information
 844 * @val:        place holder for return value
 845 *
 846 * Read bit_width bits from a specified address and bit_offset
 847 *
 848 * Return: 0 for success and error code
 849 */
 850int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
 851{
 852        return -ENOTSUPP;
 853}
 854
 855/**
 856 * cpc_write_ffh() - Write FFH register
 857 * @cpunum:     cpu number to write
 858 * @reg:        cppc register information
 859 * @val:        value to write
 860 *
 861 * Write value of bit_width bits to a specified address and bit_offset
 862 *
 863 * Return: 0 for success and error code
 864 */
 865int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
 866{
 867        return -ENOTSUPP;
 868}
 869
 870/*
 871 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 872 * as fast as possible. We have already mapped the PCC subspace during init, so
 873 * we can directly write to it.
 874 */
 875
 876static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
 877{
 878        int ret_val = 0;
 879        void __iomem *vaddr = 0;
 880        struct cpc_reg *reg = &reg_res->cpc_entry.reg;
 881
 882        if (reg_res->type == ACPI_TYPE_INTEGER) {
 883                *val = reg_res->cpc_entry.int_value;
 884                return ret_val;
 885        }
 886
 887        *val = 0;
 888        if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
 889                vaddr = GET_PCC_VADDR(reg->address);
 890        else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 891                vaddr = reg_res->sys_mem_vaddr;
 892        else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
 893                return cpc_read_ffh(cpu, reg, val);
 894        else
 895                return acpi_os_read_memory((acpi_physical_address)reg->address,
 896                                val, reg->bit_width);
 897
 898        switch (reg->bit_width) {
 899                case 8:
 900                        *val = readb_relaxed(vaddr);
 901                        break;
 902                case 16:
 903                        *val = readw_relaxed(vaddr);
 904                        break;
 905                case 32:
 906                        *val = readl_relaxed(vaddr);
 907                        break;
 908                case 64:
 909                        *val = readq_relaxed(vaddr);
 910                        break;
 911                default:
 912                        pr_debug("Error: Cannot read %u bit width from PCC\n",
 913                                        reg->bit_width);
 914                        ret_val = -EFAULT;
 915        }
 916
 917        return ret_val;
 918}
 919
 920static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
 921{
 922        int ret_val = 0;
 923        void __iomem *vaddr = 0;
 924        struct cpc_reg *reg = &reg_res->cpc_entry.reg;
 925
 926        if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
 927                vaddr = GET_PCC_VADDR(reg->address);
 928        else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 929                vaddr = reg_res->sys_mem_vaddr;
 930        else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
 931                return cpc_write_ffh(cpu, reg, val);
 932        else
 933                return acpi_os_write_memory((acpi_physical_address)reg->address,
 934                                val, reg->bit_width);
 935
 936        switch (reg->bit_width) {
 937                case 8:
 938                        writeb_relaxed(val, vaddr);
 939                        break;
 940                case 16:
 941                        writew_relaxed(val, vaddr);
 942                        break;
 943                case 32:
 944                        writel_relaxed(val, vaddr);
 945                        break;
 946                case 64:
 947                        writeq_relaxed(val, vaddr);
 948                        break;
 949                default:
 950                        pr_debug("Error: Cannot write %u bit width to PCC\n",
 951                                        reg->bit_width);
 952                        ret_val = -EFAULT;
 953                        break;
 954        }
 955
 956        return ret_val;
 957}
 958
 959/**
 960 * cppc_get_perf_caps - Get a CPUs performance capabilities.
 961 * @cpunum: CPU from which to get capabilities info.
 962 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 963 *
 964 * Return: 0 for success with perf_caps populated else -ERRNO.
 965 */
 966int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
 967{
 968        struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
 969        struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
 970                                                                 *nom_perf;
 971        u64 high, low, nom;
 972        int ret = 0, regs_in_pcc = 0;
 973
 974        if (!cpc_desc) {
 975                pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
 976                return -ENODEV;
 977        }
 978
 979        highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
 980        lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
 981        ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
 982        nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
 983
 984        /* Are any of the regs PCC ?*/
 985        if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
 986                CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
 987                regs_in_pcc = 1;
 988                down_write(&pcc_data.pcc_lock);
 989                /* Ring doorbell once to update PCC subspace */
 990                if (send_pcc_cmd(CMD_READ) < 0) {
 991                        ret = -EIO;
 992                        goto out_err;
 993                }
 994        }
 995
 996        cpc_read(cpunum, highest_reg, &high);
 997        perf_caps->highest_perf = high;
 998
 999        cpc_read(cpunum, lowest_reg, &low);
1000        perf_caps->lowest_perf = low;
1001
1002        cpc_read(cpunum, nom_perf, &nom);
1003        perf_caps->nominal_perf = nom;
1004
1005        if (!high || !low || !nom)
1006                ret = -EFAULT;
1007
1008out_err:
1009        if (regs_in_pcc)
1010                up_write(&pcc_data.pcc_lock);
1011        return ret;
1012}
1013EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1014
1015/**
1016 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1017 * @cpunum: CPU from which to read counters.
1018 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1019 *
1020 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1021 */
1022int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1023{
1024        struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1025        struct cpc_register_resource *delivered_reg, *reference_reg,
1026                *ref_perf_reg, *ctr_wrap_reg;
1027        u64 delivered, reference, ref_perf, ctr_wrap_time;
1028        int ret = 0, regs_in_pcc = 0;
1029
1030        if (!cpc_desc) {
1031                pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1032                return -ENODEV;
1033        }
1034
1035        delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1036        reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1037        ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1038        ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1039
1040        /*
1041         * If refernce perf register is not supported then we should
1042         * use the nominal perf value
1043         */
1044        if (!CPC_SUPPORTED(ref_perf_reg))
1045                ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1046
1047        /* Are any of the regs PCC ?*/
1048        if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1049                CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1050                down_write(&pcc_data.pcc_lock);
1051                regs_in_pcc = 1;
1052                /* Ring doorbell once to update PCC subspace */
1053                if (send_pcc_cmd(CMD_READ) < 0) {
1054                        ret = -EIO;
1055                        goto out_err;
1056                }
1057        }
1058
1059        cpc_read(cpunum, delivered_reg, &delivered);
1060        cpc_read(cpunum, reference_reg, &reference);
1061        cpc_read(cpunum, ref_perf_reg, &ref_perf);
1062
1063        /*
1064         * Per spec, if ctr_wrap_time optional register is unsupported, then the
1065         * performance counters are assumed to never wrap during the lifetime of
1066         * platform
1067         */
1068        ctr_wrap_time = (u64)(~((u64)0));
1069        if (CPC_SUPPORTED(ctr_wrap_reg))
1070                cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1071
1072        if (!delivered || !reference || !ref_perf) {
1073                ret = -EFAULT;
1074                goto out_err;
1075        }
1076
1077        perf_fb_ctrs->delivered = delivered;
1078        perf_fb_ctrs->reference = reference;
1079        perf_fb_ctrs->reference_perf = ref_perf;
1080        perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
1081out_err:
1082        if (regs_in_pcc)
1083                up_write(&pcc_data.pcc_lock);
1084        return ret;
1085}
1086EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1087
1088/**
1089 * cppc_set_perf - Set a CPUs performance controls.
1090 * @cpu: CPU for which to set performance controls.
1091 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1092 *
1093 * Return: 0 for success, -ERRNO otherwise.
1094 */
1095int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1096{
1097        struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1098        struct cpc_register_resource *desired_reg;
1099        int ret = 0;
1100
1101        if (!cpc_desc) {
1102                pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1103                return -ENODEV;
1104        }
1105
1106        desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1107
1108        /*
1109         * This is Phase-I where we want to write to CPC registers
1110         * -> We want all CPUs to be able to execute this phase in parallel
1111         *
1112         * Since read_lock can be acquired by multiple CPUs simultaneously we
1113         * achieve that goal here
1114         */
1115        if (CPC_IN_PCC(desired_reg)) {
1116                down_read(&pcc_data.pcc_lock);  /* BEGIN Phase-I */
1117                if (pcc_data.platform_owns_pcc) {
1118                        ret = check_pcc_chan(false);
1119                        if (ret) {
1120                                up_read(&pcc_data.pcc_lock);
1121                                return ret;
1122                        }
1123                }
1124                /*
1125                 * Update the pending_write to make sure a PCC CMD_READ will not
1126                 * arrive and steal the channel during the switch to write lock
1127                 */
1128                pcc_data.pending_pcc_write_cmd = true;
1129                cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1130                cpc_desc->write_cmd_status = 0;
1131        }
1132
1133        /*
1134         * Skip writing MIN/MAX until Linux knows how to come up with
1135         * useful values.
1136         */
1137        cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1138
1139        if (CPC_IN_PCC(desired_reg))
1140                up_read(&pcc_data.pcc_lock);    /* END Phase-I */
1141        /*
1142         * This is Phase-II where we transfer the ownership of PCC to Platform
1143         *
1144         * Short Summary: Basically if we think of a group of cppc_set_perf
1145         * requests that happened in short overlapping interval. The last CPU to
1146         * come out of Phase-I will enter Phase-II and ring the doorbell.
1147         *
1148         * We have the following requirements for Phase-II:
1149         *     1. We want to execute Phase-II only when there are no CPUs
1150         * currently executing in Phase-I
1151         *     2. Once we start Phase-II we want to avoid all other CPUs from
1152         * entering Phase-I.
1153         *     3. We want only one CPU among all those who went through Phase-I
1154         * to run phase-II
1155         *
1156         * If write_trylock fails to get the lock and doesn't transfer the
1157         * PCC ownership to the platform, then one of the following will be TRUE
1158         *     1. There is at-least one CPU in Phase-I which will later execute
1159         * write_trylock, so the CPUs in Phase-I will be responsible for
1160         * executing the Phase-II.
1161         *     2. Some other CPU has beaten this CPU to successfully execute the
1162         * write_trylock and has already acquired the write_lock. We know for a
1163         * fact it(other CPU acquiring the write_lock) couldn't have happened
1164         * before this CPU's Phase-I as we held the read_lock.
1165         *     3. Some other CPU executing pcc CMD_READ has stolen the
1166         * down_write, in which case, send_pcc_cmd will check for pending
1167         * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1168         * So this CPU can be certain that its request will be delivered
1169         *    So in all cases, this CPU knows that its request will be delivered
1170         * by another CPU and can return
1171         *
1172         * After getting the down_write we still need to check for
1173         * pending_pcc_write_cmd to take care of the following scenario
1174         *    The thread running this code could be scheduled out between
1175         * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1176         * could have delivered the request to Platform by triggering the
1177         * doorbell and transferred the ownership of PCC to platform. So this
1178         * avoids triggering an unnecessary doorbell and more importantly before
1179         * triggering the doorbell it makes sure that the PCC channel ownership
1180         * is still with OSPM.
1181         *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1182         * there was a pcc CMD_READ waiting on down_write and it steals the lock
1183         * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1184         * case during a CMD_READ and if there are pending writes it delivers
1185         * the write command before servicing the read command
1186         */
1187        if (CPC_IN_PCC(desired_reg)) {
1188                if (down_write_trylock(&pcc_data.pcc_lock)) {   /* BEGIN Phase-II */
1189                        /* Update only if there are pending write commands */
1190                        if (pcc_data.pending_pcc_write_cmd)
1191                                send_pcc_cmd(CMD_WRITE);
1192                        up_write(&pcc_data.pcc_lock);           /* END Phase-II */
1193                } else
1194                        /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1195                        wait_event(pcc_data.pcc_write_wait_q,
1196                                cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1197
1198                /* send_pcc_cmd updates the status in case of failure */
1199                ret = cpc_desc->write_cmd_status;
1200        }
1201        return ret;
1202}
1203EXPORT_SYMBOL_GPL(cppc_set_perf);
1204
1205/**
1206 * cppc_get_transition_latency - returns frequency transition latency in ns
1207 *
1208 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1209 * transition latency for perfromance change requests. The closest we have
1210 * is the timing information from the PCCT tables which provides the info
1211 * on the number and frequency of PCC commands the platform can handle.
1212 */
1213unsigned int cppc_get_transition_latency(int cpu_num)
1214{
1215        /*
1216         * Expected transition latency is based on the PCCT timing values
1217         * Below are definition from ACPI spec:
1218         * pcc_nominal- Expected latency to process a command, in microseconds
1219         * pcc_mpar   - The maximum number of periodic requests that the subspace
1220         *              channel can support, reported in commands per minute. 0
1221         *              indicates no limitation.
1222         * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1223         *              completion of a command before issuing the next command,
1224         *              in microseconds.
1225         */
1226        unsigned int latency_ns = 0;
1227        struct cpc_desc *cpc_desc;
1228        struct cpc_register_resource *desired_reg;
1229
1230        cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1231        if (!cpc_desc)
1232                return CPUFREQ_ETERNAL;
1233
1234        desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1235        if (!CPC_IN_PCC(desired_reg))
1236                return CPUFREQ_ETERNAL;
1237
1238        if (pcc_data.pcc_mpar)
1239                latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1240
1241        latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1242        latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1243
1244        return latency_ns;
1245}
1246EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1247