linux/drivers/edac/sb_edac.c
<<
>>
Prefs
   1/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
   2 *
   3 * This driver supports the memory controllers found on the Intel
   4 * processor family Sandy Bridge.
   5 *
   6 * This file may be distributed under the terms of the
   7 * GNU General Public License version 2 only.
   8 *
   9 * Copyright (c) 2011 by:
  10 *       Mauro Carvalho Chehab
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/pci.h>
  16#include <linux/pci_ids.h>
  17#include <linux/slab.h>
  18#include <linux/delay.h>
  19#include <linux/edac.h>
  20#include <linux/mmzone.h>
  21#include <linux/smp.h>
  22#include <linux/bitmap.h>
  23#include <linux/math64.h>
  24#include <linux/mod_devicetable.h>
  25#include <asm/cpu_device_id.h>
  26#include <asm/processor.h>
  27#include <asm/mce.h>
  28
  29#include "edac_core.h"
  30
  31/* Static vars */
  32static LIST_HEAD(sbridge_edac_list);
  33
  34/*
  35 * Alter this version for the module when modifications are made
  36 */
  37#define SBRIDGE_REVISION    " Ver: 1.1.1 "
  38#define EDAC_MOD_STR      "sbridge_edac"
  39
  40/*
  41 * Debug macros
  42 */
  43#define sbridge_printk(level, fmt, arg...)                      \
  44        edac_printk(level, "sbridge", fmt, ##arg)
  45
  46#define sbridge_mc_printk(mci, level, fmt, arg...)              \
  47        edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  48
  49/*
  50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  51 */
  52#define GET_BITFIELD(v, lo, hi) \
  53        (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  54
  55/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  56static const u32 sbridge_dram_rule[] = {
  57        0x80, 0x88, 0x90, 0x98, 0xa0,
  58        0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  59};
  60
  61static const u32 ibridge_dram_rule[] = {
  62        0x60, 0x68, 0x70, 0x78, 0x80,
  63        0x88, 0x90, 0x98, 0xa0, 0xa8,
  64        0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
  65        0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
  66};
  67
  68static const u32 knl_dram_rule[] = {
  69        0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
  70        0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
  71        0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
  72        0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
  73        0x100, 0x108, 0x110, 0x118,   /* 20-23 */
  74};
  75
  76#define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
  77#define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
  78
  79static char *show_dram_attr(u32 attr)
  80{
  81        switch (attr) {
  82                case 0:
  83                        return "DRAM";
  84                case 1:
  85                        return "MMCFG";
  86                case 2:
  87                        return "NXM";
  88                default:
  89                        return "unknown";
  90        }
  91}
  92
  93static const u32 sbridge_interleave_list[] = {
  94        0x84, 0x8c, 0x94, 0x9c, 0xa4,
  95        0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  96};
  97
  98static const u32 ibridge_interleave_list[] = {
  99        0x64, 0x6c, 0x74, 0x7c, 0x84,
 100        0x8c, 0x94, 0x9c, 0xa4, 0xac,
 101        0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
 102        0xdc, 0xe4, 0xec, 0xf4, 0xfc,
 103};
 104
 105static const u32 knl_interleave_list[] = {
 106        0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
 107        0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
 108        0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
 109        0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
 110        0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
 111};
 112
 113struct interleave_pkg {
 114        unsigned char start;
 115        unsigned char end;
 116};
 117
 118static const struct interleave_pkg sbridge_interleave_pkg[] = {
 119        { 0, 2 },
 120        { 3, 5 },
 121        { 8, 10 },
 122        { 11, 13 },
 123        { 16, 18 },
 124        { 19, 21 },
 125        { 24, 26 },
 126        { 27, 29 },
 127};
 128
 129static const struct interleave_pkg ibridge_interleave_pkg[] = {
 130        { 0, 3 },
 131        { 4, 7 },
 132        { 8, 11 },
 133        { 12, 15 },
 134        { 16, 19 },
 135        { 20, 23 },
 136        { 24, 27 },
 137        { 28, 31 },
 138};
 139
 140static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
 141                          int interleave)
 142{
 143        return GET_BITFIELD(reg, table[interleave].start,
 144                            table[interleave].end);
 145}
 146
 147/* Devices 12 Function 7 */
 148
 149#define TOLM            0x80
 150#define TOHM            0x84
 151#define HASWELL_TOLM    0xd0
 152#define HASWELL_TOHM_0  0xd4
 153#define HASWELL_TOHM_1  0xd8
 154#define KNL_TOLM        0xd0
 155#define KNL_TOHM_0      0xd4
 156#define KNL_TOHM_1      0xd8
 157
 158#define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
 159#define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
 160
 161/* Device 13 Function 6 */
 162
 163#define SAD_TARGET      0xf0
 164
 165#define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
 166
 167#define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
 168
 169#define SAD_CONTROL     0xf4
 170
 171/* Device 14 function 0 */
 172
 173static const u32 tad_dram_rule[] = {
 174        0x40, 0x44, 0x48, 0x4c,
 175        0x50, 0x54, 0x58, 0x5c,
 176        0x60, 0x64, 0x68, 0x6c,
 177};
 178#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
 179
 180#define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
 181#define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
 182#define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
 183#define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
 184#define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
 185#define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
 186#define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
 187
 188/* Device 15, function 0 */
 189
 190#define MCMTR                   0x7c
 191#define KNL_MCMTR               0x624
 192
 193#define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
 194#define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
 195#define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
 196
 197/* Device 15, function 1 */
 198
 199#define RASENABLES              0xac
 200#define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
 201
 202/* Device 15, functions 2-5 */
 203
 204static const int mtr_regs[] = {
 205        0x80, 0x84, 0x88,
 206};
 207
 208static const int knl_mtr_reg = 0xb60;
 209
 210#define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
 211#define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
 212#define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
 213#define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
 214#define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
 215
 216static const u32 tad_ch_nilv_offset[] = {
 217        0x90, 0x94, 0x98, 0x9c,
 218        0xa0, 0xa4, 0xa8, 0xac,
 219        0xb0, 0xb4, 0xb8, 0xbc,
 220};
 221#define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
 222#define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
 223
 224static const u32 rir_way_limit[] = {
 225        0x108, 0x10c, 0x110, 0x114, 0x118,
 226};
 227#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
 228
 229#define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
 230#define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
 231
 232#define MAX_RIR_WAY     8
 233
 234static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
 235        { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
 236        { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
 237        { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
 238        { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
 239        { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
 240};
 241
 242#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
 243        GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
 244
 245#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
 246        GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
 247
 248/* Device 16, functions 2-7 */
 249
 250/*
 251 * FIXME: Implement the error count reads directly
 252 */
 253
 254static const u32 correrrcnt[] = {
 255        0x104, 0x108, 0x10c, 0x110,
 256};
 257
 258#define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
 259#define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
 260#define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
 261#define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
 262
 263static const u32 correrrthrsld[] = {
 264        0x11c, 0x120, 0x124, 0x128,
 265};
 266
 267#define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
 268#define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
 269
 270
 271/* Device 17, function 0 */
 272
 273#define SB_RANK_CFG_A           0x0328
 274
 275#define IB_RANK_CFG_A           0x0320
 276
 277/*
 278 * sbridge structs
 279 */
 280
 281#define NUM_CHANNELS            8       /* 2MC per socket, four chan per MC */
 282#define MAX_DIMMS               3       /* Max DIMMS per channel */
 283#define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
 284#define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
 285#define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
 286#define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
 287
 288enum type {
 289        SANDY_BRIDGE,
 290        IVY_BRIDGE,
 291        HASWELL,
 292        BROADWELL,
 293        KNIGHTS_LANDING,
 294};
 295
 296struct sbridge_pvt;
 297struct sbridge_info {
 298        enum type       type;
 299        u32             mcmtr;
 300        u32             rankcfgr;
 301        u64             (*get_tolm)(struct sbridge_pvt *pvt);
 302        u64             (*get_tohm)(struct sbridge_pvt *pvt);
 303        u64             (*rir_limit)(u32 reg);
 304        u64             (*sad_limit)(u32 reg);
 305        u32             (*interleave_mode)(u32 reg);
 306        char*           (*show_interleave_mode)(u32 reg);
 307        u32             (*dram_attr)(u32 reg);
 308        const u32       *dram_rule;
 309        const u32       *interleave_list;
 310        const struct interleave_pkg *interleave_pkg;
 311        u8              max_sad;
 312        u8              max_interleave;
 313        u8              (*get_node_id)(struct sbridge_pvt *pvt);
 314        enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
 315        enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
 316        struct pci_dev  *pci_vtd;
 317};
 318
 319struct sbridge_channel {
 320        u32             ranks;
 321        u32             dimms;
 322};
 323
 324struct pci_id_descr {
 325        int                     dev_id;
 326        int                     optional;
 327};
 328
 329struct pci_id_table {
 330        const struct pci_id_descr       *descr;
 331        int                             n_devs;
 332        enum type                       type;
 333};
 334
 335struct sbridge_dev {
 336        struct list_head        list;
 337        u8                      bus, mc;
 338        u8                      node_id, source_id;
 339        struct pci_dev          **pdev;
 340        int                     n_devs;
 341        struct mem_ctl_info     *mci;
 342};
 343
 344struct knl_pvt {
 345        struct pci_dev          *pci_cha[KNL_MAX_CHAS];
 346        struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
 347        struct pci_dev          *pci_mc0;
 348        struct pci_dev          *pci_mc1;
 349        struct pci_dev          *pci_mc0_misc;
 350        struct pci_dev          *pci_mc1_misc;
 351        struct pci_dev          *pci_mc_info; /* tolm, tohm */
 352};
 353
 354struct sbridge_pvt {
 355        struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
 356        struct pci_dev          *pci_sad0, *pci_sad1;
 357        struct pci_dev          *pci_ha0, *pci_ha1;
 358        struct pci_dev          *pci_br0, *pci_br1;
 359        struct pci_dev          *pci_ha1_ta;
 360        struct pci_dev          *pci_tad[NUM_CHANNELS];
 361
 362        struct sbridge_dev      *sbridge_dev;
 363
 364        struct sbridge_info     info;
 365        struct sbridge_channel  channel[NUM_CHANNELS];
 366
 367        /* Memory type detection */
 368        bool                    is_mirrored, is_lockstep, is_close_pg;
 369        bool                    is_chan_hash;
 370
 371        /* Memory description */
 372        u64                     tolm, tohm;
 373        struct knl_pvt knl;
 374};
 375
 376#define PCI_DESCR(device_id, opt)       \
 377        .dev_id = (device_id),          \
 378        .optional = opt
 379
 380static const struct pci_id_descr pci_dev_descr_sbridge[] = {
 381                /* Processor Home Agent */
 382        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
 383
 384                /* Memory controller */
 385        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
 386        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
 387        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
 388        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
 389        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
 390        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
 391        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
 392
 393                /* System Address Decoder */
 394        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
 395        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
 396
 397                /* Broadcast Registers */
 398        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
 399};
 400
 401#define PCI_ID_TABLE_ENTRY(A, T) {      \
 402        .descr = A,                     \
 403        .n_devs = ARRAY_SIZE(A),        \
 404        .type = T                       \
 405}
 406
 407static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
 408        PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, SANDY_BRIDGE),
 409        {0,}                    /* 0 terminated list. */
 410};
 411
 412/* This changes depending if 1HA or 2HA:
 413 * 1HA:
 414 *      0x0eb8 (17.0) is DDRIO0
 415 * 2HA:
 416 *      0x0ebc (17.4) is DDRIO0
 417 */
 418#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
 419#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
 420
 421/* pci ids */
 422#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
 423#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
 424#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
 425#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
 426#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
 427#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
 428#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
 429#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
 430#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
 431#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
 432#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
 433#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
 434#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
 435#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
 436#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
 437#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
 438#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
 439
 440static const struct pci_id_descr pci_dev_descr_ibridge[] = {
 441                /* Processor Home Agent */
 442        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
 443
 444                /* Memory controller */
 445        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
 446        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
 447        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
 448        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
 449        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
 450        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
 451
 452                /* System Address Decoder */
 453        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
 454
 455                /* Broadcast Registers */
 456        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
 457        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
 458
 459                /* Optional, mode 2HA */
 460        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
 461#if 0
 462        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
 463        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
 464#endif
 465        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
 466        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
 467        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)        },
 468        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)        },
 469
 470        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
 471        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
 472};
 473
 474static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
 475        PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, IVY_BRIDGE),
 476        {0,}                    /* 0 terminated list. */
 477};
 478
 479/* Haswell support */
 480/* EN processor:
 481 *      - 1 IMC
 482 *      - 3 DDR3 channels, 2 DPC per channel
 483 * EP processor:
 484 *      - 1 or 2 IMC
 485 *      - 4 DDR4 channels, 3 DPC per channel
 486 * EP 4S processor:
 487 *      - 2 IMC
 488 *      - 4 DDR4 channels, 3 DPC per channel
 489 * EX processor:
 490 *      - 2 IMC
 491 *      - each IMC interfaces with a SMI 2 channel
 492 *      - each SMI channel interfaces with a scalable memory buffer
 493 *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 494 */
 495#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
 496#define HASWELL_HASYSDEFEATURE2 0x84
 497#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
 498#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
 499#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
 500#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
 501#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
 502#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
 503#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
 504#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
 505#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
 506#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
 507#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
 508#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
 509#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
 510#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
 511#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
 512#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
 513#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
 514#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
 515#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
 516#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
 517#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
 518static const struct pci_id_descr pci_dev_descr_haswell[] = {
 519        /* first item must be the HA */
 520        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
 521
 522        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
 523        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
 524
 525        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
 526
 527        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
 528        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
 529        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
 530        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
 531        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
 532        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
 533
 534        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
 535        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)          },
 536        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)          },
 537        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)          },
 538
 539        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
 540        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
 541        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
 542        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
 543        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
 544        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
 545};
 546
 547static const struct pci_id_table pci_dev_descr_haswell_table[] = {
 548        PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, HASWELL),
 549        {0,}                    /* 0 terminated list. */
 550};
 551
 552/* Knight's Landing Support */
 553/*
 554 * KNL's memory channels are swizzled between memory controllers.
 555 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
 556 */
 557#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
 558
 559/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
 560#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
 561/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
 562#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
 563/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
 564#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
 565/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
 566#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
 567/* SAD target - 1-29-1 (1 of these) */
 568#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
 569/* Caching / Home Agent */
 570#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
 571/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
 572#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
 573
 574/*
 575 * KNL differs from SB, IB, and Haswell in that it has multiple
 576 * instances of the same device with the same device ID, so we handle that
 577 * by creating as many copies in the table as we expect to find.
 578 * (Like device ID must be grouped together.)
 579 */
 580
 581static const struct pci_id_descr pci_dev_descr_knl[] = {
 582        [0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
 583        [1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
 584        [2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
 585        [4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
 586        [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
 587        [48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
 588        [49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
 589};
 590
 591static const struct pci_id_table pci_dev_descr_knl_table[] = {
 592        PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, KNIGHTS_LANDING),
 593        {0,}
 594};
 595
 596/*
 597 * Broadwell support
 598 *
 599 * DE processor:
 600 *      - 1 IMC
 601 *      - 2 DDR3 channels, 2 DPC per channel
 602 * EP processor:
 603 *      - 1 or 2 IMC
 604 *      - 4 DDR4 channels, 3 DPC per channel
 605 * EP 4S processor:
 606 *      - 2 IMC
 607 *      - 4 DDR4 channels, 3 DPC per channel
 608 * EX processor:
 609 *      - 2 IMC
 610 *      - each IMC interfaces with a SMI 2 channel
 611 *      - each SMI channel interfaces with a scalable memory buffer
 612 *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 613 */
 614#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
 615#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
 616#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
 617#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
 618#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
 619#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
 620#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
 621#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
 622#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
 623#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
 624#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
 625#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
 626#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
 627#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
 628#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
 629#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
 630#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
 631#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
 632
 633static const struct pci_id_descr pci_dev_descr_broadwell[] = {
 634        /* first item must be the HA */
 635        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
 636
 637        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
 638        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
 639
 640        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)           },
 641
 642        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
 643        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
 644        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
 645        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
 646        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)      },
 647        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)      },
 648
 649        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
 650
 651        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)        },
 652        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)   },
 653        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)      },
 654        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)      },
 655        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)      },
 656        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)      },
 657};
 658
 659static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
 660        PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, BROADWELL),
 661        {0,}                    /* 0 terminated list. */
 662};
 663
 664
 665/****************************************************************************
 666                        Ancillary status routines
 667 ****************************************************************************/
 668
 669static inline int numrank(enum type type, u32 mtr)
 670{
 671        int ranks = (1 << RANK_CNT_BITS(mtr));
 672        int max = 4;
 673
 674        if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
 675                max = 8;
 676
 677        if (ranks > max) {
 678                edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
 679                         ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
 680                return -EINVAL;
 681        }
 682
 683        return ranks;
 684}
 685
 686static inline int numrow(u32 mtr)
 687{
 688        int rows = (RANK_WIDTH_BITS(mtr) + 12);
 689
 690        if (rows < 13 || rows > 18) {
 691                edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
 692                         rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
 693                return -EINVAL;
 694        }
 695
 696        return 1 << rows;
 697}
 698
 699static inline int numcol(u32 mtr)
 700{
 701        int cols = (COL_WIDTH_BITS(mtr) + 10);
 702
 703        if (cols > 12) {
 704                edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
 705                         cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
 706                return -EINVAL;
 707        }
 708
 709        return 1 << cols;
 710}
 711
 712static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
 713{
 714        struct sbridge_dev *sbridge_dev;
 715
 716        /*
 717         * If we have devices scattered across several busses that pertain
 718         * to the same memory controller, we'll lump them all together.
 719         */
 720        if (multi_bus) {
 721                return list_first_entry_or_null(&sbridge_edac_list,
 722                                struct sbridge_dev, list);
 723        }
 724
 725        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
 726                if (sbridge_dev->bus == bus)
 727                        return sbridge_dev;
 728        }
 729
 730        return NULL;
 731}
 732
 733static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
 734                                           const struct pci_id_table *table)
 735{
 736        struct sbridge_dev *sbridge_dev;
 737
 738        sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
 739        if (!sbridge_dev)
 740                return NULL;
 741
 742        sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
 743                                   GFP_KERNEL);
 744        if (!sbridge_dev->pdev) {
 745                kfree(sbridge_dev);
 746                return NULL;
 747        }
 748
 749        sbridge_dev->bus = bus;
 750        sbridge_dev->n_devs = table->n_devs;
 751        list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
 752
 753        return sbridge_dev;
 754}
 755
 756static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
 757{
 758        list_del(&sbridge_dev->list);
 759        kfree(sbridge_dev->pdev);
 760        kfree(sbridge_dev);
 761}
 762
 763static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
 764{
 765        u32 reg;
 766
 767        /* Address range is 32:28 */
 768        pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
 769        return GET_TOLM(reg);
 770}
 771
 772static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
 773{
 774        u32 reg;
 775
 776        pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
 777        return GET_TOHM(reg);
 778}
 779
 780static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
 781{
 782        u32 reg;
 783
 784        pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
 785
 786        return GET_TOLM(reg);
 787}
 788
 789static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
 790{
 791        u32 reg;
 792
 793        pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
 794
 795        return GET_TOHM(reg);
 796}
 797
 798static u64 rir_limit(u32 reg)
 799{
 800        return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
 801}
 802
 803static u64 sad_limit(u32 reg)
 804{
 805        return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
 806}
 807
 808static u32 interleave_mode(u32 reg)
 809{
 810        return GET_BITFIELD(reg, 1, 1);
 811}
 812
 813char *show_interleave_mode(u32 reg)
 814{
 815        return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
 816}
 817
 818static u32 dram_attr(u32 reg)
 819{
 820        return GET_BITFIELD(reg, 2, 3);
 821}
 822
 823static u64 knl_sad_limit(u32 reg)
 824{
 825        return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
 826}
 827
 828static u32 knl_interleave_mode(u32 reg)
 829{
 830        return GET_BITFIELD(reg, 1, 2);
 831}
 832
 833static char *knl_show_interleave_mode(u32 reg)
 834{
 835        char *s;
 836
 837        switch (knl_interleave_mode(reg)) {
 838        case 0:
 839                s = "use address bits [8:6]";
 840                break;
 841        case 1:
 842                s = "use address bits [10:8]";
 843                break;
 844        case 2:
 845                s = "use address bits [14:12]";
 846                break;
 847        case 3:
 848                s = "use address bits [32:30]";
 849                break;
 850        default:
 851                WARN_ON(1);
 852                break;
 853        }
 854
 855        return s;
 856}
 857
 858static u32 dram_attr_knl(u32 reg)
 859{
 860        return GET_BITFIELD(reg, 3, 4);
 861}
 862
 863
 864static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
 865{
 866        u32 reg;
 867        enum mem_type mtype;
 868
 869        if (pvt->pci_ddrio) {
 870                pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
 871                                      &reg);
 872                if (GET_BITFIELD(reg, 11, 11))
 873                        /* FIXME: Can also be LRDIMM */
 874                        mtype = MEM_RDDR3;
 875                else
 876                        mtype = MEM_DDR3;
 877        } else
 878                mtype = MEM_UNKNOWN;
 879
 880        return mtype;
 881}
 882
 883static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
 884{
 885        u32 reg;
 886        bool registered = false;
 887        enum mem_type mtype = MEM_UNKNOWN;
 888
 889        if (!pvt->pci_ddrio)
 890                goto out;
 891
 892        pci_read_config_dword(pvt->pci_ddrio,
 893                              HASWELL_DDRCRCLKCONTROLS, &reg);
 894        /* Is_Rdimm */
 895        if (GET_BITFIELD(reg, 16, 16))
 896                registered = true;
 897
 898        pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
 899        if (GET_BITFIELD(reg, 14, 14)) {
 900                if (registered)
 901                        mtype = MEM_RDDR4;
 902                else
 903                        mtype = MEM_DDR4;
 904        } else {
 905                if (registered)
 906                        mtype = MEM_RDDR3;
 907                else
 908                        mtype = MEM_DDR3;
 909        }
 910
 911out:
 912        return mtype;
 913}
 914
 915static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
 916{
 917        /* for KNL value is fixed */
 918        return DEV_X16;
 919}
 920
 921static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 922{
 923        /* there's no way to figure out */
 924        return DEV_UNKNOWN;
 925}
 926
 927static enum dev_type __ibridge_get_width(u32 mtr)
 928{
 929        enum dev_type type;
 930
 931        switch (mtr) {
 932        case 3:
 933                type = DEV_UNKNOWN;
 934                break;
 935        case 2:
 936                type = DEV_X16;
 937                break;
 938        case 1:
 939                type = DEV_X8;
 940                break;
 941        case 0:
 942                type = DEV_X4;
 943                break;
 944        }
 945
 946        return type;
 947}
 948
 949static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 950{
 951        /*
 952         * ddr3_width on the documentation but also valid for DDR4 on
 953         * Haswell
 954         */
 955        return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
 956}
 957
 958static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
 959{
 960        /* ddr3_width on the documentation but also valid for DDR4 */
 961        return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
 962}
 963
 964static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
 965{
 966        /* DDR4 RDIMMS and LRDIMMS are supported */
 967        return MEM_RDDR4;
 968}
 969
 970static u8 get_node_id(struct sbridge_pvt *pvt)
 971{
 972        u32 reg;
 973        pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
 974        return GET_BITFIELD(reg, 0, 2);
 975}
 976
 977static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
 978{
 979        u32 reg;
 980
 981        pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
 982        return GET_BITFIELD(reg, 0, 3);
 983}
 984
 985static u8 knl_get_node_id(struct sbridge_pvt *pvt)
 986{
 987        u32 reg;
 988
 989        pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
 990        return GET_BITFIELD(reg, 0, 2);
 991}
 992
 993
 994static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
 995{
 996        u32 reg;
 997
 998        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
 999        return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1000}
1001
1002static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1003{
1004        u64 rc;
1005        u32 reg;
1006
1007        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1008        rc = GET_BITFIELD(reg, 26, 31);
1009        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1010        rc = ((reg << 6) | rc) << 26;
1011
1012        return rc | 0x1ffffff;
1013}
1014
1015static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1016{
1017        u32 reg;
1018
1019        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1020        return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1021}
1022
1023static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1024{
1025        u64 rc;
1026        u32 reg_lo, reg_hi;
1027
1028        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1029        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1030        rc = ((u64)reg_hi << 32) | reg_lo;
1031        return rc | 0x3ffffff;
1032}
1033
1034
1035static u64 haswell_rir_limit(u32 reg)
1036{
1037        return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1038}
1039
1040static inline u8 sad_pkg_socket(u8 pkg)
1041{
1042        /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1043        return ((pkg >> 3) << 2) | (pkg & 0x3);
1044}
1045
1046static inline u8 sad_pkg_ha(u8 pkg)
1047{
1048        return (pkg >> 2) & 0x1;
1049}
1050
1051static int haswell_chan_hash(int idx, u64 addr)
1052{
1053        int i;
1054
1055        /*
1056         * XOR even bits from 12:26 to bit0 of idx,
1057         *     odd bits from 13:27 to bit1
1058         */
1059        for (i = 12; i < 28; i += 2)
1060                idx ^= (addr >> i) & 3;
1061
1062        return idx;
1063}
1064
1065/****************************************************************************
1066                        Memory check routines
1067 ****************************************************************************/
1068static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1069{
1070        struct pci_dev *pdev = NULL;
1071
1072        do {
1073                pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1074                if (pdev && pdev->bus->number == bus)
1075                        break;
1076        } while (pdev);
1077
1078        return pdev;
1079}
1080
1081/**
1082 * check_if_ecc_is_active() - Checks if ECC is active
1083 * @bus:        Device bus
1084 * @type:       Memory controller type
1085 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1086 *          disabled
1087 */
1088static int check_if_ecc_is_active(const u8 bus, enum type type)
1089{
1090        struct pci_dev *pdev = NULL;
1091        u32 mcmtr, id;
1092
1093        switch (type) {
1094        case IVY_BRIDGE:
1095                id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1096                break;
1097        case HASWELL:
1098                id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1099                break;
1100        case SANDY_BRIDGE:
1101                id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1102                break;
1103        case BROADWELL:
1104                id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1105                break;
1106        case KNIGHTS_LANDING:
1107                /*
1108                 * KNL doesn't group things by bus the same way
1109                 * SB/IB/Haswell does.
1110                 */
1111                id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1112                break;
1113        default:
1114                return -ENODEV;
1115        }
1116
1117        if (type != KNIGHTS_LANDING)
1118                pdev = get_pdev_same_bus(bus, id);
1119        else
1120                pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1121
1122        if (!pdev) {
1123                sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1124                                        "%04x:%04x! on bus %02d\n",
1125                                        PCI_VENDOR_ID_INTEL, id, bus);
1126                return -ENODEV;
1127        }
1128
1129        pci_read_config_dword(pdev,
1130                        type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1131        if (!IS_ECC_ENABLED(mcmtr)) {
1132                sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1133                return -ENODEV;
1134        }
1135        return 0;
1136}
1137
1138/* Low bits of TAD limit, and some metadata. */
1139static const u32 knl_tad_dram_limit_lo[] = {
1140        0x400, 0x500, 0x600, 0x700,
1141        0x800, 0x900, 0xa00, 0xb00,
1142};
1143
1144/* Low bits of TAD offset. */
1145static const u32 knl_tad_dram_offset_lo[] = {
1146        0x404, 0x504, 0x604, 0x704,
1147        0x804, 0x904, 0xa04, 0xb04,
1148};
1149
1150/* High 16 bits of TAD limit and offset. */
1151static const u32 knl_tad_dram_hi[] = {
1152        0x408, 0x508, 0x608, 0x708,
1153        0x808, 0x908, 0xa08, 0xb08,
1154};
1155
1156/* Number of ways a tad entry is interleaved. */
1157static const u32 knl_tad_ways[] = {
1158        8, 6, 4, 3, 2, 1,
1159};
1160
1161/*
1162 * Retrieve the n'th Target Address Decode table entry
1163 * from the memory controller's TAD table.
1164 *
1165 * @pvt:        driver private data
1166 * @entry:      which entry you want to retrieve
1167 * @mc:         which memory controller (0 or 1)
1168 * @offset:     output tad range offset
1169 * @limit:      output address of first byte above tad range
1170 * @ways:       output number of interleave ways
1171 *
1172 * The offset value has curious semantics.  It's a sort of running total
1173 * of the sizes of all the memory regions that aren't mapped in this
1174 * tad table.
1175 */
1176static int knl_get_tad(const struct sbridge_pvt *pvt,
1177                const int entry,
1178                const int mc,
1179                u64 *offset,
1180                u64 *limit,
1181                int *ways)
1182{
1183        u32 reg_limit_lo, reg_offset_lo, reg_hi;
1184        struct pci_dev *pci_mc;
1185        int way_id;
1186
1187        switch (mc) {
1188        case 0:
1189                pci_mc = pvt->knl.pci_mc0;
1190                break;
1191        case 1:
1192                pci_mc = pvt->knl.pci_mc1;
1193                break;
1194        default:
1195                WARN_ON(1);
1196                return -EINVAL;
1197        }
1198
1199        pci_read_config_dword(pci_mc,
1200                        knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1201        pci_read_config_dword(pci_mc,
1202                        knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1203        pci_read_config_dword(pci_mc,
1204                        knl_tad_dram_hi[entry], &reg_hi);
1205
1206        /* Is this TAD entry enabled? */
1207        if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1208                return -ENODEV;
1209
1210        way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1211
1212        if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1213                *ways = knl_tad_ways[way_id];
1214        } else {
1215                *ways = 0;
1216                sbridge_printk(KERN_ERR,
1217                                "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1218                                way_id);
1219                return -ENODEV;
1220        }
1221
1222        /*
1223         * The least significant 6 bits of base and limit are truncated.
1224         * For limit, we fill the missing bits with 1s.
1225         */
1226        *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1227                                ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1228        *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1229                                ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1230
1231        return 0;
1232}
1233
1234/* Determine which memory controller is responsible for a given channel. */
1235static int knl_channel_mc(int channel)
1236{
1237        WARN_ON(channel < 0 || channel >= 6);
1238
1239        return channel < 3 ? 1 : 0;
1240}
1241
1242/*
1243 * Get the Nth entry from EDC_ROUTE_TABLE register.
1244 * (This is the per-tile mapping of logical interleave targets to
1245 *  physical EDC modules.)
1246 *
1247 * entry 0: 0:2
1248 *       1: 3:5
1249 *       2: 6:8
1250 *       3: 9:11
1251 *       4: 12:14
1252 *       5: 15:17
1253 *       6: 18:20
1254 *       7: 21:23
1255 * reserved: 24:31
1256 */
1257static u32 knl_get_edc_route(int entry, u32 reg)
1258{
1259        WARN_ON(entry >= KNL_MAX_EDCS);
1260        return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1261}
1262
1263/*
1264 * Get the Nth entry from MC_ROUTE_TABLE register.
1265 * (This is the per-tile mapping of logical interleave targets to
1266 *  physical DRAM channels modules.)
1267 *
1268 * entry 0: mc 0:2   channel 18:19
1269 *       1: mc 3:5   channel 20:21
1270 *       2: mc 6:8   channel 22:23
1271 *       3: mc 9:11  channel 24:25
1272 *       4: mc 12:14 channel 26:27
1273 *       5: mc 15:17 channel 28:29
1274 * reserved: 30:31
1275 *
1276 * Though we have 3 bits to identify the MC, we should only see
1277 * the values 0 or 1.
1278 */
1279
1280static u32 knl_get_mc_route(int entry, u32 reg)
1281{
1282        int mc, chan;
1283
1284        WARN_ON(entry >= KNL_MAX_CHANNELS);
1285
1286        mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1287        chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1288
1289        return knl_channel_remap(mc, chan);
1290}
1291
1292/*
1293 * Render the EDC_ROUTE register in human-readable form.
1294 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1295 */
1296static void knl_show_edc_route(u32 reg, char *s)
1297{
1298        int i;
1299
1300        for (i = 0; i < KNL_MAX_EDCS; i++) {
1301                s[i*2] = knl_get_edc_route(i, reg) + '0';
1302                s[i*2+1] = '-';
1303        }
1304
1305        s[KNL_MAX_EDCS*2 - 1] = '\0';
1306}
1307
1308/*
1309 * Render the MC_ROUTE register in human-readable form.
1310 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1311 */
1312static void knl_show_mc_route(u32 reg, char *s)
1313{
1314        int i;
1315
1316        for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1317                s[i*2] = knl_get_mc_route(i, reg) + '0';
1318                s[i*2+1] = '-';
1319        }
1320
1321        s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1322}
1323
1324#define KNL_EDC_ROUTE 0xb8
1325#define KNL_MC_ROUTE 0xb4
1326
1327/* Is this dram rule backed by regular DRAM in flat mode? */
1328#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1329
1330/* Is this dram rule cached? */
1331#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1332
1333/* Is this rule backed by edc ? */
1334#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1335
1336/* Is this rule backed by DRAM, cacheable in EDRAM? */
1337#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1338
1339/* Is this rule mod3? */
1340#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1341
1342/*
1343 * Figure out how big our RAM modules are.
1344 *
1345 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1346 * have to figure this out from the SAD rules, interleave lists, route tables,
1347 * and TAD rules.
1348 *
1349 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1350 * inspect the TAD rules to figure out how large the SAD regions really are.
1351 *
1352 * When we know the real size of a SAD region and how many ways it's
1353 * interleaved, we know the individual contribution of each channel to
1354 * TAD is size/ways.
1355 *
1356 * Finally, we have to check whether each channel participates in each SAD
1357 * region.
1358 *
1359 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1360 * much memory the channel uses, we know the DIMM is at least that large.
1361 * (The BIOS might possibly choose not to map all available memory, in which
1362 * case we will underreport the size of the DIMM.)
1363 *
1364 * In theory, we could try to determine the EDC sizes as well, but that would
1365 * only work in flat mode, not in cache mode.
1366 *
1367 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1368 *            elements)
1369 */
1370static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1371{
1372        u64 sad_base, sad_size, sad_limit = 0;
1373        u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1374        int sad_rule = 0;
1375        int tad_rule = 0;
1376        int intrlv_ways, tad_ways;
1377        u32 first_pkg, pkg;
1378        int i;
1379        u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1380        u32 dram_rule, interleave_reg;
1381        u32 mc_route_reg[KNL_MAX_CHAS];
1382        u32 edc_route_reg[KNL_MAX_CHAS];
1383        int edram_only;
1384        char edc_route_string[KNL_MAX_EDCS*2];
1385        char mc_route_string[KNL_MAX_CHANNELS*2];
1386        int cur_reg_start;
1387        int mc;
1388        int channel;
1389        int way;
1390        int participants[KNL_MAX_CHANNELS];
1391        int participant_count = 0;
1392
1393        for (i = 0; i < KNL_MAX_CHANNELS; i++)
1394                mc_sizes[i] = 0;
1395
1396        /* Read the EDC route table in each CHA. */
1397        cur_reg_start = 0;
1398        for (i = 0; i < KNL_MAX_CHAS; i++) {
1399                pci_read_config_dword(pvt->knl.pci_cha[i],
1400                                KNL_EDC_ROUTE, &edc_route_reg[i]);
1401
1402                if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1403                        knl_show_edc_route(edc_route_reg[i-1],
1404                                        edc_route_string);
1405                        if (cur_reg_start == i-1)
1406                                edac_dbg(0, "edc route table for CHA %d: %s\n",
1407                                        cur_reg_start, edc_route_string);
1408                        else
1409                                edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1410                                        cur_reg_start, i-1, edc_route_string);
1411                        cur_reg_start = i;
1412                }
1413        }
1414        knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1415        if (cur_reg_start == i-1)
1416                edac_dbg(0, "edc route table for CHA %d: %s\n",
1417                        cur_reg_start, edc_route_string);
1418        else
1419                edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1420                        cur_reg_start, i-1, edc_route_string);
1421
1422        /* Read the MC route table in each CHA. */
1423        cur_reg_start = 0;
1424        for (i = 0; i < KNL_MAX_CHAS; i++) {
1425                pci_read_config_dword(pvt->knl.pci_cha[i],
1426                        KNL_MC_ROUTE, &mc_route_reg[i]);
1427
1428                if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1429                        knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1430                        if (cur_reg_start == i-1)
1431                                edac_dbg(0, "mc route table for CHA %d: %s\n",
1432                                        cur_reg_start, mc_route_string);
1433                        else
1434                                edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1435                                        cur_reg_start, i-1, mc_route_string);
1436                        cur_reg_start = i;
1437                }
1438        }
1439        knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1440        if (cur_reg_start == i-1)
1441                edac_dbg(0, "mc route table for CHA %d: %s\n",
1442                        cur_reg_start, mc_route_string);
1443        else
1444                edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1445                        cur_reg_start, i-1, mc_route_string);
1446
1447        /* Process DRAM rules */
1448        for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1449                /* previous limit becomes the new base */
1450                sad_base = sad_limit;
1451
1452                pci_read_config_dword(pvt->pci_sad0,
1453                        pvt->info.dram_rule[sad_rule], &dram_rule);
1454
1455                if (!DRAM_RULE_ENABLE(dram_rule))
1456                        break;
1457
1458                edram_only = KNL_EDRAM_ONLY(dram_rule);
1459
1460                sad_limit = pvt->info.sad_limit(dram_rule)+1;
1461                sad_size = sad_limit - sad_base;
1462
1463                pci_read_config_dword(pvt->pci_sad0,
1464                        pvt->info.interleave_list[sad_rule], &interleave_reg);
1465
1466                /*
1467                 * Find out how many ways this dram rule is interleaved.
1468                 * We stop when we see the first channel again.
1469                 */
1470                first_pkg = sad_pkg(pvt->info.interleave_pkg,
1471                                                interleave_reg, 0);
1472                for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1473                        pkg = sad_pkg(pvt->info.interleave_pkg,
1474                                                interleave_reg, intrlv_ways);
1475
1476                        if ((pkg & 0x8) == 0) {
1477                                /*
1478                                 * 0 bit means memory is non-local,
1479                                 * which KNL doesn't support
1480                                 */
1481                                edac_dbg(0, "Unexpected interleave target %d\n",
1482                                        pkg);
1483                                return -1;
1484                        }
1485
1486                        if (pkg == first_pkg)
1487                                break;
1488                }
1489                if (KNL_MOD3(dram_rule))
1490                        intrlv_ways *= 3;
1491
1492                edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1493                        sad_rule,
1494                        sad_base,
1495                        sad_limit,
1496                        intrlv_ways,
1497                        edram_only ? ", EDRAM" : "");
1498
1499                /*
1500                 * Find out how big the SAD region really is by iterating
1501                 * over TAD tables (SAD regions may contain holes).
1502                 * Each memory controller might have a different TAD table, so
1503                 * we have to look at both.
1504                 *
1505                 * Livespace is the memory that's mapped in this TAD table,
1506                 * deadspace is the holes (this could be the MMIO hole, or it
1507                 * could be memory that's mapped by the other TAD table but
1508                 * not this one).
1509                 */
1510                for (mc = 0; mc < 2; mc++) {
1511                        sad_actual_size[mc] = 0;
1512                        tad_livespace = 0;
1513                        for (tad_rule = 0;
1514                                        tad_rule < ARRAY_SIZE(
1515                                                knl_tad_dram_limit_lo);
1516                                        tad_rule++) {
1517                                if (knl_get_tad(pvt,
1518                                                tad_rule,
1519                                                mc,
1520                                                &tad_deadspace,
1521                                                &tad_limit,
1522                                                &tad_ways))
1523                                        break;
1524
1525                                tad_size = (tad_limit+1) -
1526                                        (tad_livespace + tad_deadspace);
1527                                tad_livespace += tad_size;
1528                                tad_base = (tad_limit+1) - tad_size;
1529
1530                                if (tad_base < sad_base) {
1531                                        if (tad_limit > sad_base)
1532                                                edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1533                                } else if (tad_base < sad_limit) {
1534                                        if (tad_limit+1 > sad_limit) {
1535                                                edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1536                                        } else {
1537                                                /* TAD region is completely inside SAD region */
1538                                                edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1539                                                        tad_rule, tad_base,
1540                                                        tad_limit, tad_size,
1541                                                        mc);
1542                                                sad_actual_size[mc] += tad_size;
1543                                        }
1544                                }
1545                                tad_base = tad_limit+1;
1546                        }
1547                }
1548
1549                for (mc = 0; mc < 2; mc++) {
1550                        edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1551                                mc, sad_actual_size[mc], sad_actual_size[mc]);
1552                }
1553
1554                /* Ignore EDRAM rule */
1555                if (edram_only)
1556                        continue;
1557
1558                /* Figure out which channels participate in interleave. */
1559                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1560                        participants[channel] = 0;
1561
1562                /* For each channel, does at least one CHA have
1563                 * this channel mapped to the given target?
1564                 */
1565                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1566                        for (way = 0; way < intrlv_ways; way++) {
1567                                int target;
1568                                int cha;
1569
1570                                if (KNL_MOD3(dram_rule))
1571                                        target = way;
1572                                else
1573                                        target = 0x7 & sad_pkg(
1574                                pvt->info.interleave_pkg, interleave_reg, way);
1575
1576                                for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1577                                        if (knl_get_mc_route(target,
1578                                                mc_route_reg[cha]) == channel
1579                                                && !participants[channel]) {
1580                                                participant_count++;
1581                                                participants[channel] = 1;
1582                                                break;
1583                                        }
1584                                }
1585                        }
1586                }
1587
1588                if (participant_count != intrlv_ways)
1589                        edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1590                                participant_count, intrlv_ways);
1591
1592                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1593                        mc = knl_channel_mc(channel);
1594                        if (participants[channel]) {
1595                                edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1596                                        channel,
1597                                        sad_actual_size[mc]/intrlv_ways,
1598                                        sad_rule);
1599                                mc_sizes[channel] +=
1600                                        sad_actual_size[mc]/intrlv_ways;
1601                        }
1602                }
1603        }
1604
1605        return 0;
1606}
1607
1608static int get_dimm_config(struct mem_ctl_info *mci)
1609{
1610        struct sbridge_pvt *pvt = mci->pvt_info;
1611        struct dimm_info *dimm;
1612        unsigned i, j, banks, ranks, rows, cols, npages;
1613        u64 size;
1614        u32 reg;
1615        enum edac_type mode;
1616        enum mem_type mtype;
1617        int channels = pvt->info.type == KNIGHTS_LANDING ?
1618                KNL_MAX_CHANNELS : NUM_CHANNELS;
1619        u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1620
1621        if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1622                pci_read_config_dword(pvt->pci_ha0, HASWELL_HASYSDEFEATURE2, &reg);
1623                pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1624        }
1625        if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1626                        pvt->info.type == KNIGHTS_LANDING)
1627                pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1628        else
1629                pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1630
1631        if (pvt->info.type == KNIGHTS_LANDING)
1632                pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1633        else
1634                pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1635
1636        pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1637        edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1638                 pvt->sbridge_dev->mc,
1639                 pvt->sbridge_dev->node_id,
1640                 pvt->sbridge_dev->source_id);
1641
1642        /* KNL doesn't support mirroring or lockstep,
1643         * and is always closed page
1644         */
1645        if (pvt->info.type == KNIGHTS_LANDING) {
1646                mode = EDAC_S4ECD4ED;
1647                pvt->is_mirrored = false;
1648
1649                if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1650                        return -1;
1651        } else {
1652                pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1653                if (IS_MIRROR_ENABLED(reg)) {
1654                        edac_dbg(0, "Memory mirror is enabled\n");
1655                        pvt->is_mirrored = true;
1656                } else {
1657                        edac_dbg(0, "Memory mirror is disabled\n");
1658                        pvt->is_mirrored = false;
1659                }
1660
1661                pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1662                if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1663                        edac_dbg(0, "Lockstep is enabled\n");
1664                        mode = EDAC_S8ECD8ED;
1665                        pvt->is_lockstep = true;
1666                } else {
1667                        edac_dbg(0, "Lockstep is disabled\n");
1668                        mode = EDAC_S4ECD4ED;
1669                        pvt->is_lockstep = false;
1670                }
1671                if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1672                        edac_dbg(0, "address map is on closed page mode\n");
1673                        pvt->is_close_pg = true;
1674                } else {
1675                        edac_dbg(0, "address map is on open page mode\n");
1676                        pvt->is_close_pg = false;
1677                }
1678        }
1679
1680        mtype = pvt->info.get_memory_type(pvt);
1681        if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1682                edac_dbg(0, "Memory is registered\n");
1683        else if (mtype == MEM_UNKNOWN)
1684                edac_dbg(0, "Cannot determine memory type\n");
1685        else
1686                edac_dbg(0, "Memory is unregistered\n");
1687
1688        if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1689                banks = 16;
1690        else
1691                banks = 8;
1692
1693        for (i = 0; i < channels; i++) {
1694                u32 mtr;
1695
1696                int max_dimms_per_channel;
1697
1698                if (pvt->info.type == KNIGHTS_LANDING) {
1699                        max_dimms_per_channel = 1;
1700                        if (!pvt->knl.pci_channel[i])
1701                                continue;
1702                } else {
1703                        max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1704                        if (!pvt->pci_tad[i])
1705                                continue;
1706                }
1707
1708                for (j = 0; j < max_dimms_per_channel; j++) {
1709                        dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1710                                       i, j, 0);
1711                        if (pvt->info.type == KNIGHTS_LANDING) {
1712                                pci_read_config_dword(pvt->knl.pci_channel[i],
1713                                        knl_mtr_reg, &mtr);
1714                        } else {
1715                                pci_read_config_dword(pvt->pci_tad[i],
1716                                        mtr_regs[j], &mtr);
1717                        }
1718                        edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1719                        if (IS_DIMM_PRESENT(mtr)) {
1720                                pvt->channel[i].dimms++;
1721
1722                                ranks = numrank(pvt->info.type, mtr);
1723
1724                                if (pvt->info.type == KNIGHTS_LANDING) {
1725                                        /* For DDR4, this is fixed. */
1726                                        cols = 1 << 10;
1727                                        rows = knl_mc_sizes[i] /
1728                                                ((u64) cols * ranks * banks * 8);
1729                                } else {
1730                                        rows = numrow(mtr);
1731                                        cols = numcol(mtr);
1732                                }
1733
1734                                size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1735                                npages = MiB_TO_PAGES(size);
1736
1737                                edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1738                                         pvt->sbridge_dev->mc, i/4, i%4, j,
1739                                         size, npages,
1740                                         banks, ranks, rows, cols);
1741
1742                                dimm->nr_pages = npages;
1743                                dimm->grain = 32;
1744                                dimm->dtype = pvt->info.get_width(pvt, mtr);
1745                                dimm->mtype = mtype;
1746                                dimm->edac_mode = mode;
1747                                snprintf(dimm->label, sizeof(dimm->label),
1748                                         "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1749                                         pvt->sbridge_dev->source_id, i/4, i%4, j);
1750                        }
1751                }
1752        }
1753
1754        return 0;
1755}
1756
1757static void get_memory_layout(const struct mem_ctl_info *mci)
1758{
1759        struct sbridge_pvt *pvt = mci->pvt_info;
1760        int i, j, k, n_sads, n_tads, sad_interl;
1761        u32 reg;
1762        u64 limit, prv = 0;
1763        u64 tmp_mb;
1764        u32 gb, mb;
1765        u32 rir_way;
1766
1767        /*
1768         * Step 1) Get TOLM/TOHM ranges
1769         */
1770
1771        pvt->tolm = pvt->info.get_tolm(pvt);
1772        tmp_mb = (1 + pvt->tolm) >> 20;
1773
1774        gb = div_u64_rem(tmp_mb, 1024, &mb);
1775        edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1776                gb, (mb*1000)/1024, (u64)pvt->tolm);
1777
1778        /* Address range is already 45:25 */
1779        pvt->tohm = pvt->info.get_tohm(pvt);
1780        tmp_mb = (1 + pvt->tohm) >> 20;
1781
1782        gb = div_u64_rem(tmp_mb, 1024, &mb);
1783        edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1784                gb, (mb*1000)/1024, (u64)pvt->tohm);
1785
1786        /*
1787         * Step 2) Get SAD range and SAD Interleave list
1788         * TAD registers contain the interleave wayness. However, it
1789         * seems simpler to just discover it indirectly, with the
1790         * algorithm bellow.
1791         */
1792        prv = 0;
1793        for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1794                /* SAD_LIMIT Address range is 45:26 */
1795                pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1796                                      &reg);
1797                limit = pvt->info.sad_limit(reg);
1798
1799                if (!DRAM_RULE_ENABLE(reg))
1800                        continue;
1801
1802                if (limit <= prv)
1803                        break;
1804
1805                tmp_mb = (limit + 1) >> 20;
1806                gb = div_u64_rem(tmp_mb, 1024, &mb);
1807                edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1808                         n_sads,
1809                         show_dram_attr(pvt->info.dram_attr(reg)),
1810                         gb, (mb*1000)/1024,
1811                         ((u64)tmp_mb) << 20L,
1812                         pvt->info.show_interleave_mode(reg),
1813                         reg);
1814                prv = limit;
1815
1816                pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1817                                      &reg);
1818                sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1819                for (j = 0; j < 8; j++) {
1820                        u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1821                        if (j > 0 && sad_interl == pkg)
1822                                break;
1823
1824                        edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1825                                 n_sads, j, pkg);
1826                }
1827        }
1828
1829        if (pvt->info.type == KNIGHTS_LANDING)
1830                return;
1831
1832        /*
1833         * Step 3) Get TAD range
1834         */
1835        prv = 0;
1836        for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1837                pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1838                                      &reg);
1839                limit = TAD_LIMIT(reg);
1840                if (limit <= prv)
1841                        break;
1842                tmp_mb = (limit + 1) >> 20;
1843
1844                gb = div_u64_rem(tmp_mb, 1024, &mb);
1845                edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1846                         n_tads, gb, (mb*1000)/1024,
1847                         ((u64)tmp_mb) << 20L,
1848                         (u32)(1 << TAD_SOCK(reg)),
1849                         (u32)TAD_CH(reg) + 1,
1850                         (u32)TAD_TGT0(reg),
1851                         (u32)TAD_TGT1(reg),
1852                         (u32)TAD_TGT2(reg),
1853                         (u32)TAD_TGT3(reg),
1854                         reg);
1855                prv = limit;
1856        }
1857
1858        /*
1859         * Step 4) Get TAD offsets, per each channel
1860         */
1861        for (i = 0; i < NUM_CHANNELS; i++) {
1862                if (!pvt->channel[i].dimms)
1863                        continue;
1864                for (j = 0; j < n_tads; j++) {
1865                        pci_read_config_dword(pvt->pci_tad[i],
1866                                              tad_ch_nilv_offset[j],
1867                                              &reg);
1868                        tmp_mb = TAD_OFFSET(reg) >> 20;
1869                        gb = div_u64_rem(tmp_mb, 1024, &mb);
1870                        edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1871                                 i, j,
1872                                 gb, (mb*1000)/1024,
1873                                 ((u64)tmp_mb) << 20L,
1874                                 reg);
1875                }
1876        }
1877
1878        /*
1879         * Step 6) Get RIR Wayness/Limit, per each channel
1880         */
1881        for (i = 0; i < NUM_CHANNELS; i++) {
1882                if (!pvt->channel[i].dimms)
1883                        continue;
1884                for (j = 0; j < MAX_RIR_RANGES; j++) {
1885                        pci_read_config_dword(pvt->pci_tad[i],
1886                                              rir_way_limit[j],
1887                                              &reg);
1888
1889                        if (!IS_RIR_VALID(reg))
1890                                continue;
1891
1892                        tmp_mb = pvt->info.rir_limit(reg) >> 20;
1893                        rir_way = 1 << RIR_WAY(reg);
1894                        gb = div_u64_rem(tmp_mb, 1024, &mb);
1895                        edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1896                                 i, j,
1897                                 gb, (mb*1000)/1024,
1898                                 ((u64)tmp_mb) << 20L,
1899                                 rir_way,
1900                                 reg);
1901
1902                        for (k = 0; k < rir_way; k++) {
1903                                pci_read_config_dword(pvt->pci_tad[i],
1904                                                      rir_offset[j][k],
1905                                                      &reg);
1906                                tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1907
1908                                gb = div_u64_rem(tmp_mb, 1024, &mb);
1909                                edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1910                                         i, j, k,
1911                                         gb, (mb*1000)/1024,
1912                                         ((u64)tmp_mb) << 20L,
1913                                         (u32)RIR_RNK_TGT(pvt->info.type, reg),
1914                                         reg);
1915                        }
1916                }
1917        }
1918}
1919
1920static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1921{
1922        struct sbridge_dev *sbridge_dev;
1923
1924        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1925                if (sbridge_dev->node_id == node_id)
1926                        return sbridge_dev->mci;
1927        }
1928        return NULL;
1929}
1930
1931static int get_memory_error_data(struct mem_ctl_info *mci,
1932                                 u64 addr,
1933                                 u8 *socket, u8 *ha,
1934                                 long *channel_mask,
1935                                 u8 *rank,
1936                                 char **area_type, char *msg)
1937{
1938        struct mem_ctl_info     *new_mci;
1939        struct sbridge_pvt *pvt = mci->pvt_info;
1940        struct pci_dev          *pci_ha;
1941        int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1942        int                     sad_interl, idx, base_ch;
1943        int                     interleave_mode, shiftup = 0;
1944        unsigned                sad_interleave[pvt->info.max_interleave];
1945        u32                     reg, dram_rule;
1946        u8                      ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1947        u32                     tad_offset;
1948        u32                     rir_way;
1949        u32                     mb, gb;
1950        u64                     ch_addr, offset, limit = 0, prv = 0;
1951
1952
1953        /*
1954         * Step 0) Check if the address is at special memory ranges
1955         * The check bellow is probably enough to fill all cases where
1956         * the error is not inside a memory, except for the legacy
1957         * range (e. g. VGA addresses). It is unlikely, however, that the
1958         * memory controller would generate an error on that range.
1959         */
1960        if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1961                sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1962                return -EINVAL;
1963        }
1964        if (addr >= (u64)pvt->tohm) {
1965                sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1966                return -EINVAL;
1967        }
1968
1969        /*
1970         * Step 1) Get socket
1971         */
1972        for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1973                pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1974                                      &reg);
1975
1976                if (!DRAM_RULE_ENABLE(reg))
1977                        continue;
1978
1979                limit = pvt->info.sad_limit(reg);
1980                if (limit <= prv) {
1981                        sprintf(msg, "Can't discover the memory socket");
1982                        return -EINVAL;
1983                }
1984                if  (addr <= limit)
1985                        break;
1986                prv = limit;
1987        }
1988        if (n_sads == pvt->info.max_sad) {
1989                sprintf(msg, "Can't discover the memory socket");
1990                return -EINVAL;
1991        }
1992        dram_rule = reg;
1993        *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1994        interleave_mode = pvt->info.interleave_mode(dram_rule);
1995
1996        pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1997                              &reg);
1998
1999        if (pvt->info.type == SANDY_BRIDGE) {
2000                sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2001                for (sad_way = 0; sad_way < 8; sad_way++) {
2002                        u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2003                        if (sad_way > 0 && sad_interl == pkg)
2004                                break;
2005                        sad_interleave[sad_way] = pkg;
2006                        edac_dbg(0, "SAD interleave #%d: %d\n",
2007                                 sad_way, sad_interleave[sad_way]);
2008                }
2009                edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2010                         pvt->sbridge_dev->mc,
2011                         n_sads,
2012                         addr,
2013                         limit,
2014                         sad_way + 7,
2015                         !interleave_mode ? "" : "XOR[18:16]");
2016                if (interleave_mode)
2017                        idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2018                else
2019                        idx = (addr >> 6) & 7;
2020                switch (sad_way) {
2021                case 1:
2022                        idx = 0;
2023                        break;
2024                case 2:
2025                        idx = idx & 1;
2026                        break;
2027                case 4:
2028                        idx = idx & 3;
2029                        break;
2030                case 8:
2031                        break;
2032                default:
2033                        sprintf(msg, "Can't discover socket interleave");
2034                        return -EINVAL;
2035                }
2036                *socket = sad_interleave[idx];
2037                edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2038                         idx, sad_way, *socket);
2039        } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2040                int bits, a7mode = A7MODE(dram_rule);
2041
2042                if (a7mode) {
2043                        /* A7 mode swaps P9 with P6 */
2044                        bits = GET_BITFIELD(addr, 7, 8) << 1;
2045                        bits |= GET_BITFIELD(addr, 9, 9);
2046                } else
2047                        bits = GET_BITFIELD(addr, 6, 8);
2048
2049                if (interleave_mode == 0) {
2050                        /* interleave mode will XOR {8,7,6} with {18,17,16} */
2051                        idx = GET_BITFIELD(addr, 16, 18);
2052                        idx ^= bits;
2053                } else
2054                        idx = bits;
2055
2056                pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2057                *socket = sad_pkg_socket(pkg);
2058                sad_ha = sad_pkg_ha(pkg);
2059                if (sad_ha)
2060                        ch_add = 4;
2061
2062                if (a7mode) {
2063                        /* MCChanShiftUpEnable */
2064                        pci_read_config_dword(pvt->pci_ha0,
2065                                              HASWELL_HASYSDEFEATURE2, &reg);
2066                        shiftup = GET_BITFIELD(reg, 22, 22);
2067                }
2068
2069                edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2070                         idx, *socket, sad_ha, shiftup);
2071        } else {
2072                /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2073                idx = (addr >> 6) & 7;
2074                pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2075                *socket = sad_pkg_socket(pkg);
2076                sad_ha = sad_pkg_ha(pkg);
2077                if (sad_ha)
2078                        ch_add = 4;
2079                edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2080                         idx, *socket, sad_ha);
2081        }
2082
2083        *ha = sad_ha;
2084
2085        /*
2086         * Move to the proper node structure, in order to access the
2087         * right PCI registers
2088         */
2089        new_mci = get_mci_for_node_id(*socket);
2090        if (!new_mci) {
2091                sprintf(msg, "Struct for socket #%u wasn't initialized",
2092                        *socket);
2093                return -EINVAL;
2094        }
2095        mci = new_mci;
2096        pvt = mci->pvt_info;
2097
2098        /*
2099         * Step 2) Get memory channel
2100         */
2101        prv = 0;
2102        if (pvt->info.type == SANDY_BRIDGE)
2103                pci_ha = pvt->pci_ha0;
2104        else {
2105                if (sad_ha)
2106                        pci_ha = pvt->pci_ha1;
2107                else
2108                        pci_ha = pvt->pci_ha0;
2109        }
2110        for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2111                pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2112                limit = TAD_LIMIT(reg);
2113                if (limit <= prv) {
2114                        sprintf(msg, "Can't discover the memory channel");
2115                        return -EINVAL;
2116                }
2117                if  (addr <= limit)
2118                        break;
2119                prv = limit;
2120        }
2121        if (n_tads == MAX_TAD) {
2122                sprintf(msg, "Can't discover the memory channel");
2123                return -EINVAL;
2124        }
2125
2126        ch_way = TAD_CH(reg) + 1;
2127        sck_way = TAD_SOCK(reg);
2128
2129        if (ch_way == 3)
2130                idx = addr >> 6;
2131        else {
2132                idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2133                if (pvt->is_chan_hash)
2134                        idx = haswell_chan_hash(idx, addr);
2135        }
2136        idx = idx % ch_way;
2137
2138        /*
2139         * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2140         */
2141        switch (idx) {
2142        case 0:
2143                base_ch = TAD_TGT0(reg);
2144                break;
2145        case 1:
2146                base_ch = TAD_TGT1(reg);
2147                break;
2148        case 2:
2149                base_ch = TAD_TGT2(reg);
2150                break;
2151        case 3:
2152                base_ch = TAD_TGT3(reg);
2153                break;
2154        default:
2155                sprintf(msg, "Can't discover the TAD target");
2156                return -EINVAL;
2157        }
2158        *channel_mask = 1 << base_ch;
2159
2160        pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2161                                tad_ch_nilv_offset[n_tads],
2162                                &tad_offset);
2163
2164        if (pvt->is_mirrored) {
2165                *channel_mask |= 1 << ((base_ch + 2) % 4);
2166                switch(ch_way) {
2167                case 2:
2168                case 4:
2169                        sck_xch = (1 << sck_way) * (ch_way >> 1);
2170                        break;
2171                default:
2172                        sprintf(msg, "Invalid mirror set. Can't decode addr");
2173                        return -EINVAL;
2174                }
2175        } else
2176                sck_xch = (1 << sck_way) * ch_way;
2177
2178        if (pvt->is_lockstep)
2179                *channel_mask |= 1 << ((base_ch + 1) % 4);
2180
2181        offset = TAD_OFFSET(tad_offset);
2182
2183        edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2184                 n_tads,
2185                 addr,
2186                 limit,
2187                 sck_way,
2188                 ch_way,
2189                 offset,
2190                 idx,
2191                 base_ch,
2192                 *channel_mask);
2193
2194        /* Calculate channel address */
2195        /* Remove the TAD offset */
2196
2197        if (offset > addr) {
2198                sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2199                        offset, addr);
2200                return -EINVAL;
2201        }
2202
2203        ch_addr = addr - offset;
2204        ch_addr >>= (6 + shiftup);
2205        ch_addr /= sck_xch;
2206        ch_addr <<= (6 + shiftup);
2207        ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2208
2209        /*
2210         * Step 3) Decode rank
2211         */
2212        for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2213                pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2214                                      rir_way_limit[n_rir],
2215                                      &reg);
2216
2217                if (!IS_RIR_VALID(reg))
2218                        continue;
2219
2220                limit = pvt->info.rir_limit(reg);
2221                gb = div_u64_rem(limit >> 20, 1024, &mb);
2222                edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2223                         n_rir,
2224                         gb, (mb*1000)/1024,
2225                         limit,
2226                         1 << RIR_WAY(reg));
2227                if  (ch_addr <= limit)
2228                        break;
2229        }
2230        if (n_rir == MAX_RIR_RANGES) {
2231                sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2232                        ch_addr);
2233                return -EINVAL;
2234        }
2235        rir_way = RIR_WAY(reg);
2236
2237        if (pvt->is_close_pg)
2238                idx = (ch_addr >> 6);
2239        else
2240                idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2241        idx %= 1 << rir_way;
2242
2243        pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2244                              rir_offset[n_rir][idx],
2245                              &reg);
2246        *rank = RIR_RNK_TGT(pvt->info.type, reg);
2247
2248        edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2249                 n_rir,
2250                 ch_addr,
2251                 limit,
2252                 rir_way,
2253                 idx);
2254
2255        return 0;
2256}
2257
2258/****************************************************************************
2259        Device initialization routines: put/get, init/exit
2260 ****************************************************************************/
2261
2262/*
2263 *      sbridge_put_all_devices 'put' all the devices that we have
2264 *                              reserved via 'get'
2265 */
2266static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2267{
2268        int i;
2269
2270        edac_dbg(0, "\n");
2271        for (i = 0; i < sbridge_dev->n_devs; i++) {
2272                struct pci_dev *pdev = sbridge_dev->pdev[i];
2273                if (!pdev)
2274                        continue;
2275                edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2276                         pdev->bus->number,
2277                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2278                pci_dev_put(pdev);
2279        }
2280}
2281
2282static void sbridge_put_all_devices(void)
2283{
2284        struct sbridge_dev *sbridge_dev, *tmp;
2285
2286        list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2287                sbridge_put_devices(sbridge_dev);
2288                free_sbridge_dev(sbridge_dev);
2289        }
2290}
2291
2292static int sbridge_get_onedevice(struct pci_dev **prev,
2293                                 u8 *num_mc,
2294                                 const struct pci_id_table *table,
2295                                 const unsigned devno,
2296                                 const int multi_bus)
2297{
2298        struct sbridge_dev *sbridge_dev;
2299        const struct pci_id_descr *dev_descr = &table->descr[devno];
2300        struct pci_dev *pdev = NULL;
2301        u8 bus = 0;
2302
2303        sbridge_printk(KERN_DEBUG,
2304                "Seeking for: PCI ID %04x:%04x\n",
2305                PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2306
2307        pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2308                              dev_descr->dev_id, *prev);
2309
2310        if (!pdev) {
2311                if (*prev) {
2312                        *prev = pdev;
2313                        return 0;
2314                }
2315
2316                if (dev_descr->optional)
2317                        return 0;
2318
2319                /* if the HA wasn't found */
2320                if (devno == 0)
2321                        return -ENODEV;
2322
2323                sbridge_printk(KERN_INFO,
2324                        "Device not found: %04x:%04x\n",
2325                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2326
2327                /* End of list, leave */
2328                return -ENODEV;
2329        }
2330        bus = pdev->bus->number;
2331
2332        sbridge_dev = get_sbridge_dev(bus, multi_bus);
2333        if (!sbridge_dev) {
2334                sbridge_dev = alloc_sbridge_dev(bus, table);
2335                if (!sbridge_dev) {
2336                        pci_dev_put(pdev);
2337                        return -ENOMEM;
2338                }
2339                (*num_mc)++;
2340        }
2341
2342        if (sbridge_dev->pdev[devno]) {
2343                sbridge_printk(KERN_ERR,
2344                        "Duplicated device for %04x:%04x\n",
2345                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2346                pci_dev_put(pdev);
2347                return -ENODEV;
2348        }
2349
2350        sbridge_dev->pdev[devno] = pdev;
2351
2352        /* Be sure that the device is enabled */
2353        if (unlikely(pci_enable_device(pdev) < 0)) {
2354                sbridge_printk(KERN_ERR,
2355                        "Couldn't enable %04x:%04x\n",
2356                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2357                return -ENODEV;
2358        }
2359
2360        edac_dbg(0, "Detected %04x:%04x\n",
2361                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2362
2363        /*
2364         * As stated on drivers/pci/search.c, the reference count for
2365         * @from is always decremented if it is not %NULL. So, as we need
2366         * to get all devices up to null, we need to do a get for the device
2367         */
2368        pci_dev_get(pdev);
2369
2370        *prev = pdev;
2371
2372        return 0;
2373}
2374
2375/*
2376 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2377 *                           devices we want to reference for this driver.
2378 * @num_mc: pointer to the memory controllers count, to be incremented in case
2379 *          of success.
2380 * @table: model specific table
2381 *
2382 * returns 0 in case of success or error code
2383 */
2384static int sbridge_get_all_devices(u8 *num_mc,
2385                                        const struct pci_id_table *table)
2386{
2387        int i, rc;
2388        struct pci_dev *pdev = NULL;
2389        int allow_dups = 0;
2390        int multi_bus = 0;
2391
2392        if (table->type == KNIGHTS_LANDING)
2393                allow_dups = multi_bus = 1;
2394        while (table && table->descr) {
2395                for (i = 0; i < table->n_devs; i++) {
2396                        if (!allow_dups || i == 0 ||
2397                                        table->descr[i].dev_id !=
2398                                                table->descr[i-1].dev_id) {
2399                                pdev = NULL;
2400                        }
2401                        do {
2402                                rc = sbridge_get_onedevice(&pdev, num_mc,
2403                                                           table, i, multi_bus);
2404                                if (rc < 0) {
2405                                        if (i == 0) {
2406                                                i = table->n_devs;
2407                                                break;
2408                                        }
2409                                        sbridge_put_all_devices();
2410                                        return -ENODEV;
2411                                }
2412                        } while (pdev && !allow_dups);
2413                }
2414                table++;
2415        }
2416
2417        return 0;
2418}
2419
2420static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2421                                 struct sbridge_dev *sbridge_dev)
2422{
2423        struct sbridge_pvt *pvt = mci->pvt_info;
2424        struct pci_dev *pdev;
2425        u8 saw_chan_mask = 0;
2426        int i;
2427
2428        for (i = 0; i < sbridge_dev->n_devs; i++) {
2429                pdev = sbridge_dev->pdev[i];
2430                if (!pdev)
2431                        continue;
2432
2433                switch (pdev->device) {
2434                case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2435                        pvt->pci_sad0 = pdev;
2436                        break;
2437                case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2438                        pvt->pci_sad1 = pdev;
2439                        break;
2440                case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2441                        pvt->pci_br0 = pdev;
2442                        break;
2443                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2444                        pvt->pci_ha0 = pdev;
2445                        break;
2446                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2447                        pvt->pci_ta = pdev;
2448                        break;
2449                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2450                        pvt->pci_ras = pdev;
2451                        break;
2452                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2453                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2454                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2455                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2456                {
2457                        int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2458                        pvt->pci_tad[id] = pdev;
2459                        saw_chan_mask |= 1 << id;
2460                }
2461                        break;
2462                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2463                        pvt->pci_ddrio = pdev;
2464                        break;
2465                default:
2466                        goto error;
2467                }
2468
2469                edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2470                         pdev->vendor, pdev->device,
2471                         sbridge_dev->bus,
2472                         pdev);
2473        }
2474
2475        /* Check if everything were registered */
2476        if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2477            !pvt->pci_ras || !pvt->pci_ta)
2478                goto enodev;
2479
2480        if (saw_chan_mask != 0x0f)
2481                goto enodev;
2482        return 0;
2483
2484enodev:
2485        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2486        return -ENODEV;
2487
2488error:
2489        sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2490                       PCI_VENDOR_ID_INTEL, pdev->device);
2491        return -EINVAL;
2492}
2493
2494static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2495                                 struct sbridge_dev *sbridge_dev)
2496{
2497        struct sbridge_pvt *pvt = mci->pvt_info;
2498        struct pci_dev *pdev;
2499        u8 saw_chan_mask = 0;
2500        int i;
2501
2502        for (i = 0; i < sbridge_dev->n_devs; i++) {
2503                pdev = sbridge_dev->pdev[i];
2504                if (!pdev)
2505                        continue;
2506
2507                switch (pdev->device) {
2508                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2509                        pvt->pci_ha0 = pdev;
2510                        break;
2511                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2512                        pvt->pci_ta = pdev;
2513                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2514                        pvt->pci_ras = pdev;
2515                        break;
2516                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2517                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2518                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2519                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2520                {
2521                        int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2522                        pvt->pci_tad[id] = pdev;
2523                        saw_chan_mask |= 1 << id;
2524                }
2525                        break;
2526                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2527                        pvt->pci_ddrio = pdev;
2528                        break;
2529                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2530                        pvt->pci_ddrio = pdev;
2531                        break;
2532                case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2533                        pvt->pci_sad0 = pdev;
2534                        break;
2535                case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2536                        pvt->pci_br0 = pdev;
2537                        break;
2538                case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2539                        pvt->pci_br1 = pdev;
2540                        break;
2541                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2542                        pvt->pci_ha1 = pdev;
2543                        break;
2544                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2545                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2546                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2547                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2548                {
2549                        int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2550                        pvt->pci_tad[id] = pdev;
2551                        saw_chan_mask |= 1 << id;
2552                }
2553                        break;
2554                default:
2555                        goto error;
2556                }
2557
2558                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2559                         sbridge_dev->bus,
2560                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2561                         pdev);
2562        }
2563
2564        /* Check if everything were registered */
2565        if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2566            !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2567                goto enodev;
2568
2569        if (saw_chan_mask != 0x0f && /* -EN */
2570            saw_chan_mask != 0x33 && /* -EP */
2571            saw_chan_mask != 0xff)   /* -EX */
2572                goto enodev;
2573        return 0;
2574
2575enodev:
2576        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2577        return -ENODEV;
2578
2579error:
2580        sbridge_printk(KERN_ERR,
2581                       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2582                        pdev->device);
2583        return -EINVAL;
2584}
2585
2586static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2587                                 struct sbridge_dev *sbridge_dev)
2588{
2589        struct sbridge_pvt *pvt = mci->pvt_info;
2590        struct pci_dev *pdev;
2591        u8 saw_chan_mask = 0;
2592        int i;
2593
2594        /* there's only one device per system; not tied to any bus */
2595        if (pvt->info.pci_vtd == NULL)
2596                /* result will be checked later */
2597                pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2598                                                   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2599                                                   NULL);
2600
2601        for (i = 0; i < sbridge_dev->n_devs; i++) {
2602                pdev = sbridge_dev->pdev[i];
2603                if (!pdev)
2604                        continue;
2605
2606                switch (pdev->device) {
2607                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2608                        pvt->pci_sad0 = pdev;
2609                        break;
2610                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2611                        pvt->pci_sad1 = pdev;
2612                        break;
2613                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2614                        pvt->pci_ha0 = pdev;
2615                        break;
2616                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2617                        pvt->pci_ta = pdev;
2618                        break;
2619                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2620                        pvt->pci_ras = pdev;
2621                        break;
2622                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2623                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2624                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2625                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2626                {
2627                        int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2628
2629                        pvt->pci_tad[id] = pdev;
2630                        saw_chan_mask |= 1 << id;
2631                }
2632                        break;
2633                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2634                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2635                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2636                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2637                {
2638                        int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2639
2640                        pvt->pci_tad[id] = pdev;
2641                        saw_chan_mask |= 1 << id;
2642                }
2643                        break;
2644                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2645                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2646                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2647                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2648                        if (!pvt->pci_ddrio)
2649                                pvt->pci_ddrio = pdev;
2650                        break;
2651                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2652                        pvt->pci_ha1 = pdev;
2653                        break;
2654                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2655                        pvt->pci_ha1_ta = pdev;
2656                        break;
2657                default:
2658                        break;
2659                }
2660
2661                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2662                         sbridge_dev->bus,
2663                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2664                         pdev);
2665        }
2666
2667        /* Check if everything were registered */
2668        if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2669            !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2670                goto enodev;
2671
2672        if (saw_chan_mask != 0x0f && /* -EN */
2673            saw_chan_mask != 0x33 && /* -EP */
2674            saw_chan_mask != 0xff)   /* -EX */
2675                goto enodev;
2676        return 0;
2677
2678enodev:
2679        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2680        return -ENODEV;
2681}
2682
2683static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2684                                 struct sbridge_dev *sbridge_dev)
2685{
2686        struct sbridge_pvt *pvt = mci->pvt_info;
2687        struct pci_dev *pdev;
2688        u8 saw_chan_mask = 0;
2689        int i;
2690
2691        /* there's only one device per system; not tied to any bus */
2692        if (pvt->info.pci_vtd == NULL)
2693                /* result will be checked later */
2694                pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2695                                                   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2696                                                   NULL);
2697
2698        for (i = 0; i < sbridge_dev->n_devs; i++) {
2699                pdev = sbridge_dev->pdev[i];
2700                if (!pdev)
2701                        continue;
2702
2703                switch (pdev->device) {
2704                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2705                        pvt->pci_sad0 = pdev;
2706                        break;
2707                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2708                        pvt->pci_sad1 = pdev;
2709                        break;
2710                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2711                        pvt->pci_ha0 = pdev;
2712                        break;
2713                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2714                        pvt->pci_ta = pdev;
2715                        break;
2716                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2717                        pvt->pci_ras = pdev;
2718                        break;
2719                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2720                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2721                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2722                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2723                {
2724                        int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2725                        pvt->pci_tad[id] = pdev;
2726                        saw_chan_mask |= 1 << id;
2727                }
2728                        break;
2729                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2730                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2731                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2732                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2733                {
2734                        int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2735                        pvt->pci_tad[id] = pdev;
2736                        saw_chan_mask |= 1 << id;
2737                }
2738                        break;
2739                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2740                        pvt->pci_ddrio = pdev;
2741                        break;
2742                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2743                        pvt->pci_ha1 = pdev;
2744                        break;
2745                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2746                        pvt->pci_ha1_ta = pdev;
2747                        break;
2748                default:
2749                        break;
2750                }
2751
2752                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2753                         sbridge_dev->bus,
2754                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2755                         pdev);
2756        }
2757
2758        /* Check if everything were registered */
2759        if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2760            !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2761                goto enodev;
2762
2763        if (saw_chan_mask != 0x0f && /* -EN */
2764            saw_chan_mask != 0x33 && /* -EP */
2765            saw_chan_mask != 0xff)   /* -EX */
2766                goto enodev;
2767        return 0;
2768
2769enodev:
2770        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2771        return -ENODEV;
2772}
2773
2774static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2775                        struct sbridge_dev *sbridge_dev)
2776{
2777        struct sbridge_pvt *pvt = mci->pvt_info;
2778        struct pci_dev *pdev;
2779        int dev, func;
2780
2781        int i;
2782        int devidx;
2783
2784        for (i = 0; i < sbridge_dev->n_devs; i++) {
2785                pdev = sbridge_dev->pdev[i];
2786                if (!pdev)
2787                        continue;
2788
2789                /* Extract PCI device and function. */
2790                dev = (pdev->devfn >> 3) & 0x1f;
2791                func = pdev->devfn & 0x7;
2792
2793                switch (pdev->device) {
2794                case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2795                        if (dev == 8)
2796                                pvt->knl.pci_mc0 = pdev;
2797                        else if (dev == 9)
2798                                pvt->knl.pci_mc1 = pdev;
2799                        else {
2800                                sbridge_printk(KERN_ERR,
2801                                        "Memory controller in unexpected place! (dev %d, fn %d)\n",
2802                                        dev, func);
2803                                continue;
2804                        }
2805                        break;
2806
2807                case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2808                        pvt->pci_sad0 = pdev;
2809                        break;
2810
2811                case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2812                        pvt->pci_sad1 = pdev;
2813                        break;
2814
2815                case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2816                        /* There are one of these per tile, and range from
2817                         * 1.14.0 to 1.18.5.
2818                         */
2819                        devidx = ((dev-14)*8)+func;
2820
2821                        if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2822                                sbridge_printk(KERN_ERR,
2823                                        "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2824                                        dev, func);
2825                                continue;
2826                        }
2827
2828                        WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2829
2830                        pvt->knl.pci_cha[devidx] = pdev;
2831                        break;
2832
2833                case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2834                        devidx = -1;
2835
2836                        /*
2837                         *  MC0 channels 0-2 are device 9 function 2-4,
2838                         *  MC1 channels 3-5 are device 8 function 2-4.
2839                         */
2840
2841                        if (dev == 9)
2842                                devidx = func-2;
2843                        else if (dev == 8)
2844                                devidx = 3 + (func-2);
2845
2846                        if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2847                                sbridge_printk(KERN_ERR,
2848                                        "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2849                                        dev, func);
2850                                continue;
2851                        }
2852
2853                        WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2854                        pvt->knl.pci_channel[devidx] = pdev;
2855                        break;
2856
2857                case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2858                        pvt->knl.pci_mc_info = pdev;
2859                        break;
2860
2861                case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2862                        pvt->pci_ta = pdev;
2863                        break;
2864
2865                default:
2866                        sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2867                                pdev->device);
2868                        break;
2869                }
2870        }
2871
2872        if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2873            !pvt->pci_sad0     || !pvt->pci_sad1    ||
2874            !pvt->pci_ta) {
2875                goto enodev;
2876        }
2877
2878        for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2879                if (!pvt->knl.pci_channel[i]) {
2880                        sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2881                        goto enodev;
2882                }
2883        }
2884
2885        for (i = 0; i < KNL_MAX_CHAS; i++) {
2886                if (!pvt->knl.pci_cha[i]) {
2887                        sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2888                        goto enodev;
2889                }
2890        }
2891
2892        return 0;
2893
2894enodev:
2895        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2896        return -ENODEV;
2897}
2898
2899/****************************************************************************
2900                        Error check routines
2901 ****************************************************************************/
2902
2903/*
2904 * While Sandy Bridge has error count registers, SMI BIOS read values from
2905 * and resets the counters. So, they are not reliable for the OS to read
2906 * from them. So, we have no option but to just trust on whatever MCE is
2907 * telling us about the errors.
2908 */
2909static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2910                                    const struct mce *m)
2911{
2912        struct mem_ctl_info *new_mci;
2913        struct sbridge_pvt *pvt = mci->pvt_info;
2914        enum hw_event_mc_err_type tp_event;
2915        char *type, *optype, msg[256];
2916        bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2917        bool overflow = GET_BITFIELD(m->status, 62, 62);
2918        bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2919        bool recoverable;
2920        u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2921        u32 mscod = GET_BITFIELD(m->status, 16, 31);
2922        u32 errcode = GET_BITFIELD(m->status, 0, 15);
2923        u32 channel = GET_BITFIELD(m->status, 0, 3);
2924        u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2925        long channel_mask, first_channel;
2926        u8  rank, socket, ha;
2927        int rc, dimm;
2928        char *area_type = NULL;
2929
2930        if (pvt->info.type != SANDY_BRIDGE)
2931                recoverable = true;
2932        else
2933                recoverable = GET_BITFIELD(m->status, 56, 56);
2934
2935        if (uncorrected_error) {
2936                if (ripv) {
2937                        type = "FATAL";
2938                        tp_event = HW_EVENT_ERR_FATAL;
2939                } else {
2940                        type = "NON_FATAL";
2941                        tp_event = HW_EVENT_ERR_UNCORRECTED;
2942                }
2943        } else {
2944                type = "CORRECTED";
2945                tp_event = HW_EVENT_ERR_CORRECTED;
2946        }
2947
2948        /*
2949         * According with Table 15-9 of the Intel Architecture spec vol 3A,
2950         * memory errors should fit in this mask:
2951         *      000f 0000 1mmm cccc (binary)
2952         * where:
2953         *      f = Correction Report Filtering Bit. If 1, subsequent errors
2954         *          won't be shown
2955         *      mmm = error type
2956         *      cccc = channel
2957         * If the mask doesn't match, report an error to the parsing logic
2958         */
2959        if (! ((errcode & 0xef80) == 0x80)) {
2960                optype = "Can't parse: it is not a mem";
2961        } else {
2962                switch (optypenum) {
2963                case 0:
2964                        optype = "generic undef request error";
2965                        break;
2966                case 1:
2967                        optype = "memory read error";
2968                        break;
2969                case 2:
2970                        optype = "memory write error";
2971                        break;
2972                case 3:
2973                        optype = "addr/cmd error";
2974                        break;
2975                case 4:
2976                        optype = "memory scrubbing error";
2977                        break;
2978                default:
2979                        optype = "reserved";
2980                        break;
2981                }
2982        }
2983
2984        /* Only decode errors with an valid address (ADDRV) */
2985        if (!GET_BITFIELD(m->status, 58, 58))
2986                return;
2987
2988        if (pvt->info.type == KNIGHTS_LANDING) {
2989                if (channel == 14) {
2990                        edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2991                                overflow ? " OVERFLOW" : "",
2992                                (uncorrected_error && recoverable)
2993                                ? " recoverable" : "",
2994                                mscod, errcode,
2995                                m->bank);
2996                } else {
2997                        char A = *("A");
2998
2999                        /*
3000                         * Reported channel is in range 0-2, so we can't map it
3001                         * back to mc. To figure out mc we check machine check
3002                         * bank register that reported this error.
3003                         * bank15 means mc0 and bank16 means mc1.
3004                         */
3005                        channel = knl_channel_remap(m->bank == 16, channel);
3006                        channel_mask = 1 << channel;
3007
3008                        snprintf(msg, sizeof(msg),
3009                                "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3010                                overflow ? " OVERFLOW" : "",
3011                                (uncorrected_error && recoverable)
3012                                ? " recoverable" : " ",
3013                                mscod, errcode, channel, A + channel);
3014                        edac_mc_handle_error(tp_event, mci, core_err_cnt,
3015                                m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3016                                channel, 0, -1,
3017                                optype, msg);
3018                }
3019                return;
3020        } else {
3021                rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3022                                &channel_mask, &rank, &area_type, msg);
3023        }
3024
3025        if (rc < 0)
3026                goto err_parsing;
3027        new_mci = get_mci_for_node_id(socket);
3028        if (!new_mci) {
3029                strcpy(msg, "Error: socket got corrupted!");
3030                goto err_parsing;
3031        }
3032        mci = new_mci;
3033        pvt = mci->pvt_info;
3034
3035        first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3036
3037        if (rank < 4)
3038                dimm = 0;
3039        else if (rank < 8)
3040                dimm = 1;
3041        else
3042                dimm = 2;
3043
3044
3045        /*
3046         * FIXME: On some memory configurations (mirror, lockstep), the
3047         * Memory Controller can't point the error to a single DIMM. The
3048         * EDAC core should be handling the channel mask, in order to point
3049         * to the group of dimm's where the error may be happening.
3050         */
3051        if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3052                channel = first_channel;
3053
3054        snprintf(msg, sizeof(msg),
3055                 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3056                 overflow ? " OVERFLOW" : "",
3057                 (uncorrected_error && recoverable) ? " recoverable" : "",
3058                 area_type,
3059                 mscod, errcode,
3060                 socket, ha,
3061                 channel_mask,
3062                 rank);
3063
3064        edac_dbg(0, "%s\n", msg);
3065
3066        /* FIXME: need support for channel mask */
3067
3068        if (channel == CHANNEL_UNSPECIFIED)
3069                channel = -1;
3070
3071        /* Call the helper to output message */
3072        edac_mc_handle_error(tp_event, mci, core_err_cnt,
3073                             m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3074                             4*ha+channel, dimm, -1,
3075                             optype, msg);
3076        return;
3077err_parsing:
3078        edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3079                             -1, -1, -1,
3080                             msg, "");
3081
3082}
3083
3084/*
3085 * Check that logging is enabled and that this is the right type
3086 * of error for us to handle.
3087 */
3088static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3089                                   void *data)
3090{
3091        struct mce *mce = (struct mce *)data;
3092        struct mem_ctl_info *mci;
3093        struct sbridge_pvt *pvt;
3094        char *type;
3095
3096        if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3097                return NOTIFY_DONE;
3098
3099        mci = get_mci_for_node_id(mce->socketid);
3100        if (!mci)
3101                return NOTIFY_DONE;
3102        pvt = mci->pvt_info;
3103
3104        /*
3105         * Just let mcelog handle it if the error is
3106         * outside the memory controller. A memory error
3107         * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3108         * bit 12 has an special meaning.
3109         */
3110        if ((mce->status & 0xefff) >> 7 != 1)
3111                return NOTIFY_DONE;
3112
3113        if (mce->mcgstatus & MCG_STATUS_MCIP)
3114                type = "Exception";
3115        else
3116                type = "Event";
3117
3118        sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3119
3120        sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3121                          "Bank %d: %016Lx\n", mce->extcpu, type,
3122                          mce->mcgstatus, mce->bank, mce->status);
3123        sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3124        sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3125        sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3126
3127        sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3128                          "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3129                          mce->time, mce->socketid, mce->apicid);
3130
3131        sbridge_mce_output_error(mci, mce);
3132
3133        /* Advice mcelog that the error were handled */
3134        return NOTIFY_STOP;
3135}
3136
3137static struct notifier_block sbridge_mce_dec = {
3138        .notifier_call      = sbridge_mce_check_error,
3139};
3140
3141/****************************************************************************
3142                        EDAC register/unregister logic
3143 ****************************************************************************/
3144
3145static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3146{
3147        struct mem_ctl_info *mci = sbridge_dev->mci;
3148        struct sbridge_pvt *pvt;
3149
3150        if (unlikely(!mci || !mci->pvt_info)) {
3151                edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3152
3153                sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3154                return;
3155        }
3156
3157        pvt = mci->pvt_info;
3158
3159        edac_dbg(0, "MC: mci = %p, dev = %p\n",
3160                 mci, &sbridge_dev->pdev[0]->dev);
3161
3162        /* Remove MC sysfs nodes */
3163        edac_mc_del_mc(mci->pdev);
3164
3165        edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3166        kfree(mci->ctl_name);
3167        edac_mc_free(mci);
3168        sbridge_dev->mci = NULL;
3169}
3170
3171static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3172{
3173        struct mem_ctl_info *mci;
3174        struct edac_mc_layer layers[2];
3175        struct sbridge_pvt *pvt;
3176        struct pci_dev *pdev = sbridge_dev->pdev[0];
3177        int rc;
3178
3179        /* Check the number of active and not disabled channels */
3180        rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3181        if (unlikely(rc < 0))
3182                return rc;
3183
3184        /* allocate a new MC control structure */
3185        layers[0].type = EDAC_MC_LAYER_CHANNEL;
3186        layers[0].size = type == KNIGHTS_LANDING ?
3187                KNL_MAX_CHANNELS : NUM_CHANNELS;
3188        layers[0].is_virt_csrow = false;
3189        layers[1].type = EDAC_MC_LAYER_SLOT;
3190        layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3191        layers[1].is_virt_csrow = true;
3192        mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3193                            sizeof(*pvt));
3194
3195        if (unlikely(!mci))
3196                return -ENOMEM;
3197
3198        edac_dbg(0, "MC: mci = %p, dev = %p\n",
3199                 mci, &pdev->dev);
3200
3201        pvt = mci->pvt_info;
3202        memset(pvt, 0, sizeof(*pvt));
3203
3204        /* Associate sbridge_dev and mci for future usage */
3205        pvt->sbridge_dev = sbridge_dev;
3206        sbridge_dev->mci = mci;
3207
3208        mci->mtype_cap = type == KNIGHTS_LANDING ?
3209                MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3210        mci->edac_ctl_cap = EDAC_FLAG_NONE;
3211        mci->edac_cap = EDAC_FLAG_NONE;
3212        mci->mod_name = "sbridge_edac.c";
3213        mci->mod_ver = SBRIDGE_REVISION;
3214        mci->dev_name = pci_name(pdev);
3215        mci->ctl_page_to_phys = NULL;
3216
3217        pvt->info.type = type;
3218        switch (type) {
3219        case IVY_BRIDGE:
3220                pvt->info.rankcfgr = IB_RANK_CFG_A;
3221                pvt->info.get_tolm = ibridge_get_tolm;
3222                pvt->info.get_tohm = ibridge_get_tohm;
3223                pvt->info.dram_rule = ibridge_dram_rule;
3224                pvt->info.get_memory_type = get_memory_type;
3225                pvt->info.get_node_id = get_node_id;
3226                pvt->info.rir_limit = rir_limit;
3227                pvt->info.sad_limit = sad_limit;
3228                pvt->info.interleave_mode = interleave_mode;
3229                pvt->info.show_interleave_mode = show_interleave_mode;
3230                pvt->info.dram_attr = dram_attr;
3231                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3232                pvt->info.interleave_list = ibridge_interleave_list;
3233                pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3234                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3235                pvt->info.get_width = ibridge_get_width;
3236                mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3237
3238                /* Store pci devices at mci for faster access */
3239                rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3240                if (unlikely(rc < 0))
3241                        goto fail0;
3242                break;
3243        case SANDY_BRIDGE:
3244                pvt->info.rankcfgr = SB_RANK_CFG_A;
3245                pvt->info.get_tolm = sbridge_get_tolm;
3246                pvt->info.get_tohm = sbridge_get_tohm;
3247                pvt->info.dram_rule = sbridge_dram_rule;
3248                pvt->info.get_memory_type = get_memory_type;
3249                pvt->info.get_node_id = get_node_id;
3250                pvt->info.rir_limit = rir_limit;
3251                pvt->info.sad_limit = sad_limit;
3252                pvt->info.interleave_mode = interleave_mode;
3253                pvt->info.show_interleave_mode = show_interleave_mode;
3254                pvt->info.dram_attr = dram_attr;
3255                pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3256                pvt->info.interleave_list = sbridge_interleave_list;
3257                pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3258                pvt->info.interleave_pkg = sbridge_interleave_pkg;
3259                pvt->info.get_width = sbridge_get_width;
3260                mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3261
3262                /* Store pci devices at mci for faster access */
3263                rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3264                if (unlikely(rc < 0))
3265                        goto fail0;
3266                break;
3267        case HASWELL:
3268                /* rankcfgr isn't used */
3269                pvt->info.get_tolm = haswell_get_tolm;
3270                pvt->info.get_tohm = haswell_get_tohm;
3271                pvt->info.dram_rule = ibridge_dram_rule;
3272                pvt->info.get_memory_type = haswell_get_memory_type;
3273                pvt->info.get_node_id = haswell_get_node_id;
3274                pvt->info.rir_limit = haswell_rir_limit;
3275                pvt->info.sad_limit = sad_limit;
3276                pvt->info.interleave_mode = interleave_mode;
3277                pvt->info.show_interleave_mode = show_interleave_mode;
3278                pvt->info.dram_attr = dram_attr;
3279                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3280                pvt->info.interleave_list = ibridge_interleave_list;
3281                pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3282                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3283                pvt->info.get_width = ibridge_get_width;
3284                mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3285
3286                /* Store pci devices at mci for faster access */
3287                rc = haswell_mci_bind_devs(mci, sbridge_dev);
3288                if (unlikely(rc < 0))
3289                        goto fail0;
3290                break;
3291        case BROADWELL:
3292                /* rankcfgr isn't used */
3293                pvt->info.get_tolm = haswell_get_tolm;
3294                pvt->info.get_tohm = haswell_get_tohm;
3295                pvt->info.dram_rule = ibridge_dram_rule;
3296                pvt->info.get_memory_type = haswell_get_memory_type;
3297                pvt->info.get_node_id = haswell_get_node_id;
3298                pvt->info.rir_limit = haswell_rir_limit;
3299                pvt->info.sad_limit = sad_limit;
3300                pvt->info.interleave_mode = interleave_mode;
3301                pvt->info.show_interleave_mode = show_interleave_mode;
3302                pvt->info.dram_attr = dram_attr;
3303                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3304                pvt->info.interleave_list = ibridge_interleave_list;
3305                pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3306                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3307                pvt->info.get_width = broadwell_get_width;
3308                mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3309
3310                /* Store pci devices at mci for faster access */
3311                rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3312                if (unlikely(rc < 0))
3313                        goto fail0;
3314                break;
3315        case KNIGHTS_LANDING:
3316                /* pvt->info.rankcfgr == ??? */
3317                pvt->info.get_tolm = knl_get_tolm;
3318                pvt->info.get_tohm = knl_get_tohm;
3319                pvt->info.dram_rule = knl_dram_rule;
3320                pvt->info.get_memory_type = knl_get_memory_type;
3321                pvt->info.get_node_id = knl_get_node_id;
3322                pvt->info.rir_limit = NULL;
3323                pvt->info.sad_limit = knl_sad_limit;
3324                pvt->info.interleave_mode = knl_interleave_mode;
3325                pvt->info.show_interleave_mode = knl_show_interleave_mode;
3326                pvt->info.dram_attr = dram_attr_knl;
3327                pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3328                pvt->info.interleave_list = knl_interleave_list;
3329                pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3330                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3331                pvt->info.get_width = knl_get_width;
3332                mci->ctl_name = kasprintf(GFP_KERNEL,
3333                        "Knights Landing Socket#%d", mci->mc_idx);
3334
3335                rc = knl_mci_bind_devs(mci, sbridge_dev);
3336                if (unlikely(rc < 0))
3337                        goto fail0;
3338                break;
3339        }
3340
3341        /* Get dimm basic config and the memory layout */
3342        get_dimm_config(mci);
3343        get_memory_layout(mci);
3344
3345        /* record ptr to the generic device */
3346        mci->pdev = &pdev->dev;
3347
3348        /* add this new MC control structure to EDAC's list of MCs */
3349        if (unlikely(edac_mc_add_mc(mci))) {
3350                edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3351                rc = -EINVAL;
3352                goto fail0;
3353        }
3354
3355        return 0;
3356
3357fail0:
3358        kfree(mci->ctl_name);
3359        edac_mc_free(mci);
3360        sbridge_dev->mci = NULL;
3361        return rc;
3362}
3363
3364#define ICPU(model, table) \
3365        { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3366
3367static const struct x86_cpu_id sbridge_cpuids[] = {
3368        ICPU(0x2d, pci_dev_descr_sbridge_table),        /* SANDY_BRIDGE */
3369        ICPU(0x3e, pci_dev_descr_ibridge_table),        /* IVY_BRIDGE */
3370        ICPU(0x3f, pci_dev_descr_haswell_table),        /* HASWELL */
3371        ICPU(0x4f, pci_dev_descr_broadwell_table),      /* BROADWELL */
3372        ICPU(0x56, pci_dev_descr_broadwell_table),      /* BROADWELL-DE */
3373        ICPU(0x57, pci_dev_descr_knl_table),            /* KNIGHTS_LANDING */
3374        { }
3375};
3376MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3377
3378/*
3379 *      sbridge_probe   Get all devices and register memory controllers
3380 *                      present.
3381 *      return:
3382 *              0 for FOUND a device
3383 *              < 0 for error code
3384 */
3385
3386static int sbridge_probe(const struct x86_cpu_id *id)
3387{
3388        int rc = -ENODEV;
3389        u8 mc, num_mc = 0;
3390        struct sbridge_dev *sbridge_dev;
3391        struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3392
3393        /* get the pci devices we want to reserve for our use */
3394        rc = sbridge_get_all_devices(&num_mc, ptable);
3395
3396        if (unlikely(rc < 0)) {
3397                edac_dbg(0, "couldn't get all devices\n");
3398                goto fail0;
3399        }
3400
3401        mc = 0;
3402
3403        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3404                edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3405                         mc, mc + 1, num_mc);
3406
3407                sbridge_dev->mc = mc++;
3408                rc = sbridge_register_mci(sbridge_dev, ptable->type);
3409                if (unlikely(rc < 0))
3410                        goto fail1;
3411        }
3412
3413        sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3414
3415        return 0;
3416
3417fail1:
3418        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3419                sbridge_unregister_mci(sbridge_dev);
3420
3421        sbridge_put_all_devices();
3422fail0:
3423        return rc;
3424}
3425
3426/*
3427 *      sbridge_remove  cleanup
3428 *
3429 */
3430static void sbridge_remove(void)
3431{
3432        struct sbridge_dev *sbridge_dev;
3433
3434        edac_dbg(0, "\n");
3435
3436        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3437                sbridge_unregister_mci(sbridge_dev);
3438
3439        /* Release PCI resources */
3440        sbridge_put_all_devices();
3441}
3442
3443/*
3444 *      sbridge_init            Module entry function
3445 *                      Try to initialize this module for its devices
3446 */
3447static int __init sbridge_init(void)
3448{
3449        const struct x86_cpu_id *id;
3450        int rc;
3451
3452        edac_dbg(2, "\n");
3453
3454        id = x86_match_cpu(sbridge_cpuids);
3455        if (!id)
3456                return -ENODEV;
3457
3458        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3459        opstate_init();
3460
3461        rc = sbridge_probe(id);
3462
3463        if (rc >= 0) {
3464                mce_register_decode_chain(&sbridge_mce_dec);
3465                if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3466                        sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3467                return 0;
3468        }
3469
3470        sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3471                      rc);
3472
3473        return rc;
3474}
3475
3476/*
3477 *      sbridge_exit()  Module exit function
3478 *                      Unregister the driver
3479 */
3480static void __exit sbridge_exit(void)
3481{
3482        edac_dbg(2, "\n");
3483        sbridge_remove();
3484        mce_unregister_decode_chain(&sbridge_mce_dec);
3485}
3486
3487module_init(sbridge_init);
3488module_exit(sbridge_exit);
3489
3490module_param(edac_op_state, int, 0444);
3491MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3492
3493MODULE_LICENSE("GPL");
3494MODULE_AUTHOR("Mauro Carvalho Chehab");
3495MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3496MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3497                   SBRIDGE_REVISION);
3498