linux/drivers/gpu/drm/i915/intel_lrc.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 134#include <linux/interrupt.h>
 135
 136#include <drm/drmP.h>
 137#include <drm/i915_drm.h>
 138#include "i915_drv.h"
 139#include "intel_mocs.h"
 140
 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
 142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
 143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
 144
 145#define RING_EXECLIST_QFULL             (1 << 0x2)
 146#define RING_EXECLIST1_VALID            (1 << 0x3)
 147#define RING_EXECLIST0_VALID            (1 << 0x4)
 148#define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
 149#define RING_EXECLIST1_ACTIVE           (1 << 0x11)
 150#define RING_EXECLIST0_ACTIVE           (1 << 0x12)
 151
 152#define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
 153#define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
 154#define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
 155#define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
 156#define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
 157#define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
 158
 159#define GEN8_CTX_STATUS_COMPLETED_MASK \
 160         (GEN8_CTX_STATUS_ACTIVE_IDLE | \
 161          GEN8_CTX_STATUS_PREEMPTED | \
 162          GEN8_CTX_STATUS_ELEMENT_SWITCH)
 163
 164#define CTX_LRI_HEADER_0                0x01
 165#define CTX_CONTEXT_CONTROL             0x02
 166#define CTX_RING_HEAD                   0x04
 167#define CTX_RING_TAIL                   0x06
 168#define CTX_RING_BUFFER_START           0x08
 169#define CTX_RING_BUFFER_CONTROL         0x0a
 170#define CTX_BB_HEAD_U                   0x0c
 171#define CTX_BB_HEAD_L                   0x0e
 172#define CTX_BB_STATE                    0x10
 173#define CTX_SECOND_BB_HEAD_U            0x12
 174#define CTX_SECOND_BB_HEAD_L            0x14
 175#define CTX_SECOND_BB_STATE             0x16
 176#define CTX_BB_PER_CTX_PTR              0x18
 177#define CTX_RCS_INDIRECT_CTX            0x1a
 178#define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
 179#define CTX_LRI_HEADER_1                0x21
 180#define CTX_CTX_TIMESTAMP               0x22
 181#define CTX_PDP3_UDW                    0x24
 182#define CTX_PDP3_LDW                    0x26
 183#define CTX_PDP2_UDW                    0x28
 184#define CTX_PDP2_LDW                    0x2a
 185#define CTX_PDP1_UDW                    0x2c
 186#define CTX_PDP1_LDW                    0x2e
 187#define CTX_PDP0_UDW                    0x30
 188#define CTX_PDP0_LDW                    0x32
 189#define CTX_LRI_HEADER_2                0x41
 190#define CTX_R_PWR_CLK_STATE             0x42
 191#define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
 192
 193#define GEN8_CTX_VALID (1<<0)
 194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
 195#define GEN8_CTX_FORCE_RESTORE (1<<2)
 196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
 197#define GEN8_CTX_PRIVILEGE (1<<8)
 198
 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
 200        (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
 201        (reg_state)[(pos)+1] = (val); \
 202} while (0)
 203
 204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
 205        const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
 206        reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
 207        reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
 208} while (0)
 209
 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
 211        reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
 212        reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
 213} while (0)
 214
 215enum {
 216        FAULT_AND_HANG = 0,
 217        FAULT_AND_HALT, /* Debug only */
 218        FAULT_AND_STREAM,
 219        FAULT_AND_CONTINUE /* Unsupported */
 220};
 221#define GEN8_CTX_ID_SHIFT 32
 222#define GEN8_CTX_ID_WIDTH 21
 223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
 224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
 225
 226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
 227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
 228
 229#define WA_TAIL_DWORDS 2
 230
 231static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
 232                                            struct intel_engine_cs *engine);
 233static int intel_lr_context_pin(struct i915_gem_context *ctx,
 234                                struct intel_engine_cs *engine);
 235static void execlists_init_reg_state(u32 *reg_state,
 236                                     struct i915_gem_context *ctx,
 237                                     struct intel_engine_cs *engine,
 238                                     struct intel_ring *ring);
 239
 240/**
 241 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 242 * @dev_priv: i915 device private
 243 * @enable_execlists: value of i915.enable_execlists module parameter.
 244 *
 245 * Only certain platforms support Execlists (the prerequisites being
 246 * support for Logical Ring Contexts and Aliasing PPGTT or better).
 247 *
 248 * Return: 1 if Execlists is supported and has to be enabled.
 249 */
 250int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
 251{
 252        /* On platforms with execlist available, vGPU will only
 253         * support execlist mode, no ring buffer mode.
 254         */
 255        if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
 256                return 1;
 257
 258        if (INTEL_GEN(dev_priv) >= 9)
 259                return 1;
 260
 261        if (enable_execlists == 0)
 262                return 0;
 263
 264        if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
 265            USES_PPGTT(dev_priv) &&
 266            i915.use_mmio_flip >= 0)
 267                return 1;
 268
 269        return 0;
 270}
 271
 272static void
 273logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
 274{
 275        struct drm_i915_private *dev_priv = engine->i915;
 276
 277        engine->disable_lite_restore_wa =
 278                (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
 279                 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
 280                (engine->id == VCS || engine->id == VCS2);
 281
 282        engine->ctx_desc_template = GEN8_CTX_VALID;
 283        if (IS_GEN8(dev_priv))
 284                engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
 285        engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
 286
 287        /* TODO: WaDisableLiteRestore when we start using semaphore
 288         * signalling between Command Streamers */
 289        /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
 290
 291        /* WaEnableForceRestoreInCtxtDescForVCS:skl */
 292        /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
 293        if (engine->disable_lite_restore_wa)
 294                engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
 295}
 296
 297/**
 298 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 299 *                                        descriptor for a pinned context
 300 * @ctx: Context to work on
 301 * @engine: Engine the descriptor will be used with
 302 *
 303 * The context descriptor encodes various attributes of a context,
 304 * including its GTT address and some flags. Because it's fairly
 305 * expensive to calculate, we'll just do it once and cache the result,
 306 * which remains valid until the context is unpinned.
 307 *
 308 * This is what a descriptor looks like, from LSB to MSB::
 309 *
 310 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 311 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 312 *      bits 32-52:    ctx ID, a globally unique tag
 313 *      bits 53-54:    mbz, reserved for use by hardware
 314 *      bits 55-63:    group ID, currently unused and set to 0
 315 */
 316static void
 317intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
 318                                   struct intel_engine_cs *engine)
 319{
 320        struct intel_context *ce = &ctx->engine[engine->id];
 321        u64 desc;
 322
 323        BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
 324
 325        desc = ctx->desc_template;                              /* bits  3-4  */
 326        desc |= engine->ctx_desc_template;                      /* bits  0-11 */
 327        desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
 328                                                                /* bits 12-31 */
 329        desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
 330
 331        ce->lrc_desc = desc;
 332}
 333
 334uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
 335                                     struct intel_engine_cs *engine)
 336{
 337        return ctx->engine[engine->id].lrc_desc;
 338}
 339
 340static inline void
 341execlists_context_status_change(struct drm_i915_gem_request *rq,
 342                                unsigned long status)
 343{
 344        /*
 345         * Only used when GVT-g is enabled now. When GVT-g is disabled,
 346         * The compiler should eliminate this function as dead-code.
 347         */
 348        if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
 349                return;
 350
 351        atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
 352}
 353
 354static void
 355execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
 356{
 357        ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
 358        ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
 359        ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
 360        ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
 361}
 362
 363static u64 execlists_update_context(struct drm_i915_gem_request *rq)
 364{
 365        struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
 366        struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
 367        u32 *reg_state = ce->lrc_reg_state;
 368
 369        reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
 370
 371        /* True 32b PPGTT with dynamic page allocation: update PDP
 372         * registers and point the unallocated PDPs to scratch page.
 373         * PML4 is allocated during ppgtt init, so this is not needed
 374         * in 48-bit mode.
 375         */
 376        if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
 377                execlists_update_context_pdps(ppgtt, reg_state);
 378
 379        return ce->lrc_desc;
 380}
 381
 382static void execlists_submit_ports(struct intel_engine_cs *engine)
 383{
 384        struct drm_i915_private *dev_priv = engine->i915;
 385        struct execlist_port *port = engine->execlist_port;
 386        u32 __iomem *elsp =
 387                dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
 388        u64 desc[2];
 389
 390        if (!port[0].count)
 391                execlists_context_status_change(port[0].request,
 392                                                INTEL_CONTEXT_SCHEDULE_IN);
 393        desc[0] = execlists_update_context(port[0].request);
 394        engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
 395
 396        if (port[1].request) {
 397                GEM_BUG_ON(port[1].count);
 398                execlists_context_status_change(port[1].request,
 399                                                INTEL_CONTEXT_SCHEDULE_IN);
 400                desc[1] = execlists_update_context(port[1].request);
 401                port[1].count = 1;
 402        } else {
 403                desc[1] = 0;
 404        }
 405        GEM_BUG_ON(desc[0] == desc[1]);
 406
 407        /* You must always write both descriptors in the order below. */
 408        writel(upper_32_bits(desc[1]), elsp);
 409        writel(lower_32_bits(desc[1]), elsp);
 410
 411        writel(upper_32_bits(desc[0]), elsp);
 412        /* The context is automatically loaded after the following */
 413        writel(lower_32_bits(desc[0]), elsp);
 414}
 415
 416static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
 417{
 418        return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
 419                ctx->execlists_force_single_submission);
 420}
 421
 422static bool can_merge_ctx(const struct i915_gem_context *prev,
 423                          const struct i915_gem_context *next)
 424{
 425        if (prev != next)
 426                return false;
 427
 428        if (ctx_single_port_submission(prev))
 429                return false;
 430
 431        return true;
 432}
 433
 434static void execlists_dequeue(struct intel_engine_cs *engine)
 435{
 436        struct drm_i915_gem_request *cursor, *last;
 437        struct execlist_port *port = engine->execlist_port;
 438        bool submit = false;
 439
 440        last = port->request;
 441        if (last)
 442                /* WaIdleLiteRestore:bdw,skl
 443                 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
 444                 * as we resubmit the request. See gen8_emit_request()
 445                 * for where we prepare the padding after the end of the
 446                 * request.
 447                 */
 448                last->tail = last->wa_tail;
 449
 450        GEM_BUG_ON(port[1].request);
 451
 452        /* Hardware submission is through 2 ports. Conceptually each port
 453         * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
 454         * static for a context, and unique to each, so we only execute
 455         * requests belonging to a single context from each ring. RING_HEAD
 456         * is maintained by the CS in the context image, it marks the place
 457         * where it got up to last time, and through RING_TAIL we tell the CS
 458         * where we want to execute up to this time.
 459         *
 460         * In this list the requests are in order of execution. Consecutive
 461         * requests from the same context are adjacent in the ringbuffer. We
 462         * can combine these requests into a single RING_TAIL update:
 463         *
 464         *              RING_HEAD...req1...req2
 465         *                                    ^- RING_TAIL
 466         * since to execute req2 the CS must first execute req1.
 467         *
 468         * Our goal then is to point each port to the end of a consecutive
 469         * sequence of requests as being the most optimal (fewest wake ups
 470         * and context switches) submission.
 471         */
 472
 473        spin_lock(&engine->execlist_lock);
 474        list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
 475                /* Can we combine this request with the current port? It has to
 476                 * be the same context/ringbuffer and not have any exceptions
 477                 * (e.g. GVT saying never to combine contexts).
 478                 *
 479                 * If we can combine the requests, we can execute both by
 480                 * updating the RING_TAIL to point to the end of the second
 481                 * request, and so we never need to tell the hardware about
 482                 * the first.
 483                 */
 484                if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
 485                        /* If we are on the second port and cannot combine
 486                         * this request with the last, then we are done.
 487                         */
 488                        if (port != engine->execlist_port)
 489                                break;
 490
 491                        /* If GVT overrides us we only ever submit port[0],
 492                         * leaving port[1] empty. Note that we also have
 493                         * to be careful that we don't queue the same
 494                         * context (even though a different request) to
 495                         * the second port.
 496                         */
 497                        if (ctx_single_port_submission(cursor->ctx))
 498                                break;
 499
 500                        GEM_BUG_ON(last->ctx == cursor->ctx);
 501
 502                        i915_gem_request_assign(&port->request, last);
 503                        port++;
 504                }
 505                last = cursor;
 506                submit = true;
 507        }
 508        if (submit) {
 509                /* Decouple all the requests submitted from the queue */
 510                engine->execlist_queue.next = &cursor->execlist_link;
 511                cursor->execlist_link.prev = &engine->execlist_queue;
 512
 513                i915_gem_request_assign(&port->request, last);
 514        }
 515        spin_unlock(&engine->execlist_lock);
 516
 517        if (submit)
 518                execlists_submit_ports(engine);
 519}
 520
 521static bool execlists_elsp_idle(struct intel_engine_cs *engine)
 522{
 523        return !engine->execlist_port[0].request;
 524}
 525
 526static bool execlists_elsp_ready(struct intel_engine_cs *engine)
 527{
 528        int port;
 529
 530        port = 1; /* wait for a free slot */
 531        if (engine->disable_lite_restore_wa || engine->preempt_wa)
 532                port = 0; /* wait for GPU to be idle before continuing */
 533
 534        return !engine->execlist_port[port].request;
 535}
 536
 537/*
 538 * Check the unread Context Status Buffers and manage the submission of new
 539 * contexts to the ELSP accordingly.
 540 */
 541static void intel_lrc_irq_handler(unsigned long data)
 542{
 543        struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
 544        struct execlist_port *port = engine->execlist_port;
 545        struct drm_i915_private *dev_priv = engine->i915;
 546
 547        intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
 548
 549        if (!execlists_elsp_idle(engine)) {
 550                u32 __iomem *csb_mmio =
 551                        dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
 552                u32 __iomem *buf =
 553                        dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
 554                unsigned int csb, head, tail;
 555
 556                csb = readl(csb_mmio);
 557                head = GEN8_CSB_READ_PTR(csb);
 558                tail = GEN8_CSB_WRITE_PTR(csb);
 559                if (tail < head)
 560                        tail += GEN8_CSB_ENTRIES;
 561                while (head < tail) {
 562                        unsigned int idx = ++head % GEN8_CSB_ENTRIES;
 563                        unsigned int status = readl(buf + 2 * idx);
 564
 565                        if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
 566                                continue;
 567
 568                        GEM_BUG_ON(port[0].count == 0);
 569                        if (--port[0].count == 0) {
 570                                GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
 571                                execlists_context_status_change(port[0].request,
 572                                                                INTEL_CONTEXT_SCHEDULE_OUT);
 573
 574                                i915_gem_request_put(port[0].request);
 575                                port[0] = port[1];
 576                                memset(&port[1], 0, sizeof(port[1]));
 577
 578                                engine->preempt_wa = false;
 579                        }
 580
 581                        GEM_BUG_ON(port[0].count == 0 &&
 582                                   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
 583                }
 584
 585                writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
 586                                     GEN8_CSB_WRITE_PTR(csb) << 8),
 587                       csb_mmio);
 588        }
 589
 590        if (execlists_elsp_ready(engine))
 591                execlists_dequeue(engine);
 592
 593        intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
 594}
 595
 596static void execlists_submit_request(struct drm_i915_gem_request *request)
 597{
 598        struct intel_engine_cs *engine = request->engine;
 599        unsigned long flags;
 600
 601        spin_lock_irqsave(&engine->execlist_lock, flags);
 602
 603        list_add_tail(&request->execlist_link, &engine->execlist_queue);
 604        if (execlists_elsp_idle(engine))
 605                tasklet_hi_schedule(&engine->irq_tasklet);
 606
 607        spin_unlock_irqrestore(&engine->execlist_lock, flags);
 608}
 609
 610int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
 611{
 612        struct intel_engine_cs *engine = request->engine;
 613        struct intel_context *ce = &request->ctx->engine[engine->id];
 614        int ret;
 615
 616        /* Flush enough space to reduce the likelihood of waiting after
 617         * we start building the request - in which case we will just
 618         * have to repeat work.
 619         */
 620        request->reserved_space += EXECLISTS_REQUEST_SIZE;
 621
 622        if (!ce->state) {
 623                ret = execlists_context_deferred_alloc(request->ctx, engine);
 624                if (ret)
 625                        return ret;
 626        }
 627
 628        request->ring = ce->ring;
 629
 630        ret = intel_lr_context_pin(request->ctx, engine);
 631        if (ret)
 632                return ret;
 633
 634        if (i915.enable_guc_submission) {
 635                /*
 636                 * Check that the GuC has space for the request before
 637                 * going any further, as the i915_add_request() call
 638                 * later on mustn't fail ...
 639                 */
 640                ret = i915_guc_wq_reserve(request);
 641                if (ret)
 642                        goto err_unpin;
 643        }
 644
 645        ret = intel_ring_begin(request, 0);
 646        if (ret)
 647                goto err_unreserve;
 648
 649        if (!ce->initialised) {
 650                ret = engine->init_context(request);
 651                if (ret)
 652                        goto err_unreserve;
 653
 654                ce->initialised = true;
 655        }
 656
 657        /* Note that after this point, we have committed to using
 658         * this request as it is being used to both track the
 659         * state of engine initialisation and liveness of the
 660         * golden renderstate above. Think twice before you try
 661         * to cancel/unwind this request now.
 662         */
 663
 664        request->reserved_space -= EXECLISTS_REQUEST_SIZE;
 665        return 0;
 666
 667err_unreserve:
 668        if (i915.enable_guc_submission)
 669                i915_guc_wq_unreserve(request);
 670err_unpin:
 671        intel_lr_context_unpin(request->ctx, engine);
 672        return ret;
 673}
 674
 675/*
 676 * intel_logical_ring_advance() - advance the tail and prepare for submission
 677 * @request: Request to advance the logical ringbuffer of.
 678 *
 679 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 680 * really happens during submission is that the context and current tail will be placed
 681 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 682 * point, the tail *inside* the context is updated and the ELSP written to.
 683 */
 684static int
 685intel_logical_ring_advance(struct drm_i915_gem_request *request)
 686{
 687        struct intel_ring *ring = request->ring;
 688        struct intel_engine_cs *engine = request->engine;
 689
 690        intel_ring_advance(ring);
 691        request->tail = ring->tail;
 692
 693        /*
 694         * Here we add two extra NOOPs as padding to avoid
 695         * lite restore of a context with HEAD==TAIL.
 696         *
 697         * Caller must reserve WA_TAIL_DWORDS for us!
 698         */
 699        intel_ring_emit(ring, MI_NOOP);
 700        intel_ring_emit(ring, MI_NOOP);
 701        intel_ring_advance(ring);
 702        request->wa_tail = ring->tail;
 703
 704        /* We keep the previous context alive until we retire the following
 705         * request. This ensures that any the context object is still pinned
 706         * for any residual writes the HW makes into it on the context switch
 707         * into the next object following the breadcrumb. Otherwise, we may
 708         * retire the context too early.
 709         */
 710        request->previous_context = engine->last_context;
 711        engine->last_context = request->ctx;
 712        return 0;
 713}
 714
 715static int intel_lr_context_pin(struct i915_gem_context *ctx,
 716                                struct intel_engine_cs *engine)
 717{
 718        struct intel_context *ce = &ctx->engine[engine->id];
 719        void *vaddr;
 720        int ret;
 721
 722        lockdep_assert_held(&ctx->i915->drm.struct_mutex);
 723
 724        if (ce->pin_count++)
 725                return 0;
 726
 727        ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
 728                           PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
 729        if (ret)
 730                goto err;
 731
 732        vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
 733        if (IS_ERR(vaddr)) {
 734                ret = PTR_ERR(vaddr);
 735                goto unpin_vma;
 736        }
 737
 738        ret = intel_ring_pin(ce->ring);
 739        if (ret)
 740                goto unpin_map;
 741
 742        intel_lr_context_descriptor_update(ctx, engine);
 743
 744        ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
 745        ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
 746                i915_ggtt_offset(ce->ring->vma);
 747
 748        ce->state->obj->dirty = true;
 749
 750        /* Invalidate GuC TLB. */
 751        if (i915.enable_guc_submission) {
 752                struct drm_i915_private *dev_priv = ctx->i915;
 753                I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
 754        }
 755
 756        i915_gem_context_get(ctx);
 757        return 0;
 758
 759unpin_map:
 760        i915_gem_object_unpin_map(ce->state->obj);
 761unpin_vma:
 762        __i915_vma_unpin(ce->state);
 763err:
 764        ce->pin_count = 0;
 765        return ret;
 766}
 767
 768void intel_lr_context_unpin(struct i915_gem_context *ctx,
 769                            struct intel_engine_cs *engine)
 770{
 771        struct intel_context *ce = &ctx->engine[engine->id];
 772
 773        lockdep_assert_held(&ctx->i915->drm.struct_mutex);
 774        GEM_BUG_ON(ce->pin_count == 0);
 775
 776        if (--ce->pin_count)
 777                return;
 778
 779        intel_ring_unpin(ce->ring);
 780
 781        i915_gem_object_unpin_map(ce->state->obj);
 782        i915_vma_unpin(ce->state);
 783
 784        i915_gem_context_put(ctx);
 785}
 786
 787static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
 788{
 789        int ret, i;
 790        struct intel_ring *ring = req->ring;
 791        struct i915_workarounds *w = &req->i915->workarounds;
 792
 793        if (w->count == 0)
 794                return 0;
 795
 796        ret = req->engine->emit_flush(req, EMIT_BARRIER);
 797        if (ret)
 798                return ret;
 799
 800        ret = intel_ring_begin(req, w->count * 2 + 2);
 801        if (ret)
 802                return ret;
 803
 804        intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
 805        for (i = 0; i < w->count; i++) {
 806                intel_ring_emit_reg(ring, w->reg[i].addr);
 807                intel_ring_emit(ring, w->reg[i].value);
 808        }
 809        intel_ring_emit(ring, MI_NOOP);
 810
 811        intel_ring_advance(ring);
 812
 813        ret = req->engine->emit_flush(req, EMIT_BARRIER);
 814        if (ret)
 815                return ret;
 816
 817        return 0;
 818}
 819
 820#define wa_ctx_emit(batch, index, cmd)                                  \
 821        do {                                                            \
 822                int __index = (index)++;                                \
 823                if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
 824                        return -ENOSPC;                                 \
 825                }                                                       \
 826                batch[__index] = (cmd);                                 \
 827        } while (0)
 828
 829#define wa_ctx_emit_reg(batch, index, reg) \
 830        wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
 831
 832/*
 833 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 834 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 835 * but there is a slight complication as this is applied in WA batch where the
 836 * values are only initialized once so we cannot take register value at the
 837 * beginning and reuse it further; hence we save its value to memory, upload a
 838 * constant value with bit21 set and then we restore it back with the saved value.
 839 * To simplify the WA, a constant value is formed by using the default value
 840 * of this register. This shouldn't be a problem because we are only modifying
 841 * it for a short period and this batch in non-premptible. We can ofcourse
 842 * use additional instructions that read the actual value of the register
 843 * at that time and set our bit of interest but it makes the WA complicated.
 844 *
 845 * This WA is also required for Gen9 so extracting as a function avoids
 846 * code duplication.
 847 */
 848static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
 849                                                uint32_t *batch,
 850                                                uint32_t index)
 851{
 852        struct drm_i915_private *dev_priv = engine->i915;
 853        uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
 854
 855        /*
 856         * WaDisableLSQCROPERFforOCL:skl,kbl
 857         * This WA is implemented in skl_init_clock_gating() but since
 858         * this batch updates GEN8_L3SQCREG4 with default value we need to
 859         * set this bit here to retain the WA during flush.
 860         */
 861        if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
 862            IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
 863                l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
 864
 865        wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
 866                                   MI_SRM_LRM_GLOBAL_GTT));
 867        wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
 868        wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
 869        wa_ctx_emit(batch, index, 0);
 870
 871        wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
 872        wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
 873        wa_ctx_emit(batch, index, l3sqc4_flush);
 874
 875        wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
 876        wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
 877                                   PIPE_CONTROL_DC_FLUSH_ENABLE));
 878        wa_ctx_emit(batch, index, 0);
 879        wa_ctx_emit(batch, index, 0);
 880        wa_ctx_emit(batch, index, 0);
 881        wa_ctx_emit(batch, index, 0);
 882
 883        wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
 884                                   MI_SRM_LRM_GLOBAL_GTT));
 885        wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
 886        wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
 887        wa_ctx_emit(batch, index, 0);
 888
 889        return index;
 890}
 891
 892static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
 893                                    uint32_t offset,
 894                                    uint32_t start_alignment)
 895{
 896        return wa_ctx->offset = ALIGN(offset, start_alignment);
 897}
 898
 899static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
 900                             uint32_t offset,
 901                             uint32_t size_alignment)
 902{
 903        wa_ctx->size = offset - wa_ctx->offset;
 904
 905        WARN(wa_ctx->size % size_alignment,
 906             "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
 907             wa_ctx->size, size_alignment);
 908        return 0;
 909}
 910
 911/*
 912 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 913 * initialized at the beginning and shared across all contexts but this field
 914 * helps us to have multiple batches at different offsets and select them based
 915 * on a criteria. At the moment this batch always start at the beginning of the page
 916 * and at this point we don't have multiple wa_ctx batch buffers.
 917 *
 918 * The number of WA applied are not known at the beginning; we use this field
 919 * to return the no of DWORDS written.
 920 *
 921 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 922 * so it adds NOOPs as padding to make it cacheline aligned.
 923 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 924 * makes a complete batch buffer.
 925 */
 926static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
 927                                    struct i915_wa_ctx_bb *wa_ctx,
 928                                    uint32_t *batch,
 929                                    uint32_t *offset)
 930{
 931        uint32_t scratch_addr;
 932        uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
 933
 934        /* WaDisableCtxRestoreArbitration:bdw,chv */
 935        wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
 936
 937        /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
 938        if (IS_BROADWELL(engine->i915)) {
 939                int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
 940                if (rc < 0)
 941                        return rc;
 942                index = rc;
 943        }
 944
 945        /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
 946        /* Actual scratch location is at 128 bytes offset */
 947        scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
 948
 949        wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
 950        wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
 951                                   PIPE_CONTROL_GLOBAL_GTT_IVB |
 952                                   PIPE_CONTROL_CS_STALL |
 953                                   PIPE_CONTROL_QW_WRITE));
 954        wa_ctx_emit(batch, index, scratch_addr);
 955        wa_ctx_emit(batch, index, 0);
 956        wa_ctx_emit(batch, index, 0);
 957        wa_ctx_emit(batch, index, 0);
 958
 959        /* Pad to end of cacheline */
 960        while (index % CACHELINE_DWORDS)
 961                wa_ctx_emit(batch, index, MI_NOOP);
 962
 963        /*
 964         * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
 965         * execution depends on the length specified in terms of cache lines
 966         * in the register CTX_RCS_INDIRECT_CTX
 967         */
 968
 969        return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
 970}
 971
 972/*
 973 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 974 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
 975 *
 976 *  The number of DWORDS written are returned using this field.
 977 *
 978 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 979 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 980 */
 981static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
 982                               struct i915_wa_ctx_bb *wa_ctx,
 983                               uint32_t *batch,
 984                               uint32_t *offset)
 985{
 986        uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
 987
 988        /* WaDisableCtxRestoreArbitration:bdw,chv */
 989        wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
 990
 991        wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
 992
 993        return wa_ctx_end(wa_ctx, *offset = index, 1);
 994}
 995
 996static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
 997                                    struct i915_wa_ctx_bb *wa_ctx,
 998                                    uint32_t *batch,
 999                                    uint32_t *offset)
1000{
1001        int ret;
1002        struct drm_i915_private *dev_priv = engine->i915;
1003        uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1004
1005        /* WaDisableCtxRestoreArbitration:skl,bxt */
1006        if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1007            IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1008                wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1009
1010        /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1011        ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1012        if (ret < 0)
1013                return ret;
1014        index = ret;
1015
1016        /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1017        wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1018        wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1019        wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1020                            GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1021        wa_ctx_emit(batch, index, MI_NOOP);
1022
1023        /* WaClearSlmSpaceAtContextSwitch:kbl */
1024        /* Actual scratch location is at 128 bytes offset */
1025        if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1026                u32 scratch_addr =
1027                        i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1028
1029                wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1030                wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1031                                           PIPE_CONTROL_GLOBAL_GTT_IVB |
1032                                           PIPE_CONTROL_CS_STALL |
1033                                           PIPE_CONTROL_QW_WRITE));
1034                wa_ctx_emit(batch, index, scratch_addr);
1035                wa_ctx_emit(batch, index, 0);
1036                wa_ctx_emit(batch, index, 0);
1037                wa_ctx_emit(batch, index, 0);
1038        }
1039
1040        /* WaMediaPoolStateCmdInWABB:bxt */
1041        if (HAS_POOLED_EU(engine->i915)) {
1042                /*
1043                 * EU pool configuration is setup along with golden context
1044                 * during context initialization. This value depends on
1045                 * device type (2x6 or 3x6) and needs to be updated based
1046                 * on which subslice is disabled especially for 2x6
1047                 * devices, however it is safe to load default
1048                 * configuration of 3x6 device instead of masking off
1049                 * corresponding bits because HW ignores bits of a disabled
1050                 * subslice and drops down to appropriate config. Please
1051                 * see render_state_setup() in i915_gem_render_state.c for
1052                 * possible configurations, to avoid duplication they are
1053                 * not shown here again.
1054                 */
1055                u32 eu_pool_config = 0x00777000;
1056                wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1057                wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1058                wa_ctx_emit(batch, index, eu_pool_config);
1059                wa_ctx_emit(batch, index, 0);
1060                wa_ctx_emit(batch, index, 0);
1061                wa_ctx_emit(batch, index, 0);
1062        }
1063
1064        /* Pad to end of cacheline */
1065        while (index % CACHELINE_DWORDS)
1066                wa_ctx_emit(batch, index, MI_NOOP);
1067
1068        return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1069}
1070
1071static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1072                               struct i915_wa_ctx_bb *wa_ctx,
1073                               uint32_t *batch,
1074                               uint32_t *offset)
1075{
1076        uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1077
1078        /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1079        if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1080            IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1081                wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1082                wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1083                wa_ctx_emit(batch, index,
1084                            _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1085                wa_ctx_emit(batch, index, MI_NOOP);
1086        }
1087
1088        /* WaClearTdlStateAckDirtyBits:bxt */
1089        if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1090                wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1091
1092                wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1093                wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1094
1095                wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1096                wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1097
1098                wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1099                wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1100
1101                wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1102                /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1103                wa_ctx_emit(batch, index, 0x0);
1104                wa_ctx_emit(batch, index, MI_NOOP);
1105        }
1106
1107        /* WaDisableCtxRestoreArbitration:skl,bxt */
1108        if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1109            IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1110                wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1111
1112        wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1113
1114        return wa_ctx_end(wa_ctx, *offset = index, 1);
1115}
1116
1117static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1118{
1119        struct drm_i915_gem_object *obj;
1120        struct i915_vma *vma;
1121        int err;
1122
1123        obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1124        if (IS_ERR(obj))
1125                return PTR_ERR(obj);
1126
1127        vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1128        if (IS_ERR(vma)) {
1129                err = PTR_ERR(vma);
1130                goto err;
1131        }
1132
1133        err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1134        if (err)
1135                goto err;
1136
1137        engine->wa_ctx.vma = vma;
1138        return 0;
1139
1140err:
1141        i915_gem_object_put(obj);
1142        return err;
1143}
1144
1145static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1146{
1147        i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1148}
1149
1150static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1151{
1152        struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1153        uint32_t *batch;
1154        uint32_t offset;
1155        struct page *page;
1156        int ret;
1157
1158        WARN_ON(engine->id != RCS);
1159
1160        /* update this when WA for higher Gen are added */
1161        if (INTEL_GEN(engine->i915) > 9) {
1162                DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1163                          INTEL_GEN(engine->i915));
1164                return 0;
1165        }
1166
1167        /* some WA perform writes to scratch page, ensure it is valid */
1168        if (!engine->scratch) {
1169                DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1170                return -EINVAL;
1171        }
1172
1173        ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1174        if (ret) {
1175                DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1176                return ret;
1177        }
1178
1179        page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1180        batch = kmap_atomic(page);
1181        offset = 0;
1182
1183        if (IS_GEN8(engine->i915)) {
1184                ret = gen8_init_indirectctx_bb(engine,
1185                                               &wa_ctx->indirect_ctx,
1186                                               batch,
1187                                               &offset);
1188                if (ret)
1189                        goto out;
1190
1191                ret = gen8_init_perctx_bb(engine,
1192                                          &wa_ctx->per_ctx,
1193                                          batch,
1194                                          &offset);
1195                if (ret)
1196                        goto out;
1197        } else if (IS_GEN9(engine->i915)) {
1198                ret = gen9_init_indirectctx_bb(engine,
1199                                               &wa_ctx->indirect_ctx,
1200                                               batch,
1201                                               &offset);
1202                if (ret)
1203                        goto out;
1204
1205                ret = gen9_init_perctx_bb(engine,
1206                                          &wa_ctx->per_ctx,
1207                                          batch,
1208                                          &offset);
1209                if (ret)
1210                        goto out;
1211        }
1212
1213out:
1214        kunmap_atomic(batch);
1215        if (ret)
1216                lrc_destroy_wa_ctx_obj(engine);
1217
1218        return ret;
1219}
1220
1221static void lrc_init_hws(struct intel_engine_cs *engine)
1222{
1223        struct drm_i915_private *dev_priv = engine->i915;
1224
1225        I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1226                   engine->status_page.ggtt_offset);
1227        POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1228}
1229
1230static int gen8_init_common_ring(struct intel_engine_cs *engine)
1231{
1232        struct drm_i915_private *dev_priv = engine->i915;
1233        int ret;
1234
1235        ret = intel_mocs_init_engine(engine);
1236        if (ret)
1237                return ret;
1238
1239        lrc_init_hws(engine);
1240
1241        intel_engine_reset_breadcrumbs(engine);
1242
1243        I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1244
1245        I915_WRITE(RING_MODE_GEN7(engine),
1246                   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1247                   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1248
1249        DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1250
1251        intel_engine_init_hangcheck(engine);
1252
1253        if (!execlists_elsp_idle(engine))
1254                execlists_submit_ports(engine);
1255
1256        return 0;
1257}
1258
1259static int gen8_init_render_ring(struct intel_engine_cs *engine)
1260{
1261        struct drm_i915_private *dev_priv = engine->i915;
1262        int ret;
1263
1264        ret = gen8_init_common_ring(engine);
1265        if (ret)
1266                return ret;
1267
1268        /* We need to disable the AsyncFlip performance optimisations in order
1269         * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1270         * programmed to '1' on all products.
1271         *
1272         * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1273         */
1274        I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1275
1276        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1277
1278        return init_workarounds_ring(engine);
1279}
1280
1281static int gen9_init_render_ring(struct intel_engine_cs *engine)
1282{
1283        int ret;
1284
1285        ret = gen8_init_common_ring(engine);
1286        if (ret)
1287                return ret;
1288
1289        return init_workarounds_ring(engine);
1290}
1291
1292static void reset_common_ring(struct intel_engine_cs *engine,
1293                              struct drm_i915_gem_request *request)
1294{
1295        struct drm_i915_private *dev_priv = engine->i915;
1296        struct execlist_port *port = engine->execlist_port;
1297        struct intel_context *ce = &request->ctx->engine[engine->id];
1298
1299        /* We want a simple context + ring to execute the breadcrumb update.
1300         * We cannot rely on the context being intact across the GPU hang,
1301         * so clear it and rebuild just what we need for the breadcrumb.
1302         * All pending requests for this context will be zapped, and any
1303         * future request will be after userspace has had the opportunity
1304         * to recreate its own state.
1305         */
1306        execlists_init_reg_state(ce->lrc_reg_state,
1307                                 request->ctx, engine, ce->ring);
1308
1309        /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1310        ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1311                i915_ggtt_offset(ce->ring->vma);
1312        ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1313
1314        request->ring->head = request->postfix;
1315        request->ring->last_retired_head = -1;
1316        intel_ring_update_space(request->ring);
1317
1318        if (i915.enable_guc_submission)
1319                return;
1320
1321        /* Catch up with any missed context-switch interrupts */
1322        I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1323        if (request->ctx != port[0].request->ctx) {
1324                i915_gem_request_put(port[0].request);
1325                port[0] = port[1];
1326                memset(&port[1], 0, sizeof(port[1]));
1327        }
1328
1329        /* CS is stopped, and we will resubmit both ports on resume */
1330        GEM_BUG_ON(request->ctx != port[0].request->ctx);
1331        port[0].count = 0;
1332        port[1].count = 0;
1333
1334        /* Reset WaIdleLiteRestore:bdw,skl as well */
1335        request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1336}
1337
1338static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1339{
1340        struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1341        struct intel_ring *ring = req->ring;
1342        struct intel_engine_cs *engine = req->engine;
1343        const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1344        int i, ret;
1345
1346        ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1347        if (ret)
1348                return ret;
1349
1350        intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1351        for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1352                const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1353
1354                intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1355                intel_ring_emit(ring, upper_32_bits(pd_daddr));
1356                intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1357                intel_ring_emit(ring, lower_32_bits(pd_daddr));
1358        }
1359
1360        intel_ring_emit(ring, MI_NOOP);
1361        intel_ring_advance(ring);
1362
1363        return 0;
1364}
1365
1366static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1367                              u64 offset, u32 len,
1368                              unsigned int dispatch_flags)
1369{
1370        struct intel_ring *ring = req->ring;
1371        bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1372        int ret;
1373
1374        /* Don't rely in hw updating PDPs, specially in lite-restore.
1375         * Ideally, we should set Force PD Restore in ctx descriptor,
1376         * but we can't. Force Restore would be a second option, but
1377         * it is unsafe in case of lite-restore (because the ctx is
1378         * not idle). PML4 is allocated during ppgtt init so this is
1379         * not needed in 48-bit.*/
1380        if (req->ctx->ppgtt &&
1381            (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1382                if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1383                    !intel_vgpu_active(req->i915)) {
1384                        ret = intel_logical_ring_emit_pdps(req);
1385                        if (ret)
1386                                return ret;
1387                }
1388
1389                req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1390        }
1391
1392        ret = intel_ring_begin(req, 4);
1393        if (ret)
1394                return ret;
1395
1396        /* FIXME(BDW): Address space and security selectors. */
1397        intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1398                        (ppgtt<<8) |
1399                        (dispatch_flags & I915_DISPATCH_RS ?
1400                         MI_BATCH_RESOURCE_STREAMER : 0));
1401        intel_ring_emit(ring, lower_32_bits(offset));
1402        intel_ring_emit(ring, upper_32_bits(offset));
1403        intel_ring_emit(ring, MI_NOOP);
1404        intel_ring_advance(ring);
1405
1406        return 0;
1407}
1408
1409static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1410{
1411        struct drm_i915_private *dev_priv = engine->i915;
1412        I915_WRITE_IMR(engine,
1413                       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1414        POSTING_READ_FW(RING_IMR(engine->mmio_base));
1415}
1416
1417static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1418{
1419        struct drm_i915_private *dev_priv = engine->i915;
1420        I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1421}
1422
1423static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1424{
1425        struct intel_ring *ring = request->ring;
1426        u32 cmd;
1427        int ret;
1428
1429        ret = intel_ring_begin(request, 4);
1430        if (ret)
1431                return ret;
1432
1433        cmd = MI_FLUSH_DW + 1;
1434
1435        /* We always require a command barrier so that subsequent
1436         * commands, such as breadcrumb interrupts, are strictly ordered
1437         * wrt the contents of the write cache being flushed to memory
1438         * (and thus being coherent from the CPU).
1439         */
1440        cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1441
1442        if (mode & EMIT_INVALIDATE) {
1443                cmd |= MI_INVALIDATE_TLB;
1444                if (request->engine->id == VCS)
1445                        cmd |= MI_INVALIDATE_BSD;
1446        }
1447
1448        intel_ring_emit(ring, cmd);
1449        intel_ring_emit(ring,
1450                        I915_GEM_HWS_SCRATCH_ADDR |
1451                        MI_FLUSH_DW_USE_GTT);
1452        intel_ring_emit(ring, 0); /* upper addr */
1453        intel_ring_emit(ring, 0); /* value */
1454        intel_ring_advance(ring);
1455
1456        return 0;
1457}
1458
1459static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1460                                  u32 mode)
1461{
1462        struct intel_ring *ring = request->ring;
1463        struct intel_engine_cs *engine = request->engine;
1464        u32 scratch_addr =
1465                i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1466        bool vf_flush_wa = false, dc_flush_wa = false;
1467        u32 flags = 0;
1468        int ret;
1469        int len;
1470
1471        flags |= PIPE_CONTROL_CS_STALL;
1472
1473        if (mode & EMIT_FLUSH) {
1474                flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1475                flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1476                flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1477                flags |= PIPE_CONTROL_FLUSH_ENABLE;
1478        }
1479
1480        if (mode & EMIT_INVALIDATE) {
1481                flags |= PIPE_CONTROL_TLB_INVALIDATE;
1482                flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1483                flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1484                flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1485                flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1486                flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1487                flags |= PIPE_CONTROL_QW_WRITE;
1488                flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1489
1490                /*
1491                 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1492                 * pipe control.
1493                 */
1494                if (IS_GEN9(request->i915))
1495                        vf_flush_wa = true;
1496
1497                /* WaForGAMHang:kbl */
1498                if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1499                        dc_flush_wa = true;
1500        }
1501
1502        len = 6;
1503
1504        if (vf_flush_wa)
1505                len += 6;
1506
1507        if (dc_flush_wa)
1508                len += 12;
1509
1510        ret = intel_ring_begin(request, len);
1511        if (ret)
1512                return ret;
1513
1514        if (vf_flush_wa) {
1515                intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1516                intel_ring_emit(ring, 0);
1517                intel_ring_emit(ring, 0);
1518                intel_ring_emit(ring, 0);
1519                intel_ring_emit(ring, 0);
1520                intel_ring_emit(ring, 0);
1521        }
1522
1523        if (dc_flush_wa) {
1524                intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1525                intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1526                intel_ring_emit(ring, 0);
1527                intel_ring_emit(ring, 0);
1528                intel_ring_emit(ring, 0);
1529                intel_ring_emit(ring, 0);
1530        }
1531
1532        intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1533        intel_ring_emit(ring, flags);
1534        intel_ring_emit(ring, scratch_addr);
1535        intel_ring_emit(ring, 0);
1536        intel_ring_emit(ring, 0);
1537        intel_ring_emit(ring, 0);
1538
1539        if (dc_flush_wa) {
1540                intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1541                intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1542                intel_ring_emit(ring, 0);
1543                intel_ring_emit(ring, 0);
1544                intel_ring_emit(ring, 0);
1545                intel_ring_emit(ring, 0);
1546        }
1547
1548        intel_ring_advance(ring);
1549
1550        return 0;
1551}
1552
1553static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1554{
1555        /*
1556         * On BXT A steppings there is a HW coherency issue whereby the
1557         * MI_STORE_DATA_IMM storing the completed request's seqno
1558         * occasionally doesn't invalidate the CPU cache. Work around this by
1559         * clflushing the corresponding cacheline whenever the caller wants
1560         * the coherency to be guaranteed. Note that this cacheline is known
1561         * to be clean at this point, since we only write it in
1562         * bxt_a_set_seqno(), where we also do a clflush after the write. So
1563         * this clflush in practice becomes an invalidate operation.
1564         */
1565        intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1566}
1567
1568/*
1569 * Reserve space for 2 NOOPs at the end of each request to be
1570 * used as a workaround for not being allowed to do lite
1571 * restore with HEAD==TAIL (WaIdleLiteRestore).
1572 */
1573
1574static int gen8_emit_request(struct drm_i915_gem_request *request)
1575{
1576        struct intel_ring *ring = request->ring;
1577        int ret;
1578
1579        ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1580        if (ret)
1581                return ret;
1582
1583        /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1584        BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1585
1586        intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1587        intel_ring_emit(ring,
1588                        intel_hws_seqno_address(request->engine) |
1589                        MI_FLUSH_DW_USE_GTT);
1590        intel_ring_emit(ring, 0);
1591        intel_ring_emit(ring, request->fence.seqno);
1592        intel_ring_emit(ring, MI_USER_INTERRUPT);
1593        intel_ring_emit(ring, MI_NOOP);
1594        return intel_logical_ring_advance(request);
1595}
1596
1597static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1598{
1599        struct intel_ring *ring = request->ring;
1600        int ret;
1601
1602        ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1603        if (ret)
1604                return ret;
1605
1606        /* We're using qword write, seqno should be aligned to 8 bytes. */
1607        BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1608
1609        /* w/a for post sync ops following a GPGPU operation we
1610         * need a prior CS_STALL, which is emitted by the flush
1611         * following the batch.
1612         */
1613        intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1614        intel_ring_emit(ring,
1615                        (PIPE_CONTROL_GLOBAL_GTT_IVB |
1616                         PIPE_CONTROL_CS_STALL |
1617                         PIPE_CONTROL_QW_WRITE));
1618        intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1619        intel_ring_emit(ring, 0);
1620        intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1621        /* We're thrashing one dword of HWS. */
1622        intel_ring_emit(ring, 0);
1623        intel_ring_emit(ring, MI_USER_INTERRUPT);
1624        intel_ring_emit(ring, MI_NOOP);
1625        return intel_logical_ring_advance(request);
1626}
1627
1628static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1629{
1630        int ret;
1631
1632        ret = intel_logical_ring_workarounds_emit(req);
1633        if (ret)
1634                return ret;
1635
1636        ret = intel_rcs_context_init_mocs(req);
1637        /*
1638         * Failing to program the MOCS is non-fatal.The system will not
1639         * run at peak performance. So generate an error and carry on.
1640         */
1641        if (ret)
1642                DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1643
1644        return i915_gem_render_state_init(req);
1645}
1646
1647/**
1648 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1649 * @engine: Engine Command Streamer.
1650 */
1651void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1652{
1653        struct drm_i915_private *dev_priv;
1654
1655        if (!intel_engine_initialized(engine))
1656                return;
1657
1658        /*
1659         * Tasklet cannot be active at this point due intel_mark_active/idle
1660         * so this is just for documentation.
1661         */
1662        if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1663                tasklet_kill(&engine->irq_tasklet);
1664
1665        dev_priv = engine->i915;
1666
1667        if (engine->buffer) {
1668                WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1669        }
1670
1671        if (engine->cleanup)
1672                engine->cleanup(engine);
1673
1674        intel_engine_cleanup_common(engine);
1675
1676        if (engine->status_page.vma) {
1677                i915_gem_object_unpin_map(engine->status_page.vma->obj);
1678                engine->status_page.vma = NULL;
1679        }
1680        intel_lr_context_unpin(dev_priv->kernel_context, engine);
1681
1682        lrc_destroy_wa_ctx_obj(engine);
1683        engine->i915 = NULL;
1684}
1685
1686void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1687{
1688        struct intel_engine_cs *engine;
1689
1690        for_each_engine(engine, dev_priv)
1691                engine->submit_request = execlists_submit_request;
1692}
1693
1694static void
1695logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1696{
1697        /* Default vfuncs which can be overriden by each engine. */
1698        engine->init_hw = gen8_init_common_ring;
1699        engine->reset_hw = reset_common_ring;
1700        engine->emit_flush = gen8_emit_flush;
1701        engine->emit_request = gen8_emit_request;
1702        engine->submit_request = execlists_submit_request;
1703
1704        engine->irq_enable = gen8_logical_ring_enable_irq;
1705        engine->irq_disable = gen8_logical_ring_disable_irq;
1706        engine->emit_bb_start = gen8_emit_bb_start;
1707        if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1708                engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1709}
1710
1711static inline void
1712logical_ring_default_irqs(struct intel_engine_cs *engine)
1713{
1714        unsigned shift = engine->irq_shift;
1715        engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1716        engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1717}
1718
1719static int
1720lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1721{
1722        const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1723        void *hws;
1724
1725        /* The HWSP is part of the default context object in LRC mode. */
1726        hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1727        if (IS_ERR(hws))
1728                return PTR_ERR(hws);
1729
1730        engine->status_page.page_addr = hws + hws_offset;
1731        engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1732        engine->status_page.vma = vma;
1733
1734        return 0;
1735}
1736
1737static void
1738logical_ring_setup(struct intel_engine_cs *engine)
1739{
1740        struct drm_i915_private *dev_priv = engine->i915;
1741        enum forcewake_domains fw_domains;
1742
1743        intel_engine_setup_common(engine);
1744
1745        /* Intentionally left blank. */
1746        engine->buffer = NULL;
1747
1748        fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1749                                                    RING_ELSP(engine),
1750                                                    FW_REG_WRITE);
1751
1752        fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1753                                                     RING_CONTEXT_STATUS_PTR(engine),
1754                                                     FW_REG_READ | FW_REG_WRITE);
1755
1756        fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1757                                                     RING_CONTEXT_STATUS_BUF_BASE(engine),
1758                                                     FW_REG_READ);
1759
1760        engine->fw_domains = fw_domains;
1761
1762        tasklet_init(&engine->irq_tasklet,
1763                     intel_lrc_irq_handler, (unsigned long)engine);
1764
1765        logical_ring_init_platform_invariants(engine);
1766        logical_ring_default_vfuncs(engine);
1767        logical_ring_default_irqs(engine);
1768}
1769
1770static int
1771logical_ring_init(struct intel_engine_cs *engine)
1772{
1773        struct i915_gem_context *dctx = engine->i915->kernel_context;
1774        int ret;
1775
1776        ret = intel_engine_init_common(engine);
1777        if (ret)
1778                goto error;
1779
1780        ret = execlists_context_deferred_alloc(dctx, engine);
1781        if (ret)
1782                goto error;
1783
1784        /* As this is the default context, always pin it */
1785        ret = intel_lr_context_pin(dctx, engine);
1786        if (ret) {
1787                DRM_ERROR("Failed to pin context for %s: %d\n",
1788                          engine->name, ret);
1789                goto error;
1790        }
1791
1792        /* And setup the hardware status page. */
1793        ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1794        if (ret) {
1795                DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1796                goto error;
1797        }
1798
1799        return 0;
1800
1801error:
1802        intel_logical_ring_cleanup(engine);
1803        return ret;
1804}
1805
1806int logical_render_ring_init(struct intel_engine_cs *engine)
1807{
1808        struct drm_i915_private *dev_priv = engine->i915;
1809        int ret;
1810
1811        logical_ring_setup(engine);
1812
1813        if (HAS_L3_DPF(dev_priv))
1814                engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1815
1816        /* Override some for render ring. */
1817        if (INTEL_GEN(dev_priv) >= 9)
1818                engine->init_hw = gen9_init_render_ring;
1819        else
1820                engine->init_hw = gen8_init_render_ring;
1821        engine->init_context = gen8_init_rcs_context;
1822        engine->emit_flush = gen8_emit_flush_render;
1823        engine->emit_request = gen8_emit_request_render;
1824
1825        ret = intel_engine_create_scratch(engine, 4096);
1826        if (ret)
1827                return ret;
1828
1829        ret = intel_init_workaround_bb(engine);
1830        if (ret) {
1831                /*
1832                 * We continue even if we fail to initialize WA batch
1833                 * because we only expect rare glitches but nothing
1834                 * critical to prevent us from using GPU
1835                 */
1836                DRM_ERROR("WA batch buffer initialization failed: %d\n",
1837                          ret);
1838        }
1839
1840        ret = logical_ring_init(engine);
1841        if (ret) {
1842                lrc_destroy_wa_ctx_obj(engine);
1843        }
1844
1845        return ret;
1846}
1847
1848int logical_xcs_ring_init(struct intel_engine_cs *engine)
1849{
1850        logical_ring_setup(engine);
1851
1852        return logical_ring_init(engine);
1853}
1854
1855static u32
1856make_rpcs(struct drm_i915_private *dev_priv)
1857{
1858        u32 rpcs = 0;
1859
1860        /*
1861         * No explicit RPCS request is needed to ensure full
1862         * slice/subslice/EU enablement prior to Gen9.
1863        */
1864        if (INTEL_GEN(dev_priv) < 9)
1865                return 0;
1866
1867        /*
1868         * Starting in Gen9, render power gating can leave
1869         * slice/subslice/EU in a partially enabled state. We
1870         * must make an explicit request through RPCS for full
1871         * enablement.
1872        */
1873        if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1874                rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1875                rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1876                        GEN8_RPCS_S_CNT_SHIFT;
1877                rpcs |= GEN8_RPCS_ENABLE;
1878        }
1879
1880        if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1881                rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1882                rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1883                        GEN8_RPCS_SS_CNT_SHIFT;
1884                rpcs |= GEN8_RPCS_ENABLE;
1885        }
1886
1887        if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1888                rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1889                        GEN8_RPCS_EU_MIN_SHIFT;
1890                rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1891                        GEN8_RPCS_EU_MAX_SHIFT;
1892                rpcs |= GEN8_RPCS_ENABLE;
1893        }
1894
1895        return rpcs;
1896}
1897
1898static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1899{
1900        u32 indirect_ctx_offset;
1901
1902        switch (INTEL_GEN(engine->i915)) {
1903        default:
1904                MISSING_CASE(INTEL_GEN(engine->i915));
1905                /* fall through */
1906        case 9:
1907                indirect_ctx_offset =
1908                        GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1909                break;
1910        case 8:
1911                indirect_ctx_offset =
1912                        GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1913                break;
1914        }
1915
1916        return indirect_ctx_offset;
1917}
1918
1919static void execlists_init_reg_state(u32 *reg_state,
1920                                     struct i915_gem_context *ctx,
1921                                     struct intel_engine_cs *engine,
1922                                     struct intel_ring *ring)
1923{
1924        struct drm_i915_private *dev_priv = engine->i915;
1925        struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1926
1927        /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1928         * commands followed by (reg, value) pairs. The values we are setting here are
1929         * only for the first context restore: on a subsequent save, the GPU will
1930         * recreate this batchbuffer with new values (including all the missing
1931         * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1932        reg_state[CTX_LRI_HEADER_0] =
1933                MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1934        ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1935                       RING_CONTEXT_CONTROL(engine),
1936                       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1937                                          CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1938                                          (HAS_RESOURCE_STREAMER(dev_priv) ?
1939                                           CTX_CTRL_RS_CTX_ENABLE : 0)));
1940        ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1941                       0);
1942        ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1943                       0);
1944        ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1945                       RING_START(engine->mmio_base), 0);
1946        ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1947                       RING_CTL(engine->mmio_base),
1948                       ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1949        ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1950                       RING_BBADDR_UDW(engine->mmio_base), 0);
1951        ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1952                       RING_BBADDR(engine->mmio_base), 0);
1953        ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1954                       RING_BBSTATE(engine->mmio_base),
1955                       RING_BB_PPGTT);
1956        ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1957                       RING_SBBADDR_UDW(engine->mmio_base), 0);
1958        ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1959                       RING_SBBADDR(engine->mmio_base), 0);
1960        ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1961                       RING_SBBSTATE(engine->mmio_base), 0);
1962        if (engine->id == RCS) {
1963                ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1964                               RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1965                ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1966                               RING_INDIRECT_CTX(engine->mmio_base), 0);
1967                ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1968                               RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1969                if (engine->wa_ctx.vma) {
1970                        struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1971                        u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1972
1973                        reg_state[CTX_RCS_INDIRECT_CTX+1] =
1974                                (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1975                                (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1976
1977                        reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1978                                intel_lr_indirect_ctx_offset(engine) << 6;
1979
1980                        reg_state[CTX_BB_PER_CTX_PTR+1] =
1981                                (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1982                                0x01;
1983                }
1984        }
1985        reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1986        ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1987                       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1988        /* PDP values well be assigned later if needed */
1989        ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1990                       0);
1991        ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1992                       0);
1993        ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1994                       0);
1995        ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1996                       0);
1997        ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1998                       0);
1999        ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2000                       0);
2001        ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2002                       0);
2003        ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2004                       0);
2005
2006        if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2007                /* 64b PPGTT (48bit canonical)
2008                 * PDP0_DESCRIPTOR contains the base address to PML4 and
2009                 * other PDP Descriptors are ignored.
2010                 */
2011                ASSIGN_CTX_PML4(ppgtt, reg_state);
2012        } else {
2013                /* 32b PPGTT
2014                 * PDP*_DESCRIPTOR contains the base address of space supported.
2015                 * With dynamic page allocation, PDPs may not be allocated at
2016                 * this point. Point the unallocated PDPs to the scratch page
2017                 */
2018                execlists_update_context_pdps(ppgtt, reg_state);
2019        }
2020
2021        if (engine->id == RCS) {
2022                reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2023                ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2024                               make_rpcs(dev_priv));
2025        }
2026}
2027
2028static int
2029populate_lr_context(struct i915_gem_context *ctx,
2030                    struct drm_i915_gem_object *ctx_obj,
2031                    struct intel_engine_cs *engine,
2032                    struct intel_ring *ring)
2033{
2034        void *vaddr;
2035        int ret;
2036
2037        ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2038        if (ret) {
2039                DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2040                return ret;
2041        }
2042
2043        vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2044        if (IS_ERR(vaddr)) {
2045                ret = PTR_ERR(vaddr);
2046                DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2047                return ret;
2048        }
2049        ctx_obj->dirty = true;
2050
2051        /* The second page of the context object contains some fields which must
2052         * be set up prior to the first execution. */
2053
2054        execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2055                                 ctx, engine, ring);
2056
2057        i915_gem_object_unpin_map(ctx_obj);
2058
2059        return 0;
2060}
2061
2062/**
2063 * intel_lr_context_size() - return the size of the context for an engine
2064 * @engine: which engine to find the context size for
2065 *
2066 * Each engine may require a different amount of space for a context image,
2067 * so when allocating (or copying) an image, this function can be used to
2068 * find the right size for the specific engine.
2069 *
2070 * Return: size (in bytes) of an engine-specific context image
2071 *
2072 * Note: this size includes the HWSP, which is part of the context image
2073 * in LRC mode, but does not include the "shared data page" used with
2074 * GuC submission. The caller should account for this if using the GuC.
2075 */
2076uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2077{
2078        int ret = 0;
2079
2080        WARN_ON(INTEL_GEN(engine->i915) < 8);
2081
2082        switch (engine->id) {
2083        case RCS:
2084                if (INTEL_GEN(engine->i915) >= 9)
2085                        ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2086                else
2087                        ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2088                break;
2089        case VCS:
2090        case BCS:
2091        case VECS:
2092        case VCS2:
2093                ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2094                break;
2095        }
2096
2097        return ret;
2098}
2099
2100static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2101                                            struct intel_engine_cs *engine)
2102{
2103        struct drm_i915_gem_object *ctx_obj;
2104        struct intel_context *ce = &ctx->engine[engine->id];
2105        struct i915_vma *vma;
2106        uint32_t context_size;
2107        struct intel_ring *ring;
2108        int ret;
2109
2110        WARN_ON(ce->state);
2111
2112        context_size = round_up(intel_lr_context_size(engine), 4096);
2113
2114        /* One extra page as the sharing data between driver and GuC */
2115        context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2116
2117        ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2118        if (IS_ERR(ctx_obj)) {
2119                DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2120                return PTR_ERR(ctx_obj);
2121        }
2122
2123        vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2124        if (IS_ERR(vma)) {
2125                ret = PTR_ERR(vma);
2126                goto error_deref_obj;
2127        }
2128
2129        ring = intel_engine_create_ring(engine, ctx->ring_size);
2130        if (IS_ERR(ring)) {
2131                ret = PTR_ERR(ring);
2132                goto error_deref_obj;
2133        }
2134
2135        ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2136        if (ret) {
2137                DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2138                goto error_ring_free;
2139        }
2140
2141        ce->ring = ring;
2142        ce->state = vma;
2143        ce->initialised = engine->init_context == NULL;
2144
2145        return 0;
2146
2147error_ring_free:
2148        intel_ring_free(ring);
2149error_deref_obj:
2150        i915_gem_object_put(ctx_obj);
2151        return ret;
2152}
2153
2154void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2155{
2156        struct i915_gem_context *ctx = dev_priv->kernel_context;
2157        struct intel_engine_cs *engine;
2158
2159        for_each_engine(engine, dev_priv) {
2160                struct intel_context *ce = &ctx->engine[engine->id];
2161                void *vaddr;
2162                uint32_t *reg_state;
2163
2164                if (!ce->state)
2165                        continue;
2166
2167                vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
2168                if (WARN_ON(IS_ERR(vaddr)))
2169                        continue;
2170
2171                reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2172
2173                reg_state[CTX_RING_HEAD+1] = 0;
2174                reg_state[CTX_RING_TAIL+1] = 0;
2175
2176                ce->state->obj->dirty = true;
2177                i915_gem_object_unpin_map(ce->state->obj);
2178
2179                ce->ring->head = 0;
2180                ce->ring->tail = 0;
2181        }
2182}
2183