linux/drivers/md/dm-thin.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define DM_MSG_PREFIX   "thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38                "A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116        VIRTUAL,
 117        PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121                      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123        key->virtual = (ls == VIRTUAL);
 124        key->dev = dm_thin_dev_id(td);
 125        key->block_begin = b;
 126        key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130                           struct dm_cell_key *key)
 131{
 132        build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136                              struct dm_cell_key *key)
 137{
 138        build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146        struct rw_semaphore lock;
 147        unsigned long threshold;
 148        bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153        init_rwsem(&t->lock);
 154        t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159        t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164        if (!t->throttle_applied && jiffies > t->threshold) {
 165                down_write(&t->lock);
 166                t->throttle_applied = true;
 167        }
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172        if (t->throttle_applied) {
 173                t->throttle_applied = false;
 174                up_write(&t->lock);
 175        }
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180        down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185        up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201        PM_WRITE,               /* metadata may be changed */
 202        PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
 203        PM_READ_ONLY,           /* metadata may not be changed */
 204        PM_FAIL,                /* all I/O fails */
 205};
 206
 207struct pool_features {
 208        enum pool_mode mode;
 209
 210        bool zero_new_blocks:1;
 211        bool discard_enabled:1;
 212        bool discard_passdown:1;
 213        bool error_if_no_space:1;
 214};
 215
 216struct thin_c;
 217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 220
 221#define CELL_SORT_ARRAY_SIZE 8192
 222
 223struct pool {
 224        struct list_head list;
 225        struct dm_target *ti;   /* Only set if a pool target is bound */
 226
 227        struct mapped_device *pool_md;
 228        struct block_device *md_dev;
 229        struct dm_pool_metadata *pmd;
 230
 231        dm_block_t low_water_blocks;
 232        uint32_t sectors_per_block;
 233        int sectors_per_block_shift;
 234
 235        struct pool_features pf;
 236        bool low_water_triggered:1;     /* A dm event has been sent */
 237        bool suspended:1;
 238        bool out_of_data_space:1;
 239
 240        struct dm_bio_prison *prison;
 241        struct dm_kcopyd_client *copier;
 242
 243        struct workqueue_struct *wq;
 244        struct throttle throttle;
 245        struct work_struct worker;
 246        struct delayed_work waker;
 247        struct delayed_work no_space_timeout;
 248
 249        unsigned long last_commit_jiffies;
 250        unsigned ref_count;
 251
 252        spinlock_t lock;
 253        struct bio_list deferred_flush_bios;
 254        struct list_head prepared_mappings;
 255        struct list_head prepared_discards;
 256        struct list_head prepared_discards_pt2;
 257        struct list_head active_thins;
 258
 259        struct dm_deferred_set *shared_read_ds;
 260        struct dm_deferred_set *all_io_ds;
 261
 262        struct dm_thin_new_mapping *next_mapping;
 263        mempool_t *mapping_pool;
 264
 265        process_bio_fn process_bio;
 266        process_bio_fn process_discard;
 267
 268        process_cell_fn process_cell;
 269        process_cell_fn process_discard_cell;
 270
 271        process_mapping_fn process_prepared_mapping;
 272        process_mapping_fn process_prepared_discard;
 273        process_mapping_fn process_prepared_discard_pt2;
 274
 275        struct dm_bio_prison_cell **cell_sort_array;
 276};
 277
 278static enum pool_mode get_pool_mode(struct pool *pool);
 279static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 280
 281/*
 282 * Target context for a pool.
 283 */
 284struct pool_c {
 285        struct dm_target *ti;
 286        struct pool *pool;
 287        struct dm_dev *data_dev;
 288        struct dm_dev *metadata_dev;
 289        struct dm_target_callbacks callbacks;
 290
 291        dm_block_t low_water_blocks;
 292        struct pool_features requested_pf; /* Features requested during table load */
 293        struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 294};
 295
 296/*
 297 * Target context for a thin.
 298 */
 299struct thin_c {
 300        struct list_head list;
 301        struct dm_dev *pool_dev;
 302        struct dm_dev *origin_dev;
 303        sector_t origin_size;
 304        dm_thin_id dev_id;
 305
 306        struct pool *pool;
 307        struct dm_thin_device *td;
 308        struct mapped_device *thin_md;
 309
 310        bool requeue_mode:1;
 311        spinlock_t lock;
 312        struct list_head deferred_cells;
 313        struct bio_list deferred_bio_list;
 314        struct bio_list retry_on_resume_list;
 315        struct rb_root sort_bio_list; /* sorted list of deferred bios */
 316
 317        /*
 318         * Ensures the thin is not destroyed until the worker has finished
 319         * iterating the active_thins list.
 320         */
 321        atomic_t refcount;
 322        struct completion can_destroy;
 323};
 324
 325/*----------------------------------------------------------------*/
 326
 327static bool block_size_is_power_of_two(struct pool *pool)
 328{
 329        return pool->sectors_per_block_shift >= 0;
 330}
 331
 332static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 333{
 334        return block_size_is_power_of_two(pool) ?
 335                (b << pool->sectors_per_block_shift) :
 336                (b * pool->sectors_per_block);
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341struct discard_op {
 342        struct thin_c *tc;
 343        struct blk_plug plug;
 344        struct bio *parent_bio;
 345        struct bio *bio;
 346};
 347
 348static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 349{
 350        BUG_ON(!parent);
 351
 352        op->tc = tc;
 353        blk_start_plug(&op->plug);
 354        op->parent_bio = parent;
 355        op->bio = NULL;
 356}
 357
 358static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 359{
 360        struct thin_c *tc = op->tc;
 361        sector_t s = block_to_sectors(tc->pool, data_b);
 362        sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 363
 364        return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 365                                      GFP_NOWAIT, 0, &op->bio);
 366}
 367
 368static void end_discard(struct discard_op *op, int r)
 369{
 370        if (op->bio) {
 371                /*
 372                 * Even if one of the calls to issue_discard failed, we
 373                 * need to wait for the chain to complete.
 374                 */
 375                bio_chain(op->bio, op->parent_bio);
 376                bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 377                submit_bio(op->bio);
 378        }
 379
 380        blk_finish_plug(&op->plug);
 381
 382        /*
 383         * Even if r is set, there could be sub discards in flight that we
 384         * need to wait for.
 385         */
 386        if (r && !op->parent_bio->bi_error)
 387                op->parent_bio->bi_error = r;
 388        bio_endio(op->parent_bio);
 389}
 390
 391/*----------------------------------------------------------------*/
 392
 393/*
 394 * wake_worker() is used when new work is queued and when pool_resume is
 395 * ready to continue deferred IO processing.
 396 */
 397static void wake_worker(struct pool *pool)
 398{
 399        queue_work(pool->wq, &pool->worker);
 400}
 401
 402/*----------------------------------------------------------------*/
 403
 404static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 405                      struct dm_bio_prison_cell **cell_result)
 406{
 407        int r;
 408        struct dm_bio_prison_cell *cell_prealloc;
 409
 410        /*
 411         * Allocate a cell from the prison's mempool.
 412         * This might block but it can't fail.
 413         */
 414        cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 415
 416        r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 417        if (r)
 418                /*
 419                 * We reused an old cell; we can get rid of
 420                 * the new one.
 421                 */
 422                dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 423
 424        return r;
 425}
 426
 427static void cell_release(struct pool *pool,
 428                         struct dm_bio_prison_cell *cell,
 429                         struct bio_list *bios)
 430{
 431        dm_cell_release(pool->prison, cell, bios);
 432        dm_bio_prison_free_cell(pool->prison, cell);
 433}
 434
 435static void cell_visit_release(struct pool *pool,
 436                               void (*fn)(void *, struct dm_bio_prison_cell *),
 437                               void *context,
 438                               struct dm_bio_prison_cell *cell)
 439{
 440        dm_cell_visit_release(pool->prison, fn, context, cell);
 441        dm_bio_prison_free_cell(pool->prison, cell);
 442}
 443
 444static void cell_release_no_holder(struct pool *pool,
 445                                   struct dm_bio_prison_cell *cell,
 446                                   struct bio_list *bios)
 447{
 448        dm_cell_release_no_holder(pool->prison, cell, bios);
 449        dm_bio_prison_free_cell(pool->prison, cell);
 450}
 451
 452static void cell_error_with_code(struct pool *pool,
 453                                 struct dm_bio_prison_cell *cell, int error_code)
 454{
 455        dm_cell_error(pool->prison, cell, error_code);
 456        dm_bio_prison_free_cell(pool->prison, cell);
 457}
 458
 459static int get_pool_io_error_code(struct pool *pool)
 460{
 461        return pool->out_of_data_space ? -ENOSPC : -EIO;
 462}
 463
 464static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 465{
 466        int error = get_pool_io_error_code(pool);
 467
 468        cell_error_with_code(pool, cell, error);
 469}
 470
 471static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 472{
 473        cell_error_with_code(pool, cell, 0);
 474}
 475
 476static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 477{
 478        cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
 479}
 480
 481/*----------------------------------------------------------------*/
 482
 483/*
 484 * A global list of pools that uses a struct mapped_device as a key.
 485 */
 486static struct dm_thin_pool_table {
 487        struct mutex mutex;
 488        struct list_head pools;
 489} dm_thin_pool_table;
 490
 491static void pool_table_init(void)
 492{
 493        mutex_init(&dm_thin_pool_table.mutex);
 494        INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 495}
 496
 497static void __pool_table_insert(struct pool *pool)
 498{
 499        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 500        list_add(&pool->list, &dm_thin_pool_table.pools);
 501}
 502
 503static void __pool_table_remove(struct pool *pool)
 504{
 505        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 506        list_del(&pool->list);
 507}
 508
 509static struct pool *__pool_table_lookup(struct mapped_device *md)
 510{
 511        struct pool *pool = NULL, *tmp;
 512
 513        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 514
 515        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 516                if (tmp->pool_md == md) {
 517                        pool = tmp;
 518                        break;
 519                }
 520        }
 521
 522        return pool;
 523}
 524
 525static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 526{
 527        struct pool *pool = NULL, *tmp;
 528
 529        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 530
 531        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 532                if (tmp->md_dev == md_dev) {
 533                        pool = tmp;
 534                        break;
 535                }
 536        }
 537
 538        return pool;
 539}
 540
 541/*----------------------------------------------------------------*/
 542
 543struct dm_thin_endio_hook {
 544        struct thin_c *tc;
 545        struct dm_deferred_entry *shared_read_entry;
 546        struct dm_deferred_entry *all_io_entry;
 547        struct dm_thin_new_mapping *overwrite_mapping;
 548        struct rb_node rb_node;
 549        struct dm_bio_prison_cell *cell;
 550};
 551
 552static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 553{
 554        bio_list_merge(bios, master);
 555        bio_list_init(master);
 556}
 557
 558static void error_bio_list(struct bio_list *bios, int error)
 559{
 560        struct bio *bio;
 561
 562        while ((bio = bio_list_pop(bios))) {
 563                bio->bi_error = error;
 564                bio_endio(bio);
 565        }
 566}
 567
 568static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
 569{
 570        struct bio_list bios;
 571        unsigned long flags;
 572
 573        bio_list_init(&bios);
 574
 575        spin_lock_irqsave(&tc->lock, flags);
 576        __merge_bio_list(&bios, master);
 577        spin_unlock_irqrestore(&tc->lock, flags);
 578
 579        error_bio_list(&bios, error);
 580}
 581
 582static void requeue_deferred_cells(struct thin_c *tc)
 583{
 584        struct pool *pool = tc->pool;
 585        unsigned long flags;
 586        struct list_head cells;
 587        struct dm_bio_prison_cell *cell, *tmp;
 588
 589        INIT_LIST_HEAD(&cells);
 590
 591        spin_lock_irqsave(&tc->lock, flags);
 592        list_splice_init(&tc->deferred_cells, &cells);
 593        spin_unlock_irqrestore(&tc->lock, flags);
 594
 595        list_for_each_entry_safe(cell, tmp, &cells, user_list)
 596                cell_requeue(pool, cell);
 597}
 598
 599static void requeue_io(struct thin_c *tc)
 600{
 601        struct bio_list bios;
 602        unsigned long flags;
 603
 604        bio_list_init(&bios);
 605
 606        spin_lock_irqsave(&tc->lock, flags);
 607        __merge_bio_list(&bios, &tc->deferred_bio_list);
 608        __merge_bio_list(&bios, &tc->retry_on_resume_list);
 609        spin_unlock_irqrestore(&tc->lock, flags);
 610
 611        error_bio_list(&bios, DM_ENDIO_REQUEUE);
 612        requeue_deferred_cells(tc);
 613}
 614
 615static void error_retry_list_with_code(struct pool *pool, int error)
 616{
 617        struct thin_c *tc;
 618
 619        rcu_read_lock();
 620        list_for_each_entry_rcu(tc, &pool->active_thins, list)
 621                error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 622        rcu_read_unlock();
 623}
 624
 625static void error_retry_list(struct pool *pool)
 626{
 627        int error = get_pool_io_error_code(pool);
 628
 629        error_retry_list_with_code(pool, error);
 630}
 631
 632/*
 633 * This section of code contains the logic for processing a thin device's IO.
 634 * Much of the code depends on pool object resources (lists, workqueues, etc)
 635 * but most is exclusively called from the thin target rather than the thin-pool
 636 * target.
 637 */
 638
 639static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 640{
 641        struct pool *pool = tc->pool;
 642        sector_t block_nr = bio->bi_iter.bi_sector;
 643
 644        if (block_size_is_power_of_two(pool))
 645                block_nr >>= pool->sectors_per_block_shift;
 646        else
 647                (void) sector_div(block_nr, pool->sectors_per_block);
 648
 649        return block_nr;
 650}
 651
 652/*
 653 * Returns the _complete_ blocks that this bio covers.
 654 */
 655static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 656                                dm_block_t *begin, dm_block_t *end)
 657{
 658        struct pool *pool = tc->pool;
 659        sector_t b = bio->bi_iter.bi_sector;
 660        sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 661
 662        b += pool->sectors_per_block - 1ull; /* so we round up */
 663
 664        if (block_size_is_power_of_two(pool)) {
 665                b >>= pool->sectors_per_block_shift;
 666                e >>= pool->sectors_per_block_shift;
 667        } else {
 668                (void) sector_div(b, pool->sectors_per_block);
 669                (void) sector_div(e, pool->sectors_per_block);
 670        }
 671
 672        if (e < b)
 673                /* Can happen if the bio is within a single block. */
 674                e = b;
 675
 676        *begin = b;
 677        *end = e;
 678}
 679
 680static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 681{
 682        struct pool *pool = tc->pool;
 683        sector_t bi_sector = bio->bi_iter.bi_sector;
 684
 685        bio->bi_bdev = tc->pool_dev->bdev;
 686        if (block_size_is_power_of_two(pool))
 687                bio->bi_iter.bi_sector =
 688                        (block << pool->sectors_per_block_shift) |
 689                        (bi_sector & (pool->sectors_per_block - 1));
 690        else
 691                bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 692                                 sector_div(bi_sector, pool->sectors_per_block);
 693}
 694
 695static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 696{
 697        bio->bi_bdev = tc->origin_dev->bdev;
 698}
 699
 700static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 701{
 702        return (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
 703                dm_thin_changed_this_transaction(tc->td);
 704}
 705
 706static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 707{
 708        struct dm_thin_endio_hook *h;
 709
 710        if (bio_op(bio) == REQ_OP_DISCARD)
 711                return;
 712
 713        h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 714        h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 715}
 716
 717static void issue(struct thin_c *tc, struct bio *bio)
 718{
 719        struct pool *pool = tc->pool;
 720        unsigned long flags;
 721
 722        if (!bio_triggers_commit(tc, bio)) {
 723                generic_make_request(bio);
 724                return;
 725        }
 726
 727        /*
 728         * Complete bio with an error if earlier I/O caused changes to
 729         * the metadata that can't be committed e.g, due to I/O errors
 730         * on the metadata device.
 731         */
 732        if (dm_thin_aborted_changes(tc->td)) {
 733                bio_io_error(bio);
 734                return;
 735        }
 736
 737        /*
 738         * Batch together any bios that trigger commits and then issue a
 739         * single commit for them in process_deferred_bios().
 740         */
 741        spin_lock_irqsave(&pool->lock, flags);
 742        bio_list_add(&pool->deferred_flush_bios, bio);
 743        spin_unlock_irqrestore(&pool->lock, flags);
 744}
 745
 746static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 747{
 748        remap_to_origin(tc, bio);
 749        issue(tc, bio);
 750}
 751
 752static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 753                            dm_block_t block)
 754{
 755        remap(tc, bio, block);
 756        issue(tc, bio);
 757}
 758
 759/*----------------------------------------------------------------*/
 760
 761/*
 762 * Bio endio functions.
 763 */
 764struct dm_thin_new_mapping {
 765        struct list_head list;
 766
 767        bool pass_discard:1;
 768        bool maybe_shared:1;
 769
 770        /*
 771         * Track quiescing, copying and zeroing preparation actions.  When this
 772         * counter hits zero the block is prepared and can be inserted into the
 773         * btree.
 774         */
 775        atomic_t prepare_actions;
 776
 777        int err;
 778        struct thin_c *tc;
 779        dm_block_t virt_begin, virt_end;
 780        dm_block_t data_block;
 781        struct dm_bio_prison_cell *cell;
 782
 783        /*
 784         * If the bio covers the whole area of a block then we can avoid
 785         * zeroing or copying.  Instead this bio is hooked.  The bio will
 786         * still be in the cell, so care has to be taken to avoid issuing
 787         * the bio twice.
 788         */
 789        struct bio *bio;
 790        bio_end_io_t *saved_bi_end_io;
 791};
 792
 793static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 794{
 795        struct pool *pool = m->tc->pool;
 796
 797        if (atomic_dec_and_test(&m->prepare_actions)) {
 798                list_add_tail(&m->list, &pool->prepared_mappings);
 799                wake_worker(pool);
 800        }
 801}
 802
 803static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 804{
 805        unsigned long flags;
 806        struct pool *pool = m->tc->pool;
 807
 808        spin_lock_irqsave(&pool->lock, flags);
 809        __complete_mapping_preparation(m);
 810        spin_unlock_irqrestore(&pool->lock, flags);
 811}
 812
 813static void copy_complete(int read_err, unsigned long write_err, void *context)
 814{
 815        struct dm_thin_new_mapping *m = context;
 816
 817        m->err = read_err || write_err ? -EIO : 0;
 818        complete_mapping_preparation(m);
 819}
 820
 821static void overwrite_endio(struct bio *bio)
 822{
 823        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 824        struct dm_thin_new_mapping *m = h->overwrite_mapping;
 825
 826        bio->bi_end_io = m->saved_bi_end_io;
 827
 828        m->err = bio->bi_error;
 829        complete_mapping_preparation(m);
 830}
 831
 832/*----------------------------------------------------------------*/
 833
 834/*
 835 * Workqueue.
 836 */
 837
 838/*
 839 * Prepared mapping jobs.
 840 */
 841
 842/*
 843 * This sends the bios in the cell, except the original holder, back
 844 * to the deferred_bios list.
 845 */
 846static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 847{
 848        struct pool *pool = tc->pool;
 849        unsigned long flags;
 850
 851        spin_lock_irqsave(&tc->lock, flags);
 852        cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 853        spin_unlock_irqrestore(&tc->lock, flags);
 854
 855        wake_worker(pool);
 856}
 857
 858static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 859
 860struct remap_info {
 861        struct thin_c *tc;
 862        struct bio_list defer_bios;
 863        struct bio_list issue_bios;
 864};
 865
 866static void __inc_remap_and_issue_cell(void *context,
 867                                       struct dm_bio_prison_cell *cell)
 868{
 869        struct remap_info *info = context;
 870        struct bio *bio;
 871
 872        while ((bio = bio_list_pop(&cell->bios))) {
 873                if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
 874                    bio_op(bio) == REQ_OP_DISCARD)
 875                        bio_list_add(&info->defer_bios, bio);
 876                else {
 877                        inc_all_io_entry(info->tc->pool, bio);
 878
 879                        /*
 880                         * We can't issue the bios with the bio prison lock
 881                         * held, so we add them to a list to issue on
 882                         * return from this function.
 883                         */
 884                        bio_list_add(&info->issue_bios, bio);
 885                }
 886        }
 887}
 888
 889static void inc_remap_and_issue_cell(struct thin_c *tc,
 890                                     struct dm_bio_prison_cell *cell,
 891                                     dm_block_t block)
 892{
 893        struct bio *bio;
 894        struct remap_info info;
 895
 896        info.tc = tc;
 897        bio_list_init(&info.defer_bios);
 898        bio_list_init(&info.issue_bios);
 899
 900        /*
 901         * We have to be careful to inc any bios we're about to issue
 902         * before the cell is released, and avoid a race with new bios
 903         * being added to the cell.
 904         */
 905        cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 906                           &info, cell);
 907
 908        while ((bio = bio_list_pop(&info.defer_bios)))
 909                thin_defer_bio(tc, bio);
 910
 911        while ((bio = bio_list_pop(&info.issue_bios)))
 912                remap_and_issue(info.tc, bio, block);
 913}
 914
 915static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 916{
 917        cell_error(m->tc->pool, m->cell);
 918        list_del(&m->list);
 919        mempool_free(m, m->tc->pool->mapping_pool);
 920}
 921
 922static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 923{
 924        struct thin_c *tc = m->tc;
 925        struct pool *pool = tc->pool;
 926        struct bio *bio = m->bio;
 927        int r;
 928
 929        if (m->err) {
 930                cell_error(pool, m->cell);
 931                goto out;
 932        }
 933
 934        /*
 935         * Commit the prepared block into the mapping btree.
 936         * Any I/O for this block arriving after this point will get
 937         * remapped to it directly.
 938         */
 939        r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 940        if (r) {
 941                metadata_operation_failed(pool, "dm_thin_insert_block", r);
 942                cell_error(pool, m->cell);
 943                goto out;
 944        }
 945
 946        /*
 947         * Release any bios held while the block was being provisioned.
 948         * If we are processing a write bio that completely covers the block,
 949         * we already processed it so can ignore it now when processing
 950         * the bios in the cell.
 951         */
 952        if (bio) {
 953                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 954                bio_endio(bio);
 955        } else {
 956                inc_all_io_entry(tc->pool, m->cell->holder);
 957                remap_and_issue(tc, m->cell->holder, m->data_block);
 958                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 959        }
 960
 961out:
 962        list_del(&m->list);
 963        mempool_free(m, pool->mapping_pool);
 964}
 965
 966/*----------------------------------------------------------------*/
 967
 968static void free_discard_mapping(struct dm_thin_new_mapping *m)
 969{
 970        struct thin_c *tc = m->tc;
 971        if (m->cell)
 972                cell_defer_no_holder(tc, m->cell);
 973        mempool_free(m, tc->pool->mapping_pool);
 974}
 975
 976static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 977{
 978        bio_io_error(m->bio);
 979        free_discard_mapping(m);
 980}
 981
 982static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 983{
 984        bio_endio(m->bio);
 985        free_discard_mapping(m);
 986}
 987
 988static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 989{
 990        int r;
 991        struct thin_c *tc = m->tc;
 992
 993        r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 994        if (r) {
 995                metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
 996                bio_io_error(m->bio);
 997        } else
 998                bio_endio(m->bio);
 999
1000        cell_defer_no_holder(tc, m->cell);
1001        mempool_free(m, tc->pool->mapping_pool);
1002}
1003
1004/*----------------------------------------------------------------*/
1005
1006static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1007                                                   struct bio *discard_parent)
1008{
1009        /*
1010         * We've already unmapped this range of blocks, but before we
1011         * passdown we have to check that these blocks are now unused.
1012         */
1013        int r = 0;
1014        bool used = true;
1015        struct thin_c *tc = m->tc;
1016        struct pool *pool = tc->pool;
1017        dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1018        struct discard_op op;
1019
1020        begin_discard(&op, tc, discard_parent);
1021        while (b != end) {
1022                /* find start of unmapped run */
1023                for (; b < end; b++) {
1024                        r = dm_pool_block_is_used(pool->pmd, b, &used);
1025                        if (r)
1026                                goto out;
1027
1028                        if (!used)
1029                                break;
1030                }
1031
1032                if (b == end)
1033                        break;
1034
1035                /* find end of run */
1036                for (e = b + 1; e != end; e++) {
1037                        r = dm_pool_block_is_used(pool->pmd, e, &used);
1038                        if (r)
1039                                goto out;
1040
1041                        if (used)
1042                                break;
1043                }
1044
1045                r = issue_discard(&op, b, e);
1046                if (r)
1047                        goto out;
1048
1049                b = e;
1050        }
1051out:
1052        end_discard(&op, r);
1053}
1054
1055static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1056{
1057        unsigned long flags;
1058        struct pool *pool = m->tc->pool;
1059
1060        spin_lock_irqsave(&pool->lock, flags);
1061        list_add_tail(&m->list, &pool->prepared_discards_pt2);
1062        spin_unlock_irqrestore(&pool->lock, flags);
1063        wake_worker(pool);
1064}
1065
1066static void passdown_endio(struct bio *bio)
1067{
1068        /*
1069         * It doesn't matter if the passdown discard failed, we still want
1070         * to unmap (we ignore err).
1071         */
1072        queue_passdown_pt2(bio->bi_private);
1073}
1074
1075static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1076{
1077        int r;
1078        struct thin_c *tc = m->tc;
1079        struct pool *pool = tc->pool;
1080        struct bio *discard_parent;
1081        dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1082
1083        /*
1084         * Only this thread allocates blocks, so we can be sure that the
1085         * newly unmapped blocks will not be allocated before the end of
1086         * the function.
1087         */
1088        r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1089        if (r) {
1090                metadata_operation_failed(pool, "dm_thin_remove_range", r);
1091                bio_io_error(m->bio);
1092                cell_defer_no_holder(tc, m->cell);
1093                mempool_free(m, pool->mapping_pool);
1094                return;
1095        }
1096
1097        discard_parent = bio_alloc(GFP_NOIO, 1);
1098        if (!discard_parent) {
1099                DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1100                       dm_device_name(tc->pool->pool_md));
1101                queue_passdown_pt2(m);
1102
1103        } else {
1104                discard_parent->bi_end_io = passdown_endio;
1105                discard_parent->bi_private = m;
1106
1107                if (m->maybe_shared)
1108                        passdown_double_checking_shared_status(m, discard_parent);
1109                else {
1110                        struct discard_op op;
1111
1112                        begin_discard(&op, tc, discard_parent);
1113                        r = issue_discard(&op, m->data_block, data_end);
1114                        end_discard(&op, r);
1115                }
1116        }
1117
1118        /*
1119         * Increment the unmapped blocks.  This prevents a race between the
1120         * passdown io and reallocation of freed blocks.
1121         */
1122        r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1123        if (r) {
1124                metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1125                bio_io_error(m->bio);
1126                cell_defer_no_holder(tc, m->cell);
1127                mempool_free(m, pool->mapping_pool);
1128                return;
1129        }
1130}
1131
1132static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1133{
1134        int r;
1135        struct thin_c *tc = m->tc;
1136        struct pool *pool = tc->pool;
1137
1138        /*
1139         * The passdown has completed, so now we can decrement all those
1140         * unmapped blocks.
1141         */
1142        r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1143                                   m->data_block + (m->virt_end - m->virt_begin));
1144        if (r) {
1145                metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1146                bio_io_error(m->bio);
1147        } else
1148                bio_endio(m->bio);
1149
1150        cell_defer_no_holder(tc, m->cell);
1151        mempool_free(m, pool->mapping_pool);
1152}
1153
1154static void process_prepared(struct pool *pool, struct list_head *head,
1155                             process_mapping_fn *fn)
1156{
1157        unsigned long flags;
1158        struct list_head maps;
1159        struct dm_thin_new_mapping *m, *tmp;
1160
1161        INIT_LIST_HEAD(&maps);
1162        spin_lock_irqsave(&pool->lock, flags);
1163        list_splice_init(head, &maps);
1164        spin_unlock_irqrestore(&pool->lock, flags);
1165
1166        list_for_each_entry_safe(m, tmp, &maps, list)
1167                (*fn)(m);
1168}
1169
1170/*
1171 * Deferred bio jobs.
1172 */
1173static int io_overlaps_block(struct pool *pool, struct bio *bio)
1174{
1175        return bio->bi_iter.bi_size ==
1176                (pool->sectors_per_block << SECTOR_SHIFT);
1177}
1178
1179static int io_overwrites_block(struct pool *pool, struct bio *bio)
1180{
1181        return (bio_data_dir(bio) == WRITE) &&
1182                io_overlaps_block(pool, bio);
1183}
1184
1185static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1186                               bio_end_io_t *fn)
1187{
1188        *save = bio->bi_end_io;
1189        bio->bi_end_io = fn;
1190}
1191
1192static int ensure_next_mapping(struct pool *pool)
1193{
1194        if (pool->next_mapping)
1195                return 0;
1196
1197        pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1198
1199        return pool->next_mapping ? 0 : -ENOMEM;
1200}
1201
1202static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1203{
1204        struct dm_thin_new_mapping *m = pool->next_mapping;
1205
1206        BUG_ON(!pool->next_mapping);
1207
1208        memset(m, 0, sizeof(struct dm_thin_new_mapping));
1209        INIT_LIST_HEAD(&m->list);
1210        m->bio = NULL;
1211
1212        pool->next_mapping = NULL;
1213
1214        return m;
1215}
1216
1217static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1218                    sector_t begin, sector_t end)
1219{
1220        int r;
1221        struct dm_io_region to;
1222
1223        to.bdev = tc->pool_dev->bdev;
1224        to.sector = begin;
1225        to.count = end - begin;
1226
1227        r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1228        if (r < 0) {
1229                DMERR_LIMIT("dm_kcopyd_zero() failed");
1230                copy_complete(1, 1, m);
1231        }
1232}
1233
1234static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1235                                      dm_block_t data_begin,
1236                                      struct dm_thin_new_mapping *m)
1237{
1238        struct pool *pool = tc->pool;
1239        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1240
1241        h->overwrite_mapping = m;
1242        m->bio = bio;
1243        save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1244        inc_all_io_entry(pool, bio);
1245        remap_and_issue(tc, bio, data_begin);
1246}
1247
1248/*
1249 * A partial copy also needs to zero the uncopied region.
1250 */
1251static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1252                          struct dm_dev *origin, dm_block_t data_origin,
1253                          dm_block_t data_dest,
1254                          struct dm_bio_prison_cell *cell, struct bio *bio,
1255                          sector_t len)
1256{
1257        int r;
1258        struct pool *pool = tc->pool;
1259        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1260
1261        m->tc = tc;
1262        m->virt_begin = virt_block;
1263        m->virt_end = virt_block + 1u;
1264        m->data_block = data_dest;
1265        m->cell = cell;
1266
1267        /*
1268         * quiesce action + copy action + an extra reference held for the
1269         * duration of this function (we may need to inc later for a
1270         * partial zero).
1271         */
1272        atomic_set(&m->prepare_actions, 3);
1273
1274        if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1275                complete_mapping_preparation(m); /* already quiesced */
1276
1277        /*
1278         * IO to pool_dev remaps to the pool target's data_dev.
1279         *
1280         * If the whole block of data is being overwritten, we can issue the
1281         * bio immediately. Otherwise we use kcopyd to clone the data first.
1282         */
1283        if (io_overwrites_block(pool, bio))
1284                remap_and_issue_overwrite(tc, bio, data_dest, m);
1285        else {
1286                struct dm_io_region from, to;
1287
1288                from.bdev = origin->bdev;
1289                from.sector = data_origin * pool->sectors_per_block;
1290                from.count = len;
1291
1292                to.bdev = tc->pool_dev->bdev;
1293                to.sector = data_dest * pool->sectors_per_block;
1294                to.count = len;
1295
1296                r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1297                                   0, copy_complete, m);
1298                if (r < 0) {
1299                        DMERR_LIMIT("dm_kcopyd_copy() failed");
1300                        copy_complete(1, 1, m);
1301
1302                        /*
1303                         * We allow the zero to be issued, to simplify the
1304                         * error path.  Otherwise we'd need to start
1305                         * worrying about decrementing the prepare_actions
1306                         * counter.
1307                         */
1308                }
1309
1310                /*
1311                 * Do we need to zero a tail region?
1312                 */
1313                if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1314                        atomic_inc(&m->prepare_actions);
1315                        ll_zero(tc, m,
1316                                data_dest * pool->sectors_per_block + len,
1317                                (data_dest + 1) * pool->sectors_per_block);
1318                }
1319        }
1320
1321        complete_mapping_preparation(m); /* drop our ref */
1322}
1323
1324static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1325                                   dm_block_t data_origin, dm_block_t data_dest,
1326                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1327{
1328        schedule_copy(tc, virt_block, tc->pool_dev,
1329                      data_origin, data_dest, cell, bio,
1330                      tc->pool->sectors_per_block);
1331}
1332
1333static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1334                          dm_block_t data_block, struct dm_bio_prison_cell *cell,
1335                          struct bio *bio)
1336{
1337        struct pool *pool = tc->pool;
1338        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1339
1340        atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1341        m->tc = tc;
1342        m->virt_begin = virt_block;
1343        m->virt_end = virt_block + 1u;
1344        m->data_block = data_block;
1345        m->cell = cell;
1346
1347        /*
1348         * If the whole block of data is being overwritten or we are not
1349         * zeroing pre-existing data, we can issue the bio immediately.
1350         * Otherwise we use kcopyd to zero the data first.
1351         */
1352        if (pool->pf.zero_new_blocks) {
1353                if (io_overwrites_block(pool, bio))
1354                        remap_and_issue_overwrite(tc, bio, data_block, m);
1355                else
1356                        ll_zero(tc, m, data_block * pool->sectors_per_block,
1357                                (data_block + 1) * pool->sectors_per_block);
1358        } else
1359                process_prepared_mapping(m);
1360}
1361
1362static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1363                                   dm_block_t data_dest,
1364                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1365{
1366        struct pool *pool = tc->pool;
1367        sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1368        sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1369
1370        if (virt_block_end <= tc->origin_size)
1371                schedule_copy(tc, virt_block, tc->origin_dev,
1372                              virt_block, data_dest, cell, bio,
1373                              pool->sectors_per_block);
1374
1375        else if (virt_block_begin < tc->origin_size)
1376                schedule_copy(tc, virt_block, tc->origin_dev,
1377                              virt_block, data_dest, cell, bio,
1378                              tc->origin_size - virt_block_begin);
1379
1380        else
1381                schedule_zero(tc, virt_block, data_dest, cell, bio);
1382}
1383
1384static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1385
1386static void check_for_space(struct pool *pool)
1387{
1388        int r;
1389        dm_block_t nr_free;
1390
1391        if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1392                return;
1393
1394        r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1395        if (r)
1396                return;
1397
1398        if (nr_free)
1399                set_pool_mode(pool, PM_WRITE);
1400}
1401
1402/*
1403 * A non-zero return indicates read_only or fail_io mode.
1404 * Many callers don't care about the return value.
1405 */
1406static int commit(struct pool *pool)
1407{
1408        int r;
1409
1410        if (get_pool_mode(pool) >= PM_READ_ONLY)
1411                return -EINVAL;
1412
1413        r = dm_pool_commit_metadata(pool->pmd);
1414        if (r)
1415                metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1416        else
1417                check_for_space(pool);
1418
1419        return r;
1420}
1421
1422static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1423{
1424        unsigned long flags;
1425
1426        if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1427                DMWARN("%s: reached low water mark for data device: sending event.",
1428                       dm_device_name(pool->pool_md));
1429                spin_lock_irqsave(&pool->lock, flags);
1430                pool->low_water_triggered = true;
1431                spin_unlock_irqrestore(&pool->lock, flags);
1432                dm_table_event(pool->ti->table);
1433        }
1434}
1435
1436static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1437{
1438        int r;
1439        dm_block_t free_blocks;
1440        struct pool *pool = tc->pool;
1441
1442        if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1443                return -EINVAL;
1444
1445        r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1446        if (r) {
1447                metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1448                return r;
1449        }
1450
1451        check_low_water_mark(pool, free_blocks);
1452
1453        if (!free_blocks) {
1454                /*
1455                 * Try to commit to see if that will free up some
1456                 * more space.
1457                 */
1458                r = commit(pool);
1459                if (r)
1460                        return r;
1461
1462                r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1463                if (r) {
1464                        metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1465                        return r;
1466                }
1467
1468                if (!free_blocks) {
1469                        set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1470                        return -ENOSPC;
1471                }
1472        }
1473
1474        r = dm_pool_alloc_data_block(pool->pmd, result);
1475        if (r) {
1476                metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1477                return r;
1478        }
1479
1480        return 0;
1481}
1482
1483/*
1484 * If we have run out of space, queue bios until the device is
1485 * resumed, presumably after having been reloaded with more space.
1486 */
1487static void retry_on_resume(struct bio *bio)
1488{
1489        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1490        struct thin_c *tc = h->tc;
1491        unsigned long flags;
1492
1493        spin_lock_irqsave(&tc->lock, flags);
1494        bio_list_add(&tc->retry_on_resume_list, bio);
1495        spin_unlock_irqrestore(&tc->lock, flags);
1496}
1497
1498static int should_error_unserviceable_bio(struct pool *pool)
1499{
1500        enum pool_mode m = get_pool_mode(pool);
1501
1502        switch (m) {
1503        case PM_WRITE:
1504                /* Shouldn't get here */
1505                DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1506                return -EIO;
1507
1508        case PM_OUT_OF_DATA_SPACE:
1509                return pool->pf.error_if_no_space ? -ENOSPC : 0;
1510
1511        case PM_READ_ONLY:
1512        case PM_FAIL:
1513                return -EIO;
1514        default:
1515                /* Shouldn't get here */
1516                DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1517                return -EIO;
1518        }
1519}
1520
1521static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1522{
1523        int error = should_error_unserviceable_bio(pool);
1524
1525        if (error) {
1526                bio->bi_error = error;
1527                bio_endio(bio);
1528        } else
1529                retry_on_resume(bio);
1530}
1531
1532static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1533{
1534        struct bio *bio;
1535        struct bio_list bios;
1536        int error;
1537
1538        error = should_error_unserviceable_bio(pool);
1539        if (error) {
1540                cell_error_with_code(pool, cell, error);
1541                return;
1542        }
1543
1544        bio_list_init(&bios);
1545        cell_release(pool, cell, &bios);
1546
1547        while ((bio = bio_list_pop(&bios)))
1548                retry_on_resume(bio);
1549}
1550
1551static void process_discard_cell_no_passdown(struct thin_c *tc,
1552                                             struct dm_bio_prison_cell *virt_cell)
1553{
1554        struct pool *pool = tc->pool;
1555        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1556
1557        /*
1558         * We don't need to lock the data blocks, since there's no
1559         * passdown.  We only lock data blocks for allocation and breaking sharing.
1560         */
1561        m->tc = tc;
1562        m->virt_begin = virt_cell->key.block_begin;
1563        m->virt_end = virt_cell->key.block_end;
1564        m->cell = virt_cell;
1565        m->bio = virt_cell->holder;
1566
1567        if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1568                pool->process_prepared_discard(m);
1569}
1570
1571static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1572                                 struct bio *bio)
1573{
1574        struct pool *pool = tc->pool;
1575
1576        int r;
1577        bool maybe_shared;
1578        struct dm_cell_key data_key;
1579        struct dm_bio_prison_cell *data_cell;
1580        struct dm_thin_new_mapping *m;
1581        dm_block_t virt_begin, virt_end, data_begin;
1582
1583        while (begin != end) {
1584                r = ensure_next_mapping(pool);
1585                if (r)
1586                        /* we did our best */
1587                        return;
1588
1589                r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1590                                              &data_begin, &maybe_shared);
1591                if (r)
1592                        /*
1593                         * Silently fail, letting any mappings we've
1594                         * created complete.
1595                         */
1596                        break;
1597
1598                build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1599                if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1600                        /* contention, we'll give up with this range */
1601                        begin = virt_end;
1602                        continue;
1603                }
1604
1605                /*
1606                 * IO may still be going to the destination block.  We must
1607                 * quiesce before we can do the removal.
1608                 */
1609                m = get_next_mapping(pool);
1610                m->tc = tc;
1611                m->maybe_shared = maybe_shared;
1612                m->virt_begin = virt_begin;
1613                m->virt_end = virt_end;
1614                m->data_block = data_begin;
1615                m->cell = data_cell;
1616                m->bio = bio;
1617
1618                /*
1619                 * The parent bio must not complete before sub discard bios are
1620                 * chained to it (see end_discard's bio_chain)!
1621                 *
1622                 * This per-mapping bi_remaining increment is paired with
1623                 * the implicit decrement that occurs via bio_endio() in
1624                 * end_discard().
1625                 */
1626                bio_inc_remaining(bio);
1627                if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1628                        pool->process_prepared_discard(m);
1629
1630                begin = virt_end;
1631        }
1632}
1633
1634static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1635{
1636        struct bio *bio = virt_cell->holder;
1637        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1638
1639        /*
1640         * The virt_cell will only get freed once the origin bio completes.
1641         * This means it will remain locked while all the individual
1642         * passdown bios are in flight.
1643         */
1644        h->cell = virt_cell;
1645        break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1646
1647        /*
1648         * We complete the bio now, knowing that the bi_remaining field
1649         * will prevent completion until the sub range discards have
1650         * completed.
1651         */
1652        bio_endio(bio);
1653}
1654
1655static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1656{
1657        dm_block_t begin, end;
1658        struct dm_cell_key virt_key;
1659        struct dm_bio_prison_cell *virt_cell;
1660
1661        get_bio_block_range(tc, bio, &begin, &end);
1662        if (begin == end) {
1663                /*
1664                 * The discard covers less than a block.
1665                 */
1666                bio_endio(bio);
1667                return;
1668        }
1669
1670        build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1671        if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1672                /*
1673                 * Potential starvation issue: We're relying on the
1674                 * fs/application being well behaved, and not trying to
1675                 * send IO to a region at the same time as discarding it.
1676                 * If they do this persistently then it's possible this
1677                 * cell will never be granted.
1678                 */
1679                return;
1680
1681        tc->pool->process_discard_cell(tc, virt_cell);
1682}
1683
1684static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1685                          struct dm_cell_key *key,
1686                          struct dm_thin_lookup_result *lookup_result,
1687                          struct dm_bio_prison_cell *cell)
1688{
1689        int r;
1690        dm_block_t data_block;
1691        struct pool *pool = tc->pool;
1692
1693        r = alloc_data_block(tc, &data_block);
1694        switch (r) {
1695        case 0:
1696                schedule_internal_copy(tc, block, lookup_result->block,
1697                                       data_block, cell, bio);
1698                break;
1699
1700        case -ENOSPC:
1701                retry_bios_on_resume(pool, cell);
1702                break;
1703
1704        default:
1705                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1706                            __func__, r);
1707                cell_error(pool, cell);
1708                break;
1709        }
1710}
1711
1712static void __remap_and_issue_shared_cell(void *context,
1713                                          struct dm_bio_prison_cell *cell)
1714{
1715        struct remap_info *info = context;
1716        struct bio *bio;
1717
1718        while ((bio = bio_list_pop(&cell->bios))) {
1719                if ((bio_data_dir(bio) == WRITE) ||
1720                    (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
1721                     bio_op(bio) == REQ_OP_DISCARD))
1722                        bio_list_add(&info->defer_bios, bio);
1723                else {
1724                        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1725
1726                        h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1727                        inc_all_io_entry(info->tc->pool, bio);
1728                        bio_list_add(&info->issue_bios, bio);
1729                }
1730        }
1731}
1732
1733static void remap_and_issue_shared_cell(struct thin_c *tc,
1734                                        struct dm_bio_prison_cell *cell,
1735                                        dm_block_t block)
1736{
1737        struct bio *bio;
1738        struct remap_info info;
1739
1740        info.tc = tc;
1741        bio_list_init(&info.defer_bios);
1742        bio_list_init(&info.issue_bios);
1743
1744        cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1745                           &info, cell);
1746
1747        while ((bio = bio_list_pop(&info.defer_bios)))
1748                thin_defer_bio(tc, bio);
1749
1750        while ((bio = bio_list_pop(&info.issue_bios)))
1751                remap_and_issue(tc, bio, block);
1752}
1753
1754static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1755                               dm_block_t block,
1756                               struct dm_thin_lookup_result *lookup_result,
1757                               struct dm_bio_prison_cell *virt_cell)
1758{
1759        struct dm_bio_prison_cell *data_cell;
1760        struct pool *pool = tc->pool;
1761        struct dm_cell_key key;
1762
1763        /*
1764         * If cell is already occupied, then sharing is already in the process
1765         * of being broken so we have nothing further to do here.
1766         */
1767        build_data_key(tc->td, lookup_result->block, &key);
1768        if (bio_detain(pool, &key, bio, &data_cell)) {
1769                cell_defer_no_holder(tc, virt_cell);
1770                return;
1771        }
1772
1773        if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1774                break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1775                cell_defer_no_holder(tc, virt_cell);
1776        } else {
1777                struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1778
1779                h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1780                inc_all_io_entry(pool, bio);
1781                remap_and_issue(tc, bio, lookup_result->block);
1782
1783                remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1784                remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1785        }
1786}
1787
1788static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1789                            struct dm_bio_prison_cell *cell)
1790{
1791        int r;
1792        dm_block_t data_block;
1793        struct pool *pool = tc->pool;
1794
1795        /*
1796         * Remap empty bios (flushes) immediately, without provisioning.
1797         */
1798        if (!bio->bi_iter.bi_size) {
1799                inc_all_io_entry(pool, bio);
1800                cell_defer_no_holder(tc, cell);
1801
1802                remap_and_issue(tc, bio, 0);
1803                return;
1804        }
1805
1806        /*
1807         * Fill read bios with zeroes and complete them immediately.
1808         */
1809        if (bio_data_dir(bio) == READ) {
1810                zero_fill_bio(bio);
1811                cell_defer_no_holder(tc, cell);
1812                bio_endio(bio);
1813                return;
1814        }
1815
1816        r = alloc_data_block(tc, &data_block);
1817        switch (r) {
1818        case 0:
1819                if (tc->origin_dev)
1820                        schedule_external_copy(tc, block, data_block, cell, bio);
1821                else
1822                        schedule_zero(tc, block, data_block, cell, bio);
1823                break;
1824
1825        case -ENOSPC:
1826                retry_bios_on_resume(pool, cell);
1827                break;
1828
1829        default:
1830                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1831                            __func__, r);
1832                cell_error(pool, cell);
1833                break;
1834        }
1835}
1836
1837static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1838{
1839        int r;
1840        struct pool *pool = tc->pool;
1841        struct bio *bio = cell->holder;
1842        dm_block_t block = get_bio_block(tc, bio);
1843        struct dm_thin_lookup_result lookup_result;
1844
1845        if (tc->requeue_mode) {
1846                cell_requeue(pool, cell);
1847                return;
1848        }
1849
1850        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1851        switch (r) {
1852        case 0:
1853                if (lookup_result.shared)
1854                        process_shared_bio(tc, bio, block, &lookup_result, cell);
1855                else {
1856                        inc_all_io_entry(pool, bio);
1857                        remap_and_issue(tc, bio, lookup_result.block);
1858                        inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1859                }
1860                break;
1861
1862        case -ENODATA:
1863                if (bio_data_dir(bio) == READ && tc->origin_dev) {
1864                        inc_all_io_entry(pool, bio);
1865                        cell_defer_no_holder(tc, cell);
1866
1867                        if (bio_end_sector(bio) <= tc->origin_size)
1868                                remap_to_origin_and_issue(tc, bio);
1869
1870                        else if (bio->bi_iter.bi_sector < tc->origin_size) {
1871                                zero_fill_bio(bio);
1872                                bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1873                                remap_to_origin_and_issue(tc, bio);
1874
1875                        } else {
1876                                zero_fill_bio(bio);
1877                                bio_endio(bio);
1878                        }
1879                } else
1880                        provision_block(tc, bio, block, cell);
1881                break;
1882
1883        default:
1884                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1885                            __func__, r);
1886                cell_defer_no_holder(tc, cell);
1887                bio_io_error(bio);
1888                break;
1889        }
1890}
1891
1892static void process_bio(struct thin_c *tc, struct bio *bio)
1893{
1894        struct pool *pool = tc->pool;
1895        dm_block_t block = get_bio_block(tc, bio);
1896        struct dm_bio_prison_cell *cell;
1897        struct dm_cell_key key;
1898
1899        /*
1900         * If cell is already occupied, then the block is already
1901         * being provisioned so we have nothing further to do here.
1902         */
1903        build_virtual_key(tc->td, block, &key);
1904        if (bio_detain(pool, &key, bio, &cell))
1905                return;
1906
1907        process_cell(tc, cell);
1908}
1909
1910static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1911                                    struct dm_bio_prison_cell *cell)
1912{
1913        int r;
1914        int rw = bio_data_dir(bio);
1915        dm_block_t block = get_bio_block(tc, bio);
1916        struct dm_thin_lookup_result lookup_result;
1917
1918        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1919        switch (r) {
1920        case 0:
1921                if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1922                        handle_unserviceable_bio(tc->pool, bio);
1923                        if (cell)
1924                                cell_defer_no_holder(tc, cell);
1925                } else {
1926                        inc_all_io_entry(tc->pool, bio);
1927                        remap_and_issue(tc, bio, lookup_result.block);
1928                        if (cell)
1929                                inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1930                }
1931                break;
1932
1933        case -ENODATA:
1934                if (cell)
1935                        cell_defer_no_holder(tc, cell);
1936                if (rw != READ) {
1937                        handle_unserviceable_bio(tc->pool, bio);
1938                        break;
1939                }
1940
1941                if (tc->origin_dev) {
1942                        inc_all_io_entry(tc->pool, bio);
1943                        remap_to_origin_and_issue(tc, bio);
1944                        break;
1945                }
1946
1947                zero_fill_bio(bio);
1948                bio_endio(bio);
1949                break;
1950
1951        default:
1952                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1953                            __func__, r);
1954                if (cell)
1955                        cell_defer_no_holder(tc, cell);
1956                bio_io_error(bio);
1957                break;
1958        }
1959}
1960
1961static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1962{
1963        __process_bio_read_only(tc, bio, NULL);
1964}
1965
1966static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1967{
1968        __process_bio_read_only(tc, cell->holder, cell);
1969}
1970
1971static void process_bio_success(struct thin_c *tc, struct bio *bio)
1972{
1973        bio_endio(bio);
1974}
1975
1976static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1977{
1978        bio_io_error(bio);
1979}
1980
1981static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1982{
1983        cell_success(tc->pool, cell);
1984}
1985
1986static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1987{
1988        cell_error(tc->pool, cell);
1989}
1990
1991/*
1992 * FIXME: should we also commit due to size of transaction, measured in
1993 * metadata blocks?
1994 */
1995static int need_commit_due_to_time(struct pool *pool)
1996{
1997        return !time_in_range(jiffies, pool->last_commit_jiffies,
1998                              pool->last_commit_jiffies + COMMIT_PERIOD);
1999}
2000
2001#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2002#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2003
2004static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2005{
2006        struct rb_node **rbp, *parent;
2007        struct dm_thin_endio_hook *pbd;
2008        sector_t bi_sector = bio->bi_iter.bi_sector;
2009
2010        rbp = &tc->sort_bio_list.rb_node;
2011        parent = NULL;
2012        while (*rbp) {
2013                parent = *rbp;
2014                pbd = thin_pbd(parent);
2015
2016                if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2017                        rbp = &(*rbp)->rb_left;
2018                else
2019                        rbp = &(*rbp)->rb_right;
2020        }
2021
2022        pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2023        rb_link_node(&pbd->rb_node, parent, rbp);
2024        rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2025}
2026
2027static void __extract_sorted_bios(struct thin_c *tc)
2028{
2029        struct rb_node *node;
2030        struct dm_thin_endio_hook *pbd;
2031        struct bio *bio;
2032
2033        for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2034                pbd = thin_pbd(node);
2035                bio = thin_bio(pbd);
2036
2037                bio_list_add(&tc->deferred_bio_list, bio);
2038                rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2039        }
2040
2041        WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2042}
2043
2044static void __sort_thin_deferred_bios(struct thin_c *tc)
2045{
2046        struct bio *bio;
2047        struct bio_list bios;
2048
2049        bio_list_init(&bios);
2050        bio_list_merge(&bios, &tc->deferred_bio_list);
2051        bio_list_init(&tc->deferred_bio_list);
2052
2053        /* Sort deferred_bio_list using rb-tree */
2054        while ((bio = bio_list_pop(&bios)))
2055                __thin_bio_rb_add(tc, bio);
2056
2057        /*
2058         * Transfer the sorted bios in sort_bio_list back to
2059         * deferred_bio_list to allow lockless submission of
2060         * all bios.
2061         */
2062        __extract_sorted_bios(tc);
2063}
2064
2065static void process_thin_deferred_bios(struct thin_c *tc)
2066{
2067        struct pool *pool = tc->pool;
2068        unsigned long flags;
2069        struct bio *bio;
2070        struct bio_list bios;
2071        struct blk_plug plug;
2072        unsigned count = 0;
2073
2074        if (tc->requeue_mode) {
2075                error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2076                return;
2077        }
2078
2079        bio_list_init(&bios);
2080
2081        spin_lock_irqsave(&tc->lock, flags);
2082
2083        if (bio_list_empty(&tc->deferred_bio_list)) {
2084                spin_unlock_irqrestore(&tc->lock, flags);
2085                return;
2086        }
2087
2088        __sort_thin_deferred_bios(tc);
2089
2090        bio_list_merge(&bios, &tc->deferred_bio_list);
2091        bio_list_init(&tc->deferred_bio_list);
2092
2093        spin_unlock_irqrestore(&tc->lock, flags);
2094
2095        blk_start_plug(&plug);
2096        while ((bio = bio_list_pop(&bios))) {
2097                /*
2098                 * If we've got no free new_mapping structs, and processing
2099                 * this bio might require one, we pause until there are some
2100                 * prepared mappings to process.
2101                 */
2102                if (ensure_next_mapping(pool)) {
2103                        spin_lock_irqsave(&tc->lock, flags);
2104                        bio_list_add(&tc->deferred_bio_list, bio);
2105                        bio_list_merge(&tc->deferred_bio_list, &bios);
2106                        spin_unlock_irqrestore(&tc->lock, flags);
2107                        break;
2108                }
2109
2110                if (bio_op(bio) == REQ_OP_DISCARD)
2111                        pool->process_discard(tc, bio);
2112                else
2113                        pool->process_bio(tc, bio);
2114
2115                if ((count++ & 127) == 0) {
2116                        throttle_work_update(&pool->throttle);
2117                        dm_pool_issue_prefetches(pool->pmd);
2118                }
2119        }
2120        blk_finish_plug(&plug);
2121}
2122
2123static int cmp_cells(const void *lhs, const void *rhs)
2124{
2125        struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2126        struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2127
2128        BUG_ON(!lhs_cell->holder);
2129        BUG_ON(!rhs_cell->holder);
2130
2131        if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2132                return -1;
2133
2134        if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2135                return 1;
2136
2137        return 0;
2138}
2139
2140static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2141{
2142        unsigned count = 0;
2143        struct dm_bio_prison_cell *cell, *tmp;
2144
2145        list_for_each_entry_safe(cell, tmp, cells, user_list) {
2146                if (count >= CELL_SORT_ARRAY_SIZE)
2147                        break;
2148
2149                pool->cell_sort_array[count++] = cell;
2150                list_del(&cell->user_list);
2151        }
2152
2153        sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2154
2155        return count;
2156}
2157
2158static void process_thin_deferred_cells(struct thin_c *tc)
2159{
2160        struct pool *pool = tc->pool;
2161        unsigned long flags;
2162        struct list_head cells;
2163        struct dm_bio_prison_cell *cell;
2164        unsigned i, j, count;
2165
2166        INIT_LIST_HEAD(&cells);
2167
2168        spin_lock_irqsave(&tc->lock, flags);
2169        list_splice_init(&tc->deferred_cells, &cells);
2170        spin_unlock_irqrestore(&tc->lock, flags);
2171
2172        if (list_empty(&cells))
2173                return;
2174
2175        do {
2176                count = sort_cells(tc->pool, &cells);
2177
2178                for (i = 0; i < count; i++) {
2179                        cell = pool->cell_sort_array[i];
2180                        BUG_ON(!cell->holder);
2181
2182                        /*
2183                         * If we've got no free new_mapping structs, and processing
2184                         * this bio might require one, we pause until there are some
2185                         * prepared mappings to process.
2186                         */
2187                        if (ensure_next_mapping(pool)) {
2188                                for (j = i; j < count; j++)
2189                                        list_add(&pool->cell_sort_array[j]->user_list, &cells);
2190
2191                                spin_lock_irqsave(&tc->lock, flags);
2192                                list_splice(&cells, &tc->deferred_cells);
2193                                spin_unlock_irqrestore(&tc->lock, flags);
2194                                return;
2195                        }
2196
2197                        if (bio_op(cell->holder) == REQ_OP_DISCARD)
2198                                pool->process_discard_cell(tc, cell);
2199                        else
2200                                pool->process_cell(tc, cell);
2201                }
2202        } while (!list_empty(&cells));
2203}
2204
2205static void thin_get(struct thin_c *tc);
2206static void thin_put(struct thin_c *tc);
2207
2208/*
2209 * We can't hold rcu_read_lock() around code that can block.  So we
2210 * find a thin with the rcu lock held; bump a refcount; then drop
2211 * the lock.
2212 */
2213static struct thin_c *get_first_thin(struct pool *pool)
2214{
2215        struct thin_c *tc = NULL;
2216
2217        rcu_read_lock();
2218        if (!list_empty(&pool->active_thins)) {
2219                tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2220                thin_get(tc);
2221        }
2222        rcu_read_unlock();
2223
2224        return tc;
2225}
2226
2227static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2228{
2229        struct thin_c *old_tc = tc;
2230
2231        rcu_read_lock();
2232        list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2233                thin_get(tc);
2234                thin_put(old_tc);
2235                rcu_read_unlock();
2236                return tc;
2237        }
2238        thin_put(old_tc);
2239        rcu_read_unlock();
2240
2241        return NULL;
2242}
2243
2244static void process_deferred_bios(struct pool *pool)
2245{
2246        unsigned long flags;
2247        struct bio *bio;
2248        struct bio_list bios;
2249        struct thin_c *tc;
2250
2251        tc = get_first_thin(pool);
2252        while (tc) {
2253                process_thin_deferred_cells(tc);
2254                process_thin_deferred_bios(tc);
2255                tc = get_next_thin(pool, tc);
2256        }
2257
2258        /*
2259         * If there are any deferred flush bios, we must commit
2260         * the metadata before issuing them.
2261         */
2262        bio_list_init(&bios);
2263        spin_lock_irqsave(&pool->lock, flags);
2264        bio_list_merge(&bios, &pool->deferred_flush_bios);
2265        bio_list_init(&pool->deferred_flush_bios);
2266        spin_unlock_irqrestore(&pool->lock, flags);
2267
2268        if (bio_list_empty(&bios) &&
2269            !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2270                return;
2271
2272        if (commit(pool)) {
2273                while ((bio = bio_list_pop(&bios)))
2274                        bio_io_error(bio);
2275                return;
2276        }
2277        pool->last_commit_jiffies = jiffies;
2278
2279        while ((bio = bio_list_pop(&bios)))
2280                generic_make_request(bio);
2281}
2282
2283static void do_worker(struct work_struct *ws)
2284{
2285        struct pool *pool = container_of(ws, struct pool, worker);
2286
2287        throttle_work_start(&pool->throttle);
2288        dm_pool_issue_prefetches(pool->pmd);
2289        throttle_work_update(&pool->throttle);
2290        process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2291        throttle_work_update(&pool->throttle);
2292        process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2293        throttle_work_update(&pool->throttle);
2294        process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2295        throttle_work_update(&pool->throttle);
2296        process_deferred_bios(pool);
2297        throttle_work_complete(&pool->throttle);
2298}
2299
2300/*
2301 * We want to commit periodically so that not too much
2302 * unwritten data builds up.
2303 */
2304static void do_waker(struct work_struct *ws)
2305{
2306        struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2307        wake_worker(pool);
2308        queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2309}
2310
2311static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2312
2313/*
2314 * We're holding onto IO to allow userland time to react.  After the
2315 * timeout either the pool will have been resized (and thus back in
2316 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2317 */
2318static void do_no_space_timeout(struct work_struct *ws)
2319{
2320        struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2321                                         no_space_timeout);
2322
2323        if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2324                pool->pf.error_if_no_space = true;
2325                notify_of_pool_mode_change_to_oods(pool);
2326                error_retry_list_with_code(pool, -ENOSPC);
2327        }
2328}
2329
2330/*----------------------------------------------------------------*/
2331
2332struct pool_work {
2333        struct work_struct worker;
2334        struct completion complete;
2335};
2336
2337static struct pool_work *to_pool_work(struct work_struct *ws)
2338{
2339        return container_of(ws, struct pool_work, worker);
2340}
2341
2342static void pool_work_complete(struct pool_work *pw)
2343{
2344        complete(&pw->complete);
2345}
2346
2347static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2348                           void (*fn)(struct work_struct *))
2349{
2350        INIT_WORK_ONSTACK(&pw->worker, fn);
2351        init_completion(&pw->complete);
2352        queue_work(pool->wq, &pw->worker);
2353        wait_for_completion(&pw->complete);
2354}
2355
2356/*----------------------------------------------------------------*/
2357
2358struct noflush_work {
2359        struct pool_work pw;
2360        struct thin_c *tc;
2361};
2362
2363static struct noflush_work *to_noflush(struct work_struct *ws)
2364{
2365        return container_of(to_pool_work(ws), struct noflush_work, pw);
2366}
2367
2368static void do_noflush_start(struct work_struct *ws)
2369{
2370        struct noflush_work *w = to_noflush(ws);
2371        w->tc->requeue_mode = true;
2372        requeue_io(w->tc);
2373        pool_work_complete(&w->pw);
2374}
2375
2376static void do_noflush_stop(struct work_struct *ws)
2377{
2378        struct noflush_work *w = to_noflush(ws);
2379        w->tc->requeue_mode = false;
2380        pool_work_complete(&w->pw);
2381}
2382
2383static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2384{
2385        struct noflush_work w;
2386
2387        w.tc = tc;
2388        pool_work_wait(&w.pw, tc->pool, fn);
2389}
2390
2391/*----------------------------------------------------------------*/
2392
2393static enum pool_mode get_pool_mode(struct pool *pool)
2394{
2395        return pool->pf.mode;
2396}
2397
2398static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2399{
2400        dm_table_event(pool->ti->table);
2401        DMINFO("%s: switching pool to %s mode",
2402               dm_device_name(pool->pool_md), new_mode);
2403}
2404
2405static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2406{
2407        if (!pool->pf.error_if_no_space)
2408                notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2409        else
2410                notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2411}
2412
2413static bool passdown_enabled(struct pool_c *pt)
2414{
2415        return pt->adjusted_pf.discard_passdown;
2416}
2417
2418static void set_discard_callbacks(struct pool *pool)
2419{
2420        struct pool_c *pt = pool->ti->private;
2421
2422        if (passdown_enabled(pt)) {
2423                pool->process_discard_cell = process_discard_cell_passdown;
2424                pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2425                pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2426        } else {
2427                pool->process_discard_cell = process_discard_cell_no_passdown;
2428                pool->process_prepared_discard = process_prepared_discard_no_passdown;
2429        }
2430}
2431
2432static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2433{
2434        struct pool_c *pt = pool->ti->private;
2435        bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2436        enum pool_mode old_mode = get_pool_mode(pool);
2437        unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2438
2439        /*
2440         * Never allow the pool to transition to PM_WRITE mode if user
2441         * intervention is required to verify metadata and data consistency.
2442         */
2443        if (new_mode == PM_WRITE && needs_check) {
2444                DMERR("%s: unable to switch pool to write mode until repaired.",
2445                      dm_device_name(pool->pool_md));
2446                if (old_mode != new_mode)
2447                        new_mode = old_mode;
2448                else
2449                        new_mode = PM_READ_ONLY;
2450        }
2451        /*
2452         * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2453         * not going to recover without a thin_repair.  So we never let the
2454         * pool move out of the old mode.
2455         */
2456        if (old_mode == PM_FAIL)
2457                new_mode = old_mode;
2458
2459        switch (new_mode) {
2460        case PM_FAIL:
2461                if (old_mode != new_mode)
2462                        notify_of_pool_mode_change(pool, "failure");
2463                dm_pool_metadata_read_only(pool->pmd);
2464                pool->process_bio = process_bio_fail;
2465                pool->process_discard = process_bio_fail;
2466                pool->process_cell = process_cell_fail;
2467                pool->process_discard_cell = process_cell_fail;
2468                pool->process_prepared_mapping = process_prepared_mapping_fail;
2469                pool->process_prepared_discard = process_prepared_discard_fail;
2470
2471                error_retry_list(pool);
2472                break;
2473
2474        case PM_READ_ONLY:
2475                if (old_mode != new_mode)
2476                        notify_of_pool_mode_change(pool, "read-only");
2477                dm_pool_metadata_read_only(pool->pmd);
2478                pool->process_bio = process_bio_read_only;
2479                pool->process_discard = process_bio_success;
2480                pool->process_cell = process_cell_read_only;
2481                pool->process_discard_cell = process_cell_success;
2482                pool->process_prepared_mapping = process_prepared_mapping_fail;
2483                pool->process_prepared_discard = process_prepared_discard_success;
2484
2485                error_retry_list(pool);
2486                break;
2487
2488        case PM_OUT_OF_DATA_SPACE:
2489                /*
2490                 * Ideally we'd never hit this state; the low water mark
2491                 * would trigger userland to extend the pool before we
2492                 * completely run out of data space.  However, many small
2493                 * IOs to unprovisioned space can consume data space at an
2494                 * alarming rate.  Adjust your low water mark if you're
2495                 * frequently seeing this mode.
2496                 */
2497                if (old_mode != new_mode)
2498                        notify_of_pool_mode_change_to_oods(pool);
2499                pool->out_of_data_space = true;
2500                pool->process_bio = process_bio_read_only;
2501                pool->process_discard = process_discard_bio;
2502                pool->process_cell = process_cell_read_only;
2503                pool->process_prepared_mapping = process_prepared_mapping;
2504                set_discard_callbacks(pool);
2505
2506                if (!pool->pf.error_if_no_space && no_space_timeout)
2507                        queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2508                break;
2509
2510        case PM_WRITE:
2511                if (old_mode != new_mode)
2512                        notify_of_pool_mode_change(pool, "write");
2513                pool->out_of_data_space = false;
2514                pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2515                dm_pool_metadata_read_write(pool->pmd);
2516                pool->process_bio = process_bio;
2517                pool->process_discard = process_discard_bio;
2518                pool->process_cell = process_cell;
2519                pool->process_prepared_mapping = process_prepared_mapping;
2520                set_discard_callbacks(pool);
2521                break;
2522        }
2523
2524        pool->pf.mode = new_mode;
2525        /*
2526         * The pool mode may have changed, sync it so bind_control_target()
2527         * doesn't cause an unexpected mode transition on resume.
2528         */
2529        pt->adjusted_pf.mode = new_mode;
2530}
2531
2532static void abort_transaction(struct pool *pool)
2533{
2534        const char *dev_name = dm_device_name(pool->pool_md);
2535
2536        DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2537        if (dm_pool_abort_metadata(pool->pmd)) {
2538                DMERR("%s: failed to abort metadata transaction", dev_name);
2539                set_pool_mode(pool, PM_FAIL);
2540        }
2541
2542        if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2543                DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2544                set_pool_mode(pool, PM_FAIL);
2545        }
2546}
2547
2548static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2549{
2550        DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2551                    dm_device_name(pool->pool_md), op, r);
2552
2553        abort_transaction(pool);
2554        set_pool_mode(pool, PM_READ_ONLY);
2555}
2556
2557/*----------------------------------------------------------------*/
2558
2559/*
2560 * Mapping functions.
2561 */
2562
2563/*
2564 * Called only while mapping a thin bio to hand it over to the workqueue.
2565 */
2566static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2567{
2568        unsigned long flags;
2569        struct pool *pool = tc->pool;
2570
2571        spin_lock_irqsave(&tc->lock, flags);
2572        bio_list_add(&tc->deferred_bio_list, bio);
2573        spin_unlock_irqrestore(&tc->lock, flags);
2574
2575        wake_worker(pool);
2576}
2577
2578static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2579{
2580        struct pool *pool = tc->pool;
2581
2582        throttle_lock(&pool->throttle);
2583        thin_defer_bio(tc, bio);
2584        throttle_unlock(&pool->throttle);
2585}
2586
2587static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2588{
2589        unsigned long flags;
2590        struct pool *pool = tc->pool;
2591
2592        throttle_lock(&pool->throttle);
2593        spin_lock_irqsave(&tc->lock, flags);
2594        list_add_tail(&cell->user_list, &tc->deferred_cells);
2595        spin_unlock_irqrestore(&tc->lock, flags);
2596        throttle_unlock(&pool->throttle);
2597
2598        wake_worker(pool);
2599}
2600
2601static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2602{
2603        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2604
2605        h->tc = tc;
2606        h->shared_read_entry = NULL;
2607        h->all_io_entry = NULL;
2608        h->overwrite_mapping = NULL;
2609        h->cell = NULL;
2610}
2611
2612/*
2613 * Non-blocking function called from the thin target's map function.
2614 */
2615static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2616{
2617        int r;
2618        struct thin_c *tc = ti->private;
2619        dm_block_t block = get_bio_block(tc, bio);
2620        struct dm_thin_device *td = tc->td;
2621        struct dm_thin_lookup_result result;
2622        struct dm_bio_prison_cell *virt_cell, *data_cell;
2623        struct dm_cell_key key;
2624
2625        thin_hook_bio(tc, bio);
2626
2627        if (tc->requeue_mode) {
2628                bio->bi_error = DM_ENDIO_REQUEUE;
2629                bio_endio(bio);
2630                return DM_MAPIO_SUBMITTED;
2631        }
2632
2633        if (get_pool_mode(tc->pool) == PM_FAIL) {
2634                bio_io_error(bio);
2635                return DM_MAPIO_SUBMITTED;
2636        }
2637
2638        if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
2639            bio_op(bio) == REQ_OP_DISCARD) {
2640                thin_defer_bio_with_throttle(tc, bio);
2641                return DM_MAPIO_SUBMITTED;
2642        }
2643
2644        /*
2645         * We must hold the virtual cell before doing the lookup, otherwise
2646         * there's a race with discard.
2647         */
2648        build_virtual_key(tc->td, block, &key);
2649        if (bio_detain(tc->pool, &key, bio, &virt_cell))
2650                return DM_MAPIO_SUBMITTED;
2651
2652        r = dm_thin_find_block(td, block, 0, &result);
2653
2654        /*
2655         * Note that we defer readahead too.
2656         */
2657        switch (r) {
2658        case 0:
2659                if (unlikely(result.shared)) {
2660                        /*
2661                         * We have a race condition here between the
2662                         * result.shared value returned by the lookup and
2663                         * snapshot creation, which may cause new
2664                         * sharing.
2665                         *
2666                         * To avoid this always quiesce the origin before
2667                         * taking the snap.  You want to do this anyway to
2668                         * ensure a consistent application view
2669                         * (i.e. lockfs).
2670                         *
2671                         * More distant ancestors are irrelevant. The
2672                         * shared flag will be set in their case.
2673                         */
2674                        thin_defer_cell(tc, virt_cell);
2675                        return DM_MAPIO_SUBMITTED;
2676                }
2677
2678                build_data_key(tc->td, result.block, &key);
2679                if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2680                        cell_defer_no_holder(tc, virt_cell);
2681                        return DM_MAPIO_SUBMITTED;
2682                }
2683
2684                inc_all_io_entry(tc->pool, bio);
2685                cell_defer_no_holder(tc, data_cell);
2686                cell_defer_no_holder(tc, virt_cell);
2687
2688                remap(tc, bio, result.block);
2689                return DM_MAPIO_REMAPPED;
2690
2691        case -ENODATA:
2692        case -EWOULDBLOCK:
2693                thin_defer_cell(tc, virt_cell);
2694                return DM_MAPIO_SUBMITTED;
2695
2696        default:
2697                /*
2698                 * Must always call bio_io_error on failure.
2699                 * dm_thin_find_block can fail with -EINVAL if the
2700                 * pool is switched to fail-io mode.
2701                 */
2702                bio_io_error(bio);
2703                cell_defer_no_holder(tc, virt_cell);
2704                return DM_MAPIO_SUBMITTED;
2705        }
2706}
2707
2708static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2709{
2710        struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2711        struct request_queue *q;
2712
2713        if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2714                return 1;
2715
2716        q = bdev_get_queue(pt->data_dev->bdev);
2717        return bdi_congested(&q->backing_dev_info, bdi_bits);
2718}
2719
2720static void requeue_bios(struct pool *pool)
2721{
2722        unsigned long flags;
2723        struct thin_c *tc;
2724
2725        rcu_read_lock();
2726        list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2727                spin_lock_irqsave(&tc->lock, flags);
2728                bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2729                bio_list_init(&tc->retry_on_resume_list);
2730                spin_unlock_irqrestore(&tc->lock, flags);
2731        }
2732        rcu_read_unlock();
2733}
2734
2735/*----------------------------------------------------------------
2736 * Binding of control targets to a pool object
2737 *--------------------------------------------------------------*/
2738static bool data_dev_supports_discard(struct pool_c *pt)
2739{
2740        struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2741
2742        return q && blk_queue_discard(q);
2743}
2744
2745static bool is_factor(sector_t block_size, uint32_t n)
2746{
2747        return !sector_div(block_size, n);
2748}
2749
2750/*
2751 * If discard_passdown was enabled verify that the data device
2752 * supports discards.  Disable discard_passdown if not.
2753 */
2754static void disable_passdown_if_not_supported(struct pool_c *pt)
2755{
2756        struct pool *pool = pt->pool;
2757        struct block_device *data_bdev = pt->data_dev->bdev;
2758        struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2759        const char *reason = NULL;
2760        char buf[BDEVNAME_SIZE];
2761
2762        if (!pt->adjusted_pf.discard_passdown)
2763                return;
2764
2765        if (!data_dev_supports_discard(pt))
2766                reason = "discard unsupported";
2767
2768        else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2769                reason = "max discard sectors smaller than a block";
2770
2771        if (reason) {
2772                DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2773                pt->adjusted_pf.discard_passdown = false;
2774        }
2775}
2776
2777static int bind_control_target(struct pool *pool, struct dm_target *ti)
2778{
2779        struct pool_c *pt = ti->private;
2780
2781        /*
2782         * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2783         */
2784        enum pool_mode old_mode = get_pool_mode(pool);
2785        enum pool_mode new_mode = pt->adjusted_pf.mode;
2786
2787        /*
2788         * Don't change the pool's mode until set_pool_mode() below.
2789         * Otherwise the pool's process_* function pointers may
2790         * not match the desired pool mode.
2791         */
2792        pt->adjusted_pf.mode = old_mode;
2793
2794        pool->ti = ti;
2795        pool->pf = pt->adjusted_pf;
2796        pool->low_water_blocks = pt->low_water_blocks;
2797
2798        set_pool_mode(pool, new_mode);
2799
2800        return 0;
2801}
2802
2803static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2804{
2805        if (pool->ti == ti)
2806                pool->ti = NULL;
2807}
2808
2809/*----------------------------------------------------------------
2810 * Pool creation
2811 *--------------------------------------------------------------*/
2812/* Initialize pool features. */
2813static void pool_features_init(struct pool_features *pf)
2814{
2815        pf->mode = PM_WRITE;
2816        pf->zero_new_blocks = true;
2817        pf->discard_enabled = true;
2818        pf->discard_passdown = true;
2819        pf->error_if_no_space = false;
2820}
2821
2822static void __pool_destroy(struct pool *pool)
2823{
2824        __pool_table_remove(pool);
2825
2826        vfree(pool->cell_sort_array);
2827        if (dm_pool_metadata_close(pool->pmd) < 0)
2828                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2829
2830        dm_bio_prison_destroy(pool->prison);
2831        dm_kcopyd_client_destroy(pool->copier);
2832
2833        if (pool->wq)
2834                destroy_workqueue(pool->wq);
2835
2836        if (pool->next_mapping)
2837                mempool_free(pool->next_mapping, pool->mapping_pool);
2838        mempool_destroy(pool->mapping_pool);
2839        dm_deferred_set_destroy(pool->shared_read_ds);
2840        dm_deferred_set_destroy(pool->all_io_ds);
2841        kfree(pool);
2842}
2843
2844static struct kmem_cache *_new_mapping_cache;
2845
2846static struct pool *pool_create(struct mapped_device *pool_md,
2847                                struct block_device *metadata_dev,
2848                                unsigned long block_size,
2849                                int read_only, char **error)
2850{
2851        int r;
2852        void *err_p;
2853        struct pool *pool;
2854        struct dm_pool_metadata *pmd;
2855        bool format_device = read_only ? false : true;
2856
2857        pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2858        if (IS_ERR(pmd)) {
2859                *error = "Error creating metadata object";
2860                return (struct pool *)pmd;
2861        }
2862
2863        pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2864        if (!pool) {
2865                *error = "Error allocating memory for pool";
2866                err_p = ERR_PTR(-ENOMEM);
2867                goto bad_pool;
2868        }
2869
2870        pool->pmd = pmd;
2871        pool->sectors_per_block = block_size;
2872        if (block_size & (block_size - 1))
2873                pool->sectors_per_block_shift = -1;
2874        else
2875                pool->sectors_per_block_shift = __ffs(block_size);
2876        pool->low_water_blocks = 0;
2877        pool_features_init(&pool->pf);
2878        pool->prison = dm_bio_prison_create();
2879        if (!pool->prison) {
2880                *error = "Error creating pool's bio prison";
2881                err_p = ERR_PTR(-ENOMEM);
2882                goto bad_prison;
2883        }
2884
2885        pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2886        if (IS_ERR(pool->copier)) {
2887                r = PTR_ERR(pool->copier);
2888                *error = "Error creating pool's kcopyd client";
2889                err_p = ERR_PTR(r);
2890                goto bad_kcopyd_client;
2891        }
2892
2893        /*
2894         * Create singlethreaded workqueue that will service all devices
2895         * that use this metadata.
2896         */
2897        pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2898        if (!pool->wq) {
2899                *error = "Error creating pool's workqueue";
2900                err_p = ERR_PTR(-ENOMEM);
2901                goto bad_wq;
2902        }
2903
2904        throttle_init(&pool->throttle);
2905        INIT_WORK(&pool->worker, do_worker);
2906        INIT_DELAYED_WORK(&pool->waker, do_waker);
2907        INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2908        spin_lock_init(&pool->lock);
2909        bio_list_init(&pool->deferred_flush_bios);
2910        INIT_LIST_HEAD(&pool->prepared_mappings);
2911        INIT_LIST_HEAD(&pool->prepared_discards);
2912        INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2913        INIT_LIST_HEAD(&pool->active_thins);
2914        pool->low_water_triggered = false;
2915        pool->suspended = true;
2916        pool->out_of_data_space = false;
2917
2918        pool->shared_read_ds = dm_deferred_set_create();
2919        if (!pool->shared_read_ds) {
2920                *error = "Error creating pool's shared read deferred set";
2921                err_p = ERR_PTR(-ENOMEM);
2922                goto bad_shared_read_ds;
2923        }
2924
2925        pool->all_io_ds = dm_deferred_set_create();
2926        if (!pool->all_io_ds) {
2927                *error = "Error creating pool's all io deferred set";
2928                err_p = ERR_PTR(-ENOMEM);
2929                goto bad_all_io_ds;
2930        }
2931
2932        pool->next_mapping = NULL;
2933        pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2934                                                      _new_mapping_cache);
2935        if (!pool->mapping_pool) {
2936                *error = "Error creating pool's mapping mempool";
2937                err_p = ERR_PTR(-ENOMEM);
2938                goto bad_mapping_pool;
2939        }
2940
2941        pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2942        if (!pool->cell_sort_array) {
2943                *error = "Error allocating cell sort array";
2944                err_p = ERR_PTR(-ENOMEM);
2945                goto bad_sort_array;
2946        }
2947
2948        pool->ref_count = 1;
2949        pool->last_commit_jiffies = jiffies;
2950        pool->pool_md = pool_md;
2951        pool->md_dev = metadata_dev;
2952        __pool_table_insert(pool);
2953
2954        return pool;
2955
2956bad_sort_array:
2957        mempool_destroy(pool->mapping_pool);
2958bad_mapping_pool:
2959        dm_deferred_set_destroy(pool->all_io_ds);
2960bad_all_io_ds:
2961        dm_deferred_set_destroy(pool->shared_read_ds);
2962bad_shared_read_ds:
2963        destroy_workqueue(pool->wq);
2964bad_wq:
2965        dm_kcopyd_client_destroy(pool->copier);
2966bad_kcopyd_client:
2967        dm_bio_prison_destroy(pool->prison);
2968bad_prison:
2969        kfree(pool);
2970bad_pool:
2971        if (dm_pool_metadata_close(pmd))
2972                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2973
2974        return err_p;
2975}
2976
2977static void __pool_inc(struct pool *pool)
2978{
2979        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2980        pool->ref_count++;
2981}
2982
2983static void __pool_dec(struct pool *pool)
2984{
2985        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2986        BUG_ON(!pool->ref_count);
2987        if (!--pool->ref_count)
2988                __pool_destroy(pool);
2989}
2990
2991static struct pool *__pool_find(struct mapped_device *pool_md,
2992                                struct block_device *metadata_dev,
2993                                unsigned long block_size, int read_only,
2994                                char **error, int *created)
2995{
2996        struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2997
2998        if (pool) {
2999                if (pool->pool_md != pool_md) {
3000                        *error = "metadata device already in use by a pool";
3001                        return ERR_PTR(-EBUSY);
3002                }
3003                __pool_inc(pool);
3004
3005        } else {
3006                pool = __pool_table_lookup(pool_md);
3007                if (pool) {
3008                        if (pool->md_dev != metadata_dev) {
3009                                *error = "different pool cannot replace a pool";
3010                                return ERR_PTR(-EINVAL);
3011                        }
3012                        __pool_inc(pool);
3013
3014                } else {
3015                        pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3016                        *created = 1;
3017                }
3018        }
3019
3020        return pool;
3021}
3022
3023/*----------------------------------------------------------------
3024 * Pool target methods
3025 *--------------------------------------------------------------*/
3026static void pool_dtr(struct dm_target *ti)
3027{
3028        struct pool_c *pt = ti->private;
3029
3030        mutex_lock(&dm_thin_pool_table.mutex);
3031
3032        unbind_control_target(pt->pool, ti);
3033        __pool_dec(pt->pool);
3034        dm_put_device(ti, pt->metadata_dev);
3035        dm_put_device(ti, pt->data_dev);
3036        kfree(pt);
3037
3038        mutex_unlock(&dm_thin_pool_table.mutex);
3039}
3040
3041static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3042                               struct dm_target *ti)
3043{
3044        int r;
3045        unsigned argc;
3046        const char *arg_name;
3047
3048        static struct dm_arg _args[] = {
3049                {0, 4, "Invalid number of pool feature arguments"},
3050        };
3051
3052        /*
3053         * No feature arguments supplied.
3054         */
3055        if (!as->argc)
3056                return 0;
3057
3058        r = dm_read_arg_group(_args, as, &argc, &ti->error);
3059        if (r)
3060                return -EINVAL;
3061
3062        while (argc && !r) {
3063                arg_name = dm_shift_arg(as);
3064                argc--;
3065
3066                if (!strcasecmp(arg_name, "skip_block_zeroing"))
3067                        pf->zero_new_blocks = false;
3068
3069                else if (!strcasecmp(arg_name, "ignore_discard"))
3070                        pf->discard_enabled = false;
3071
3072                else if (!strcasecmp(arg_name, "no_discard_passdown"))
3073                        pf->discard_passdown = false;
3074
3075                else if (!strcasecmp(arg_name, "read_only"))
3076                        pf->mode = PM_READ_ONLY;
3077
3078                else if (!strcasecmp(arg_name, "error_if_no_space"))
3079                        pf->error_if_no_space = true;
3080
3081                else {
3082                        ti->error = "Unrecognised pool feature requested";
3083                        r = -EINVAL;
3084                        break;
3085                }
3086        }
3087
3088        return r;
3089}
3090
3091static void metadata_low_callback(void *context)
3092{
3093        struct pool *pool = context;
3094
3095        DMWARN("%s: reached low water mark for metadata device: sending event.",
3096               dm_device_name(pool->pool_md));
3097
3098        dm_table_event(pool->ti->table);
3099}
3100
3101static sector_t get_dev_size(struct block_device *bdev)
3102{
3103        return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3104}
3105
3106static void warn_if_metadata_device_too_big(struct block_device *bdev)
3107{
3108        sector_t metadata_dev_size = get_dev_size(bdev);
3109        char buffer[BDEVNAME_SIZE];
3110
3111        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3112                DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3113                       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3114}
3115
3116static sector_t get_metadata_dev_size(struct block_device *bdev)
3117{
3118        sector_t metadata_dev_size = get_dev_size(bdev);
3119
3120        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3121                metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3122
3123        return metadata_dev_size;
3124}
3125
3126static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3127{
3128        sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3129
3130        sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3131
3132        return metadata_dev_size;
3133}
3134
3135/*
3136 * When a metadata threshold is crossed a dm event is triggered, and
3137 * userland should respond by growing the metadata device.  We could let
3138 * userland set the threshold, like we do with the data threshold, but I'm
3139 * not sure they know enough to do this well.
3140 */
3141static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3142{
3143        /*
3144         * 4M is ample for all ops with the possible exception of thin
3145         * device deletion which is harmless if it fails (just retry the
3146         * delete after you've grown the device).
3147         */
3148        dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3149        return min((dm_block_t)1024ULL /* 4M */, quarter);
3150}
3151
3152/*
3153 * thin-pool <metadata dev> <data dev>
3154 *           <data block size (sectors)>
3155 *           <low water mark (blocks)>
3156 *           [<#feature args> [<arg>]*]
3157 *
3158 * Optional feature arguments are:
3159 *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3160 *           ignore_discard: disable discard
3161 *           no_discard_passdown: don't pass discards down to the data device
3162 *           read_only: Don't allow any changes to be made to the pool metadata.
3163 *           error_if_no_space: error IOs, instead of queueing, if no space.
3164 */
3165static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3166{
3167        int r, pool_created = 0;
3168        struct pool_c *pt;
3169        struct pool *pool;
3170        struct pool_features pf;
3171        struct dm_arg_set as;
3172        struct dm_dev *data_dev;
3173        unsigned long block_size;
3174        dm_block_t low_water_blocks;
3175        struct dm_dev *metadata_dev;
3176        fmode_t metadata_mode;
3177
3178        /*
3179         * FIXME Remove validation from scope of lock.
3180         */
3181        mutex_lock(&dm_thin_pool_table.mutex);
3182
3183        if (argc < 4) {
3184                ti->error = "Invalid argument count";
3185                r = -EINVAL;
3186                goto out_unlock;
3187        }
3188
3189        as.argc = argc;
3190        as.argv = argv;
3191
3192        /*
3193         * Set default pool features.
3194         */
3195        pool_features_init(&pf);
3196
3197        dm_consume_args(&as, 4);
3198        r = parse_pool_features(&as, &pf, ti);
3199        if (r)
3200                goto out_unlock;
3201
3202        metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3203        r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3204        if (r) {
3205                ti->error = "Error opening metadata block device";
3206                goto out_unlock;
3207        }
3208        warn_if_metadata_device_too_big(metadata_dev->bdev);
3209
3210        r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3211        if (r) {
3212                ti->error = "Error getting data device";
3213                goto out_metadata;
3214        }
3215
3216        if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3217            block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3218            block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3219            block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3220                ti->error = "Invalid block size";
3221                r = -EINVAL;
3222                goto out;
3223        }
3224
3225        if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3226                ti->error = "Invalid low water mark";
3227                r = -EINVAL;
3228                goto out;
3229        }
3230
3231        pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3232        if (!pt) {
3233                r = -ENOMEM;
3234                goto out;
3235        }
3236
3237        pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3238                           block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3239        if (IS_ERR(pool)) {
3240                r = PTR_ERR(pool);
3241                goto out_free_pt;
3242        }
3243
3244        /*
3245         * 'pool_created' reflects whether this is the first table load.
3246         * Top level discard support is not allowed to be changed after
3247         * initial load.  This would require a pool reload to trigger thin
3248         * device changes.
3249         */
3250        if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3251                ti->error = "Discard support cannot be disabled once enabled";
3252                r = -EINVAL;
3253                goto out_flags_changed;
3254        }
3255
3256        pt->pool = pool;
3257        pt->ti = ti;
3258        pt->metadata_dev = metadata_dev;
3259        pt->data_dev = data_dev;
3260        pt->low_water_blocks = low_water_blocks;
3261        pt->adjusted_pf = pt->requested_pf = pf;
3262        ti->num_flush_bios = 1;
3263
3264        /*
3265         * Only need to enable discards if the pool should pass
3266         * them down to the data device.  The thin device's discard
3267         * processing will cause mappings to be removed from the btree.
3268         */
3269        ti->discard_zeroes_data_unsupported = true;
3270        if (pf.discard_enabled && pf.discard_passdown) {
3271                ti->num_discard_bios = 1;
3272
3273                /*
3274                 * Setting 'discards_supported' circumvents the normal
3275                 * stacking of discard limits (this keeps the pool and
3276                 * thin devices' discard limits consistent).
3277                 */
3278                ti->discards_supported = true;
3279        }
3280        ti->private = pt;
3281
3282        r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3283                                                calc_metadata_threshold(pt),
3284                                                metadata_low_callback,
3285                                                pool);
3286        if (r)
3287                goto out_flags_changed;
3288
3289        pt->callbacks.congested_fn = pool_is_congested;
3290        dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3291
3292        mutex_unlock(&dm_thin_pool_table.mutex);
3293
3294        return 0;
3295
3296out_flags_changed:
3297        __pool_dec(pool);
3298out_free_pt:
3299        kfree(pt);
3300out:
3301        dm_put_device(ti, data_dev);
3302out_metadata:
3303        dm_put_device(ti, metadata_dev);
3304out_unlock:
3305        mutex_unlock(&dm_thin_pool_table.mutex);
3306
3307        return r;
3308}
3309
3310static int pool_map(struct dm_target *ti, struct bio *bio)
3311{
3312        int r;
3313        struct pool_c *pt = ti->private;
3314        struct pool *pool = pt->pool;
3315        unsigned long flags;
3316
3317        /*
3318         * As this is a singleton target, ti->begin is always zero.
3319         */
3320        spin_lock_irqsave(&pool->lock, flags);
3321        bio->bi_bdev = pt->data_dev->bdev;
3322        r = DM_MAPIO_REMAPPED;
3323        spin_unlock_irqrestore(&pool->lock, flags);
3324
3325        return r;
3326}
3327
3328static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3329{
3330        int r;
3331        struct pool_c *pt = ti->private;
3332        struct pool *pool = pt->pool;
3333        sector_t data_size = ti->len;
3334        dm_block_t sb_data_size;
3335
3336        *need_commit = false;
3337
3338        (void) sector_div(data_size, pool->sectors_per_block);
3339
3340        r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3341        if (r) {
3342                DMERR("%s: failed to retrieve data device size",
3343                      dm_device_name(pool->pool_md));
3344                return r;
3345        }
3346
3347        if (data_size < sb_data_size) {
3348                DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3349                      dm_device_name(pool->pool_md),
3350                      (unsigned long long)data_size, sb_data_size);
3351                return -EINVAL;
3352
3353        } else if (data_size > sb_data_size) {
3354                if (dm_pool_metadata_needs_check(pool->pmd)) {
3355                        DMERR("%s: unable to grow the data device until repaired.",
3356                              dm_device_name(pool->pool_md));
3357                        return 0;
3358                }
3359
3360                if (sb_data_size)
3361                        DMINFO("%s: growing the data device from %llu to %llu blocks",
3362                               dm_device_name(pool->pool_md),
3363                               sb_data_size, (unsigned long long)data_size);
3364                r = dm_pool_resize_data_dev(pool->pmd, data_size);
3365                if (r) {
3366                        metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3367                        return r;
3368                }
3369
3370                *need_commit = true;
3371        }
3372
3373        return 0;
3374}
3375
3376static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3377{
3378        int r;
3379        struct pool_c *pt = ti->private;
3380        struct pool *pool = pt->pool;
3381        dm_block_t metadata_dev_size, sb_metadata_dev_size;
3382
3383        *need_commit = false;
3384
3385        metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3386
3387        r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3388        if (r) {
3389                DMERR("%s: failed to retrieve metadata device size",
3390                      dm_device_name(pool->pool_md));
3391                return r;
3392        }
3393
3394        if (metadata_dev_size < sb_metadata_dev_size) {
3395                DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3396                      dm_device_name(pool->pool_md),
3397                      metadata_dev_size, sb_metadata_dev_size);
3398                return -EINVAL;
3399
3400        } else if (metadata_dev_size > sb_metadata_dev_size) {
3401                if (dm_pool_metadata_needs_check(pool->pmd)) {
3402                        DMERR("%s: unable to grow the metadata device until repaired.",
3403                              dm_device_name(pool->pool_md));
3404                        return 0;
3405                }
3406
3407                warn_if_metadata_device_too_big(pool->md_dev);
3408                DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3409                       dm_device_name(pool->pool_md),
3410                       sb_metadata_dev_size, metadata_dev_size);
3411                r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3412                if (r) {
3413                        metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3414                        return r;
3415                }
3416
3417                *need_commit = true;
3418        }
3419
3420        return 0;
3421}
3422
3423/*
3424 * Retrieves the number of blocks of the data device from
3425 * the superblock and compares it to the actual device size,
3426 * thus resizing the data device in case it has grown.
3427 *
3428 * This both copes with opening preallocated data devices in the ctr
3429 * being followed by a resume
3430 * -and-
3431 * calling the resume method individually after userspace has
3432 * grown the data device in reaction to a table event.
3433 */
3434static int pool_preresume(struct dm_target *ti)
3435{
3436        int r;
3437        bool need_commit1, need_commit2;
3438        struct pool_c *pt = ti->private;
3439        struct pool *pool = pt->pool;
3440
3441        /*
3442         * Take control of the pool object.
3443         */
3444        r = bind_control_target(pool, ti);
3445        if (r)
3446                return r;
3447
3448        r = maybe_resize_data_dev(ti, &need_commit1);
3449        if (r)
3450                return r;
3451
3452        r = maybe_resize_metadata_dev(ti, &need_commit2);
3453        if (r)
3454                return r;
3455
3456        if (need_commit1 || need_commit2)
3457                (void) commit(pool);
3458
3459        return 0;
3460}
3461
3462static void pool_suspend_active_thins(struct pool *pool)
3463{
3464        struct thin_c *tc;
3465
3466        /* Suspend all active thin devices */
3467        tc = get_first_thin(pool);
3468        while (tc) {
3469                dm_internal_suspend_noflush(tc->thin_md);
3470                tc = get_next_thin(pool, tc);
3471        }
3472}
3473
3474static void pool_resume_active_thins(struct pool *pool)
3475{
3476        struct thin_c *tc;
3477
3478        /* Resume all active thin devices */
3479        tc = get_first_thin(pool);
3480        while (tc) {
3481                dm_internal_resume(tc->thin_md);
3482                tc = get_next_thin(pool, tc);
3483        }
3484}
3485
3486static void pool_resume(struct dm_target *ti)
3487{
3488        struct pool_c *pt = ti->private;
3489        struct pool *pool = pt->pool;
3490        unsigned long flags;
3491
3492        /*
3493         * Must requeue active_thins' bios and then resume
3494         * active_thins _before_ clearing 'suspend' flag.
3495         */
3496        requeue_bios(pool);
3497        pool_resume_active_thins(pool);
3498
3499        spin_lock_irqsave(&pool->lock, flags);
3500        pool->low_water_triggered = false;
3501        pool->suspended = false;
3502        spin_unlock_irqrestore(&pool->lock, flags);
3503
3504        do_waker(&pool->waker.work);
3505}
3506
3507static void pool_presuspend(struct dm_target *ti)
3508{
3509        struct pool_c *pt = ti->private;
3510        struct pool *pool = pt->pool;
3511        unsigned long flags;
3512
3513        spin_lock_irqsave(&pool->lock, flags);
3514        pool->suspended = true;
3515        spin_unlock_irqrestore(&pool->lock, flags);
3516
3517        pool_suspend_active_thins(pool);
3518}
3519
3520static void pool_presuspend_undo(struct dm_target *ti)
3521{
3522        struct pool_c *pt = ti->private;
3523        struct pool *pool = pt->pool;
3524        unsigned long flags;
3525
3526        pool_resume_active_thins(pool);
3527
3528        spin_lock_irqsave(&pool->lock, flags);
3529        pool->suspended = false;
3530        spin_unlock_irqrestore(&pool->lock, flags);
3531}
3532
3533static void pool_postsuspend(struct dm_target *ti)
3534{
3535        struct pool_c *pt = ti->private;
3536        struct pool *pool = pt->pool;
3537
3538        cancel_delayed_work_sync(&pool->waker);
3539        cancel_delayed_work_sync(&pool->no_space_timeout);
3540        flush_workqueue(pool->wq);
3541        (void) commit(pool);
3542}
3543
3544static int check_arg_count(unsigned argc, unsigned args_required)
3545{
3546        if (argc != args_required) {
3547                DMWARN("Message received with %u arguments instead of %u.",
3548                       argc, args_required);
3549                return -EINVAL;
3550        }
3551
3552        return 0;
3553}
3554
3555static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3556{
3557        if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3558            *dev_id <= MAX_DEV_ID)
3559                return 0;
3560
3561        if (warning)
3562                DMWARN("Message received with invalid device id: %s", arg);
3563
3564        return -EINVAL;
3565}
3566
3567static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3568{
3569        dm_thin_id dev_id;
3570        int r;
3571
3572        r = check_arg_count(argc, 2);
3573        if (r)
3574                return r;
3575
3576        r = read_dev_id(argv[1], &dev_id, 1);
3577        if (r)
3578                return r;
3579
3580        r = dm_pool_create_thin(pool->pmd, dev_id);
3581        if (r) {
3582                DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3583                       argv[1]);
3584                return r;
3585        }
3586
3587        return 0;
3588}
3589
3590static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3591{
3592        dm_thin_id dev_id;
3593        dm_thin_id origin_dev_id;
3594        int r;
3595
3596        r = check_arg_count(argc, 3);
3597        if (r)
3598                return r;
3599
3600        r = read_dev_id(argv[1], &dev_id, 1);
3601        if (r)
3602                return r;
3603
3604        r = read_dev_id(argv[2], &origin_dev_id, 1);
3605        if (r)
3606                return r;
3607
3608        r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3609        if (r) {
3610                DMWARN("Creation of new snapshot %s of device %s failed.",
3611                       argv[1], argv[2]);
3612                return r;
3613        }
3614
3615        return 0;
3616}
3617
3618static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3619{
3620        dm_thin_id dev_id;
3621        int r;
3622
3623        r = check_arg_count(argc, 2);
3624        if (r)
3625                return r;
3626
3627        r = read_dev_id(argv[1], &dev_id, 1);
3628        if (r)
3629                return r;
3630
3631        r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3632        if (r)
3633                DMWARN("Deletion of thin device %s failed.", argv[1]);
3634
3635        return r;
3636}
3637
3638static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3639{
3640        dm_thin_id old_id, new_id;
3641        int r;
3642
3643        r = check_arg_count(argc, 3);
3644        if (r)
3645                return r;
3646
3647        if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3648                DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3649                return -EINVAL;
3650        }
3651
3652        if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3653                DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3654                return -EINVAL;
3655        }
3656
3657        r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3658        if (r) {
3659                DMWARN("Failed to change transaction id from %s to %s.",
3660                       argv[1], argv[2]);
3661                return r;
3662        }
3663
3664        return 0;
3665}
3666
3667static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3668{
3669        int r;
3670
3671        r = check_arg_count(argc, 1);
3672        if (r)
3673                return r;
3674
3675        (void) commit(pool);
3676
3677        r = dm_pool_reserve_metadata_snap(pool->pmd);
3678        if (r)
3679                DMWARN("reserve_metadata_snap message failed.");
3680
3681        return r;
3682}
3683
3684static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3685{
3686        int r;
3687
3688        r = check_arg_count(argc, 1);
3689        if (r)
3690                return r;
3691
3692        r = dm_pool_release_metadata_snap(pool->pmd);
3693        if (r)
3694                DMWARN("release_metadata_snap message failed.");
3695
3696        return r;
3697}
3698
3699/*
3700 * Messages supported:
3701 *   create_thin        <dev_id>
3702 *   create_snap        <dev_id> <origin_id>
3703 *   delete             <dev_id>
3704 *   set_transaction_id <current_trans_id> <new_trans_id>
3705 *   reserve_metadata_snap
3706 *   release_metadata_snap
3707 */
3708static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3709{
3710        int r = -EINVAL;
3711        struct pool_c *pt = ti->private;
3712        struct pool *pool = pt->pool;
3713
3714        if (get_pool_mode(pool) >= PM_READ_ONLY) {
3715                DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3716                      dm_device_name(pool->pool_md));
3717                return -EOPNOTSUPP;
3718        }
3719
3720        if (!strcasecmp(argv[0], "create_thin"))
3721                r = process_create_thin_mesg(argc, argv, pool);
3722
3723        else if (!strcasecmp(argv[0], "create_snap"))
3724                r = process_create_snap_mesg(argc, argv, pool);
3725
3726        else if (!strcasecmp(argv[0], "delete"))
3727                r = process_delete_mesg(argc, argv, pool);
3728
3729        else if (!strcasecmp(argv[0], "set_transaction_id"))
3730                r = process_set_transaction_id_mesg(argc, argv, pool);
3731
3732        else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3733                r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3734
3735        else if (!strcasecmp(argv[0], "release_metadata_snap"))
3736                r = process_release_metadata_snap_mesg(argc, argv, pool);
3737
3738        else
3739                DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3740
3741        if (!r)
3742                (void) commit(pool);
3743
3744        return r;
3745}
3746
3747static void emit_flags(struct pool_features *pf, char *result,
3748                       unsigned sz, unsigned maxlen)
3749{
3750        unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3751                !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3752                pf->error_if_no_space;
3753        DMEMIT("%u ", count);
3754
3755        if (!pf->zero_new_blocks)
3756                DMEMIT("skip_block_zeroing ");
3757
3758        if (!pf->discard_enabled)
3759                DMEMIT("ignore_discard ");
3760
3761        if (!pf->discard_passdown)
3762                DMEMIT("no_discard_passdown ");
3763
3764        if (pf->mode == PM_READ_ONLY)
3765                DMEMIT("read_only ");
3766
3767        if (pf->error_if_no_space)
3768                DMEMIT("error_if_no_space ");
3769}
3770
3771/*
3772 * Status line is:
3773 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3774 *    <used data sectors>/<total data sectors> <held metadata root>
3775 *    <pool mode> <discard config> <no space config> <needs_check>
3776 */
3777static void pool_status(struct dm_target *ti, status_type_t type,
3778                        unsigned status_flags, char *result, unsigned maxlen)
3779{
3780        int r;
3781        unsigned sz = 0;
3782        uint64_t transaction_id;
3783        dm_block_t nr_free_blocks_data;
3784        dm_block_t nr_free_blocks_metadata;
3785        dm_block_t nr_blocks_data;
3786        dm_block_t nr_blocks_metadata;
3787        dm_block_t held_root;
3788        char buf[BDEVNAME_SIZE];
3789        char buf2[BDEVNAME_SIZE];
3790        struct pool_c *pt = ti->private;
3791        struct pool *pool = pt->pool;
3792
3793        switch (type) {
3794        case STATUSTYPE_INFO:
3795                if (get_pool_mode(pool) == PM_FAIL) {
3796                        DMEMIT("Fail");
3797                        break;
3798                }
3799
3800                /* Commit to ensure statistics aren't out-of-date */
3801                if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3802                        (void) commit(pool);
3803
3804                r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3805                if (r) {
3806                        DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3807                              dm_device_name(pool->pool_md), r);
3808                        goto err;
3809                }
3810
3811                r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3812                if (r) {
3813                        DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3814                              dm_device_name(pool->pool_md), r);
3815                        goto err;
3816                }
3817
3818                r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3819                if (r) {
3820                        DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3821                              dm_device_name(pool->pool_md), r);
3822                        goto err;
3823                }
3824
3825                r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3826                if (r) {
3827                        DMERR("%s: dm_pool_get_free_block_count returned %d",
3828                              dm_device_name(pool->pool_md), r);
3829                        goto err;
3830                }
3831
3832                r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3833                if (r) {
3834                        DMERR("%s: dm_pool_get_data_dev_size returned %d",
3835                              dm_device_name(pool->pool_md), r);
3836                        goto err;
3837                }
3838
3839                r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3840                if (r) {
3841                        DMERR("%s: dm_pool_get_metadata_snap returned %d",
3842                              dm_device_name(pool->pool_md), r);
3843                        goto err;
3844                }
3845
3846                DMEMIT("%llu %llu/%llu %llu/%llu ",
3847                       (unsigned long long)transaction_id,
3848                       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3849                       (unsigned long long)nr_blocks_metadata,
3850                       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3851                       (unsigned long long)nr_blocks_data);
3852
3853                if (held_root)
3854                        DMEMIT("%llu ", held_root);
3855                else
3856                        DMEMIT("- ");
3857
3858                if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3859                        DMEMIT("out_of_data_space ");
3860                else if (pool->pf.mode == PM_READ_ONLY)
3861                        DMEMIT("ro ");
3862                else
3863                        DMEMIT("rw ");
3864
3865                if (!pool->pf.discard_enabled)
3866                        DMEMIT("ignore_discard ");
3867                else if (pool->pf.discard_passdown)
3868                        DMEMIT("discard_passdown ");
3869                else
3870                        DMEMIT("no_discard_passdown ");
3871
3872                if (pool->pf.error_if_no_space)
3873                        DMEMIT("error_if_no_space ");
3874                else
3875                        DMEMIT("queue_if_no_space ");
3876
3877                if (dm_pool_metadata_needs_check(pool->pmd))
3878                        DMEMIT("needs_check ");
3879                else
3880                        DMEMIT("- ");
3881
3882                break;
3883
3884        case STATUSTYPE_TABLE:
3885                DMEMIT("%s %s %lu %llu ",
3886                       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3887                       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3888                       (unsigned long)pool->sectors_per_block,
3889                       (unsigned long long)pt->low_water_blocks);
3890                emit_flags(&pt->requested_pf, result, sz, maxlen);
3891                break;
3892        }
3893        return;
3894
3895err:
3896        DMEMIT("Error");
3897}
3898
3899static int pool_iterate_devices(struct dm_target *ti,
3900                                iterate_devices_callout_fn fn, void *data)
3901{
3902        struct pool_c *pt = ti->private;
3903
3904        return fn(ti, pt->data_dev, 0, ti->len, data);
3905}
3906
3907static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3908{
3909        struct pool_c *pt = ti->private;
3910        struct pool *pool = pt->pool;
3911        sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3912
3913        /*
3914         * If max_sectors is smaller than pool->sectors_per_block adjust it
3915         * to the highest possible power-of-2 factor of pool->sectors_per_block.
3916         * This is especially beneficial when the pool's data device is a RAID
3917         * device that has a full stripe width that matches pool->sectors_per_block
3918         * -- because even though partial RAID stripe-sized IOs will be issued to a
3919         *    single RAID stripe; when aggregated they will end on a full RAID stripe
3920         *    boundary.. which avoids additional partial RAID stripe writes cascading
3921         */
3922        if (limits->max_sectors < pool->sectors_per_block) {
3923                while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3924                        if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3925                                limits->max_sectors--;
3926                        limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3927                }
3928        }
3929
3930        /*
3931         * If the system-determined stacked limits are compatible with the
3932         * pool's blocksize (io_opt is a factor) do not override them.
3933         */
3934        if (io_opt_sectors < pool->sectors_per_block ||
3935            !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3936                if (is_factor(pool->sectors_per_block, limits->max_sectors))
3937                        blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3938                else
3939                        blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3940                blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3941        }
3942
3943        /*
3944         * pt->adjusted_pf is a staging area for the actual features to use.
3945         * They get transferred to the live pool in bind_control_target()
3946         * called from pool_preresume().
3947         */
3948        if (!pt->adjusted_pf.discard_enabled) {
3949                /*
3950                 * Must explicitly disallow stacking discard limits otherwise the
3951                 * block layer will stack them if pool's data device has support.
3952                 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3953                 * user to see that, so make sure to set all discard limits to 0.
3954                 */
3955                limits->discard_granularity = 0;
3956                return;
3957        }
3958
3959        disable_passdown_if_not_supported(pt);
3960
3961        /*
3962         * The pool uses the same discard limits as the underlying data
3963         * device.  DM core has already set this up.
3964         */
3965}
3966
3967static struct target_type pool_target = {
3968        .name = "thin-pool",
3969        .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3970                    DM_TARGET_IMMUTABLE,
3971        .version = {1, 19, 0},
3972        .module = THIS_MODULE,
3973        .ctr = pool_ctr,
3974        .dtr = pool_dtr,
3975        .map = pool_map,
3976        .presuspend = pool_presuspend,
3977        .presuspend_undo = pool_presuspend_undo,
3978        .postsuspend = pool_postsuspend,
3979        .preresume = pool_preresume,
3980        .resume = pool_resume,
3981        .message = pool_message,
3982        .status = pool_status,
3983        .iterate_devices = pool_iterate_devices,
3984        .io_hints = pool_io_hints,
3985};
3986
3987/*----------------------------------------------------------------
3988 * Thin target methods
3989 *--------------------------------------------------------------*/
3990static void thin_get(struct thin_c *tc)
3991{
3992        atomic_inc(&tc->refcount);
3993}
3994
3995static void thin_put(struct thin_c *tc)
3996{
3997        if (atomic_dec_and_test(&tc->refcount))
3998                complete(&tc->can_destroy);
3999}
4000
4001static void thin_dtr(struct dm_target *ti)
4002{
4003        struct thin_c *tc = ti->private;
4004        unsigned long flags;
4005
4006        spin_lock_irqsave(&tc->pool->lock, flags);
4007        list_del_rcu(&tc->list);
4008        spin_unlock_irqrestore(&tc->pool->lock, flags);
4009        synchronize_rcu();
4010
4011        thin_put(tc);
4012        wait_for_completion(&tc->can_destroy);
4013
4014        mutex_lock(&dm_thin_pool_table.mutex);
4015
4016        __pool_dec(tc->pool);
4017        dm_pool_close_thin_device(tc->td);
4018        dm_put_device(ti, tc->pool_dev);
4019        if (tc->origin_dev)
4020                dm_put_device(ti, tc->origin_dev);
4021        kfree(tc);
4022
4023        mutex_unlock(&dm_thin_pool_table.mutex);
4024}
4025
4026/*
4027 * Thin target parameters:
4028 *
4029 * <pool_dev> <dev_id> [origin_dev]
4030 *
4031 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4032 * dev_id: the internal device identifier
4033 * origin_dev: a device external to the pool that should act as the origin
4034 *
4035 * If the pool device has discards disabled, they get disabled for the thin
4036 * device as well.
4037 */
4038static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4039{
4040        int r;
4041        struct thin_c *tc;
4042        struct dm_dev *pool_dev, *origin_dev;
4043        struct mapped_device *pool_md;
4044        unsigned long flags;
4045
4046        mutex_lock(&dm_thin_pool_table.mutex);
4047
4048        if (argc != 2 && argc != 3) {
4049                ti->error = "Invalid argument count";
4050                r = -EINVAL;
4051                goto out_unlock;
4052        }
4053
4054        tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4055        if (!tc) {
4056                ti->error = "Out of memory";
4057                r = -ENOMEM;
4058                goto out_unlock;
4059        }
4060        tc->thin_md = dm_table_get_md(ti->table);
4061        spin_lock_init(&tc->lock);
4062        INIT_LIST_HEAD(&tc->deferred_cells);
4063        bio_list_init(&tc->deferred_bio_list);
4064        bio_list_init(&tc->retry_on_resume_list);
4065        tc->sort_bio_list = RB_ROOT;
4066
4067        if (argc == 3) {
4068                r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4069                if (r) {
4070                        ti->error = "Error opening origin device";
4071                        goto bad_origin_dev;
4072                }
4073                tc->origin_dev = origin_dev;
4074        }
4075
4076        r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4077        if (r) {
4078                ti->error = "Error opening pool device";
4079                goto bad_pool_dev;
4080        }
4081        tc->pool_dev = pool_dev;
4082
4083        if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4084                ti->error = "Invalid device id";
4085                r = -EINVAL;
4086                goto bad_common;
4087        }
4088
4089        pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4090        if (!pool_md) {
4091                ti->error = "Couldn't get pool mapped device";
4092                r = -EINVAL;
4093                goto bad_common;
4094        }
4095
4096        tc->pool = __pool_table_lookup(pool_md);
4097        if (!tc->pool) {
4098                ti->error = "Couldn't find pool object";
4099                r = -EINVAL;
4100                goto bad_pool_lookup;
4101        }
4102        __pool_inc(tc->pool);
4103
4104        if (get_pool_mode(tc->pool) == PM_FAIL) {
4105                ti->error = "Couldn't open thin device, Pool is in fail mode";
4106                r = -EINVAL;
4107                goto bad_pool;
4108        }
4109
4110        r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4111        if (r) {
4112                ti->error = "Couldn't open thin internal device";
4113                goto bad_pool;
4114        }
4115
4116        r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4117        if (r)
4118                goto bad;
4119
4120        ti->num_flush_bios = 1;
4121        ti->flush_supported = true;
4122        ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4123
4124        /* In case the pool supports discards, pass them on. */
4125        ti->discard_zeroes_data_unsupported = true;
4126        if (tc->pool->pf.discard_enabled) {
4127                ti->discards_supported = true;
4128                ti->num_discard_bios = 1;
4129                ti->split_discard_bios = false;
4130        }
4131
4132        mutex_unlock(&dm_thin_pool_table.mutex);
4133
4134        spin_lock_irqsave(&tc->pool->lock, flags);
4135        if (tc->pool->suspended) {
4136                spin_unlock_irqrestore(&tc->pool->lock, flags);
4137                mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4138                ti->error = "Unable to activate thin device while pool is suspended";
4139                r = -EINVAL;
4140                goto bad;
4141        }
4142        atomic_set(&tc->refcount, 1);
4143        init_completion(&tc->can_destroy);
4144        list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4145        spin_unlock_irqrestore(&tc->pool->lock, flags);
4146        /*
4147         * This synchronize_rcu() call is needed here otherwise we risk a
4148         * wake_worker() call finding no bios to process (because the newly
4149         * added tc isn't yet visible).  So this reduces latency since we
4150         * aren't then dependent on the periodic commit to wake_worker().
4151         */
4152        synchronize_rcu();
4153
4154        dm_put(pool_md);
4155
4156        return 0;
4157
4158bad:
4159        dm_pool_close_thin_device(tc->td);
4160bad_pool:
4161        __pool_dec(tc->pool);
4162bad_pool_lookup:
4163        dm_put(pool_md);
4164bad_common:
4165        dm_put_device(ti, tc->pool_dev);
4166bad_pool_dev:
4167        if (tc->origin_dev)
4168                dm_put_device(ti, tc->origin_dev);
4169bad_origin_dev:
4170        kfree(tc);
4171out_unlock:
4172        mutex_unlock(&dm_thin_pool_table.mutex);
4173
4174        return r;
4175}
4176
4177static int thin_map(struct dm_target *ti, struct bio *bio)
4178{
4179        bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4180
4181        return thin_bio_map(ti, bio);
4182}
4183
4184static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4185{
4186        unsigned long flags;
4187        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4188        struct list_head work;
4189        struct dm_thin_new_mapping *m, *tmp;
4190        struct pool *pool = h->tc->pool;
4191
4192        if (h->shared_read_entry) {
4193                INIT_LIST_HEAD(&work);
4194                dm_deferred_entry_dec(h->shared_read_entry, &work);
4195
4196                spin_lock_irqsave(&pool->lock, flags);
4197                list_for_each_entry_safe(m, tmp, &work, list) {
4198                        list_del(&m->list);
4199                        __complete_mapping_preparation(m);
4200                }
4201                spin_unlock_irqrestore(&pool->lock, flags);
4202        }
4203
4204        if (h->all_io_entry) {
4205                INIT_LIST_HEAD(&work);
4206                dm_deferred_entry_dec(h->all_io_entry, &work);
4207                if (!list_empty(&work)) {
4208                        spin_lock_irqsave(&pool->lock, flags);
4209                        list_for_each_entry_safe(m, tmp, &work, list)
4210                                list_add_tail(&m->list, &pool->prepared_discards);
4211                        spin_unlock_irqrestore(&pool->lock, flags);
4212                        wake_worker(pool);
4213                }
4214        }
4215
4216        if (h->cell)
4217                cell_defer_no_holder(h->tc, h->cell);
4218
4219        return 0;
4220}
4221
4222static void thin_presuspend(struct dm_target *ti)
4223{
4224        struct thin_c *tc = ti->private;
4225
4226        if (dm_noflush_suspending(ti))
4227                noflush_work(tc, do_noflush_start);
4228}
4229
4230static void thin_postsuspend(struct dm_target *ti)
4231{
4232        struct thin_c *tc = ti->private;
4233
4234        /*
4235         * The dm_noflush_suspending flag has been cleared by now, so
4236         * unfortunately we must always run this.
4237         */
4238        noflush_work(tc, do_noflush_stop);
4239}
4240
4241static int thin_preresume(struct dm_target *ti)
4242{
4243        struct thin_c *tc = ti->private;
4244
4245        if (tc->origin_dev)
4246                tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4247
4248        return 0;
4249}
4250
4251/*
4252 * <nr mapped sectors> <highest mapped sector>
4253 */
4254static void thin_status(struct dm_target *ti, status_type_t type,
4255                        unsigned status_flags, char *result, unsigned maxlen)
4256{
4257        int r;
4258        ssize_t sz = 0;
4259        dm_block_t mapped, highest;
4260        char buf[BDEVNAME_SIZE];
4261        struct thin_c *tc = ti->private;
4262
4263        if (get_pool_mode(tc->pool) == PM_FAIL) {
4264                DMEMIT("Fail");
4265                return;
4266        }
4267
4268        if (!tc->td)
4269                DMEMIT("-");
4270        else {
4271                switch (type) {
4272                case STATUSTYPE_INFO:
4273                        r = dm_thin_get_mapped_count(tc->td, &mapped);
4274                        if (r) {
4275                                DMERR("dm_thin_get_mapped_count returned %d", r);
4276                                goto err;
4277                        }
4278
4279                        r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4280                        if (r < 0) {
4281                                DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4282                                goto err;
4283                        }
4284
4285                        DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4286                        if (r)
4287                                DMEMIT("%llu", ((highest + 1) *
4288                                                tc->pool->sectors_per_block) - 1);
4289                        else
4290                                DMEMIT("-");
4291                        break;
4292
4293                case STATUSTYPE_TABLE:
4294                        DMEMIT("%s %lu",
4295                               format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4296                               (unsigned long) tc->dev_id);
4297                        if (tc->origin_dev)
4298                                DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4299                        break;
4300                }
4301        }
4302
4303        return;
4304
4305err:
4306        DMEMIT("Error");
4307}
4308
4309static int thin_iterate_devices(struct dm_target *ti,
4310                                iterate_devices_callout_fn fn, void *data)
4311{
4312        sector_t blocks;
4313        struct thin_c *tc = ti->private;
4314        struct pool *pool = tc->pool;
4315
4316        /*
4317         * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4318         * we follow a more convoluted path through to the pool's target.
4319         */
4320        if (!pool->ti)
4321                return 0;       /* nothing is bound */
4322
4323        blocks = pool->ti->len;
4324        (void) sector_div(blocks, pool->sectors_per_block);
4325        if (blocks)
4326                return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4327
4328        return 0;
4329}
4330
4331static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4332{
4333        struct thin_c *tc = ti->private;
4334        struct pool *pool = tc->pool;
4335
4336        if (!pool->pf.discard_enabled)
4337                return;
4338
4339        limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4340        limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4341}
4342
4343static struct target_type thin_target = {
4344        .name = "thin",
4345        .version = {1, 19, 0},
4346        .module = THIS_MODULE,
4347        .ctr = thin_ctr,
4348        .dtr = thin_dtr,
4349        .map = thin_map,
4350        .end_io = thin_endio,
4351        .preresume = thin_preresume,
4352        .presuspend = thin_presuspend,
4353        .postsuspend = thin_postsuspend,
4354        .status = thin_status,
4355        .iterate_devices = thin_iterate_devices,
4356        .io_hints = thin_io_hints,
4357};
4358
4359/*----------------------------------------------------------------*/
4360
4361static int __init dm_thin_init(void)
4362{
4363        int r;
4364
4365        pool_table_init();
4366
4367        r = dm_register_target(&thin_target);
4368        if (r)
4369                return r;
4370
4371        r = dm_register_target(&pool_target);
4372        if (r)
4373                goto bad_pool_target;
4374
4375        r = -ENOMEM;
4376
4377        _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4378        if (!_new_mapping_cache)
4379                goto bad_new_mapping_cache;
4380
4381        return 0;
4382
4383bad_new_mapping_cache:
4384        dm_unregister_target(&pool_target);
4385bad_pool_target:
4386        dm_unregister_target(&thin_target);
4387
4388        return r;
4389}
4390
4391static void dm_thin_exit(void)
4392{
4393        dm_unregister_target(&thin_target);
4394        dm_unregister_target(&pool_target);
4395
4396        kmem_cache_destroy(_new_mapping_cache);
4397}
4398
4399module_init(dm_thin_init);
4400module_exit(dm_thin_exit);
4401
4402module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4403MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4404
4405MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4406MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4407MODULE_LICENSE("GPL");
4408