linux/drivers/mtd/mtdconcat.c
<<
>>
Prefs
   1/*
   2 * MTD device concatenation layer
   3 *
   4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
   5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
   6 *
   7 * NAND support by Christian Gan <cgan@iders.ca>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/sched.h>
  29#include <linux/types.h>
  30#include <linux/backing-dev.h>
  31
  32#include <linux/mtd/mtd.h>
  33#include <linux/mtd/concat.h>
  34
  35#include <asm/div64.h>
  36
  37/*
  38 * Our storage structure:
  39 * Subdev points to an array of pointers to struct mtd_info objects
  40 * which is allocated along with this structure
  41 *
  42 */
  43struct mtd_concat {
  44        struct mtd_info mtd;
  45        int num_subdev;
  46        struct mtd_info **subdev;
  47};
  48
  49/*
  50 * how to calculate the size required for the above structure,
  51 * including the pointer array subdev points to:
  52 */
  53#define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)    \
  54        ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
  55
  56/*
  57 * Given a pointer to the MTD object in the mtd_concat structure,
  58 * we can retrieve the pointer to that structure with this macro.
  59 */
  60#define CONCAT(x)  ((struct mtd_concat *)(x))
  61
  62/*
  63 * MTD methods which look up the relevant subdevice, translate the
  64 * effective address and pass through to the subdevice.
  65 */
  66
  67static int
  68concat_read(struct mtd_info *mtd, loff_t from, size_t len,
  69            size_t * retlen, u_char * buf)
  70{
  71        struct mtd_concat *concat = CONCAT(mtd);
  72        int ret = 0, err;
  73        int i;
  74
  75        for (i = 0; i < concat->num_subdev; i++) {
  76                struct mtd_info *subdev = concat->subdev[i];
  77                size_t size, retsize;
  78
  79                if (from >= subdev->size) {
  80                        /* Not destined for this subdev */
  81                        size = 0;
  82                        from -= subdev->size;
  83                        continue;
  84                }
  85                if (from + len > subdev->size)
  86                        /* First part goes into this subdev */
  87                        size = subdev->size - from;
  88                else
  89                        /* Entire transaction goes into this subdev */
  90                        size = len;
  91
  92                err = mtd_read(subdev, from, size, &retsize, buf);
  93
  94                /* Save information about bitflips! */
  95                if (unlikely(err)) {
  96                        if (mtd_is_eccerr(err)) {
  97                                mtd->ecc_stats.failed++;
  98                                ret = err;
  99                        } else if (mtd_is_bitflip(err)) {
 100                                mtd->ecc_stats.corrected++;
 101                                /* Do not overwrite -EBADMSG !! */
 102                                if (!ret)
 103                                        ret = err;
 104                        } else
 105                                return err;
 106                }
 107
 108                *retlen += retsize;
 109                len -= size;
 110                if (len == 0)
 111                        return ret;
 112
 113                buf += size;
 114                from = 0;
 115        }
 116        return -EINVAL;
 117}
 118
 119static int
 120concat_write(struct mtd_info *mtd, loff_t to, size_t len,
 121             size_t * retlen, const u_char * buf)
 122{
 123        struct mtd_concat *concat = CONCAT(mtd);
 124        int err = -EINVAL;
 125        int i;
 126
 127        for (i = 0; i < concat->num_subdev; i++) {
 128                struct mtd_info *subdev = concat->subdev[i];
 129                size_t size, retsize;
 130
 131                if (to >= subdev->size) {
 132                        size = 0;
 133                        to -= subdev->size;
 134                        continue;
 135                }
 136                if (to + len > subdev->size)
 137                        size = subdev->size - to;
 138                else
 139                        size = len;
 140
 141                err = mtd_write(subdev, to, size, &retsize, buf);
 142                if (err)
 143                        break;
 144
 145                *retlen += retsize;
 146                len -= size;
 147                if (len == 0)
 148                        break;
 149
 150                err = -EINVAL;
 151                buf += size;
 152                to = 0;
 153        }
 154        return err;
 155}
 156
 157static int
 158concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
 159                unsigned long count, loff_t to, size_t * retlen)
 160{
 161        struct mtd_concat *concat = CONCAT(mtd);
 162        struct kvec *vecs_copy;
 163        unsigned long entry_low, entry_high;
 164        size_t total_len = 0;
 165        int i;
 166        int err = -EINVAL;
 167
 168        /* Calculate total length of data */
 169        for (i = 0; i < count; i++)
 170                total_len += vecs[i].iov_len;
 171
 172        /* Check alignment */
 173        if (mtd->writesize > 1) {
 174                uint64_t __to = to;
 175                if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
 176                        return -EINVAL;
 177        }
 178
 179        /* make a copy of vecs */
 180        vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
 181        if (!vecs_copy)
 182                return -ENOMEM;
 183
 184        entry_low = 0;
 185        for (i = 0; i < concat->num_subdev; i++) {
 186                struct mtd_info *subdev = concat->subdev[i];
 187                size_t size, wsize, retsize, old_iov_len;
 188
 189                if (to >= subdev->size) {
 190                        to -= subdev->size;
 191                        continue;
 192                }
 193
 194                size = min_t(uint64_t, total_len, subdev->size - to);
 195                wsize = size; /* store for future use */
 196
 197                entry_high = entry_low;
 198                while (entry_high < count) {
 199                        if (size <= vecs_copy[entry_high].iov_len)
 200                                break;
 201                        size -= vecs_copy[entry_high++].iov_len;
 202                }
 203
 204                old_iov_len = vecs_copy[entry_high].iov_len;
 205                vecs_copy[entry_high].iov_len = size;
 206
 207                err = mtd_writev(subdev, &vecs_copy[entry_low],
 208                                 entry_high - entry_low + 1, to, &retsize);
 209
 210                vecs_copy[entry_high].iov_len = old_iov_len - size;
 211                vecs_copy[entry_high].iov_base += size;
 212
 213                entry_low = entry_high;
 214
 215                if (err)
 216                        break;
 217
 218                *retlen += retsize;
 219                total_len -= wsize;
 220
 221                if (total_len == 0)
 222                        break;
 223
 224                err = -EINVAL;
 225                to = 0;
 226        }
 227
 228        kfree(vecs_copy);
 229        return err;
 230}
 231
 232static int
 233concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
 234{
 235        struct mtd_concat *concat = CONCAT(mtd);
 236        struct mtd_oob_ops devops = *ops;
 237        int i, err, ret = 0;
 238
 239        ops->retlen = ops->oobretlen = 0;
 240
 241        for (i = 0; i < concat->num_subdev; i++) {
 242                struct mtd_info *subdev = concat->subdev[i];
 243
 244                if (from >= subdev->size) {
 245                        from -= subdev->size;
 246                        continue;
 247                }
 248
 249                /* partial read ? */
 250                if (from + devops.len > subdev->size)
 251                        devops.len = subdev->size - from;
 252
 253                err = mtd_read_oob(subdev, from, &devops);
 254                ops->retlen += devops.retlen;
 255                ops->oobretlen += devops.oobretlen;
 256
 257                /* Save information about bitflips! */
 258                if (unlikely(err)) {
 259                        if (mtd_is_eccerr(err)) {
 260                                mtd->ecc_stats.failed++;
 261                                ret = err;
 262                        } else if (mtd_is_bitflip(err)) {
 263                                mtd->ecc_stats.corrected++;
 264                                /* Do not overwrite -EBADMSG !! */
 265                                if (!ret)
 266                                        ret = err;
 267                        } else
 268                                return err;
 269                }
 270
 271                if (devops.datbuf) {
 272                        devops.len = ops->len - ops->retlen;
 273                        if (!devops.len)
 274                                return ret;
 275                        devops.datbuf += devops.retlen;
 276                }
 277                if (devops.oobbuf) {
 278                        devops.ooblen = ops->ooblen - ops->oobretlen;
 279                        if (!devops.ooblen)
 280                                return ret;
 281                        devops.oobbuf += ops->oobretlen;
 282                }
 283
 284                from = 0;
 285        }
 286        return -EINVAL;
 287}
 288
 289static int
 290concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
 291{
 292        struct mtd_concat *concat = CONCAT(mtd);
 293        struct mtd_oob_ops devops = *ops;
 294        int i, err;
 295
 296        if (!(mtd->flags & MTD_WRITEABLE))
 297                return -EROFS;
 298
 299        ops->retlen = ops->oobretlen = 0;
 300
 301        for (i = 0; i < concat->num_subdev; i++) {
 302                struct mtd_info *subdev = concat->subdev[i];
 303
 304                if (to >= subdev->size) {
 305                        to -= subdev->size;
 306                        continue;
 307                }
 308
 309                /* partial write ? */
 310                if (to + devops.len > subdev->size)
 311                        devops.len = subdev->size - to;
 312
 313                err = mtd_write_oob(subdev, to, &devops);
 314                ops->retlen += devops.retlen;
 315                ops->oobretlen += devops.oobretlen;
 316                if (err)
 317                        return err;
 318
 319                if (devops.datbuf) {
 320                        devops.len = ops->len - ops->retlen;
 321                        if (!devops.len)
 322                                return 0;
 323                        devops.datbuf += devops.retlen;
 324                }
 325                if (devops.oobbuf) {
 326                        devops.ooblen = ops->ooblen - ops->oobretlen;
 327                        if (!devops.ooblen)
 328                                return 0;
 329                        devops.oobbuf += devops.oobretlen;
 330                }
 331                to = 0;
 332        }
 333        return -EINVAL;
 334}
 335
 336static void concat_erase_callback(struct erase_info *instr)
 337{
 338        wake_up((wait_queue_head_t *) instr->priv);
 339}
 340
 341static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
 342{
 343        int err;
 344        wait_queue_head_t waitq;
 345        DECLARE_WAITQUEUE(wait, current);
 346
 347        /*
 348         * This code was stol^H^H^H^Hinspired by mtdchar.c
 349         */
 350        init_waitqueue_head(&waitq);
 351
 352        erase->mtd = mtd;
 353        erase->callback = concat_erase_callback;
 354        erase->priv = (unsigned long) &waitq;
 355
 356        /*
 357         * FIXME: Allow INTERRUPTIBLE. Which means
 358         * not having the wait_queue head on the stack.
 359         */
 360        err = mtd_erase(mtd, erase);
 361        if (!err) {
 362                set_current_state(TASK_UNINTERRUPTIBLE);
 363                add_wait_queue(&waitq, &wait);
 364                if (erase->state != MTD_ERASE_DONE
 365                    && erase->state != MTD_ERASE_FAILED)
 366                        schedule();
 367                remove_wait_queue(&waitq, &wait);
 368                set_current_state(TASK_RUNNING);
 369
 370                err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
 371        }
 372        return err;
 373}
 374
 375static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
 376{
 377        struct mtd_concat *concat = CONCAT(mtd);
 378        struct mtd_info *subdev;
 379        int i, err;
 380        uint64_t length, offset = 0;
 381        struct erase_info *erase;
 382
 383        /*
 384         * Check for proper erase block alignment of the to-be-erased area.
 385         * It is easier to do this based on the super device's erase
 386         * region info rather than looking at each particular sub-device
 387         * in turn.
 388         */
 389        if (!concat->mtd.numeraseregions) {
 390                /* the easy case: device has uniform erase block size */
 391                if (instr->addr & (concat->mtd.erasesize - 1))
 392                        return -EINVAL;
 393                if (instr->len & (concat->mtd.erasesize - 1))
 394                        return -EINVAL;
 395        } else {
 396                /* device has variable erase size */
 397                struct mtd_erase_region_info *erase_regions =
 398                    concat->mtd.eraseregions;
 399
 400                /*
 401                 * Find the erase region where the to-be-erased area begins:
 402                 */
 403                for (i = 0; i < concat->mtd.numeraseregions &&
 404                     instr->addr >= erase_regions[i].offset; i++) ;
 405                --i;
 406
 407                /*
 408                 * Now erase_regions[i] is the region in which the
 409                 * to-be-erased area begins. Verify that the starting
 410                 * offset is aligned to this region's erase size:
 411                 */
 412                if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
 413                        return -EINVAL;
 414
 415                /*
 416                 * now find the erase region where the to-be-erased area ends:
 417                 */
 418                for (; i < concat->mtd.numeraseregions &&
 419                     (instr->addr + instr->len) >= erase_regions[i].offset;
 420                     ++i) ;
 421                --i;
 422                /*
 423                 * check if the ending offset is aligned to this region's erase size
 424                 */
 425                if (i < 0 || ((instr->addr + instr->len) &
 426                                        (erase_regions[i].erasesize - 1)))
 427                        return -EINVAL;
 428        }
 429
 430        /* make a local copy of instr to avoid modifying the caller's struct */
 431        erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
 432
 433        if (!erase)
 434                return -ENOMEM;
 435
 436        *erase = *instr;
 437        length = instr->len;
 438
 439        /*
 440         * find the subdevice where the to-be-erased area begins, adjust
 441         * starting offset to be relative to the subdevice start
 442         */
 443        for (i = 0; i < concat->num_subdev; i++) {
 444                subdev = concat->subdev[i];
 445                if (subdev->size <= erase->addr) {
 446                        erase->addr -= subdev->size;
 447                        offset += subdev->size;
 448                } else {
 449                        break;
 450                }
 451        }
 452
 453        /* must never happen since size limit has been verified above */
 454        BUG_ON(i >= concat->num_subdev);
 455
 456        /* now do the erase: */
 457        err = 0;
 458        for (; length > 0; i++) {
 459                /* loop for all subdevices affected by this request */
 460                subdev = concat->subdev[i];     /* get current subdevice */
 461
 462                /* limit length to subdevice's size: */
 463                if (erase->addr + length > subdev->size)
 464                        erase->len = subdev->size - erase->addr;
 465                else
 466                        erase->len = length;
 467
 468                length -= erase->len;
 469                if ((err = concat_dev_erase(subdev, erase))) {
 470                        /* sanity check: should never happen since
 471                         * block alignment has been checked above */
 472                        BUG_ON(err == -EINVAL);
 473                        if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
 474                                instr->fail_addr = erase->fail_addr + offset;
 475                        break;
 476                }
 477                /*
 478                 * erase->addr specifies the offset of the area to be
 479                 * erased *within the current subdevice*. It can be
 480                 * non-zero only the first time through this loop, i.e.
 481                 * for the first subdevice where blocks need to be erased.
 482                 * All the following erases must begin at the start of the
 483                 * current subdevice, i.e. at offset zero.
 484                 */
 485                erase->addr = 0;
 486                offset += subdev->size;
 487        }
 488        instr->state = erase->state;
 489        kfree(erase);
 490        if (err)
 491                return err;
 492
 493        if (instr->callback)
 494                instr->callback(instr);
 495        return 0;
 496}
 497
 498static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 499{
 500        struct mtd_concat *concat = CONCAT(mtd);
 501        int i, err = -EINVAL;
 502
 503        for (i = 0; i < concat->num_subdev; i++) {
 504                struct mtd_info *subdev = concat->subdev[i];
 505                uint64_t size;
 506
 507                if (ofs >= subdev->size) {
 508                        size = 0;
 509                        ofs -= subdev->size;
 510                        continue;
 511                }
 512                if (ofs + len > subdev->size)
 513                        size = subdev->size - ofs;
 514                else
 515                        size = len;
 516
 517                err = mtd_lock(subdev, ofs, size);
 518                if (err)
 519                        break;
 520
 521                len -= size;
 522                if (len == 0)
 523                        break;
 524
 525                err = -EINVAL;
 526                ofs = 0;
 527        }
 528
 529        return err;
 530}
 531
 532static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 533{
 534        struct mtd_concat *concat = CONCAT(mtd);
 535        int i, err = 0;
 536
 537        for (i = 0; i < concat->num_subdev; i++) {
 538                struct mtd_info *subdev = concat->subdev[i];
 539                uint64_t size;
 540
 541                if (ofs >= subdev->size) {
 542                        size = 0;
 543                        ofs -= subdev->size;
 544                        continue;
 545                }
 546                if (ofs + len > subdev->size)
 547                        size = subdev->size - ofs;
 548                else
 549                        size = len;
 550
 551                err = mtd_unlock(subdev, ofs, size);
 552                if (err)
 553                        break;
 554
 555                len -= size;
 556                if (len == 0)
 557                        break;
 558
 559                err = -EINVAL;
 560                ofs = 0;
 561        }
 562
 563        return err;
 564}
 565
 566static void concat_sync(struct mtd_info *mtd)
 567{
 568        struct mtd_concat *concat = CONCAT(mtd);
 569        int i;
 570
 571        for (i = 0; i < concat->num_subdev; i++) {
 572                struct mtd_info *subdev = concat->subdev[i];
 573                mtd_sync(subdev);
 574        }
 575}
 576
 577static int concat_suspend(struct mtd_info *mtd)
 578{
 579        struct mtd_concat *concat = CONCAT(mtd);
 580        int i, rc = 0;
 581
 582        for (i = 0; i < concat->num_subdev; i++) {
 583                struct mtd_info *subdev = concat->subdev[i];
 584                if ((rc = mtd_suspend(subdev)) < 0)
 585                        return rc;
 586        }
 587        return rc;
 588}
 589
 590static void concat_resume(struct mtd_info *mtd)
 591{
 592        struct mtd_concat *concat = CONCAT(mtd);
 593        int i;
 594
 595        for (i = 0; i < concat->num_subdev; i++) {
 596                struct mtd_info *subdev = concat->subdev[i];
 597                mtd_resume(subdev);
 598        }
 599}
 600
 601static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
 602{
 603        struct mtd_concat *concat = CONCAT(mtd);
 604        int i, res = 0;
 605
 606        if (!mtd_can_have_bb(concat->subdev[0]))
 607                return res;
 608
 609        for (i = 0; i < concat->num_subdev; i++) {
 610                struct mtd_info *subdev = concat->subdev[i];
 611
 612                if (ofs >= subdev->size) {
 613                        ofs -= subdev->size;
 614                        continue;
 615                }
 616
 617                res = mtd_block_isbad(subdev, ofs);
 618                break;
 619        }
 620
 621        return res;
 622}
 623
 624static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
 625{
 626        struct mtd_concat *concat = CONCAT(mtd);
 627        int i, err = -EINVAL;
 628
 629        for (i = 0; i < concat->num_subdev; i++) {
 630                struct mtd_info *subdev = concat->subdev[i];
 631
 632                if (ofs >= subdev->size) {
 633                        ofs -= subdev->size;
 634                        continue;
 635                }
 636
 637                err = mtd_block_markbad(subdev, ofs);
 638                if (!err)
 639                        mtd->ecc_stats.badblocks++;
 640                break;
 641        }
 642
 643        return err;
 644}
 645
 646/*
 647 * try to support NOMMU mmaps on concatenated devices
 648 * - we don't support subdev spanning as we can't guarantee it'll work
 649 */
 650static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
 651                                              unsigned long len,
 652                                              unsigned long offset,
 653                                              unsigned long flags)
 654{
 655        struct mtd_concat *concat = CONCAT(mtd);
 656        int i;
 657
 658        for (i = 0; i < concat->num_subdev; i++) {
 659                struct mtd_info *subdev = concat->subdev[i];
 660
 661                if (offset >= subdev->size) {
 662                        offset -= subdev->size;
 663                        continue;
 664                }
 665
 666                return mtd_get_unmapped_area(subdev, len, offset, flags);
 667        }
 668
 669        return (unsigned long) -ENOSYS;
 670}
 671
 672/*
 673 * This function constructs a virtual MTD device by concatenating
 674 * num_devs MTD devices. A pointer to the new device object is
 675 * stored to *new_dev upon success. This function does _not_
 676 * register any devices: this is the caller's responsibility.
 677 */
 678struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],   /* subdevices to concatenate */
 679                                   int num_devs,        /* number of subdevices      */
 680                                   const char *name)
 681{                               /* name for the new device   */
 682        int i;
 683        size_t size;
 684        struct mtd_concat *concat;
 685        uint32_t max_erasesize, curr_erasesize;
 686        int num_erase_region;
 687        int max_writebufsize = 0;
 688
 689        printk(KERN_NOTICE "Concatenating MTD devices:\n");
 690        for (i = 0; i < num_devs; i++)
 691                printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
 692        printk(KERN_NOTICE "into device \"%s\"\n", name);
 693
 694        /* allocate the device structure */
 695        size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
 696        concat = kzalloc(size, GFP_KERNEL);
 697        if (!concat) {
 698                printk
 699                    ("memory allocation error while creating concatenated device \"%s\"\n",
 700                     name);
 701                return NULL;
 702        }
 703        concat->subdev = (struct mtd_info **) (concat + 1);
 704
 705        /*
 706         * Set up the new "super" device's MTD object structure, check for
 707         * incompatibilities between the subdevices.
 708         */
 709        concat->mtd.type = subdev[0]->type;
 710        concat->mtd.flags = subdev[0]->flags;
 711        concat->mtd.size = subdev[0]->size;
 712        concat->mtd.erasesize = subdev[0]->erasesize;
 713        concat->mtd.writesize = subdev[0]->writesize;
 714
 715        for (i = 0; i < num_devs; i++)
 716                if (max_writebufsize < subdev[i]->writebufsize)
 717                        max_writebufsize = subdev[i]->writebufsize;
 718        concat->mtd.writebufsize = max_writebufsize;
 719
 720        concat->mtd.subpage_sft = subdev[0]->subpage_sft;
 721        concat->mtd.oobsize = subdev[0]->oobsize;
 722        concat->mtd.oobavail = subdev[0]->oobavail;
 723        if (subdev[0]->_writev)
 724                concat->mtd._writev = concat_writev;
 725        if (subdev[0]->_read_oob)
 726                concat->mtd._read_oob = concat_read_oob;
 727        if (subdev[0]->_write_oob)
 728                concat->mtd._write_oob = concat_write_oob;
 729        if (subdev[0]->_block_isbad)
 730                concat->mtd._block_isbad = concat_block_isbad;
 731        if (subdev[0]->_block_markbad)
 732                concat->mtd._block_markbad = concat_block_markbad;
 733
 734        concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
 735
 736        concat->subdev[0] = subdev[0];
 737
 738        for (i = 1; i < num_devs; i++) {
 739                if (concat->mtd.type != subdev[i]->type) {
 740                        kfree(concat);
 741                        printk("Incompatible device type on \"%s\"\n",
 742                               subdev[i]->name);
 743                        return NULL;
 744                }
 745                if (concat->mtd.flags != subdev[i]->flags) {
 746                        /*
 747                         * Expect all flags except MTD_WRITEABLE to be
 748                         * equal on all subdevices.
 749                         */
 750                        if ((concat->mtd.flags ^ subdev[i]->
 751                             flags) & ~MTD_WRITEABLE) {
 752                                kfree(concat);
 753                                printk("Incompatible device flags on \"%s\"\n",
 754                                       subdev[i]->name);
 755                                return NULL;
 756                        } else
 757                                /* if writeable attribute differs,
 758                                   make super device writeable */
 759                                concat->mtd.flags |=
 760                                    subdev[i]->flags & MTD_WRITEABLE;
 761                }
 762
 763                concat->mtd.size += subdev[i]->size;
 764                concat->mtd.ecc_stats.badblocks +=
 765                        subdev[i]->ecc_stats.badblocks;
 766                if (concat->mtd.writesize   !=  subdev[i]->writesize ||
 767                    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
 768                    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
 769                    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
 770                    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
 771                        kfree(concat);
 772                        printk("Incompatible OOB or ECC data on \"%s\"\n",
 773                               subdev[i]->name);
 774                        return NULL;
 775                }
 776                concat->subdev[i] = subdev[i];
 777
 778        }
 779
 780        mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
 781
 782        concat->num_subdev = num_devs;
 783        concat->mtd.name = name;
 784
 785        concat->mtd._erase = concat_erase;
 786        concat->mtd._read = concat_read;
 787        concat->mtd._write = concat_write;
 788        concat->mtd._sync = concat_sync;
 789        concat->mtd._lock = concat_lock;
 790        concat->mtd._unlock = concat_unlock;
 791        concat->mtd._suspend = concat_suspend;
 792        concat->mtd._resume = concat_resume;
 793        concat->mtd._get_unmapped_area = concat_get_unmapped_area;
 794
 795        /*
 796         * Combine the erase block size info of the subdevices:
 797         *
 798         * first, walk the map of the new device and see how
 799         * many changes in erase size we have
 800         */
 801        max_erasesize = curr_erasesize = subdev[0]->erasesize;
 802        num_erase_region = 1;
 803        for (i = 0; i < num_devs; i++) {
 804                if (subdev[i]->numeraseregions == 0) {
 805                        /* current subdevice has uniform erase size */
 806                        if (subdev[i]->erasesize != curr_erasesize) {
 807                                /* if it differs from the last subdevice's erase size, count it */
 808                                ++num_erase_region;
 809                                curr_erasesize = subdev[i]->erasesize;
 810                                if (curr_erasesize > max_erasesize)
 811                                        max_erasesize = curr_erasesize;
 812                        }
 813                } else {
 814                        /* current subdevice has variable erase size */
 815                        int j;
 816                        for (j = 0; j < subdev[i]->numeraseregions; j++) {
 817
 818                                /* walk the list of erase regions, count any changes */
 819                                if (subdev[i]->eraseregions[j].erasesize !=
 820                                    curr_erasesize) {
 821                                        ++num_erase_region;
 822                                        curr_erasesize =
 823                                            subdev[i]->eraseregions[j].
 824                                            erasesize;
 825                                        if (curr_erasesize > max_erasesize)
 826                                                max_erasesize = curr_erasesize;
 827                                }
 828                        }
 829                }
 830        }
 831
 832        if (num_erase_region == 1) {
 833                /*
 834                 * All subdevices have the same uniform erase size.
 835                 * This is easy:
 836                 */
 837                concat->mtd.erasesize = curr_erasesize;
 838                concat->mtd.numeraseregions = 0;
 839        } else {
 840                uint64_t tmp64;
 841
 842                /*
 843                 * erase block size varies across the subdevices: allocate
 844                 * space to store the data describing the variable erase regions
 845                 */
 846                struct mtd_erase_region_info *erase_region_p;
 847                uint64_t begin, position;
 848
 849                concat->mtd.erasesize = max_erasesize;
 850                concat->mtd.numeraseregions = num_erase_region;
 851                concat->mtd.eraseregions = erase_region_p =
 852                    kmalloc(num_erase_region *
 853                            sizeof (struct mtd_erase_region_info), GFP_KERNEL);
 854                if (!erase_region_p) {
 855                        kfree(concat);
 856                        printk
 857                            ("memory allocation error while creating erase region list"
 858                             " for device \"%s\"\n", name);
 859                        return NULL;
 860                }
 861
 862                /*
 863                 * walk the map of the new device once more and fill in
 864                 * in erase region info:
 865                 */
 866                curr_erasesize = subdev[0]->erasesize;
 867                begin = position = 0;
 868                for (i = 0; i < num_devs; i++) {
 869                        if (subdev[i]->numeraseregions == 0) {
 870                                /* current subdevice has uniform erase size */
 871                                if (subdev[i]->erasesize != curr_erasesize) {
 872                                        /*
 873                                         *  fill in an mtd_erase_region_info structure for the area
 874                                         *  we have walked so far:
 875                                         */
 876                                        erase_region_p->offset = begin;
 877                                        erase_region_p->erasesize =
 878                                            curr_erasesize;
 879                                        tmp64 = position - begin;
 880                                        do_div(tmp64, curr_erasesize);
 881                                        erase_region_p->numblocks = tmp64;
 882                                        begin = position;
 883
 884                                        curr_erasesize = subdev[i]->erasesize;
 885                                        ++erase_region_p;
 886                                }
 887                                position += subdev[i]->size;
 888                        } else {
 889                                /* current subdevice has variable erase size */
 890                                int j;
 891                                for (j = 0; j < subdev[i]->numeraseregions; j++) {
 892                                        /* walk the list of erase regions, count any changes */
 893                                        if (subdev[i]->eraseregions[j].
 894                                            erasesize != curr_erasesize) {
 895                                                erase_region_p->offset = begin;
 896                                                erase_region_p->erasesize =
 897                                                    curr_erasesize;
 898                                                tmp64 = position - begin;
 899                                                do_div(tmp64, curr_erasesize);
 900                                                erase_region_p->numblocks = tmp64;
 901                                                begin = position;
 902
 903                                                curr_erasesize =
 904                                                    subdev[i]->eraseregions[j].
 905                                                    erasesize;
 906                                                ++erase_region_p;
 907                                        }
 908                                        position +=
 909                                            subdev[i]->eraseregions[j].
 910                                            numblocks * (uint64_t)curr_erasesize;
 911                                }
 912                        }
 913                }
 914                /* Now write the final entry */
 915                erase_region_p->offset = begin;
 916                erase_region_p->erasesize = curr_erasesize;
 917                tmp64 = position - begin;
 918                do_div(tmp64, curr_erasesize);
 919                erase_region_p->numblocks = tmp64;
 920        }
 921
 922        return &concat->mtd;
 923}
 924
 925/*
 926 * This function destroys an MTD object obtained from concat_mtd_devs()
 927 */
 928
 929void mtd_concat_destroy(struct mtd_info *mtd)
 930{
 931        struct mtd_concat *concat = CONCAT(mtd);
 932        if (concat->mtd.numeraseregions)
 933                kfree(concat->mtd.eraseregions);
 934        kfree(concat);
 935}
 936
 937EXPORT_SYMBOL(mtd_concat_create);
 938EXPORT_SYMBOL(mtd_concat_destroy);
 939
 940MODULE_LICENSE("GPL");
 941MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
 942MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
 943