linux/drivers/net/ethernet/sis/sis900.c
<<
>>
Prefs
   1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
   2   Copyright 1999 Silicon Integrated System Corporation
   3   Revision:    1.08.10 Apr. 2 2006
   4
   5   Modified from the driver which is originally written by Donald Becker.
   6
   7   This software may be used and distributed according to the terms
   8   of the GNU General Public License (GPL), incorporated herein by reference.
   9   Drivers based on this skeleton fall under the GPL and must retain
  10   the authorship (implicit copyright) notice.
  11
  12   References:
  13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
  14   preliminary Rev. 1.0 Jan. 14, 1998
  15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
  16   preliminary Rev. 1.0 Nov. 10, 1998
  17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
  18   preliminary Rev. 1.0 Jan. 18, 1998
  19
  20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
  21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
  22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
  23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
  24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
  25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
  26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
  27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
  28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
  29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
  30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
  31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
  32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
  33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
  34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
  35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
  36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
  37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
  38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
  39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
  40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
  41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
  42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
  43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
  44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
  45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
  46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
  47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
  48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
  49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
  50*/
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/kernel.h>
  55#include <linux/sched.h>
  56#include <linux/string.h>
  57#include <linux/timer.h>
  58#include <linux/errno.h>
  59#include <linux/ioport.h>
  60#include <linux/slab.h>
  61#include <linux/interrupt.h>
  62#include <linux/pci.h>
  63#include <linux/netdevice.h>
  64#include <linux/init.h>
  65#include <linux/mii.h>
  66#include <linux/etherdevice.h>
  67#include <linux/skbuff.h>
  68#include <linux/delay.h>
  69#include <linux/ethtool.h>
  70#include <linux/crc32.h>
  71#include <linux/bitops.h>
  72#include <linux/dma-mapping.h>
  73
  74#include <asm/processor.h>      /* Processor type for cache alignment. */
  75#include <asm/io.h>
  76#include <asm/irq.h>
  77#include <asm/uaccess.h>        /* User space memory access functions */
  78
  79#include "sis900.h"
  80
  81#define SIS900_MODULE_NAME "sis900"
  82#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
  83
  84static const char version[] =
  85        KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
  86
  87static int max_interrupt_work = 40;
  88static int multicast_filter_limit = 128;
  89
  90static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
  91
  92#define SIS900_DEF_MSG \
  93        (NETIF_MSG_DRV          | \
  94         NETIF_MSG_LINK         | \
  95         NETIF_MSG_RX_ERR       | \
  96         NETIF_MSG_TX_ERR)
  97
  98/* Time in jiffies before concluding the transmitter is hung. */
  99#define TX_TIMEOUT  (4*HZ)
 100
 101enum {
 102        SIS_900 = 0,
 103        SIS_7016
 104};
 105static const char * card_names[] = {
 106        "SiS 900 PCI Fast Ethernet",
 107        "SiS 7016 PCI Fast Ethernet"
 108};
 109
 110static const struct pci_device_id sis900_pci_tbl[] = {
 111        {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
 112         PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
 113        {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
 114         PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
 115        {0,}
 116};
 117MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
 118
 119static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
 120
 121static const struct mii_chip_info {
 122        const char * name;
 123        u16 phy_id0;
 124        u16 phy_id1;
 125        u8  phy_types;
 126#define HOME    0x0001
 127#define LAN     0x0002
 128#define MIX     0x0003
 129#define UNKNOWN 0x0
 130} mii_chip_table[] = {
 131        { "SiS 900 Internal MII PHY",           0x001d, 0x8000, LAN },
 132        { "SiS 7014 Physical Layer Solution",   0x0016, 0xf830, LAN },
 133        { "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
 134        { "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
 135        { "ADM 7001 LAN PHY",                   0x002e, 0xcc60, LAN },
 136        { "AMD 79C901 10BASE-T PHY",            0x0000, 0x6B70, LAN },
 137        { "AMD 79C901 HomePNA PHY",             0x0000, 0x6B90, HOME},
 138        { "ICS LAN PHY",                        0x0015, 0xF440, LAN },
 139        { "ICS LAN PHY",                        0x0143, 0xBC70, LAN },
 140        { "NS 83851 PHY",                       0x2000, 0x5C20, MIX },
 141        { "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
 142        { "Realtek RTL8201 PHY",                0x0000, 0x8200, LAN },
 143        { "VIA 6103 PHY",                       0x0101, 0x8f20, LAN },
 144        {NULL,},
 145};
 146
 147struct mii_phy {
 148        struct mii_phy * next;
 149        int phy_addr;
 150        u16 phy_id0;
 151        u16 phy_id1;
 152        u16 status;
 153        u8  phy_types;
 154};
 155
 156typedef struct _BufferDesc {
 157        u32 link;
 158        u32 cmdsts;
 159        u32 bufptr;
 160} BufferDesc;
 161
 162struct sis900_private {
 163        struct pci_dev * pci_dev;
 164
 165        spinlock_t lock;
 166
 167        struct mii_phy * mii;
 168        struct mii_phy * first_mii; /* record the first mii structure */
 169        unsigned int cur_phy;
 170        struct mii_if_info mii_info;
 171
 172        void __iomem    *ioaddr;
 173
 174        struct timer_list timer; /* Link status detection timer. */
 175        u8 autong_complete; /* 1: auto-negotiate complete  */
 176
 177        u32 msg_enable;
 178
 179        unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
 180        unsigned int cur_tx, dirty_tx;
 181
 182        /* The saved address of a sent/receive-in-place packet buffer */
 183        struct sk_buff *tx_skbuff[NUM_TX_DESC];
 184        struct sk_buff *rx_skbuff[NUM_RX_DESC];
 185        BufferDesc *tx_ring;
 186        BufferDesc *rx_ring;
 187
 188        dma_addr_t tx_ring_dma;
 189        dma_addr_t rx_ring_dma;
 190
 191        unsigned int tx_full; /* The Tx queue is full. */
 192        u8 host_bridge_rev;
 193        u8 chipset_rev;
 194};
 195
 196MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
 197MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
 198MODULE_LICENSE("GPL");
 199
 200module_param(multicast_filter_limit, int, 0444);
 201module_param(max_interrupt_work, int, 0444);
 202module_param(sis900_debug, int, 0444);
 203MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
 204MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
 205MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
 206
 207#define sw32(reg, val)  iowrite32(val, ioaddr + (reg))
 208#define sw8(reg, val)   iowrite8(val, ioaddr + (reg))
 209#define sr32(reg)       ioread32(ioaddr + (reg))
 210#define sr16(reg)       ioread16(ioaddr + (reg))
 211
 212#ifdef CONFIG_NET_POLL_CONTROLLER
 213static void sis900_poll(struct net_device *dev);
 214#endif
 215static int sis900_open(struct net_device *net_dev);
 216static int sis900_mii_probe (struct net_device * net_dev);
 217static void sis900_init_rxfilter (struct net_device * net_dev);
 218static u16 read_eeprom(void __iomem *ioaddr, int location);
 219static int mdio_read(struct net_device *net_dev, int phy_id, int location);
 220static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
 221static void sis900_timer(unsigned long data);
 222static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
 223static void sis900_tx_timeout(struct net_device *net_dev);
 224static void sis900_init_tx_ring(struct net_device *net_dev);
 225static void sis900_init_rx_ring(struct net_device *net_dev);
 226static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
 227                                     struct net_device *net_dev);
 228static int sis900_rx(struct net_device *net_dev);
 229static void sis900_finish_xmit (struct net_device *net_dev);
 230static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
 231static int sis900_close(struct net_device *net_dev);
 232static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
 233static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
 234static void set_rx_mode(struct net_device *net_dev);
 235static void sis900_reset(struct net_device *net_dev);
 236static void sis630_set_eq(struct net_device *net_dev, u8 revision);
 237static int sis900_set_config(struct net_device *dev, struct ifmap *map);
 238static u16 sis900_default_phy(struct net_device * net_dev);
 239static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
 240static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
 241static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
 242static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
 243static const struct ethtool_ops sis900_ethtool_ops;
 244
 245/**
 246 *      sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
 247 *      @pci_dev: the sis900 pci device
 248 *      @net_dev: the net device to get address for
 249 *
 250 *      Older SiS900 and friends, use EEPROM to store MAC address.
 251 *      MAC address is read from read_eeprom() into @net_dev->dev_addr.
 252 */
 253
 254static int sis900_get_mac_addr(struct pci_dev *pci_dev,
 255                               struct net_device *net_dev)
 256{
 257        struct sis900_private *sis_priv = netdev_priv(net_dev);
 258        void __iomem *ioaddr = sis_priv->ioaddr;
 259        u16 signature;
 260        int i;
 261
 262        /* check to see if we have sane EEPROM */
 263        signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
 264        if (signature == 0xffff || signature == 0x0000) {
 265                printk (KERN_WARNING "%s: Error EERPOM read %x\n",
 266                        pci_name(pci_dev), signature);
 267                return 0;
 268        }
 269
 270        /* get MAC address from EEPROM */
 271        for (i = 0; i < 3; i++)
 272                ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
 273
 274        return 1;
 275}
 276
 277/**
 278 *      sis630e_get_mac_addr - Get MAC address for SiS630E model
 279 *      @pci_dev: the sis900 pci device
 280 *      @net_dev: the net device to get address for
 281 *
 282 *      SiS630E model, use APC CMOS RAM to store MAC address.
 283 *      APC CMOS RAM is accessed through ISA bridge.
 284 *      MAC address is read into @net_dev->dev_addr.
 285 */
 286
 287static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
 288                                struct net_device *net_dev)
 289{
 290        struct pci_dev *isa_bridge = NULL;
 291        u8 reg;
 292        int i;
 293
 294        isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
 295        if (!isa_bridge)
 296                isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
 297        if (!isa_bridge) {
 298                printk(KERN_WARNING "%s: Can not find ISA bridge\n",
 299                       pci_name(pci_dev));
 300                return 0;
 301        }
 302        pci_read_config_byte(isa_bridge, 0x48, &reg);
 303        pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
 304
 305        for (i = 0; i < 6; i++) {
 306                outb(0x09 + i, 0x70);
 307                ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
 308        }
 309
 310        pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
 311        pci_dev_put(isa_bridge);
 312
 313        return 1;
 314}
 315
 316
 317/**
 318 *      sis635_get_mac_addr - Get MAC address for SIS635 model
 319 *      @pci_dev: the sis900 pci device
 320 *      @net_dev: the net device to get address for
 321 *
 322 *      SiS635 model, set MAC Reload Bit to load Mac address from APC
 323 *      to rfdr. rfdr is accessed through rfcr. MAC address is read into
 324 *      @net_dev->dev_addr.
 325 */
 326
 327static int sis635_get_mac_addr(struct pci_dev *pci_dev,
 328                               struct net_device *net_dev)
 329{
 330        struct sis900_private *sis_priv = netdev_priv(net_dev);
 331        void __iomem *ioaddr = sis_priv->ioaddr;
 332        u32 rfcrSave;
 333        u32 i;
 334
 335        rfcrSave = sr32(rfcr);
 336
 337        sw32(cr, rfcrSave | RELOAD);
 338        sw32(cr, 0);
 339
 340        /* disable packet filtering before setting filter */
 341        sw32(rfcr, rfcrSave & ~RFEN);
 342
 343        /* load MAC addr to filter data register */
 344        for (i = 0 ; i < 3 ; i++) {
 345                sw32(rfcr, (i << RFADDR_shift));
 346                *( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
 347        }
 348
 349        /* enable packet filtering */
 350        sw32(rfcr, rfcrSave | RFEN);
 351
 352        return 1;
 353}
 354
 355/**
 356 *      sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
 357 *      @pci_dev: the sis900 pci device
 358 *      @net_dev: the net device to get address for
 359 *
 360 *      SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
 361 *      is shared by
 362 *      LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
 363 *      and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
 364 *      by LAN, otherwise is not. After MAC address is read from EEPROM, send
 365 *      EEDONE signal to refuse EEPROM access by LAN.
 366 *      The EEPROM map of SiS962 or SiS963 is different to SiS900.
 367 *      The signature field in SiS962 or SiS963 spec is meaningless.
 368 *      MAC address is read into @net_dev->dev_addr.
 369 */
 370
 371static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
 372                               struct net_device *net_dev)
 373{
 374        struct sis900_private *sis_priv = netdev_priv(net_dev);
 375        void __iomem *ioaddr = sis_priv->ioaddr;
 376        int wait, rc = 0;
 377
 378        sw32(mear, EEREQ);
 379        for (wait = 0; wait < 2000; wait++) {
 380                if (sr32(mear) & EEGNT) {
 381                        u16 *mac = (u16 *)net_dev->dev_addr;
 382                        int i;
 383
 384                        /* get MAC address from EEPROM */
 385                        for (i = 0; i < 3; i++)
 386                                mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
 387
 388                        rc = 1;
 389                        break;
 390                }
 391                udelay(1);
 392        }
 393        sw32(mear, EEDONE);
 394        return rc;
 395}
 396
 397static const struct net_device_ops sis900_netdev_ops = {
 398        .ndo_open                = sis900_open,
 399        .ndo_stop               = sis900_close,
 400        .ndo_start_xmit         = sis900_start_xmit,
 401        .ndo_set_config         = sis900_set_config,
 402        .ndo_set_rx_mode        = set_rx_mode,
 403        .ndo_change_mtu         = eth_change_mtu,
 404        .ndo_validate_addr      = eth_validate_addr,
 405        .ndo_set_mac_address    = eth_mac_addr,
 406        .ndo_do_ioctl           = mii_ioctl,
 407        .ndo_tx_timeout         = sis900_tx_timeout,
 408#ifdef CONFIG_NET_POLL_CONTROLLER
 409        .ndo_poll_controller    = sis900_poll,
 410#endif
 411};
 412
 413/**
 414 *      sis900_probe - Probe for sis900 device
 415 *      @pci_dev: the sis900 pci device
 416 *      @pci_id: the pci device ID
 417 *
 418 *      Check and probe sis900 net device for @pci_dev.
 419 *      Get mac address according to the chip revision,
 420 *      and assign SiS900-specific entries in the device structure.
 421 *      ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
 422 */
 423
 424static int sis900_probe(struct pci_dev *pci_dev,
 425                        const struct pci_device_id *pci_id)
 426{
 427        struct sis900_private *sis_priv;
 428        struct net_device *net_dev;
 429        struct pci_dev *dev;
 430        dma_addr_t ring_dma;
 431        void *ring_space;
 432        void __iomem *ioaddr;
 433        int i, ret;
 434        const char *card_name = card_names[pci_id->driver_data];
 435        const char *dev_name = pci_name(pci_dev);
 436
 437/* when built into the kernel, we only print version if device is found */
 438#ifndef MODULE
 439        static int printed_version;
 440        if (!printed_version++)
 441                printk(version);
 442#endif
 443
 444        /* setup various bits in PCI command register */
 445        ret = pci_enable_device(pci_dev);
 446        if(ret) return ret;
 447
 448        i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
 449        if(i){
 450                printk(KERN_ERR "sis900.c: architecture does not support "
 451                        "32bit PCI busmaster DMA\n");
 452                return i;
 453        }
 454
 455        pci_set_master(pci_dev);
 456
 457        net_dev = alloc_etherdev(sizeof(struct sis900_private));
 458        if (!net_dev)
 459                return -ENOMEM;
 460        SET_NETDEV_DEV(net_dev, &pci_dev->dev);
 461
 462        /* We do a request_region() to register /proc/ioports info. */
 463        ret = pci_request_regions(pci_dev, "sis900");
 464        if (ret)
 465                goto err_out;
 466
 467        /* IO region. */
 468        ioaddr = pci_iomap(pci_dev, 0, 0);
 469        if (!ioaddr) {
 470                ret = -ENOMEM;
 471                goto err_out_cleardev;
 472        }
 473
 474        sis_priv = netdev_priv(net_dev);
 475        sis_priv->ioaddr = ioaddr;
 476        sis_priv->pci_dev = pci_dev;
 477        spin_lock_init(&sis_priv->lock);
 478
 479        pci_set_drvdata(pci_dev, net_dev);
 480
 481        ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
 482        if (!ring_space) {
 483                ret = -ENOMEM;
 484                goto err_out_unmap;
 485        }
 486        sis_priv->tx_ring = ring_space;
 487        sis_priv->tx_ring_dma = ring_dma;
 488
 489        ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
 490        if (!ring_space) {
 491                ret = -ENOMEM;
 492                goto err_unmap_tx;
 493        }
 494        sis_priv->rx_ring = ring_space;
 495        sis_priv->rx_ring_dma = ring_dma;
 496
 497        /* The SiS900-specific entries in the device structure. */
 498        net_dev->netdev_ops = &sis900_netdev_ops;
 499        net_dev->watchdog_timeo = TX_TIMEOUT;
 500        net_dev->ethtool_ops = &sis900_ethtool_ops;
 501
 502        if (sis900_debug > 0)
 503                sis_priv->msg_enable = sis900_debug;
 504        else
 505                sis_priv->msg_enable = SIS900_DEF_MSG;
 506
 507        sis_priv->mii_info.dev = net_dev;
 508        sis_priv->mii_info.mdio_read = mdio_read;
 509        sis_priv->mii_info.mdio_write = mdio_write;
 510        sis_priv->mii_info.phy_id_mask = 0x1f;
 511        sis_priv->mii_info.reg_num_mask = 0x1f;
 512
 513        /* Get Mac address according to the chip revision */
 514        sis_priv->chipset_rev = pci_dev->revision;
 515        if(netif_msg_probe(sis_priv))
 516                printk(KERN_DEBUG "%s: detected revision %2.2x, "
 517                                "trying to get MAC address...\n",
 518                                dev_name, sis_priv->chipset_rev);
 519
 520        ret = 0;
 521        if (sis_priv->chipset_rev == SIS630E_900_REV)
 522                ret = sis630e_get_mac_addr(pci_dev, net_dev);
 523        else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
 524                ret = sis635_get_mac_addr(pci_dev, net_dev);
 525        else if (sis_priv->chipset_rev == SIS96x_900_REV)
 526                ret = sis96x_get_mac_addr(pci_dev, net_dev);
 527        else
 528                ret = sis900_get_mac_addr(pci_dev, net_dev);
 529
 530        if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
 531                eth_hw_addr_random(net_dev);
 532                printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
 533                                "using random generated one\n", dev_name);
 534        }
 535
 536        /* 630ET : set the mii access mode as software-mode */
 537        if (sis_priv->chipset_rev == SIS630ET_900_REV)
 538                sw32(cr, ACCESSMODE | sr32(cr));
 539
 540        /* probe for mii transceiver */
 541        if (sis900_mii_probe(net_dev) == 0) {
 542                printk(KERN_WARNING "%s: Error probing MII device.\n",
 543                       dev_name);
 544                ret = -ENODEV;
 545                goto err_unmap_rx;
 546        }
 547
 548        /* save our host bridge revision */
 549        dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
 550        if (dev) {
 551                sis_priv->host_bridge_rev = dev->revision;
 552                pci_dev_put(dev);
 553        }
 554
 555        ret = register_netdev(net_dev);
 556        if (ret)
 557                goto err_unmap_rx;
 558
 559        /* print some information about our NIC */
 560        printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
 561               net_dev->name, card_name, ioaddr, pci_dev->irq,
 562               net_dev->dev_addr);
 563
 564        /* Detect Wake on Lan support */
 565        ret = (sr32(CFGPMC) & PMESP) >> 27;
 566        if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
 567                printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
 568
 569        return 0;
 570
 571err_unmap_rx:
 572        pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
 573                sis_priv->rx_ring_dma);
 574err_unmap_tx:
 575        pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
 576                sis_priv->tx_ring_dma);
 577err_out_unmap:
 578        pci_iounmap(pci_dev, ioaddr);
 579err_out_cleardev:
 580        pci_release_regions(pci_dev);
 581 err_out:
 582        free_netdev(net_dev);
 583        return ret;
 584}
 585
 586/**
 587 *      sis900_mii_probe - Probe MII PHY for sis900
 588 *      @net_dev: the net device to probe for
 589 *
 590 *      Search for total of 32 possible mii phy addresses.
 591 *      Identify and set current phy if found one,
 592 *      return error if it failed to found.
 593 */
 594
 595static int sis900_mii_probe(struct net_device *net_dev)
 596{
 597        struct sis900_private *sis_priv = netdev_priv(net_dev);
 598        const char *dev_name = pci_name(sis_priv->pci_dev);
 599        u16 poll_bit = MII_STAT_LINK, status = 0;
 600        unsigned long timeout = jiffies + 5 * HZ;
 601        int phy_addr;
 602
 603        sis_priv->mii = NULL;
 604
 605        /* search for total of 32 possible mii phy addresses */
 606        for (phy_addr = 0; phy_addr < 32; phy_addr++) {
 607                struct mii_phy * mii_phy = NULL;
 608                u16 mii_status;
 609                int i;
 610
 611                mii_phy = NULL;
 612                for(i = 0; i < 2; i++)
 613                        mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
 614
 615                if (mii_status == 0xffff || mii_status == 0x0000) {
 616                        if (netif_msg_probe(sis_priv))
 617                                printk(KERN_DEBUG "%s: MII at address %d"
 618                                                " not accessible\n",
 619                                                dev_name, phy_addr);
 620                        continue;
 621                }
 622
 623                if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
 624                        mii_phy = sis_priv->first_mii;
 625                        while (mii_phy) {
 626                                struct mii_phy *phy;
 627                                phy = mii_phy;
 628                                mii_phy = mii_phy->next;
 629                                kfree(phy);
 630                        }
 631                        return 0;
 632                }
 633
 634                mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
 635                mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
 636                mii_phy->phy_addr = phy_addr;
 637                mii_phy->status = mii_status;
 638                mii_phy->next = sis_priv->mii;
 639                sis_priv->mii = mii_phy;
 640                sis_priv->first_mii = mii_phy;
 641
 642                for (i = 0; mii_chip_table[i].phy_id1; i++)
 643                        if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
 644                            ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
 645                                mii_phy->phy_types = mii_chip_table[i].phy_types;
 646                                if (mii_chip_table[i].phy_types == MIX)
 647                                        mii_phy->phy_types =
 648                                            (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
 649                                printk(KERN_INFO "%s: %s transceiver found "
 650                                                        "at address %d.\n",
 651                                                        dev_name,
 652                                                        mii_chip_table[i].name,
 653                                                        phy_addr);
 654                                break;
 655                        }
 656
 657                if( !mii_chip_table[i].phy_id1 ) {
 658                        printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
 659                               dev_name, phy_addr);
 660                        mii_phy->phy_types = UNKNOWN;
 661                }
 662        }
 663
 664        if (sis_priv->mii == NULL) {
 665                printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
 666                return 0;
 667        }
 668
 669        /* select default PHY for mac */
 670        sis_priv->mii = NULL;
 671        sis900_default_phy( net_dev );
 672
 673        /* Reset phy if default phy is internal sis900 */
 674        if ((sis_priv->mii->phy_id0 == 0x001D) &&
 675            ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
 676                status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
 677
 678        /* workaround for ICS1893 PHY */
 679        if ((sis_priv->mii->phy_id0 == 0x0015) &&
 680            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
 681                mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
 682
 683        if(status & MII_STAT_LINK){
 684                while (poll_bit) {
 685                        yield();
 686
 687                        poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
 688                        if (time_after_eq(jiffies, timeout)) {
 689                                printk(KERN_WARNING "%s: reset phy and link down now\n",
 690                                       dev_name);
 691                                return -ETIME;
 692                        }
 693                }
 694        }
 695
 696        if (sis_priv->chipset_rev == SIS630E_900_REV) {
 697                /* SiS 630E has some bugs on default value of PHY registers */
 698                mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
 699                mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
 700                mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
 701                mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
 702                //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
 703        }
 704
 705        if (sis_priv->mii->status & MII_STAT_LINK)
 706                netif_carrier_on(net_dev);
 707        else
 708                netif_carrier_off(net_dev);
 709
 710        return 1;
 711}
 712
 713/**
 714 *      sis900_default_phy - Select default PHY for sis900 mac.
 715 *      @net_dev: the net device to probe for
 716 *
 717 *      Select first detected PHY with link as default.
 718 *      If no one is link on, select PHY whose types is HOME as default.
 719 *      If HOME doesn't exist, select LAN.
 720 */
 721
 722static u16 sis900_default_phy(struct net_device * net_dev)
 723{
 724        struct sis900_private *sis_priv = netdev_priv(net_dev);
 725        struct mii_phy *phy = NULL, *phy_home = NULL,
 726                *default_phy = NULL, *phy_lan = NULL;
 727        u16 status;
 728
 729        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
 730                status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 731                status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 732
 733                /* Link ON & Not select default PHY & not ghost PHY */
 734                 if ((status & MII_STAT_LINK) && !default_phy &&
 735                                        (phy->phy_types != UNKNOWN))
 736                        default_phy = phy;
 737                 else {
 738                        status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
 739                        mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
 740                                status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
 741                        if (phy->phy_types == HOME)
 742                                phy_home = phy;
 743                        else if(phy->phy_types == LAN)
 744                                phy_lan = phy;
 745                 }
 746        }
 747
 748        if (!default_phy && phy_home)
 749                default_phy = phy_home;
 750        else if (!default_phy && phy_lan)
 751                default_phy = phy_lan;
 752        else if (!default_phy)
 753                default_phy = sis_priv->first_mii;
 754
 755        if (sis_priv->mii != default_phy) {
 756                sis_priv->mii = default_phy;
 757                sis_priv->cur_phy = default_phy->phy_addr;
 758                printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
 759                       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
 760        }
 761
 762        sis_priv->mii_info.phy_id = sis_priv->cur_phy;
 763
 764        status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
 765        status &= (~MII_CNTL_ISOLATE);
 766
 767        mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
 768        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 769        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 770
 771        return status;
 772}
 773
 774
 775/**
 776 *      sis900_set_capability - set the media capability of network adapter.
 777 *      @net_dev : the net device to probe for
 778 *      @phy : default PHY
 779 *
 780 *      Set the media capability of network adapter according to
 781 *      mii status register. It's necessary before auto-negotiate.
 782 */
 783
 784static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
 785{
 786        u16 cap;
 787        u16 status;
 788
 789        status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 790        status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 791
 792        cap = MII_NWAY_CSMA_CD |
 793                ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
 794                ((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
 795                ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
 796                ((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
 797
 798        mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
 799}
 800
 801
 802/* Delay between EEPROM clock transitions. */
 803#define eeprom_delay()  sr32(mear)
 804
 805/**
 806 *      read_eeprom - Read Serial EEPROM
 807 *      @ioaddr: base i/o address
 808 *      @location: the EEPROM location to read
 809 *
 810 *      Read Serial EEPROM through EEPROM Access Register.
 811 *      Note that location is in word (16 bits) unit
 812 */
 813
 814static u16 read_eeprom(void __iomem *ioaddr, int location)
 815{
 816        u32 read_cmd = location | EEread;
 817        int i;
 818        u16 retval = 0;
 819
 820        sw32(mear, 0);
 821        eeprom_delay();
 822        sw32(mear, EECS);
 823        eeprom_delay();
 824
 825        /* Shift the read command (9) bits out. */
 826        for (i = 8; i >= 0; i--) {
 827                u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
 828
 829                sw32(mear, dataval);
 830                eeprom_delay();
 831                sw32(mear, dataval | EECLK);
 832                eeprom_delay();
 833        }
 834        sw32(mear, EECS);
 835        eeprom_delay();
 836
 837        /* read the 16-bits data in */
 838        for (i = 16; i > 0; i--) {
 839                sw32(mear, EECS);
 840                eeprom_delay();
 841                sw32(mear, EECS | EECLK);
 842                eeprom_delay();
 843                retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
 844                eeprom_delay();
 845        }
 846
 847        /* Terminate the EEPROM access. */
 848        sw32(mear, 0);
 849        eeprom_delay();
 850
 851        return retval;
 852}
 853
 854/* Read and write the MII management registers using software-generated
 855   serial MDIO protocol. Note that the command bits and data bits are
 856   send out separately */
 857#define mdio_delay()    sr32(mear)
 858
 859static void mdio_idle(struct sis900_private *sp)
 860{
 861        void __iomem *ioaddr = sp->ioaddr;
 862
 863        sw32(mear, MDIO | MDDIR);
 864        mdio_delay();
 865        sw32(mear, MDIO | MDDIR | MDC);
 866}
 867
 868/* Synchronize the MII management interface by shifting 32 one bits out. */
 869static void mdio_reset(struct sis900_private *sp)
 870{
 871        void __iomem *ioaddr = sp->ioaddr;
 872        int i;
 873
 874        for (i = 31; i >= 0; i--) {
 875                sw32(mear, MDDIR | MDIO);
 876                mdio_delay();
 877                sw32(mear, MDDIR | MDIO | MDC);
 878                mdio_delay();
 879        }
 880}
 881
 882/**
 883 *      mdio_read - read MII PHY register
 884 *      @net_dev: the net device to read
 885 *      @phy_id: the phy address to read
 886 *      @location: the phy regiester id to read
 887 *
 888 *      Read MII registers through MDIO and MDC
 889 *      using MDIO management frame structure and protocol(defined by ISO/IEC).
 890 *      Please see SiS7014 or ICS spec
 891 */
 892
 893static int mdio_read(struct net_device *net_dev, int phy_id, int location)
 894{
 895        int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 896        struct sis900_private *sp = netdev_priv(net_dev);
 897        void __iomem *ioaddr = sp->ioaddr;
 898        u16 retval = 0;
 899        int i;
 900
 901        mdio_reset(sp);
 902        mdio_idle(sp);
 903
 904        for (i = 15; i >= 0; i--) {
 905                int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 906
 907                sw32(mear, dataval);
 908                mdio_delay();
 909                sw32(mear, dataval | MDC);
 910                mdio_delay();
 911        }
 912
 913        /* Read the 16 data bits. */
 914        for (i = 16; i > 0; i--) {
 915                sw32(mear, 0);
 916                mdio_delay();
 917                retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
 918                sw32(mear, MDC);
 919                mdio_delay();
 920        }
 921        sw32(mear, 0x00);
 922
 923        return retval;
 924}
 925
 926/**
 927 *      mdio_write - write MII PHY register
 928 *      @net_dev: the net device to write
 929 *      @phy_id: the phy address to write
 930 *      @location: the phy regiester id to write
 931 *      @value: the register value to write with
 932 *
 933 *      Write MII registers with @value through MDIO and MDC
 934 *      using MDIO management frame structure and protocol(defined by ISO/IEC)
 935 *      please see SiS7014 or ICS spec
 936 */
 937
 938static void mdio_write(struct net_device *net_dev, int phy_id, int location,
 939                        int value)
 940{
 941        int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 942        struct sis900_private *sp = netdev_priv(net_dev);
 943        void __iomem *ioaddr = sp->ioaddr;
 944        int i;
 945
 946        mdio_reset(sp);
 947        mdio_idle(sp);
 948
 949        /* Shift the command bits out. */
 950        for (i = 15; i >= 0; i--) {
 951                int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 952
 953                sw8(mear, dataval);
 954                mdio_delay();
 955                sw8(mear, dataval | MDC);
 956                mdio_delay();
 957        }
 958        mdio_delay();
 959
 960        /* Shift the value bits out. */
 961        for (i = 15; i >= 0; i--) {
 962                int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
 963
 964                sw32(mear, dataval);
 965                mdio_delay();
 966                sw32(mear, dataval | MDC);
 967                mdio_delay();
 968        }
 969        mdio_delay();
 970
 971        /* Clear out extra bits. */
 972        for (i = 2; i > 0; i--) {
 973                sw8(mear, 0);
 974                mdio_delay();
 975                sw8(mear, MDC);
 976                mdio_delay();
 977        }
 978        sw32(mear, 0x00);
 979}
 980
 981
 982/**
 983 *      sis900_reset_phy - reset sis900 mii phy.
 984 *      @net_dev: the net device to write
 985 *      @phy_addr: default phy address
 986 *
 987 *      Some specific phy can't work properly without reset.
 988 *      This function will be called during initialization and
 989 *      link status change from ON to DOWN.
 990 */
 991
 992static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
 993{
 994        int i;
 995        u16 status;
 996
 997        for (i = 0; i < 2; i++)
 998                status = mdio_read(net_dev, phy_addr, MII_STATUS);
 999
1000        mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1001
1002        return status;
1003}
1004
1005#ifdef CONFIG_NET_POLL_CONTROLLER
1006/*
1007 * Polling 'interrupt' - used by things like netconsole to send skbs
1008 * without having to re-enable interrupts. It's not called while
1009 * the interrupt routine is executing.
1010*/
1011static void sis900_poll(struct net_device *dev)
1012{
1013        struct sis900_private *sp = netdev_priv(dev);
1014        const int irq = sp->pci_dev->irq;
1015
1016        disable_irq(irq);
1017        sis900_interrupt(irq, dev);
1018        enable_irq(irq);
1019}
1020#endif
1021
1022/**
1023 *      sis900_open - open sis900 device
1024 *      @net_dev: the net device to open
1025 *
1026 *      Do some initialization and start net interface.
1027 *      enable interrupts and set sis900 timer.
1028 */
1029
1030static int
1031sis900_open(struct net_device *net_dev)
1032{
1033        struct sis900_private *sis_priv = netdev_priv(net_dev);
1034        void __iomem *ioaddr = sis_priv->ioaddr;
1035        int ret;
1036
1037        /* Soft reset the chip. */
1038        sis900_reset(net_dev);
1039
1040        /* Equalizer workaround Rule */
1041        sis630_set_eq(net_dev, sis_priv->chipset_rev);
1042
1043        ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1044                          net_dev->name, net_dev);
1045        if (ret)
1046                return ret;
1047
1048        sis900_init_rxfilter(net_dev);
1049
1050        sis900_init_tx_ring(net_dev);
1051        sis900_init_rx_ring(net_dev);
1052
1053        set_rx_mode(net_dev);
1054
1055        netif_start_queue(net_dev);
1056
1057        /* Workaround for EDB */
1058        sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1059
1060        /* Enable all known interrupts by setting the interrupt mask. */
1061        sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1062        sw32(cr, RxENA | sr32(cr));
1063        sw32(ier, IE);
1064
1065        sis900_check_mode(net_dev, sis_priv->mii);
1066
1067        /* Set the timer to switch to check for link beat and perhaps switch
1068           to an alternate media type. */
1069        init_timer(&sis_priv->timer);
1070        sis_priv->timer.expires = jiffies + HZ;
1071        sis_priv->timer.data = (unsigned long)net_dev;
1072        sis_priv->timer.function = sis900_timer;
1073        add_timer(&sis_priv->timer);
1074
1075        return 0;
1076}
1077
1078/**
1079 *      sis900_init_rxfilter - Initialize the Rx filter
1080 *      @net_dev: the net device to initialize for
1081 *
1082 *      Set receive filter address to our MAC address
1083 *      and enable packet filtering.
1084 */
1085
1086static void
1087sis900_init_rxfilter (struct net_device * net_dev)
1088{
1089        struct sis900_private *sis_priv = netdev_priv(net_dev);
1090        void __iomem *ioaddr = sis_priv->ioaddr;
1091        u32 rfcrSave;
1092        u32 i;
1093
1094        rfcrSave = sr32(rfcr);
1095
1096        /* disable packet filtering before setting filter */
1097        sw32(rfcr, rfcrSave & ~RFEN);
1098
1099        /* load MAC addr to filter data register */
1100        for (i = 0 ; i < 3 ; i++) {
1101                u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1102
1103                sw32(rfcr, i << RFADDR_shift);
1104                sw32(rfdr, w);
1105
1106                if (netif_msg_hw(sis_priv)) {
1107                        printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1108                               net_dev->name, i, sr32(rfdr));
1109                }
1110        }
1111
1112        /* enable packet filtering */
1113        sw32(rfcr, rfcrSave | RFEN);
1114}
1115
1116/**
1117 *      sis900_init_tx_ring - Initialize the Tx descriptor ring
1118 *      @net_dev: the net device to initialize for
1119 *
1120 *      Initialize the Tx descriptor ring,
1121 */
1122
1123static void
1124sis900_init_tx_ring(struct net_device *net_dev)
1125{
1126        struct sis900_private *sis_priv = netdev_priv(net_dev);
1127        void __iomem *ioaddr = sis_priv->ioaddr;
1128        int i;
1129
1130        sis_priv->tx_full = 0;
1131        sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1132
1133        for (i = 0; i < NUM_TX_DESC; i++) {
1134                sis_priv->tx_skbuff[i] = NULL;
1135
1136                sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1137                        ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1138                sis_priv->tx_ring[i].cmdsts = 0;
1139                sis_priv->tx_ring[i].bufptr = 0;
1140        }
1141
1142        /* load Transmit Descriptor Register */
1143        sw32(txdp, sis_priv->tx_ring_dma);
1144        if (netif_msg_hw(sis_priv))
1145                printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1146                       net_dev->name, sr32(txdp));
1147}
1148
1149/**
1150 *      sis900_init_rx_ring - Initialize the Rx descriptor ring
1151 *      @net_dev: the net device to initialize for
1152 *
1153 *      Initialize the Rx descriptor ring,
1154 *      and pre-allocate recevie buffers (socket buffer)
1155 */
1156
1157static void
1158sis900_init_rx_ring(struct net_device *net_dev)
1159{
1160        struct sis900_private *sis_priv = netdev_priv(net_dev);
1161        void __iomem *ioaddr = sis_priv->ioaddr;
1162        int i;
1163
1164        sis_priv->cur_rx = 0;
1165        sis_priv->dirty_rx = 0;
1166
1167        /* init RX descriptor */
1168        for (i = 0; i < NUM_RX_DESC; i++) {
1169                sis_priv->rx_skbuff[i] = NULL;
1170
1171                sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1172                        ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1173                sis_priv->rx_ring[i].cmdsts = 0;
1174                sis_priv->rx_ring[i].bufptr = 0;
1175        }
1176
1177        /* allocate sock buffers */
1178        for (i = 0; i < NUM_RX_DESC; i++) {
1179                struct sk_buff *skb;
1180
1181                if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1182                        /* not enough memory for skbuff, this makes a "hole"
1183                           on the buffer ring, it is not clear how the
1184                           hardware will react to this kind of degenerated
1185                           buffer */
1186                        break;
1187                }
1188                sis_priv->rx_skbuff[i] = skb;
1189                sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1190                sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1191                                skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1192                if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1193                                sis_priv->rx_ring[i].bufptr))) {
1194                        dev_kfree_skb(skb);
1195                        sis_priv->rx_skbuff[i] = NULL;
1196                        break;
1197                }
1198        }
1199        sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1200
1201        /* load Receive Descriptor Register */
1202        sw32(rxdp, sis_priv->rx_ring_dma);
1203        if (netif_msg_hw(sis_priv))
1204                printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1205                       net_dev->name, sr32(rxdp));
1206}
1207
1208/**
1209 *      sis630_set_eq - set phy equalizer value for 630 LAN
1210 *      @net_dev: the net device to set equalizer value
1211 *      @revision: 630 LAN revision number
1212 *
1213 *      630E equalizer workaround rule(Cyrus Huang 08/15)
1214 *      PHY register 14h(Test)
1215 *      Bit 14: 0 -- Automatically detect (default)
1216 *              1 -- Manually set Equalizer filter
1217 *      Bit 13: 0 -- (Default)
1218 *              1 -- Speed up convergence of equalizer setting
1219 *      Bit 9 : 0 -- (Default)
1220 *              1 -- Disable Baseline Wander
1221 *      Bit 3~7   -- Equalizer filter setting
1222 *      Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1223 *      Then calculate equalizer value
1224 *      Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1225 *      Link Off:Set Bit 13 to 1, Bit 14 to 0
1226 *      Calculate Equalizer value:
1227 *      When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1228 *      When the equalizer is stable, this value is not a fixed value. It will be within
1229 *      a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1230 *      0 <= max <= 4  --> set equalizer to max
1231 *      5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1232 *      max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1233 */
1234
1235static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1236{
1237        struct sis900_private *sis_priv = netdev_priv(net_dev);
1238        u16 reg14h, eq_value=0, max_value=0, min_value=0;
1239        int i, maxcount=10;
1240
1241        if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1242               revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1243                return;
1244
1245        if (netif_carrier_ok(net_dev)) {
1246                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1247                mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1248                                        (0x2200 | reg14h) & 0xBFFF);
1249                for (i=0; i < maxcount; i++) {
1250                        eq_value = (0x00F8 & mdio_read(net_dev,
1251                                        sis_priv->cur_phy, MII_RESV)) >> 3;
1252                        if (i == 0)
1253                                max_value=min_value=eq_value;
1254                        max_value = (eq_value > max_value) ?
1255                                                eq_value : max_value;
1256                        min_value = (eq_value < min_value) ?
1257                                                eq_value : min_value;
1258                }
1259                /* 630E rule to determine the equalizer value */
1260                if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1261                    revision == SIS630ET_900_REV) {
1262                        if (max_value < 5)
1263                                eq_value = max_value;
1264                        else if (max_value >= 5 && max_value < 15)
1265                                eq_value = (max_value == min_value) ?
1266                                                max_value+2 : max_value+1;
1267                        else if (max_value >= 15)
1268                                eq_value=(max_value == min_value) ?
1269                                                max_value+6 : max_value+5;
1270                }
1271                /* 630B0&B1 rule to determine the equalizer value */
1272                if (revision == SIS630A_900_REV &&
1273                    (sis_priv->host_bridge_rev == SIS630B0 ||
1274                     sis_priv->host_bridge_rev == SIS630B1)) {
1275                        if (max_value == 0)
1276                                eq_value = 3;
1277                        else
1278                                eq_value = (max_value + min_value + 1)/2;
1279                }
1280                /* write equalizer value and setting */
1281                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1282                reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1283                reg14h = (reg14h | 0x6000) & 0xFDFF;
1284                mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1285        } else {
1286                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1287                if (revision == SIS630A_900_REV &&
1288                    (sis_priv->host_bridge_rev == SIS630B0 ||
1289                     sis_priv->host_bridge_rev == SIS630B1))
1290                        mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1291                                                (reg14h | 0x2200) & 0xBFFF);
1292                else
1293                        mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1294                                                (reg14h | 0x2000) & 0xBFFF);
1295        }
1296}
1297
1298/**
1299 *      sis900_timer - sis900 timer routine
1300 *      @data: pointer to sis900 net device
1301 *
1302 *      On each timer ticks we check two things,
1303 *      link status (ON/OFF) and link mode (10/100/Full/Half)
1304 */
1305
1306static void sis900_timer(unsigned long data)
1307{
1308        struct net_device *net_dev = (struct net_device *)data;
1309        struct sis900_private *sis_priv = netdev_priv(net_dev);
1310        struct mii_phy *mii_phy = sis_priv->mii;
1311        static const int next_tick = 5*HZ;
1312        int speed = 0, duplex = 0;
1313        u16 status;
1314
1315        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1316        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1317
1318        /* Link OFF -> ON */
1319        if (!netif_carrier_ok(net_dev)) {
1320        LookForLink:
1321                /* Search for new PHY */
1322                status = sis900_default_phy(net_dev);
1323                mii_phy = sis_priv->mii;
1324
1325                if (status & MII_STAT_LINK) {
1326                        WARN_ON(!(status & MII_STAT_AUTO_DONE));
1327
1328                        sis900_read_mode(net_dev, &speed, &duplex);
1329                        if (duplex) {
1330                                sis900_set_mode(sis_priv, speed, duplex);
1331                                sis630_set_eq(net_dev, sis_priv->chipset_rev);
1332                                netif_carrier_on(net_dev);
1333                        }
1334                }
1335        } else {
1336        /* Link ON -> OFF */
1337                if (!(status & MII_STAT_LINK)){
1338                        netif_carrier_off(net_dev);
1339                        if(netif_msg_link(sis_priv))
1340                                printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1341
1342                        /* Change mode issue */
1343                        if ((mii_phy->phy_id0 == 0x001D) &&
1344                            ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1345                                sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1346
1347                        sis630_set_eq(net_dev, sis_priv->chipset_rev);
1348
1349                        goto LookForLink;
1350                }
1351        }
1352
1353        sis_priv->timer.expires = jiffies + next_tick;
1354        add_timer(&sis_priv->timer);
1355}
1356
1357/**
1358 *      sis900_check_mode - check the media mode for sis900
1359 *      @net_dev: the net device to be checked
1360 *      @mii_phy: the mii phy
1361 *
1362 *      Older driver gets the media mode from mii status output
1363 *      register. Now we set our media capability and auto-negotiate
1364 *      to get the upper bound of speed and duplex between two ends.
1365 *      If the types of mii phy is HOME, it doesn't need to auto-negotiate
1366 *      and autong_complete should be set to 1.
1367 */
1368
1369static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1370{
1371        struct sis900_private *sis_priv = netdev_priv(net_dev);
1372        void __iomem *ioaddr = sis_priv->ioaddr;
1373        int speed, duplex;
1374
1375        if (mii_phy->phy_types == LAN) {
1376                sw32(cfg, ~EXD & sr32(cfg));
1377                sis900_set_capability(net_dev , mii_phy);
1378                sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1379        } else {
1380                sw32(cfg, EXD | sr32(cfg));
1381                speed = HW_SPEED_HOME;
1382                duplex = FDX_CAPABLE_HALF_SELECTED;
1383                sis900_set_mode(sis_priv, speed, duplex);
1384                sis_priv->autong_complete = 1;
1385        }
1386}
1387
1388/**
1389 *      sis900_set_mode - Set the media mode of mac register.
1390 *      @sp:     the device private data
1391 *      @speed : the transmit speed to be determined
1392 *      @duplex: the duplex mode to be determined
1393 *
1394 *      Set the media mode of mac register txcfg/rxcfg according to
1395 *      speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1396 *      bus is used instead of PCI bus. When this bit is set 1, the
1397 *      Max DMA Burst Size for TX/RX DMA should be no larger than 16
1398 *      double words.
1399 */
1400
1401static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1402{
1403        void __iomem *ioaddr = sp->ioaddr;
1404        u32 tx_flags = 0, rx_flags = 0;
1405
1406        if (sr32( cfg) & EDB_MASTER_EN) {
1407                tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1408                                        (TX_FILL_THRESH << TxFILLT_shift);
1409                rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1410        } else {
1411                tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1412                                        (TX_FILL_THRESH << TxFILLT_shift);
1413                rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1414        }
1415
1416        if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1417                rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1418                tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1419        } else {
1420                rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1421                tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1422        }
1423
1424        if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1425                tx_flags |= (TxCSI | TxHBI);
1426                rx_flags |= RxATX;
1427        }
1428
1429#if IS_ENABLED(CONFIG_VLAN_8021Q)
1430        /* Can accept Jumbo packet */
1431        rx_flags |= RxAJAB;
1432#endif
1433
1434        sw32(txcfg, tx_flags);
1435        sw32(rxcfg, rx_flags);
1436}
1437
1438/**
1439 *      sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1440 *      @net_dev: the net device to read mode for
1441 *      @phy_addr: mii phy address
1442 *
1443 *      If the adapter is link-on, set the auto-negotiate enable/reset bit.
1444 *      autong_complete should be set to 0 when starting auto-negotiation.
1445 *      autong_complete should be set to 1 if we didn't start auto-negotiation.
1446 *      sis900_timer will wait for link on again if autong_complete = 0.
1447 */
1448
1449static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1450{
1451        struct sis900_private *sis_priv = netdev_priv(net_dev);
1452        int i = 0;
1453        u32 status;
1454
1455        for (i = 0; i < 2; i++)
1456                status = mdio_read(net_dev, phy_addr, MII_STATUS);
1457
1458        if (!(status & MII_STAT_LINK)){
1459                if(netif_msg_link(sis_priv))
1460                        printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1461                sis_priv->autong_complete = 1;
1462                netif_carrier_off(net_dev);
1463                return;
1464        }
1465
1466        /* (Re)start AutoNegotiate */
1467        mdio_write(net_dev, phy_addr, MII_CONTROL,
1468                   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1469        sis_priv->autong_complete = 0;
1470}
1471
1472
1473/**
1474 *      sis900_read_mode - read media mode for sis900 internal phy
1475 *      @net_dev: the net device to read mode for
1476 *      @speed  : the transmit speed to be determined
1477 *      @duplex : the duplex mode to be determined
1478 *
1479 *      The capability of remote end will be put in mii register autorec
1480 *      after auto-negotiation. Use AND operation to get the upper bound
1481 *      of speed and duplex between two ends.
1482 */
1483
1484static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1485{
1486        struct sis900_private *sis_priv = netdev_priv(net_dev);
1487        struct mii_phy *phy = sis_priv->mii;
1488        int phy_addr = sis_priv->cur_phy;
1489        u32 status;
1490        u16 autoadv, autorec;
1491        int i;
1492
1493        for (i = 0; i < 2; i++)
1494                status = mdio_read(net_dev, phy_addr, MII_STATUS);
1495
1496        if (!(status & MII_STAT_LINK))
1497                return;
1498
1499        /* AutoNegotiate completed */
1500        autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1501        autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1502        status = autoadv & autorec;
1503
1504        *speed = HW_SPEED_10_MBPS;
1505        *duplex = FDX_CAPABLE_HALF_SELECTED;
1506
1507        if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1508                *speed = HW_SPEED_100_MBPS;
1509        if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1510                *duplex = FDX_CAPABLE_FULL_SELECTED;
1511
1512        sis_priv->autong_complete = 1;
1513
1514        /* Workaround for Realtek RTL8201 PHY issue */
1515        if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1516                if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1517                        *duplex = FDX_CAPABLE_FULL_SELECTED;
1518                if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1519                        *speed = HW_SPEED_100_MBPS;
1520        }
1521
1522        if(netif_msg_link(sis_priv))
1523                printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1524                                        net_dev->name,
1525                                        *speed == HW_SPEED_100_MBPS ?
1526                                                "100mbps" : "10mbps",
1527                                        *duplex == FDX_CAPABLE_FULL_SELECTED ?
1528                                                "full" : "half");
1529}
1530
1531/**
1532 *      sis900_tx_timeout - sis900 transmit timeout routine
1533 *      @net_dev: the net device to transmit
1534 *
1535 *      print transmit timeout status
1536 *      disable interrupts and do some tasks
1537 */
1538
1539static void sis900_tx_timeout(struct net_device *net_dev)
1540{
1541        struct sis900_private *sis_priv = netdev_priv(net_dev);
1542        void __iomem *ioaddr = sis_priv->ioaddr;
1543        unsigned long flags;
1544        int i;
1545
1546        if (netif_msg_tx_err(sis_priv)) {
1547                printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1548                        net_dev->name, sr32(cr), sr32(isr));
1549        }
1550
1551        /* Disable interrupts by clearing the interrupt mask. */
1552        sw32(imr, 0x0000);
1553
1554        /* use spinlock to prevent interrupt handler accessing buffer ring */
1555        spin_lock_irqsave(&sis_priv->lock, flags);
1556
1557        /* discard unsent packets */
1558        sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1559        for (i = 0; i < NUM_TX_DESC; i++) {
1560                struct sk_buff *skb = sis_priv->tx_skbuff[i];
1561
1562                if (skb) {
1563                        pci_unmap_single(sis_priv->pci_dev,
1564                                sis_priv->tx_ring[i].bufptr, skb->len,
1565                                PCI_DMA_TODEVICE);
1566                        dev_kfree_skb_irq(skb);
1567                        sis_priv->tx_skbuff[i] = NULL;
1568                        sis_priv->tx_ring[i].cmdsts = 0;
1569                        sis_priv->tx_ring[i].bufptr = 0;
1570                        net_dev->stats.tx_dropped++;
1571                }
1572        }
1573        sis_priv->tx_full = 0;
1574        netif_wake_queue(net_dev);
1575
1576        spin_unlock_irqrestore(&sis_priv->lock, flags);
1577
1578        netif_trans_update(net_dev); /* prevent tx timeout */
1579
1580        /* load Transmit Descriptor Register */
1581        sw32(txdp, sis_priv->tx_ring_dma);
1582
1583        /* Enable all known interrupts by setting the interrupt mask. */
1584        sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1585}
1586
1587/**
1588 *      sis900_start_xmit - sis900 start transmit routine
1589 *      @skb: socket buffer pointer to put the data being transmitted
1590 *      @net_dev: the net device to transmit with
1591 *
1592 *      Set the transmit buffer descriptor,
1593 *      and write TxENA to enable transmit state machine.
1594 *      tell upper layer if the buffer is full
1595 */
1596
1597static netdev_tx_t
1598sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1599{
1600        struct sis900_private *sis_priv = netdev_priv(net_dev);
1601        void __iomem *ioaddr = sis_priv->ioaddr;
1602        unsigned int  entry;
1603        unsigned long flags;
1604        unsigned int  index_cur_tx, index_dirty_tx;
1605        unsigned int  count_dirty_tx;
1606
1607        spin_lock_irqsave(&sis_priv->lock, flags);
1608
1609        /* Calculate the next Tx descriptor entry. */
1610        entry = sis_priv->cur_tx % NUM_TX_DESC;
1611        sis_priv->tx_skbuff[entry] = skb;
1612
1613        /* set the transmit buffer descriptor and enable Transmit State Machine */
1614        sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1615                skb->data, skb->len, PCI_DMA_TODEVICE);
1616        if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1617                sis_priv->tx_ring[entry].bufptr))) {
1618                        dev_kfree_skb_any(skb);
1619                        sis_priv->tx_skbuff[entry] = NULL;
1620                        net_dev->stats.tx_dropped++;
1621                        spin_unlock_irqrestore(&sis_priv->lock, flags);
1622                        return NETDEV_TX_OK;
1623        }
1624        sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1625        sw32(cr, TxENA | sr32(cr));
1626
1627        sis_priv->cur_tx ++;
1628        index_cur_tx = sis_priv->cur_tx;
1629        index_dirty_tx = sis_priv->dirty_tx;
1630
1631        for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1632                count_dirty_tx ++;
1633
1634        if (index_cur_tx == index_dirty_tx) {
1635                /* dirty_tx is met in the cycle of cur_tx, buffer full */
1636                sis_priv->tx_full = 1;
1637                netif_stop_queue(net_dev);
1638        } else if (count_dirty_tx < NUM_TX_DESC) {
1639                /* Typical path, tell upper layer that more transmission is possible */
1640                netif_start_queue(net_dev);
1641        } else {
1642                /* buffer full, tell upper layer no more transmission */
1643                sis_priv->tx_full = 1;
1644                netif_stop_queue(net_dev);
1645        }
1646
1647        spin_unlock_irqrestore(&sis_priv->lock, flags);
1648
1649        if (netif_msg_tx_queued(sis_priv))
1650                printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1651                       "to slot %d.\n",
1652                       net_dev->name, skb->data, (int)skb->len, entry);
1653
1654        return NETDEV_TX_OK;
1655}
1656
1657/**
1658 *      sis900_interrupt - sis900 interrupt handler
1659 *      @irq: the irq number
1660 *      @dev_instance: the client data object
1661 *
1662 *      The interrupt handler does all of the Rx thread work,
1663 *      and cleans up after the Tx thread
1664 */
1665
1666static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1667{
1668        struct net_device *net_dev = dev_instance;
1669        struct sis900_private *sis_priv = netdev_priv(net_dev);
1670        int boguscnt = max_interrupt_work;
1671        void __iomem *ioaddr = sis_priv->ioaddr;
1672        u32 status;
1673        unsigned int handled = 0;
1674
1675        spin_lock (&sis_priv->lock);
1676
1677        do {
1678                status = sr32(isr);
1679
1680                if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1681                        /* nothing intresting happened */
1682                        break;
1683                handled = 1;
1684
1685                /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1686                if (status & (RxORN | RxERR | RxOK))
1687                        /* Rx interrupt */
1688                        sis900_rx(net_dev);
1689
1690                if (status & (TxURN | TxERR | TxIDLE))
1691                        /* Tx interrupt */
1692                        sis900_finish_xmit(net_dev);
1693
1694                /* something strange happened !!! */
1695                if (status & HIBERR) {
1696                        if(netif_msg_intr(sis_priv))
1697                                printk(KERN_INFO "%s: Abnormal interrupt, "
1698                                        "status %#8.8x.\n", net_dev->name, status);
1699                        break;
1700                }
1701                if (--boguscnt < 0) {
1702                        if(netif_msg_intr(sis_priv))
1703                                printk(KERN_INFO "%s: Too much work at interrupt, "
1704                                        "interrupt status = %#8.8x.\n",
1705                                        net_dev->name, status);
1706                        break;
1707                }
1708        } while (1);
1709
1710        if(netif_msg_intr(sis_priv))
1711                printk(KERN_DEBUG "%s: exiting interrupt, "
1712                       "interrupt status = %#8.8x\n",
1713                       net_dev->name, sr32(isr));
1714
1715        spin_unlock (&sis_priv->lock);
1716        return IRQ_RETVAL(handled);
1717}
1718
1719/**
1720 *      sis900_rx - sis900 receive routine
1721 *      @net_dev: the net device which receives data
1722 *
1723 *      Process receive interrupt events,
1724 *      put buffer to higher layer and refill buffer pool
1725 *      Note: This function is called by interrupt handler,
1726 *      don't do "too much" work here
1727 */
1728
1729static int sis900_rx(struct net_device *net_dev)
1730{
1731        struct sis900_private *sis_priv = netdev_priv(net_dev);
1732        void __iomem *ioaddr = sis_priv->ioaddr;
1733        unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1734        u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1735        int rx_work_limit;
1736
1737        if (netif_msg_rx_status(sis_priv))
1738                printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1739                       "status:0x%8.8x\n",
1740                       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1741        rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1742
1743        while (rx_status & OWN) {
1744                unsigned int rx_size;
1745                unsigned int data_size;
1746
1747                if (--rx_work_limit < 0)
1748                        break;
1749
1750                data_size = rx_status & DSIZE;
1751                rx_size = data_size - CRC_SIZE;
1752
1753#if IS_ENABLED(CONFIG_VLAN_8021Q)
1754                /* ``TOOLONG'' flag means jumbo packet received. */
1755                if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1756                        rx_status &= (~ ((unsigned int)TOOLONG));
1757#endif
1758
1759                if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1760                        /* corrupted packet received */
1761                        if (netif_msg_rx_err(sis_priv))
1762                                printk(KERN_DEBUG "%s: Corrupted packet "
1763                                       "received, buffer status = 0x%8.8x/%d.\n",
1764                                       net_dev->name, rx_status, data_size);
1765                        net_dev->stats.rx_errors++;
1766                        if (rx_status & OVERRUN)
1767                                net_dev->stats.rx_over_errors++;
1768                        if (rx_status & (TOOLONG|RUNT))
1769                                net_dev->stats.rx_length_errors++;
1770                        if (rx_status & (RXISERR | FAERR))
1771                                net_dev->stats.rx_frame_errors++;
1772                        if (rx_status & CRCERR)
1773                                net_dev->stats.rx_crc_errors++;
1774                        /* reset buffer descriptor state */
1775                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1776                } else {
1777                        struct sk_buff * skb;
1778                        struct sk_buff * rx_skb;
1779
1780                        pci_unmap_single(sis_priv->pci_dev,
1781                                sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1782                                PCI_DMA_FROMDEVICE);
1783
1784                        /* refill the Rx buffer, what if there is not enough
1785                         * memory for new socket buffer ?? */
1786                        if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1787                                /*
1788                                 * Not enough memory to refill the buffer
1789                                 * so we need to recycle the old one so
1790                                 * as to avoid creating a memory hole
1791                                 * in the rx ring
1792                                 */
1793                                skb = sis_priv->rx_skbuff[entry];
1794                                net_dev->stats.rx_dropped++;
1795                                goto refill_rx_ring;
1796                        }
1797
1798                        /* This situation should never happen, but due to
1799                           some unknown bugs, it is possible that
1800                           we are working on NULL sk_buff :-( */
1801                        if (sis_priv->rx_skbuff[entry] == NULL) {
1802                                if (netif_msg_rx_err(sis_priv))
1803                                        printk(KERN_WARNING "%s: NULL pointer "
1804                                              "encountered in Rx ring\n"
1805                                              "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1806                                              net_dev->name, sis_priv->cur_rx,
1807                                              sis_priv->dirty_rx);
1808                                dev_kfree_skb(skb);
1809                                break;
1810                        }
1811
1812                        /* give the socket buffer to upper layers */
1813                        rx_skb = sis_priv->rx_skbuff[entry];
1814                        skb_put(rx_skb, rx_size);
1815                        rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1816                        netif_rx(rx_skb);
1817
1818                        /* some network statistics */
1819                        if ((rx_status & BCAST) == MCAST)
1820                                net_dev->stats.multicast++;
1821                        net_dev->stats.rx_bytes += rx_size;
1822                        net_dev->stats.rx_packets++;
1823                        sis_priv->dirty_rx++;
1824refill_rx_ring:
1825                        sis_priv->rx_skbuff[entry] = skb;
1826                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1827                        sis_priv->rx_ring[entry].bufptr =
1828                                pci_map_single(sis_priv->pci_dev, skb->data,
1829                                        RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1830                        if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1831                                sis_priv->rx_ring[entry].bufptr))) {
1832                                dev_kfree_skb_irq(skb);
1833                                sis_priv->rx_skbuff[entry] = NULL;
1834                                break;
1835                        }
1836                }
1837                sis_priv->cur_rx++;
1838                entry = sis_priv->cur_rx % NUM_RX_DESC;
1839                rx_status = sis_priv->rx_ring[entry].cmdsts;
1840        } // while
1841
1842        /* refill the Rx buffer, what if the rate of refilling is slower
1843         * than consuming ?? */
1844        for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1845                struct sk_buff *skb;
1846
1847                entry = sis_priv->dirty_rx % NUM_RX_DESC;
1848
1849                if (sis_priv->rx_skbuff[entry] == NULL) {
1850                        skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1851                        if (skb == NULL) {
1852                                /* not enough memory for skbuff, this makes a
1853                                 * "hole" on the buffer ring, it is not clear
1854                                 * how the hardware will react to this kind
1855                                 * of degenerated buffer */
1856                                net_dev->stats.rx_dropped++;
1857                                break;
1858                        }
1859                        sis_priv->rx_skbuff[entry] = skb;
1860                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1861                        sis_priv->rx_ring[entry].bufptr =
1862                                pci_map_single(sis_priv->pci_dev, skb->data,
1863                                        RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1864                        if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1865                                        sis_priv->rx_ring[entry].bufptr))) {
1866                                dev_kfree_skb_irq(skb);
1867                                sis_priv->rx_skbuff[entry] = NULL;
1868                                break;
1869                        }
1870                }
1871        }
1872        /* re-enable the potentially idle receive state matchine */
1873        sw32(cr , RxENA | sr32(cr));
1874
1875        return 0;
1876}
1877
1878/**
1879 *      sis900_finish_xmit - finish up transmission of packets
1880 *      @net_dev: the net device to be transmitted on
1881 *
1882 *      Check for error condition and free socket buffer etc
1883 *      schedule for more transmission as needed
1884 *      Note: This function is called by interrupt handler,
1885 *      don't do "too much" work here
1886 */
1887
1888static void sis900_finish_xmit (struct net_device *net_dev)
1889{
1890        struct sis900_private *sis_priv = netdev_priv(net_dev);
1891
1892        for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1893                struct sk_buff *skb;
1894                unsigned int entry;
1895                u32 tx_status;
1896
1897                entry = sis_priv->dirty_tx % NUM_TX_DESC;
1898                tx_status = sis_priv->tx_ring[entry].cmdsts;
1899
1900                if (tx_status & OWN) {
1901                        /* The packet is not transmitted yet (owned by hardware) !
1902                         * Note: the interrupt is generated only when Tx Machine
1903                         * is idle, so this is an almost impossible case */
1904                        break;
1905                }
1906
1907                if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1908                        /* packet unsuccessfully transmitted */
1909                        if (netif_msg_tx_err(sis_priv))
1910                                printk(KERN_DEBUG "%s: Transmit "
1911                                       "error, Tx status %8.8x.\n",
1912                                       net_dev->name, tx_status);
1913                        net_dev->stats.tx_errors++;
1914                        if (tx_status & UNDERRUN)
1915                                net_dev->stats.tx_fifo_errors++;
1916                        if (tx_status & ABORT)
1917                                net_dev->stats.tx_aborted_errors++;
1918                        if (tx_status & NOCARRIER)
1919                                net_dev->stats.tx_carrier_errors++;
1920                        if (tx_status & OWCOLL)
1921                                net_dev->stats.tx_window_errors++;
1922                } else {
1923                        /* packet successfully transmitted */
1924                        net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1925                        net_dev->stats.tx_bytes += tx_status & DSIZE;
1926                        net_dev->stats.tx_packets++;
1927                }
1928                /* Free the original skb. */
1929                skb = sis_priv->tx_skbuff[entry];
1930                pci_unmap_single(sis_priv->pci_dev,
1931                        sis_priv->tx_ring[entry].bufptr, skb->len,
1932                        PCI_DMA_TODEVICE);
1933                dev_kfree_skb_irq(skb);
1934                sis_priv->tx_skbuff[entry] = NULL;
1935                sis_priv->tx_ring[entry].bufptr = 0;
1936                sis_priv->tx_ring[entry].cmdsts = 0;
1937        }
1938
1939        if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1940            sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1941                /* The ring is no longer full, clear tx_full and schedule
1942                 * more transmission by netif_wake_queue(net_dev) */
1943                sis_priv->tx_full = 0;
1944                netif_wake_queue (net_dev);
1945        }
1946}
1947
1948/**
1949 *      sis900_close - close sis900 device
1950 *      @net_dev: the net device to be closed
1951 *
1952 *      Disable interrupts, stop the Tx and Rx Status Machine
1953 *      free Tx and RX socket buffer
1954 */
1955
1956static int sis900_close(struct net_device *net_dev)
1957{
1958        struct sis900_private *sis_priv = netdev_priv(net_dev);
1959        struct pci_dev *pdev = sis_priv->pci_dev;
1960        void __iomem *ioaddr = sis_priv->ioaddr;
1961        struct sk_buff *skb;
1962        int i;
1963
1964        netif_stop_queue(net_dev);
1965
1966        /* Disable interrupts by clearing the interrupt mask. */
1967        sw32(imr, 0x0000);
1968        sw32(ier, 0x0000);
1969
1970        /* Stop the chip's Tx and Rx Status Machine */
1971        sw32(cr, RxDIS | TxDIS | sr32(cr));
1972
1973        del_timer(&sis_priv->timer);
1974
1975        free_irq(pdev->irq, net_dev);
1976
1977        /* Free Tx and RX skbuff */
1978        for (i = 0; i < NUM_RX_DESC; i++) {
1979                skb = sis_priv->rx_skbuff[i];
1980                if (skb) {
1981                        pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1982                                         RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1983                        dev_kfree_skb(skb);
1984                        sis_priv->rx_skbuff[i] = NULL;
1985                }
1986        }
1987        for (i = 0; i < NUM_TX_DESC; i++) {
1988                skb = sis_priv->tx_skbuff[i];
1989                if (skb) {
1990                        pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1991                                         skb->len, PCI_DMA_TODEVICE);
1992                        dev_kfree_skb(skb);
1993                        sis_priv->tx_skbuff[i] = NULL;
1994                }
1995        }
1996
1997        /* Green! Put the chip in low-power mode. */
1998
1999        return 0;
2000}
2001
2002/**
2003 *      sis900_get_drvinfo - Return information about driver
2004 *      @net_dev: the net device to probe
2005 *      @info: container for info returned
2006 *
2007 *      Process ethtool command such as "ehtool -i" to show information
2008 */
2009
2010static void sis900_get_drvinfo(struct net_device *net_dev,
2011                               struct ethtool_drvinfo *info)
2012{
2013        struct sis900_private *sis_priv = netdev_priv(net_dev);
2014
2015        strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2016        strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2017        strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2018                sizeof(info->bus_info));
2019}
2020
2021static u32 sis900_get_msglevel(struct net_device *net_dev)
2022{
2023        struct sis900_private *sis_priv = netdev_priv(net_dev);
2024        return sis_priv->msg_enable;
2025}
2026
2027static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2028{
2029        struct sis900_private *sis_priv = netdev_priv(net_dev);
2030        sis_priv->msg_enable = value;
2031}
2032
2033static u32 sis900_get_link(struct net_device *net_dev)
2034{
2035        struct sis900_private *sis_priv = netdev_priv(net_dev);
2036        return mii_link_ok(&sis_priv->mii_info);
2037}
2038
2039static int sis900_get_settings(struct net_device *net_dev,
2040                                struct ethtool_cmd *cmd)
2041{
2042        struct sis900_private *sis_priv = netdev_priv(net_dev);
2043        spin_lock_irq(&sis_priv->lock);
2044        mii_ethtool_gset(&sis_priv->mii_info, cmd);
2045        spin_unlock_irq(&sis_priv->lock);
2046        return 0;
2047}
2048
2049static int sis900_set_settings(struct net_device *net_dev,
2050                                struct ethtool_cmd *cmd)
2051{
2052        struct sis900_private *sis_priv = netdev_priv(net_dev);
2053        int rt;
2054        spin_lock_irq(&sis_priv->lock);
2055        rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2056        spin_unlock_irq(&sis_priv->lock);
2057        return rt;
2058}
2059
2060static int sis900_nway_reset(struct net_device *net_dev)
2061{
2062        struct sis900_private *sis_priv = netdev_priv(net_dev);
2063        return mii_nway_restart(&sis_priv->mii_info);
2064}
2065
2066/**
2067 *      sis900_set_wol - Set up Wake on Lan registers
2068 *      @net_dev: the net device to probe
2069 *      @wol: container for info passed to the driver
2070 *
2071 *      Process ethtool command "wol" to setup wake on lan features.
2072 *      SiS900 supports sending WoL events if a correct packet is received,
2073 *      but there is no simple way to filter them to only a subset (broadcast,
2074 *      multicast, unicast or arp).
2075 */
2076
2077static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2078{
2079        struct sis900_private *sis_priv = netdev_priv(net_dev);
2080        void __iomem *ioaddr = sis_priv->ioaddr;
2081        u32 cfgpmcsr = 0, pmctrl_bits = 0;
2082
2083        if (wol->wolopts == 0) {
2084                pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2085                cfgpmcsr &= ~PME_EN;
2086                pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2087                sw32(pmctrl, pmctrl_bits);
2088                if (netif_msg_wol(sis_priv))
2089                        printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2090                return 0;
2091        }
2092
2093        if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2094                                | WAKE_BCAST | WAKE_ARP))
2095                return -EINVAL;
2096
2097        if (wol->wolopts & WAKE_MAGIC)
2098                pmctrl_bits |= MAGICPKT;
2099        if (wol->wolopts & WAKE_PHY)
2100                pmctrl_bits |= LINKON;
2101
2102        sw32(pmctrl, pmctrl_bits);
2103
2104        pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2105        cfgpmcsr |= PME_EN;
2106        pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2107        if (netif_msg_wol(sis_priv))
2108                printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2109
2110        return 0;
2111}
2112
2113static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2114{
2115        struct sis900_private *sp = netdev_priv(net_dev);
2116        void __iomem *ioaddr = sp->ioaddr;
2117        u32 pmctrl_bits;
2118
2119        pmctrl_bits = sr32(pmctrl);
2120        if (pmctrl_bits & MAGICPKT)
2121                wol->wolopts |= WAKE_MAGIC;
2122        if (pmctrl_bits & LINKON)
2123                wol->wolopts |= WAKE_PHY;
2124
2125        wol->supported = (WAKE_PHY | WAKE_MAGIC);
2126}
2127
2128static const struct ethtool_ops sis900_ethtool_ops = {
2129        .get_drvinfo    = sis900_get_drvinfo,
2130        .get_msglevel   = sis900_get_msglevel,
2131        .set_msglevel   = sis900_set_msglevel,
2132        .get_link       = sis900_get_link,
2133        .get_settings   = sis900_get_settings,
2134        .set_settings   = sis900_set_settings,
2135        .nway_reset     = sis900_nway_reset,
2136        .get_wol        = sis900_get_wol,
2137        .set_wol        = sis900_set_wol
2138};
2139
2140/**
2141 *      mii_ioctl - process MII i/o control command
2142 *      @net_dev: the net device to command for
2143 *      @rq: parameter for command
2144 *      @cmd: the i/o command
2145 *
2146 *      Process MII command like read/write MII register
2147 */
2148
2149static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2150{
2151        struct sis900_private *sis_priv = netdev_priv(net_dev);
2152        struct mii_ioctl_data *data = if_mii(rq);
2153
2154        switch(cmd) {
2155        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
2156                data->phy_id = sis_priv->mii->phy_addr;
2157                /* Fall Through */
2158
2159        case SIOCGMIIREG:               /* Read MII PHY register. */
2160                data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2161                return 0;
2162
2163        case SIOCSMIIREG:               /* Write MII PHY register. */
2164                mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2165                return 0;
2166        default:
2167                return -EOPNOTSUPP;
2168        }
2169}
2170
2171/**
2172 *      sis900_set_config - Set media type by net_device.set_config
2173 *      @dev: the net device for media type change
2174 *      @map: ifmap passed by ifconfig
2175 *
2176 *      Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2177 *      we support only port changes. All other runtime configuration
2178 *      changes will be ignored
2179 */
2180
2181static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2182{
2183        struct sis900_private *sis_priv = netdev_priv(dev);
2184        struct mii_phy *mii_phy = sis_priv->mii;
2185
2186        u16 status;
2187
2188        if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2189                /* we switch on the ifmap->port field. I couldn't find anything
2190                 * like a definition or standard for the values of that field.
2191                 * I think the meaning of those values is device specific. But
2192                 * since I would like to change the media type via the ifconfig
2193                 * command I use the definition from linux/netdevice.h
2194                 * (which seems to be different from the ifport(pcmcia) definition) */
2195                switch(map->port){
2196                case IF_PORT_UNKNOWN: /* use auto here */
2197                        dev->if_port = map->port;
2198                        /* we are going to change the media type, so the Link
2199                         * will be temporary down and we need to reflect that
2200                         * here. When the Link comes up again, it will be
2201                         * sensed by the sis_timer procedure, which also does
2202                         * all the rest for us */
2203                        netif_carrier_off(dev);
2204
2205                        /* read current state */
2206                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2207
2208                        /* enable auto negotiation and reset the negotioation
2209                         * (I don't really know what the auto negatiotiation
2210                         * reset really means, but it sounds for me right to
2211                         * do one here) */
2212                        mdio_write(dev, mii_phy->phy_addr,
2213                                   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2214
2215                        break;
2216
2217                case IF_PORT_10BASET: /* 10BaseT */
2218                        dev->if_port = map->port;
2219
2220                        /* we are going to change the media type, so the Link
2221                         * will be temporary down and we need to reflect that
2222                         * here. When the Link comes up again, it will be
2223                         * sensed by the sis_timer procedure, which also does
2224                         * all the rest for us */
2225                        netif_carrier_off(dev);
2226
2227                        /* set Speed to 10Mbps */
2228                        /* read current state */
2229                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2230
2231                        /* disable auto negotiation and force 10MBit mode*/
2232                        mdio_write(dev, mii_phy->phy_addr,
2233                                   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2234                                        MII_CNTL_AUTO));
2235                        break;
2236
2237                case IF_PORT_100BASET: /* 100BaseT */
2238                case IF_PORT_100BASETX: /* 100BaseTx */
2239                        dev->if_port = map->port;
2240
2241                        /* we are going to change the media type, so the Link
2242                         * will be temporary down and we need to reflect that
2243                         * here. When the Link comes up again, it will be
2244                         * sensed by the sis_timer procedure, which also does
2245                         * all the rest for us */
2246                        netif_carrier_off(dev);
2247
2248                        /* set Speed to 100Mbps */
2249                        /* disable auto negotiation and enable 100MBit Mode */
2250                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2251                        mdio_write(dev, mii_phy->phy_addr,
2252                                   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2253                                   MII_CNTL_SPEED);
2254
2255                        break;
2256
2257                case IF_PORT_10BASE2: /* 10Base2 */
2258                case IF_PORT_AUI: /* AUI */
2259                case IF_PORT_100BASEFX: /* 100BaseFx */
2260                        /* These Modes are not supported (are they?)*/
2261                        return -EOPNOTSUPP;
2262
2263                default:
2264                        return -EINVAL;
2265                }
2266        }
2267        return 0;
2268}
2269
2270/**
2271 *      sis900_mcast_bitnr - compute hashtable index
2272 *      @addr: multicast address
2273 *      @revision: revision id of chip
2274 *
2275 *      SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2276 *      hash table, which makes this function a little bit different from other drivers
2277 *      SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2278 *      multicast hash table.
2279 */
2280
2281static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2282{
2283
2284        u32 crc = ether_crc(6, addr);
2285
2286        /* leave 8 or 7 most siginifant bits */
2287        if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2288                return (int)(crc >> 24);
2289        else
2290                return (int)(crc >> 25);
2291}
2292
2293/**
2294 *      set_rx_mode - Set SiS900 receive mode
2295 *      @net_dev: the net device to be set
2296 *
2297 *      Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2298 *      And set the appropriate multicast filter.
2299 *      Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2300 */
2301
2302static void set_rx_mode(struct net_device *net_dev)
2303{
2304        struct sis900_private *sis_priv = netdev_priv(net_dev);
2305        void __iomem *ioaddr = sis_priv->ioaddr;
2306        u16 mc_filter[16] = {0};        /* 256/128 bits multicast hash table */
2307        int i, table_entries;
2308        u32 rx_mode;
2309
2310        /* 635 Hash Table entries = 256(2^16) */
2311        if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2312                        (sis_priv->chipset_rev == SIS900B_900_REV))
2313                table_entries = 16;
2314        else
2315                table_entries = 8;
2316
2317        if (net_dev->flags & IFF_PROMISC) {
2318                /* Accept any kinds of packets */
2319                rx_mode = RFPromiscuous;
2320                for (i = 0; i < table_entries; i++)
2321                        mc_filter[i] = 0xffff;
2322        } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2323                   (net_dev->flags & IFF_ALLMULTI)) {
2324                /* too many multicast addresses or accept all multicast packet */
2325                rx_mode = RFAAB | RFAAM;
2326                for (i = 0; i < table_entries; i++)
2327                        mc_filter[i] = 0xffff;
2328        } else {
2329                /* Accept Broadcast packet, destination address matchs our
2330                 * MAC address, use Receive Filter to reject unwanted MCAST
2331                 * packets */
2332                struct netdev_hw_addr *ha;
2333                rx_mode = RFAAB;
2334
2335                netdev_for_each_mc_addr(ha, net_dev) {
2336                        unsigned int bit_nr;
2337
2338                        bit_nr = sis900_mcast_bitnr(ha->addr,
2339                                                    sis_priv->chipset_rev);
2340                        mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2341                }
2342        }
2343
2344        /* update Multicast Hash Table in Receive Filter */
2345        for (i = 0; i < table_entries; i++) {
2346                /* why plus 0x04 ??, That makes the correct value for hash table. */
2347                sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2348                sw32(rfdr, mc_filter[i]);
2349        }
2350
2351        sw32(rfcr, RFEN | rx_mode);
2352
2353        /* sis900 is capable of looping back packets at MAC level for
2354         * debugging purpose */
2355        if (net_dev->flags & IFF_LOOPBACK) {
2356                u32 cr_saved;
2357                /* We must disable Tx/Rx before setting loopback mode */
2358                cr_saved = sr32(cr);
2359                sw32(cr, cr_saved | TxDIS | RxDIS);
2360                /* enable loopback */
2361                sw32(txcfg, sr32(txcfg) | TxMLB);
2362                sw32(rxcfg, sr32(rxcfg) | RxATX);
2363                /* restore cr */
2364                sw32(cr, cr_saved);
2365        }
2366}
2367
2368/**
2369 *      sis900_reset - Reset sis900 MAC
2370 *      @net_dev: the net device to reset
2371 *
2372 *      reset sis900 MAC and wait until finished
2373 *      reset through command register
2374 *      change backoff algorithm for 900B0 & 635 M/B
2375 */
2376
2377static void sis900_reset(struct net_device *net_dev)
2378{
2379        struct sis900_private *sis_priv = netdev_priv(net_dev);
2380        void __iomem *ioaddr = sis_priv->ioaddr;
2381        u32 status = TxRCMP | RxRCMP;
2382        int i;
2383
2384        sw32(ier, 0);
2385        sw32(imr, 0);
2386        sw32(rfcr, 0);
2387
2388        sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2389
2390        /* Check that the chip has finished the reset. */
2391        for (i = 0; status && (i < 1000); i++)
2392                status ^= sr32(isr) & status;
2393
2394        if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2395            sis_priv->chipset_rev == SIS900B_900_REV)
2396                sw32(cfg, PESEL | RND_CNT);
2397        else
2398                sw32(cfg, PESEL);
2399}
2400
2401/**
2402 *      sis900_remove - Remove sis900 device
2403 *      @pci_dev: the pci device to be removed
2404 *
2405 *      remove and release SiS900 net device
2406 */
2407
2408static void sis900_remove(struct pci_dev *pci_dev)
2409{
2410        struct net_device *net_dev = pci_get_drvdata(pci_dev);
2411        struct sis900_private *sis_priv = netdev_priv(net_dev);
2412
2413        unregister_netdev(net_dev);
2414
2415        while (sis_priv->first_mii) {
2416                struct mii_phy *phy = sis_priv->first_mii;
2417
2418                sis_priv->first_mii = phy->next;
2419                kfree(phy);
2420        }
2421
2422        pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2423                sis_priv->rx_ring_dma);
2424        pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2425                sis_priv->tx_ring_dma);
2426        pci_iounmap(pci_dev, sis_priv->ioaddr);
2427        free_netdev(net_dev);
2428        pci_release_regions(pci_dev);
2429}
2430
2431#ifdef CONFIG_PM
2432
2433static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2434{
2435        struct net_device *net_dev = pci_get_drvdata(pci_dev);
2436        struct sis900_private *sis_priv = netdev_priv(net_dev);
2437        void __iomem *ioaddr = sis_priv->ioaddr;
2438
2439        if(!netif_running(net_dev))
2440                return 0;
2441
2442        netif_stop_queue(net_dev);
2443        netif_device_detach(net_dev);
2444
2445        /* Stop the chip's Tx and Rx Status Machine */
2446        sw32(cr, RxDIS | TxDIS | sr32(cr));
2447
2448        pci_set_power_state(pci_dev, PCI_D3hot);
2449        pci_save_state(pci_dev);
2450
2451        return 0;
2452}
2453
2454static int sis900_resume(struct pci_dev *pci_dev)
2455{
2456        struct net_device *net_dev = pci_get_drvdata(pci_dev);
2457        struct sis900_private *sis_priv = netdev_priv(net_dev);
2458        void __iomem *ioaddr = sis_priv->ioaddr;
2459
2460        if(!netif_running(net_dev))
2461                return 0;
2462        pci_restore_state(pci_dev);
2463        pci_set_power_state(pci_dev, PCI_D0);
2464
2465        sis900_init_rxfilter(net_dev);
2466
2467        sis900_init_tx_ring(net_dev);
2468        sis900_init_rx_ring(net_dev);
2469
2470        set_rx_mode(net_dev);
2471
2472        netif_device_attach(net_dev);
2473        netif_start_queue(net_dev);
2474
2475        /* Workaround for EDB */
2476        sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2477
2478        /* Enable all known interrupts by setting the interrupt mask. */
2479        sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2480        sw32(cr, RxENA | sr32(cr));
2481        sw32(ier, IE);
2482
2483        sis900_check_mode(net_dev, sis_priv->mii);
2484
2485        return 0;
2486}
2487#endif /* CONFIG_PM */
2488
2489static struct pci_driver sis900_pci_driver = {
2490        .name           = SIS900_MODULE_NAME,
2491        .id_table       = sis900_pci_tbl,
2492        .probe          = sis900_probe,
2493        .remove         = sis900_remove,
2494#ifdef CONFIG_PM
2495        .suspend        = sis900_suspend,
2496        .resume         = sis900_resume,
2497#endif /* CONFIG_PM */
2498};
2499
2500static int __init sis900_init_module(void)
2501{
2502/* when a module, this is printed whether or not devices are found in probe */
2503#ifdef MODULE
2504        printk(version);
2505#endif
2506
2507        return pci_register_driver(&sis900_pci_driver);
2508}
2509
2510static void __exit sis900_cleanup_module(void)
2511{
2512        pci_unregister_driver(&sis900_pci_driver);
2513}
2514
2515module_init(sis900_init_module);
2516module_exit(sis900_cleanup_module);
2517
2518