1
2
3
4
5
6
7
8
9
10
11
12
13
14
15#include <linux/aer.h>
16#include <linux/bitops.h>
17#include <linux/blkdev.h>
18#include <linux/blk-mq.h>
19#include <linux/blk-mq-pci.h>
20#include <linux/cpu.h>
21#include <linux/delay.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/hdreg.h>
26#include <linux/idr.h>
27#include <linux/init.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/kdev_t.h>
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/mutex.h>
36#include <linux/pci.h>
37#include <linux/poison.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/t10-pi.h>
42#include <linux/timer.h>
43#include <linux/types.h>
44#include <linux/io-64-nonatomic-lo-hi.h>
45#include <asm/unaligned.h>
46
47#include "nvme.h"
48
49#define NVME_Q_DEPTH 1024
50#define NVME_AQ_DEPTH 256
51#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
53
54
55
56
57
58#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60static int use_threaded_interrupts;
61module_param(use_threaded_interrupts, int, 0);
62
63static bool use_cmb_sqes = true;
64module_param(use_cmb_sqes, bool, 0644);
65MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67static struct workqueue_struct *nvme_workq;
68
69struct nvme_dev;
70struct nvme_queue;
71
72static int nvme_reset(struct nvme_dev *dev);
73static void nvme_process_cq(struct nvme_queue *nvmeq);
74static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76
77
78
79struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 u32 cmbloc;
103 struct nvme_ctrl ctrl;
104 struct completion ioq_wait;
105};
106
107static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108{
109 return container_of(ctrl, struct nvme_dev, ctrl);
110}
111
112
113
114
115
116struct nvme_queue {
117 struct device *q_dmadev;
118 struct nvme_dev *dev;
119 char irqname[24];
120 spinlock_t q_lock;
121 struct nvme_command *sq_cmds;
122 struct nvme_command __iomem *sq_cmds_io;
123 volatile struct nvme_completion *cqes;
124 struct blk_mq_tags **tags;
125 dma_addr_t sq_dma_addr;
126 dma_addr_t cq_dma_addr;
127 u32 __iomem *q_db;
128 u16 q_depth;
129 s16 cq_vector;
130 u16 sq_tail;
131 u16 cq_head;
132 u16 qid;
133 u8 cq_phase;
134 u8 cqe_seen;
135};
136
137
138
139
140
141
142
143struct nvme_iod {
144 struct nvme_queue *nvmeq;
145 int aborted;
146 int npages;
147 int nents;
148 int length;
149 dma_addr_t first_dma;
150 struct scatterlist meta_sg;
151 struct scatterlist *sg;
152 struct scatterlist inline_sg[0];
153};
154
155
156
157
158static inline void _nvme_check_size(void)
159{
160 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
170 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
172}
173
174
175
176
177#define NVME_INT_PAGES 2
178#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
179
180
181
182
183
184
185static int nvme_npages(unsigned size, struct nvme_dev *dev)
186{
187 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
188 dev->ctrl.page_size);
189 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
190}
191
192static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
193 unsigned int size, unsigned int nseg)
194{
195 return sizeof(__le64 *) * nvme_npages(size, dev) +
196 sizeof(struct scatterlist) * nseg;
197}
198
199static unsigned int nvme_cmd_size(struct nvme_dev *dev)
200{
201 return sizeof(struct nvme_iod) +
202 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
203}
204
205static int nvmeq_irq(struct nvme_queue *nvmeq)
206{
207 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
208}
209
210static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211 unsigned int hctx_idx)
212{
213 struct nvme_dev *dev = data;
214 struct nvme_queue *nvmeq = dev->queues[0];
215
216 WARN_ON(hctx_idx != 0);
217 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
218 WARN_ON(nvmeq->tags);
219
220 hctx->driver_data = nvmeq;
221 nvmeq->tags = &dev->admin_tagset.tags[0];
222 return 0;
223}
224
225static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
226{
227 struct nvme_queue *nvmeq = hctx->driver_data;
228
229 nvmeq->tags = NULL;
230}
231
232static int nvme_admin_init_request(void *data, struct request *req,
233 unsigned int hctx_idx, unsigned int rq_idx,
234 unsigned int numa_node)
235{
236 struct nvme_dev *dev = data;
237 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
238 struct nvme_queue *nvmeq = dev->queues[0];
239
240 BUG_ON(!nvmeq);
241 iod->nvmeq = nvmeq;
242 return 0;
243}
244
245static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
246 unsigned int hctx_idx)
247{
248 struct nvme_dev *dev = data;
249 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
250
251 if (!nvmeq->tags)
252 nvmeq->tags = &dev->tagset.tags[hctx_idx];
253
254 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
255 hctx->driver_data = nvmeq;
256 return 0;
257}
258
259static int nvme_init_request(void *data, struct request *req,
260 unsigned int hctx_idx, unsigned int rq_idx,
261 unsigned int numa_node)
262{
263 struct nvme_dev *dev = data;
264 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
265 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
266
267 BUG_ON(!nvmeq);
268 iod->nvmeq = nvmeq;
269 return 0;
270}
271
272static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
273{
274 struct nvme_dev *dev = set->driver_data;
275
276 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
277}
278
279
280
281
282
283
284
285
286static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
287 struct nvme_command *cmd)
288{
289 u16 tail = nvmeq->sq_tail;
290
291 if (nvmeq->sq_cmds_io)
292 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
293 else
294 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
295
296 if (++tail == nvmeq->q_depth)
297 tail = 0;
298 writel(tail, nvmeq->q_db);
299 nvmeq->sq_tail = tail;
300}
301
302static __le64 **iod_list(struct request *req)
303{
304 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
305 return (__le64 **)(iod->sg + req->nr_phys_segments);
306}
307
308static int nvme_init_iod(struct request *rq, unsigned size,
309 struct nvme_dev *dev)
310{
311 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
312 int nseg = rq->nr_phys_segments;
313
314 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
315 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
316 if (!iod->sg)
317 return BLK_MQ_RQ_QUEUE_BUSY;
318 } else {
319 iod->sg = iod->inline_sg;
320 }
321
322 iod->aborted = 0;
323 iod->npages = -1;
324 iod->nents = 0;
325 iod->length = size;
326
327 if (!(rq->cmd_flags & REQ_DONTPREP)) {
328 rq->retries = 0;
329 rq->cmd_flags |= REQ_DONTPREP;
330 }
331 return 0;
332}
333
334static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
335{
336 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
337 const int last_prp = dev->ctrl.page_size / 8 - 1;
338 int i;
339 __le64 **list = iod_list(req);
340 dma_addr_t prp_dma = iod->first_dma;
341
342 nvme_cleanup_cmd(req);
343
344 if (iod->npages == 0)
345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346 for (i = 0; i < iod->npages; i++) {
347 __le64 *prp_list = list[i];
348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350 prp_dma = next_prp_dma;
351 }
352
353 if (iod->sg != iod->inline_sg)
354 kfree(iod->sg);
355}
356
357#ifdef CONFIG_BLK_DEV_INTEGRITY
358static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
359{
360 if (be32_to_cpu(pi->ref_tag) == v)
361 pi->ref_tag = cpu_to_be32(p);
362}
363
364static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
365{
366 if (be32_to_cpu(pi->ref_tag) == p)
367 pi->ref_tag = cpu_to_be32(v);
368}
369
370
371
372
373
374
375
376
377
378
379
380static void nvme_dif_remap(struct request *req,
381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
382{
383 struct nvme_ns *ns = req->rq_disk->private_data;
384 struct bio_integrity_payload *bip;
385 struct t10_pi_tuple *pi;
386 void *p, *pmap;
387 u32 i, nlb, ts, phys, virt;
388
389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390 return;
391
392 bip = bio_integrity(req->bio);
393 if (!bip)
394 return;
395
396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
397
398 p = pmap;
399 virt = bip_get_seed(bip);
400 phys = nvme_block_nr(ns, blk_rq_pos(req));
401 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
402 ts = ns->disk->queue->integrity.tuple_size;
403
404 for (i = 0; i < nlb; i++, virt++, phys++) {
405 pi = (struct t10_pi_tuple *)p;
406 dif_swap(phys, virt, pi);
407 p += ts;
408 }
409 kunmap_atomic(pmap);
410}
411#else
412static void nvme_dif_remap(struct request *req,
413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
414{
415}
416static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
417{
418}
419static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
420{
421}
422#endif
423
424static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
425 int total_len)
426{
427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
428 struct dma_pool *pool;
429 int length = total_len;
430 struct scatterlist *sg = iod->sg;
431 int dma_len = sg_dma_len(sg);
432 u64 dma_addr = sg_dma_address(sg);
433 u32 page_size = dev->ctrl.page_size;
434 int offset = dma_addr & (page_size - 1);
435 __le64 *prp_list;
436 __le64 **list = iod_list(req);
437 dma_addr_t prp_dma;
438 int nprps, i;
439
440 length -= (page_size - offset);
441 if (length <= 0)
442 return true;
443
444 dma_len -= (page_size - offset);
445 if (dma_len) {
446 dma_addr += (page_size - offset);
447 } else {
448 sg = sg_next(sg);
449 dma_addr = sg_dma_address(sg);
450 dma_len = sg_dma_len(sg);
451 }
452
453 if (length <= page_size) {
454 iod->first_dma = dma_addr;
455 return true;
456 }
457
458 nprps = DIV_ROUND_UP(length, page_size);
459 if (nprps <= (256 / 8)) {
460 pool = dev->prp_small_pool;
461 iod->npages = 0;
462 } else {
463 pool = dev->prp_page_pool;
464 iod->npages = 1;
465 }
466
467 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
468 if (!prp_list) {
469 iod->first_dma = dma_addr;
470 iod->npages = -1;
471 return false;
472 }
473 list[0] = prp_list;
474 iod->first_dma = prp_dma;
475 i = 0;
476 for (;;) {
477 if (i == page_size >> 3) {
478 __le64 *old_prp_list = prp_list;
479 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
480 if (!prp_list)
481 return false;
482 list[iod->npages++] = prp_list;
483 prp_list[0] = old_prp_list[i - 1];
484 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
485 i = 1;
486 }
487 prp_list[i++] = cpu_to_le64(dma_addr);
488 dma_len -= page_size;
489 dma_addr += page_size;
490 length -= page_size;
491 if (length <= 0)
492 break;
493 if (dma_len > 0)
494 continue;
495 BUG_ON(dma_len < 0);
496 sg = sg_next(sg);
497 dma_addr = sg_dma_address(sg);
498 dma_len = sg_dma_len(sg);
499 }
500
501 return true;
502}
503
504static int nvme_map_data(struct nvme_dev *dev, struct request *req,
505 unsigned size, struct nvme_command *cmnd)
506{
507 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
508 struct request_queue *q = req->q;
509 enum dma_data_direction dma_dir = rq_data_dir(req) ?
510 DMA_TO_DEVICE : DMA_FROM_DEVICE;
511 int ret = BLK_MQ_RQ_QUEUE_ERROR;
512
513 sg_init_table(iod->sg, req->nr_phys_segments);
514 iod->nents = blk_rq_map_sg(q, req, iod->sg);
515 if (!iod->nents)
516 goto out;
517
518 ret = BLK_MQ_RQ_QUEUE_BUSY;
519 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
520 DMA_ATTR_NO_WARN))
521 goto out;
522
523 if (!nvme_setup_prps(dev, req, size))
524 goto out_unmap;
525
526 ret = BLK_MQ_RQ_QUEUE_ERROR;
527 if (blk_integrity_rq(req)) {
528 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
529 goto out_unmap;
530
531 sg_init_table(&iod->meta_sg, 1);
532 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
533 goto out_unmap;
534
535 if (rq_data_dir(req))
536 nvme_dif_remap(req, nvme_dif_prep);
537
538 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
539 goto out_unmap;
540 }
541
542 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
543 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
544 if (blk_integrity_rq(req))
545 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
546 return BLK_MQ_RQ_QUEUE_OK;
547
548out_unmap:
549 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
550out:
551 return ret;
552}
553
554static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
555{
556 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
557 enum dma_data_direction dma_dir = rq_data_dir(req) ?
558 DMA_TO_DEVICE : DMA_FROM_DEVICE;
559
560 if (iod->nents) {
561 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
562 if (blk_integrity_rq(req)) {
563 if (!rq_data_dir(req))
564 nvme_dif_remap(req, nvme_dif_complete);
565 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
566 }
567 }
568
569 nvme_free_iod(dev, req);
570}
571
572
573
574
575static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576 const struct blk_mq_queue_data *bd)
577{
578 struct nvme_ns *ns = hctx->queue->queuedata;
579 struct nvme_queue *nvmeq = hctx->driver_data;
580 struct nvme_dev *dev = nvmeq->dev;
581 struct request *req = bd->rq;
582 struct nvme_command cmnd;
583 unsigned map_len;
584 int ret = BLK_MQ_RQ_QUEUE_OK;
585
586
587
588
589
590
591 if (ns && ns->ms && !blk_integrity_rq(req)) {
592 if (!(ns->pi_type && ns->ms == 8) &&
593 req->cmd_type != REQ_TYPE_DRV_PRIV) {
594 blk_mq_end_request(req, -EFAULT);
595 return BLK_MQ_RQ_QUEUE_OK;
596 }
597 }
598
599 map_len = nvme_map_len(req);
600 ret = nvme_init_iod(req, map_len, dev);
601 if (ret)
602 return ret;
603
604 ret = nvme_setup_cmd(ns, req, &cmnd);
605 if (ret)
606 goto out;
607
608 if (req->nr_phys_segments)
609 ret = nvme_map_data(dev, req, map_len, &cmnd);
610
611 if (ret)
612 goto out;
613
614 cmnd.common.command_id = req->tag;
615 blk_mq_start_request(req);
616
617 spin_lock_irq(&nvmeq->q_lock);
618 if (unlikely(nvmeq->cq_vector < 0)) {
619 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
620 ret = BLK_MQ_RQ_QUEUE_BUSY;
621 else
622 ret = BLK_MQ_RQ_QUEUE_ERROR;
623 spin_unlock_irq(&nvmeq->q_lock);
624 goto out;
625 }
626 __nvme_submit_cmd(nvmeq, &cmnd);
627 nvme_process_cq(nvmeq);
628 spin_unlock_irq(&nvmeq->q_lock);
629 return BLK_MQ_RQ_QUEUE_OK;
630out:
631 nvme_free_iod(dev, req);
632 return ret;
633}
634
635static void nvme_complete_rq(struct request *req)
636{
637 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
638 struct nvme_dev *dev = iod->nvmeq->dev;
639 int error = 0;
640
641 nvme_unmap_data(dev, req);
642
643 if (unlikely(req->errors)) {
644 if (nvme_req_needs_retry(req, req->errors)) {
645 req->retries++;
646 nvme_requeue_req(req);
647 return;
648 }
649
650 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
651 error = req->errors;
652 else
653 error = nvme_error_status(req->errors);
654 }
655
656 if (unlikely(iod->aborted)) {
657 dev_warn(dev->ctrl.device,
658 "completing aborted command with status: %04x\n",
659 req->errors);
660 }
661
662 blk_mq_end_request(req, error);
663}
664
665
666static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
667 u16 phase)
668{
669 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
670}
671
672static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
673{
674 u16 head, phase;
675
676 head = nvmeq->cq_head;
677 phase = nvmeq->cq_phase;
678
679 while (nvme_cqe_valid(nvmeq, head, phase)) {
680 struct nvme_completion cqe = nvmeq->cqes[head];
681 struct request *req;
682
683 if (++head == nvmeq->q_depth) {
684 head = 0;
685 phase = !phase;
686 }
687
688 if (tag && *tag == cqe.command_id)
689 *tag = -1;
690
691 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
692 dev_warn(nvmeq->dev->ctrl.device,
693 "invalid id %d completed on queue %d\n",
694 cqe.command_id, le16_to_cpu(cqe.sq_id));
695 continue;
696 }
697
698
699
700
701
702
703
704 if (unlikely(nvmeq->qid == 0 &&
705 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
706 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
707 continue;
708 }
709
710 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
711 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
712 memcpy(req->special, &cqe, sizeof(cqe));
713 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
714
715 }
716
717
718
719
720
721
722
723 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
724 return;
725
726 if (likely(nvmeq->cq_vector >= 0))
727 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
728 nvmeq->cq_head = head;
729 nvmeq->cq_phase = phase;
730
731 nvmeq->cqe_seen = 1;
732}
733
734static void nvme_process_cq(struct nvme_queue *nvmeq)
735{
736 __nvme_process_cq(nvmeq, NULL);
737}
738
739static irqreturn_t nvme_irq(int irq, void *data)
740{
741 irqreturn_t result;
742 struct nvme_queue *nvmeq = data;
743 spin_lock(&nvmeq->q_lock);
744 nvme_process_cq(nvmeq);
745 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
746 nvmeq->cqe_seen = 0;
747 spin_unlock(&nvmeq->q_lock);
748 return result;
749}
750
751static irqreturn_t nvme_irq_check(int irq, void *data)
752{
753 struct nvme_queue *nvmeq = data;
754 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
755 return IRQ_WAKE_THREAD;
756 return IRQ_NONE;
757}
758
759static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
760{
761 struct nvme_queue *nvmeq = hctx->driver_data;
762
763 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
764 spin_lock_irq(&nvmeq->q_lock);
765 __nvme_process_cq(nvmeq, &tag);
766 spin_unlock_irq(&nvmeq->q_lock);
767
768 if (tag == -1)
769 return 1;
770 }
771
772 return 0;
773}
774
775static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
776{
777 struct nvme_dev *dev = to_nvme_dev(ctrl);
778 struct nvme_queue *nvmeq = dev->queues[0];
779 struct nvme_command c;
780
781 memset(&c, 0, sizeof(c));
782 c.common.opcode = nvme_admin_async_event;
783 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
784
785 spin_lock_irq(&nvmeq->q_lock);
786 __nvme_submit_cmd(nvmeq, &c);
787 spin_unlock_irq(&nvmeq->q_lock);
788}
789
790static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
791{
792 struct nvme_command c;
793
794 memset(&c, 0, sizeof(c));
795 c.delete_queue.opcode = opcode;
796 c.delete_queue.qid = cpu_to_le16(id);
797
798 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
799}
800
801static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
802 struct nvme_queue *nvmeq)
803{
804 struct nvme_command c;
805 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
806
807
808
809
810
811 memset(&c, 0, sizeof(c));
812 c.create_cq.opcode = nvme_admin_create_cq;
813 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
814 c.create_cq.cqid = cpu_to_le16(qid);
815 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
816 c.create_cq.cq_flags = cpu_to_le16(flags);
817 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
818
819 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
820}
821
822static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
823 struct nvme_queue *nvmeq)
824{
825 struct nvme_command c;
826 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
827
828
829
830
831
832 memset(&c, 0, sizeof(c));
833 c.create_sq.opcode = nvme_admin_create_sq;
834 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
835 c.create_sq.sqid = cpu_to_le16(qid);
836 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
837 c.create_sq.sq_flags = cpu_to_le16(flags);
838 c.create_sq.cqid = cpu_to_le16(qid);
839
840 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
841}
842
843static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
844{
845 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
846}
847
848static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
849{
850 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
851}
852
853static void abort_endio(struct request *req, int error)
854{
855 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
856 struct nvme_queue *nvmeq = iod->nvmeq;
857 u16 status = req->errors;
858
859 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
860 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
861 blk_mq_free_request(req);
862}
863
864static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
865{
866 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
867 struct nvme_queue *nvmeq = iod->nvmeq;
868 struct nvme_dev *dev = nvmeq->dev;
869 struct request *abort_req;
870 struct nvme_command cmd;
871
872
873
874
875
876
877
878 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
879 dev_warn(dev->ctrl.device,
880 "I/O %d QID %d timeout, disable controller\n",
881 req->tag, nvmeq->qid);
882 nvme_dev_disable(dev, false);
883 req->errors = NVME_SC_CANCELLED;
884 return BLK_EH_HANDLED;
885 }
886
887
888
889
890
891
892 if (!nvmeq->qid || iod->aborted) {
893 dev_warn(dev->ctrl.device,
894 "I/O %d QID %d timeout, reset controller\n",
895 req->tag, nvmeq->qid);
896 nvme_dev_disable(dev, false);
897 nvme_reset(dev);
898
899
900
901
902
903 req->errors = NVME_SC_CANCELLED;
904 return BLK_EH_HANDLED;
905 }
906
907 iod->aborted = 1;
908
909 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
910 atomic_inc(&dev->ctrl.abort_limit);
911 return BLK_EH_RESET_TIMER;
912 }
913
914 memset(&cmd, 0, sizeof(cmd));
915 cmd.abort.opcode = nvme_admin_abort_cmd;
916 cmd.abort.cid = req->tag;
917 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
918
919 dev_warn(nvmeq->dev->ctrl.device,
920 "I/O %d QID %d timeout, aborting\n",
921 req->tag, nvmeq->qid);
922
923 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
924 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
925 if (IS_ERR(abort_req)) {
926 atomic_inc(&dev->ctrl.abort_limit);
927 return BLK_EH_RESET_TIMER;
928 }
929
930 abort_req->timeout = ADMIN_TIMEOUT;
931 abort_req->end_io_data = NULL;
932 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
933
934
935
936
937
938
939 return BLK_EH_RESET_TIMER;
940}
941
942static void nvme_free_queue(struct nvme_queue *nvmeq)
943{
944 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
945 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
946 if (nvmeq->sq_cmds)
947 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
948 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
949 kfree(nvmeq);
950}
951
952static void nvme_free_queues(struct nvme_dev *dev, int lowest)
953{
954 int i;
955
956 for (i = dev->queue_count - 1; i >= lowest; i--) {
957 struct nvme_queue *nvmeq = dev->queues[i];
958 dev->queue_count--;
959 dev->queues[i] = NULL;
960 nvme_free_queue(nvmeq);
961 }
962}
963
964
965
966
967
968static int nvme_suspend_queue(struct nvme_queue *nvmeq)
969{
970 int vector;
971
972 spin_lock_irq(&nvmeq->q_lock);
973 if (nvmeq->cq_vector == -1) {
974 spin_unlock_irq(&nvmeq->q_lock);
975 return 1;
976 }
977 vector = nvmeq_irq(nvmeq);
978 nvmeq->dev->online_queues--;
979 nvmeq->cq_vector = -1;
980 spin_unlock_irq(&nvmeq->q_lock);
981
982 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
983 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
984
985 free_irq(vector, nvmeq);
986
987 return 0;
988}
989
990static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
991{
992 struct nvme_queue *nvmeq = dev->queues[0];
993
994 if (!nvmeq)
995 return;
996 if (nvme_suspend_queue(nvmeq))
997 return;
998
999 if (shutdown)
1000 nvme_shutdown_ctrl(&dev->ctrl);
1001 else
1002 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1003 dev->bar + NVME_REG_CAP));
1004
1005 spin_lock_irq(&nvmeq->q_lock);
1006 nvme_process_cq(nvmeq);
1007 spin_unlock_irq(&nvmeq->q_lock);
1008}
1009
1010static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1011 int entry_size)
1012{
1013 int q_depth = dev->q_depth;
1014 unsigned q_size_aligned = roundup(q_depth * entry_size,
1015 dev->ctrl.page_size);
1016
1017 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1018 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1019 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1020 q_depth = div_u64(mem_per_q, entry_size);
1021
1022
1023
1024
1025
1026
1027 if (q_depth < 64)
1028 return -ENOMEM;
1029 }
1030
1031 return q_depth;
1032}
1033
1034static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1035 int qid, int depth)
1036{
1037 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1038 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1039 dev->ctrl.page_size);
1040 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1041 nvmeq->sq_cmds_io = dev->cmb + offset;
1042 } else {
1043 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1044 &nvmeq->sq_dma_addr, GFP_KERNEL);
1045 if (!nvmeq->sq_cmds)
1046 return -ENOMEM;
1047 }
1048
1049 return 0;
1050}
1051
1052static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1053 int depth)
1054{
1055 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1056 if (!nvmeq)
1057 return NULL;
1058
1059 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1060 &nvmeq->cq_dma_addr, GFP_KERNEL);
1061 if (!nvmeq->cqes)
1062 goto free_nvmeq;
1063
1064 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1065 goto free_cqdma;
1066
1067 nvmeq->q_dmadev = dev->dev;
1068 nvmeq->dev = dev;
1069 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1070 dev->ctrl.instance, qid);
1071 spin_lock_init(&nvmeq->q_lock);
1072 nvmeq->cq_head = 0;
1073 nvmeq->cq_phase = 1;
1074 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1075 nvmeq->q_depth = depth;
1076 nvmeq->qid = qid;
1077 nvmeq->cq_vector = -1;
1078 dev->queues[qid] = nvmeq;
1079 dev->queue_count++;
1080
1081 return nvmeq;
1082
1083 free_cqdma:
1084 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1085 nvmeq->cq_dma_addr);
1086 free_nvmeq:
1087 kfree(nvmeq);
1088 return NULL;
1089}
1090
1091static int queue_request_irq(struct nvme_queue *nvmeq)
1092{
1093 if (use_threaded_interrupts)
1094 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1095 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1096 else
1097 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1098 nvmeq->irqname, nvmeq);
1099}
1100
1101static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1102{
1103 struct nvme_dev *dev = nvmeq->dev;
1104
1105 spin_lock_irq(&nvmeq->q_lock);
1106 nvmeq->sq_tail = 0;
1107 nvmeq->cq_head = 0;
1108 nvmeq->cq_phase = 1;
1109 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1110 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1111 dev->online_queues++;
1112 spin_unlock_irq(&nvmeq->q_lock);
1113}
1114
1115static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1116{
1117 struct nvme_dev *dev = nvmeq->dev;
1118 int result;
1119
1120 nvmeq->cq_vector = qid - 1;
1121 result = adapter_alloc_cq(dev, qid, nvmeq);
1122 if (result < 0)
1123 return result;
1124
1125 result = adapter_alloc_sq(dev, qid, nvmeq);
1126 if (result < 0)
1127 goto release_cq;
1128
1129 result = queue_request_irq(nvmeq);
1130 if (result < 0)
1131 goto release_sq;
1132
1133 nvme_init_queue(nvmeq, qid);
1134 return result;
1135
1136 release_sq:
1137 adapter_delete_sq(dev, qid);
1138 release_cq:
1139 adapter_delete_cq(dev, qid);
1140 return result;
1141}
1142
1143static struct blk_mq_ops nvme_mq_admin_ops = {
1144 .queue_rq = nvme_queue_rq,
1145 .complete = nvme_complete_rq,
1146 .init_hctx = nvme_admin_init_hctx,
1147 .exit_hctx = nvme_admin_exit_hctx,
1148 .init_request = nvme_admin_init_request,
1149 .timeout = nvme_timeout,
1150};
1151
1152static struct blk_mq_ops nvme_mq_ops = {
1153 .queue_rq = nvme_queue_rq,
1154 .complete = nvme_complete_rq,
1155 .init_hctx = nvme_init_hctx,
1156 .init_request = nvme_init_request,
1157 .map_queues = nvme_pci_map_queues,
1158 .timeout = nvme_timeout,
1159 .poll = nvme_poll,
1160};
1161
1162static void nvme_dev_remove_admin(struct nvme_dev *dev)
1163{
1164 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1165
1166
1167
1168
1169
1170 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1171 blk_cleanup_queue(dev->ctrl.admin_q);
1172 blk_mq_free_tag_set(&dev->admin_tagset);
1173 }
1174}
1175
1176static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1177{
1178 if (!dev->ctrl.admin_q) {
1179 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1180 dev->admin_tagset.nr_hw_queues = 1;
1181
1182
1183
1184
1185
1186 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1187 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1188 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1189 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1190 dev->admin_tagset.driver_data = dev;
1191
1192 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1193 return -ENOMEM;
1194
1195 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1196 if (IS_ERR(dev->ctrl.admin_q)) {
1197 blk_mq_free_tag_set(&dev->admin_tagset);
1198 return -ENOMEM;
1199 }
1200 if (!blk_get_queue(dev->ctrl.admin_q)) {
1201 nvme_dev_remove_admin(dev);
1202 dev->ctrl.admin_q = NULL;
1203 return -ENODEV;
1204 }
1205 } else
1206 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1207
1208 return 0;
1209}
1210
1211static int nvme_configure_admin_queue(struct nvme_dev *dev)
1212{
1213 int result;
1214 u32 aqa;
1215 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1216 struct nvme_queue *nvmeq;
1217
1218 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1219 NVME_CAP_NSSRC(cap) : 0;
1220
1221 if (dev->subsystem &&
1222 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1223 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1224
1225 result = nvme_disable_ctrl(&dev->ctrl, cap);
1226 if (result < 0)
1227 return result;
1228
1229 nvmeq = dev->queues[0];
1230 if (!nvmeq) {
1231 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1232 if (!nvmeq)
1233 return -ENOMEM;
1234 }
1235
1236 aqa = nvmeq->q_depth - 1;
1237 aqa |= aqa << 16;
1238
1239 writel(aqa, dev->bar + NVME_REG_AQA);
1240 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1241 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1242
1243 result = nvme_enable_ctrl(&dev->ctrl, cap);
1244 if (result)
1245 return result;
1246
1247 nvmeq->cq_vector = 0;
1248 result = queue_request_irq(nvmeq);
1249 if (result) {
1250 nvmeq->cq_vector = -1;
1251 return result;
1252 }
1253
1254 return result;
1255}
1256
1257static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1258{
1259
1260
1261
1262
1263 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1264
1265
1266 if (work_busy(&dev->reset_work))
1267 return false;
1268
1269
1270
1271
1272 if (!(csts & NVME_CSTS_CFS) && !nssro)
1273 return false;
1274
1275
1276
1277
1278 if (pci_channel_offline(to_pci_dev(dev->dev)))
1279 return false;
1280
1281 return true;
1282}
1283
1284static void nvme_watchdog_timer(unsigned long data)
1285{
1286 struct nvme_dev *dev = (struct nvme_dev *)data;
1287 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1288
1289
1290 if (nvme_should_reset(dev, csts)) {
1291 if (!nvme_reset(dev))
1292 dev_warn(dev->dev,
1293 "Failed status: 0x%x, reset controller.\n",
1294 csts);
1295 return;
1296 }
1297
1298 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1299}
1300
1301static int nvme_create_io_queues(struct nvme_dev *dev)
1302{
1303 unsigned i, max;
1304 int ret = 0;
1305
1306 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1307 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1308 ret = -ENOMEM;
1309 break;
1310 }
1311 }
1312
1313 max = min(dev->max_qid, dev->queue_count - 1);
1314 for (i = dev->online_queues; i <= max; i++) {
1315 ret = nvme_create_queue(dev->queues[i], i);
1316 if (ret)
1317 break;
1318 }
1319
1320
1321
1322
1323
1324
1325
1326 return ret >= 0 ? 0 : ret;
1327}
1328
1329static ssize_t nvme_cmb_show(struct device *dev,
1330 struct device_attribute *attr,
1331 char *buf)
1332{
1333 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1334
1335 return snprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1336 ndev->cmbloc, ndev->cmbsz);
1337}
1338static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1339
1340static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1341{
1342 u64 szu, size, offset;
1343 resource_size_t bar_size;
1344 struct pci_dev *pdev = to_pci_dev(dev->dev);
1345 void __iomem *cmb;
1346 dma_addr_t dma_addr;
1347
1348 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1349 if (!(NVME_CMB_SZ(dev->cmbsz)))
1350 return NULL;
1351 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1352
1353 if (!use_cmb_sqes)
1354 return NULL;
1355
1356 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1357 size = szu * NVME_CMB_SZ(dev->cmbsz);
1358 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1359 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1360
1361 if (offset > bar_size)
1362 return NULL;
1363
1364
1365
1366
1367
1368
1369 if (size > bar_size - offset)
1370 size = bar_size - offset;
1371
1372 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1373 cmb = ioremap_wc(dma_addr, size);
1374 if (!cmb)
1375 return NULL;
1376
1377 dev->cmb_dma_addr = dma_addr;
1378 dev->cmb_size = size;
1379 return cmb;
1380}
1381
1382static inline void nvme_release_cmb(struct nvme_dev *dev)
1383{
1384 if (dev->cmb) {
1385 iounmap(dev->cmb);
1386 dev->cmb = NULL;
1387 }
1388}
1389
1390static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1391{
1392 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1393}
1394
1395static int nvme_setup_io_queues(struct nvme_dev *dev)
1396{
1397 struct nvme_queue *adminq = dev->queues[0];
1398 struct pci_dev *pdev = to_pci_dev(dev->dev);
1399 int result, nr_io_queues, size;
1400
1401 nr_io_queues = num_online_cpus();
1402 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1403 if (result < 0)
1404 return result;
1405
1406 if (nr_io_queues == 0)
1407 return 0;
1408
1409 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1410 result = nvme_cmb_qdepth(dev, nr_io_queues,
1411 sizeof(struct nvme_command));
1412 if (result > 0)
1413 dev->q_depth = result;
1414 else
1415 nvme_release_cmb(dev);
1416 }
1417
1418 size = db_bar_size(dev, nr_io_queues);
1419 if (size > 8192) {
1420 iounmap(dev->bar);
1421 do {
1422 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1423 if (dev->bar)
1424 break;
1425 if (!--nr_io_queues)
1426 return -ENOMEM;
1427 size = db_bar_size(dev, nr_io_queues);
1428 } while (1);
1429 dev->dbs = dev->bar + 4096;
1430 adminq->q_db = dev->dbs;
1431 }
1432
1433
1434 free_irq(pci_irq_vector(pdev, 0), adminq);
1435
1436
1437
1438
1439
1440 pci_free_irq_vectors(pdev);
1441 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1442 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1443 if (nr_io_queues <= 0)
1444 return -EIO;
1445 dev->max_qid = nr_io_queues;
1446
1447
1448
1449
1450
1451
1452
1453
1454 result = queue_request_irq(adminq);
1455 if (result) {
1456 adminq->cq_vector = -1;
1457 return result;
1458 }
1459 return nvme_create_io_queues(dev);
1460}
1461
1462static void nvme_del_queue_end(struct request *req, int error)
1463{
1464 struct nvme_queue *nvmeq = req->end_io_data;
1465
1466 blk_mq_free_request(req);
1467 complete(&nvmeq->dev->ioq_wait);
1468}
1469
1470static void nvme_del_cq_end(struct request *req, int error)
1471{
1472 struct nvme_queue *nvmeq = req->end_io_data;
1473
1474 if (!error) {
1475 unsigned long flags;
1476
1477
1478
1479
1480
1481
1482 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1483 SINGLE_DEPTH_NESTING);
1484 nvme_process_cq(nvmeq);
1485 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1486 }
1487
1488 nvme_del_queue_end(req, error);
1489}
1490
1491static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1492{
1493 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1494 struct request *req;
1495 struct nvme_command cmd;
1496
1497 memset(&cmd, 0, sizeof(cmd));
1498 cmd.delete_queue.opcode = opcode;
1499 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1500
1501 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1502 if (IS_ERR(req))
1503 return PTR_ERR(req);
1504
1505 req->timeout = ADMIN_TIMEOUT;
1506 req->end_io_data = nvmeq;
1507
1508 blk_execute_rq_nowait(q, NULL, req, false,
1509 opcode == nvme_admin_delete_cq ?
1510 nvme_del_cq_end : nvme_del_queue_end);
1511 return 0;
1512}
1513
1514static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1515{
1516 int pass;
1517 unsigned long timeout;
1518 u8 opcode = nvme_admin_delete_sq;
1519
1520 for (pass = 0; pass < 2; pass++) {
1521 int sent = 0, i = queues;
1522
1523 reinit_completion(&dev->ioq_wait);
1524 retry:
1525 timeout = ADMIN_TIMEOUT;
1526 for (; i > 0; i--, sent++)
1527 if (nvme_delete_queue(dev->queues[i], opcode))
1528 break;
1529
1530 while (sent--) {
1531 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1532 if (timeout == 0)
1533 return;
1534 if (i)
1535 goto retry;
1536 }
1537 opcode = nvme_admin_delete_cq;
1538 }
1539}
1540
1541
1542
1543
1544
1545
1546
1547static int nvme_dev_add(struct nvme_dev *dev)
1548{
1549 if (!dev->ctrl.tagset) {
1550 dev->tagset.ops = &nvme_mq_ops;
1551 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1552 dev->tagset.timeout = NVME_IO_TIMEOUT;
1553 dev->tagset.numa_node = dev_to_node(dev->dev);
1554 dev->tagset.queue_depth =
1555 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1556 dev->tagset.cmd_size = nvme_cmd_size(dev);
1557 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1558 dev->tagset.driver_data = dev;
1559
1560 if (blk_mq_alloc_tag_set(&dev->tagset))
1561 return 0;
1562 dev->ctrl.tagset = &dev->tagset;
1563 } else {
1564 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1565
1566
1567 nvme_free_queues(dev, dev->online_queues);
1568 }
1569
1570 return 0;
1571}
1572
1573static int nvme_pci_enable(struct nvme_dev *dev)
1574{
1575 u64 cap;
1576 int result = -ENOMEM;
1577 struct pci_dev *pdev = to_pci_dev(dev->dev);
1578
1579 if (pci_enable_device_mem(pdev))
1580 return result;
1581
1582 pci_set_master(pdev);
1583
1584 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1585 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1586 goto disable;
1587
1588 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1589 result = -ENODEV;
1590 goto disable;
1591 }
1592
1593
1594
1595
1596
1597
1598 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1599 if (result < 0)
1600 return result;
1601
1602 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1603
1604 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1605 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1606 dev->dbs = dev->bar + 4096;
1607
1608
1609
1610
1611
1612 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1613 dev->q_depth = 2;
1614 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1615 "queue depth=%u to work around controller resets\n",
1616 dev->q_depth);
1617 }
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1628 dev->cmb = nvme_map_cmb(dev);
1629
1630 if (dev->cmbsz) {
1631 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1632 &dev_attr_cmb.attr, NULL))
1633 dev_warn(dev->dev,
1634 "failed to add sysfs attribute for CMB\n");
1635 }
1636 }
1637
1638 pci_enable_pcie_error_reporting(pdev);
1639 pci_save_state(pdev);
1640 return 0;
1641
1642 disable:
1643 pci_disable_device(pdev);
1644 return result;
1645}
1646
1647static void nvme_dev_unmap(struct nvme_dev *dev)
1648{
1649 if (dev->bar)
1650 iounmap(dev->bar);
1651 pci_release_mem_regions(to_pci_dev(dev->dev));
1652}
1653
1654static void nvme_pci_disable(struct nvme_dev *dev)
1655{
1656 struct pci_dev *pdev = to_pci_dev(dev->dev);
1657
1658 pci_free_irq_vectors(pdev);
1659
1660 if (pci_is_enabled(pdev)) {
1661 pci_disable_pcie_error_reporting(pdev);
1662 pci_disable_device(pdev);
1663 }
1664}
1665
1666static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1667{
1668 int i, queues;
1669 u32 csts = -1;
1670
1671 del_timer_sync(&dev->watchdog_timer);
1672
1673 mutex_lock(&dev->shutdown_lock);
1674 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1675 nvme_stop_queues(&dev->ctrl);
1676 csts = readl(dev->bar + NVME_REG_CSTS);
1677 }
1678
1679 queues = dev->online_queues - 1;
1680 for (i = dev->queue_count - 1; i > 0; i--)
1681 nvme_suspend_queue(dev->queues[i]);
1682
1683 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1684
1685
1686
1687
1688 if (dev->queue_count)
1689 nvme_suspend_queue(dev->queues[0]);
1690 } else {
1691 nvme_disable_io_queues(dev, queues);
1692 nvme_disable_admin_queue(dev, shutdown);
1693 }
1694 nvme_pci_disable(dev);
1695
1696 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1697 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1698 mutex_unlock(&dev->shutdown_lock);
1699}
1700
1701static int nvme_setup_prp_pools(struct nvme_dev *dev)
1702{
1703 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1704 PAGE_SIZE, PAGE_SIZE, 0);
1705 if (!dev->prp_page_pool)
1706 return -ENOMEM;
1707
1708
1709 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1710 256, 256, 0);
1711 if (!dev->prp_small_pool) {
1712 dma_pool_destroy(dev->prp_page_pool);
1713 return -ENOMEM;
1714 }
1715 return 0;
1716}
1717
1718static void nvme_release_prp_pools(struct nvme_dev *dev)
1719{
1720 dma_pool_destroy(dev->prp_page_pool);
1721 dma_pool_destroy(dev->prp_small_pool);
1722}
1723
1724static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1725{
1726 struct nvme_dev *dev = to_nvme_dev(ctrl);
1727
1728 put_device(dev->dev);
1729 if (dev->tagset.tags)
1730 blk_mq_free_tag_set(&dev->tagset);
1731 if (dev->ctrl.admin_q)
1732 blk_put_queue(dev->ctrl.admin_q);
1733 kfree(dev->queues);
1734 kfree(dev);
1735}
1736
1737static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1738{
1739 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1740
1741 kref_get(&dev->ctrl.kref);
1742 nvme_dev_disable(dev, false);
1743 if (!schedule_work(&dev->remove_work))
1744 nvme_put_ctrl(&dev->ctrl);
1745}
1746
1747static void nvme_reset_work(struct work_struct *work)
1748{
1749 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1750 int result = -ENODEV;
1751
1752 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1753 goto out;
1754
1755
1756
1757
1758
1759 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1760 nvme_dev_disable(dev, false);
1761
1762 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1763 goto out;
1764
1765 result = nvme_pci_enable(dev);
1766 if (result)
1767 goto out;
1768
1769 result = nvme_configure_admin_queue(dev);
1770 if (result)
1771 goto out;
1772
1773 nvme_init_queue(dev->queues[0], 0);
1774 result = nvme_alloc_admin_tags(dev);
1775 if (result)
1776 goto out;
1777
1778 result = nvme_init_identify(&dev->ctrl);
1779 if (result)
1780 goto out;
1781
1782 result = nvme_setup_io_queues(dev);
1783 if (result)
1784 goto out;
1785
1786
1787
1788
1789
1790
1791
1792 if (dev->online_queues > 1)
1793 nvme_queue_async_events(&dev->ctrl);
1794
1795 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1796
1797
1798
1799
1800
1801 if (dev->online_queues < 2) {
1802 dev_warn(dev->ctrl.device, "IO queues not created\n");
1803 nvme_kill_queues(&dev->ctrl);
1804 nvme_remove_namespaces(&dev->ctrl);
1805 } else {
1806 nvme_start_queues(&dev->ctrl);
1807 nvme_dev_add(dev);
1808 }
1809
1810 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1811 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1812 goto out;
1813 }
1814
1815 if (dev->online_queues > 1)
1816 nvme_queue_scan(&dev->ctrl);
1817 return;
1818
1819 out:
1820 nvme_remove_dead_ctrl(dev, result);
1821}
1822
1823static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1824{
1825 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1826 struct pci_dev *pdev = to_pci_dev(dev->dev);
1827
1828 nvme_kill_queues(&dev->ctrl);
1829 if (pci_get_drvdata(pdev))
1830 device_release_driver(&pdev->dev);
1831 nvme_put_ctrl(&dev->ctrl);
1832}
1833
1834static int nvme_reset(struct nvme_dev *dev)
1835{
1836 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1837 return -ENODEV;
1838 if (work_busy(&dev->reset_work))
1839 return -ENODEV;
1840 if (!queue_work(nvme_workq, &dev->reset_work))
1841 return -EBUSY;
1842 return 0;
1843}
1844
1845static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1846{
1847 *val = readl(to_nvme_dev(ctrl)->bar + off);
1848 return 0;
1849}
1850
1851static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1852{
1853 writel(val, to_nvme_dev(ctrl)->bar + off);
1854 return 0;
1855}
1856
1857static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1858{
1859 *val = readq(to_nvme_dev(ctrl)->bar + off);
1860 return 0;
1861}
1862
1863static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1864{
1865 struct nvme_dev *dev = to_nvme_dev(ctrl);
1866 int ret = nvme_reset(dev);
1867
1868 if (!ret)
1869 flush_work(&dev->reset_work);
1870 return ret;
1871}
1872
1873static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1874 .name = "pcie",
1875 .module = THIS_MODULE,
1876 .reg_read32 = nvme_pci_reg_read32,
1877 .reg_write32 = nvme_pci_reg_write32,
1878 .reg_read64 = nvme_pci_reg_read64,
1879 .reset_ctrl = nvme_pci_reset_ctrl,
1880 .free_ctrl = nvme_pci_free_ctrl,
1881 .submit_async_event = nvme_pci_submit_async_event,
1882};
1883
1884static int nvme_dev_map(struct nvme_dev *dev)
1885{
1886 struct pci_dev *pdev = to_pci_dev(dev->dev);
1887
1888 if (pci_request_mem_regions(pdev, "nvme"))
1889 return -ENODEV;
1890
1891 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1892 if (!dev->bar)
1893 goto release;
1894
1895 return 0;
1896 release:
1897 pci_release_mem_regions(pdev);
1898 return -ENODEV;
1899}
1900
1901static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1902{
1903 int node, result = -ENOMEM;
1904 struct nvme_dev *dev;
1905
1906 node = dev_to_node(&pdev->dev);
1907 if (node == NUMA_NO_NODE)
1908 set_dev_node(&pdev->dev, first_memory_node);
1909
1910 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1911 if (!dev)
1912 return -ENOMEM;
1913 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1914 GFP_KERNEL, node);
1915 if (!dev->queues)
1916 goto free;
1917
1918 dev->dev = get_device(&pdev->dev);
1919 pci_set_drvdata(pdev, dev);
1920
1921 result = nvme_dev_map(dev);
1922 if (result)
1923 goto free;
1924
1925 INIT_WORK(&dev->reset_work, nvme_reset_work);
1926 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1927 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1928 (unsigned long)dev);
1929 mutex_init(&dev->shutdown_lock);
1930 init_completion(&dev->ioq_wait);
1931
1932 result = nvme_setup_prp_pools(dev);
1933 if (result)
1934 goto put_pci;
1935
1936 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1937 id->driver_data);
1938 if (result)
1939 goto release_pools;
1940
1941 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1942
1943 queue_work(nvme_workq, &dev->reset_work);
1944 return 0;
1945
1946 release_pools:
1947 nvme_release_prp_pools(dev);
1948 put_pci:
1949 put_device(dev->dev);
1950 nvme_dev_unmap(dev);
1951 free:
1952 kfree(dev->queues);
1953 kfree(dev);
1954 return result;
1955}
1956
1957static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1958{
1959 struct nvme_dev *dev = pci_get_drvdata(pdev);
1960
1961 if (prepare)
1962 nvme_dev_disable(dev, false);
1963 else
1964 nvme_reset(dev);
1965}
1966
1967static void nvme_shutdown(struct pci_dev *pdev)
1968{
1969 struct nvme_dev *dev = pci_get_drvdata(pdev);
1970 nvme_dev_disable(dev, true);
1971}
1972
1973
1974
1975
1976
1977
1978static void nvme_remove(struct pci_dev *pdev)
1979{
1980 struct nvme_dev *dev = pci_get_drvdata(pdev);
1981
1982 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1983
1984 pci_set_drvdata(pdev, NULL);
1985
1986 if (!pci_device_is_present(pdev))
1987 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1988
1989 flush_work(&dev->reset_work);
1990 nvme_uninit_ctrl(&dev->ctrl);
1991 nvme_dev_disable(dev, true);
1992 nvme_dev_remove_admin(dev);
1993 nvme_free_queues(dev, 0);
1994 nvme_release_cmb(dev);
1995 nvme_release_prp_pools(dev);
1996 nvme_dev_unmap(dev);
1997 nvme_put_ctrl(&dev->ctrl);
1998}
1999
2000static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2001{
2002 int ret = 0;
2003
2004 if (numvfs == 0) {
2005 if (pci_vfs_assigned(pdev)) {
2006 dev_warn(&pdev->dev,
2007 "Cannot disable SR-IOV VFs while assigned\n");
2008 return -EPERM;
2009 }
2010 pci_disable_sriov(pdev);
2011 return 0;
2012 }
2013
2014 ret = pci_enable_sriov(pdev, numvfs);
2015 return ret ? ret : numvfs;
2016}
2017
2018#ifdef CONFIG_PM_SLEEP
2019static int nvme_suspend(struct device *dev)
2020{
2021 struct pci_dev *pdev = to_pci_dev(dev);
2022 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2023
2024 nvme_dev_disable(ndev, true);
2025 return 0;
2026}
2027
2028static int nvme_resume(struct device *dev)
2029{
2030 struct pci_dev *pdev = to_pci_dev(dev);
2031 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2032
2033 nvme_reset(ndev);
2034 return 0;
2035}
2036#endif
2037
2038static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2039
2040static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2041 pci_channel_state_t state)
2042{
2043 struct nvme_dev *dev = pci_get_drvdata(pdev);
2044
2045
2046
2047
2048
2049
2050 switch (state) {
2051 case pci_channel_io_normal:
2052 return PCI_ERS_RESULT_CAN_RECOVER;
2053 case pci_channel_io_frozen:
2054 dev_warn(dev->ctrl.device,
2055 "frozen state error detected, reset controller\n");
2056 nvme_dev_disable(dev, false);
2057 return PCI_ERS_RESULT_NEED_RESET;
2058 case pci_channel_io_perm_failure:
2059 dev_warn(dev->ctrl.device,
2060 "failure state error detected, request disconnect\n");
2061 return PCI_ERS_RESULT_DISCONNECT;
2062 }
2063 return PCI_ERS_RESULT_NEED_RESET;
2064}
2065
2066static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2067{
2068 struct nvme_dev *dev = pci_get_drvdata(pdev);
2069
2070 dev_info(dev->ctrl.device, "restart after slot reset\n");
2071 pci_restore_state(pdev);
2072 nvme_reset(dev);
2073 return PCI_ERS_RESULT_RECOVERED;
2074}
2075
2076static void nvme_error_resume(struct pci_dev *pdev)
2077{
2078 pci_cleanup_aer_uncorrect_error_status(pdev);
2079}
2080
2081static const struct pci_error_handlers nvme_err_handler = {
2082 .error_detected = nvme_error_detected,
2083 .slot_reset = nvme_slot_reset,
2084 .resume = nvme_error_resume,
2085 .reset_notify = nvme_reset_notify,
2086};
2087
2088
2089#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2090
2091static const struct pci_device_id nvme_id_table[] = {
2092 { PCI_VDEVICE(INTEL, 0x0953),
2093 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2094 NVME_QUIRK_DISCARD_ZEROES, },
2095 { PCI_VDEVICE(INTEL, 0x0a53),
2096 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2097 NVME_QUIRK_DISCARD_ZEROES, },
2098 { PCI_VDEVICE(INTEL, 0x0a54),
2099 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2100 NVME_QUIRK_DISCARD_ZEROES, },
2101 { PCI_VDEVICE(INTEL, 0x5845),
2102 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2103 { PCI_DEVICE(0x1c58, 0x0003),
2104 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2105 { PCI_DEVICE(0x1c5f, 0x0540),
2106 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2107 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2108 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2109 { 0, }
2110};
2111MODULE_DEVICE_TABLE(pci, nvme_id_table);
2112
2113static struct pci_driver nvme_driver = {
2114 .name = "nvme",
2115 .id_table = nvme_id_table,
2116 .probe = nvme_probe,
2117 .remove = nvme_remove,
2118 .shutdown = nvme_shutdown,
2119 .driver = {
2120 .pm = &nvme_dev_pm_ops,
2121 },
2122 .sriov_configure = nvme_pci_sriov_configure,
2123 .err_handler = &nvme_err_handler,
2124};
2125
2126static int __init nvme_init(void)
2127{
2128 int result;
2129
2130 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2131 if (!nvme_workq)
2132 return -ENOMEM;
2133
2134 result = pci_register_driver(&nvme_driver);
2135 if (result)
2136 destroy_workqueue(nvme_workq);
2137 return result;
2138}
2139
2140static void __exit nvme_exit(void)
2141{
2142 pci_unregister_driver(&nvme_driver);
2143 destroy_workqueue(nvme_workq);
2144 _nvme_check_size();
2145}
2146
2147MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2148MODULE_LICENSE("GPL");
2149MODULE_VERSION("1.0");
2150module_init(nvme_init);
2151module_exit(nvme_exit);
2152