linux/drivers/nvme/host/pci.c
<<
>>
Prefs
   1/*
   2 * NVM Express device driver
   3 * Copyright (c) 2011-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/aer.h>
  16#include <linux/bitops.h>
  17#include <linux/blkdev.h>
  18#include <linux/blk-mq.h>
  19#include <linux/blk-mq-pci.h>
  20#include <linux/cpu.h>
  21#include <linux/delay.h>
  22#include <linux/errno.h>
  23#include <linux/fs.h>
  24#include <linux/genhd.h>
  25#include <linux/hdreg.h>
  26#include <linux/idr.h>
  27#include <linux/init.h>
  28#include <linux/interrupt.h>
  29#include <linux/io.h>
  30#include <linux/kdev_t.h>
  31#include <linux/kernel.h>
  32#include <linux/mm.h>
  33#include <linux/module.h>
  34#include <linux/moduleparam.h>
  35#include <linux/mutex.h>
  36#include <linux/pci.h>
  37#include <linux/poison.h>
  38#include <linux/ptrace.h>
  39#include <linux/sched.h>
  40#include <linux/slab.h>
  41#include <linux/t10-pi.h>
  42#include <linux/timer.h>
  43#include <linux/types.h>
  44#include <linux/io-64-nonatomic-lo-hi.h>
  45#include <asm/unaligned.h>
  46
  47#include "nvme.h"
  48
  49#define NVME_Q_DEPTH            1024
  50#define NVME_AQ_DEPTH           256
  51#define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
  52#define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
  53                
  54/*
  55 * We handle AEN commands ourselves and don't even let the
  56 * block layer know about them.
  57 */
  58#define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
  59
  60static int use_threaded_interrupts;
  61module_param(use_threaded_interrupts, int, 0);
  62
  63static bool use_cmb_sqes = true;
  64module_param(use_cmb_sqes, bool, 0644);
  65MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  66
  67static struct workqueue_struct *nvme_workq;
  68
  69struct nvme_dev;
  70struct nvme_queue;
  71
  72static int nvme_reset(struct nvme_dev *dev);
  73static void nvme_process_cq(struct nvme_queue *nvmeq);
  74static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  75
  76/*
  77 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
  78 */
  79struct nvme_dev {
  80        struct nvme_queue **queues;
  81        struct blk_mq_tag_set tagset;
  82        struct blk_mq_tag_set admin_tagset;
  83        u32 __iomem *dbs;
  84        struct device *dev;
  85        struct dma_pool *prp_page_pool;
  86        struct dma_pool *prp_small_pool;
  87        unsigned queue_count;
  88        unsigned online_queues;
  89        unsigned max_qid;
  90        int q_depth;
  91        u32 db_stride;
  92        void __iomem *bar;
  93        struct work_struct reset_work;
  94        struct work_struct remove_work;
  95        struct timer_list watchdog_timer;
  96        struct mutex shutdown_lock;
  97        bool subsystem;
  98        void __iomem *cmb;
  99        dma_addr_t cmb_dma_addr;
 100        u64 cmb_size;
 101        u32 cmbsz;
 102        u32 cmbloc;
 103        struct nvme_ctrl ctrl;
 104        struct completion ioq_wait;
 105};
 106
 107static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 108{
 109        return container_of(ctrl, struct nvme_dev, ctrl);
 110}
 111
 112/*
 113 * An NVM Express queue.  Each device has at least two (one for admin
 114 * commands and one for I/O commands).
 115 */
 116struct nvme_queue {
 117        struct device *q_dmadev;
 118        struct nvme_dev *dev;
 119        char irqname[24];       /* nvme4294967295-65535\0 */
 120        spinlock_t q_lock;
 121        struct nvme_command *sq_cmds;
 122        struct nvme_command __iomem *sq_cmds_io;
 123        volatile struct nvme_completion *cqes;
 124        struct blk_mq_tags **tags;
 125        dma_addr_t sq_dma_addr;
 126        dma_addr_t cq_dma_addr;
 127        u32 __iomem *q_db;
 128        u16 q_depth;
 129        s16 cq_vector;
 130        u16 sq_tail;
 131        u16 cq_head;
 132        u16 qid;
 133        u8 cq_phase;
 134        u8 cqe_seen;
 135};
 136
 137/*
 138 * The nvme_iod describes the data in an I/O, including the list of PRP
 139 * entries.  You can't see it in this data structure because C doesn't let
 140 * me express that.  Use nvme_init_iod to ensure there's enough space
 141 * allocated to store the PRP list.
 142 */
 143struct nvme_iod {
 144        struct nvme_queue *nvmeq;
 145        int aborted;
 146        int npages;             /* In the PRP list. 0 means small pool in use */
 147        int nents;              /* Used in scatterlist */
 148        int length;             /* Of data, in bytes */
 149        dma_addr_t first_dma;
 150        struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
 151        struct scatterlist *sg;
 152        struct scatterlist inline_sg[0];
 153};
 154
 155/*
 156 * Check we didin't inadvertently grow the command struct
 157 */
 158static inline void _nvme_check_size(void)
 159{
 160        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
 161        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
 162        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
 163        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
 164        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
 165        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
 166        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
 167        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
 168        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
 169        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
 170        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
 171        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
 172}
 173
 174/*
 175 * Max size of iod being embedded in the request payload
 176 */
 177#define NVME_INT_PAGES          2
 178#define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
 179
 180/*
 181 * Will slightly overestimate the number of pages needed.  This is OK
 182 * as it only leads to a small amount of wasted memory for the lifetime of
 183 * the I/O.
 184 */
 185static int nvme_npages(unsigned size, struct nvme_dev *dev)
 186{
 187        unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
 188                                      dev->ctrl.page_size);
 189        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 190}
 191
 192static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
 193                unsigned int size, unsigned int nseg)
 194{
 195        return sizeof(__le64 *) * nvme_npages(size, dev) +
 196                        sizeof(struct scatterlist) * nseg;
 197}
 198
 199static unsigned int nvme_cmd_size(struct nvme_dev *dev)
 200{
 201        return sizeof(struct nvme_iod) +
 202                nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
 203}
 204
 205static int nvmeq_irq(struct nvme_queue *nvmeq)
 206{
 207        return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
 208}
 209
 210static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 211                                unsigned int hctx_idx)
 212{
 213        struct nvme_dev *dev = data;
 214        struct nvme_queue *nvmeq = dev->queues[0];
 215
 216        WARN_ON(hctx_idx != 0);
 217        WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 218        WARN_ON(nvmeq->tags);
 219
 220        hctx->driver_data = nvmeq;
 221        nvmeq->tags = &dev->admin_tagset.tags[0];
 222        return 0;
 223}
 224
 225static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 226{
 227        struct nvme_queue *nvmeq = hctx->driver_data;
 228
 229        nvmeq->tags = NULL;
 230}
 231
 232static int nvme_admin_init_request(void *data, struct request *req,
 233                                unsigned int hctx_idx, unsigned int rq_idx,
 234                                unsigned int numa_node)
 235{
 236        struct nvme_dev *dev = data;
 237        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 238        struct nvme_queue *nvmeq = dev->queues[0];
 239
 240        BUG_ON(!nvmeq);
 241        iod->nvmeq = nvmeq;
 242        return 0;
 243}
 244
 245static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 246                          unsigned int hctx_idx)
 247{
 248        struct nvme_dev *dev = data;
 249        struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
 250
 251        if (!nvmeq->tags)
 252                nvmeq->tags = &dev->tagset.tags[hctx_idx];
 253
 254        WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 255        hctx->driver_data = nvmeq;
 256        return 0;
 257}
 258
 259static int nvme_init_request(void *data, struct request *req,
 260                                unsigned int hctx_idx, unsigned int rq_idx,
 261                                unsigned int numa_node)
 262{
 263        struct nvme_dev *dev = data;
 264        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 265        struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
 266
 267        BUG_ON(!nvmeq);
 268        iod->nvmeq = nvmeq;
 269        return 0;
 270}
 271
 272static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
 273{
 274        struct nvme_dev *dev = set->driver_data;
 275
 276        return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
 277}
 278
 279/**
 280 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 281 * @nvmeq: The queue to use
 282 * @cmd: The command to send
 283 *
 284 * Safe to use from interrupt context
 285 */
 286static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
 287                                                struct nvme_command *cmd)
 288{
 289        u16 tail = nvmeq->sq_tail;
 290
 291        if (nvmeq->sq_cmds_io)
 292                memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
 293        else
 294                memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
 295
 296        if (++tail == nvmeq->q_depth)
 297                tail = 0;
 298        writel(tail, nvmeq->q_db);
 299        nvmeq->sq_tail = tail;
 300}
 301
 302static __le64 **iod_list(struct request *req)
 303{
 304        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 305        return (__le64 **)(iod->sg + req->nr_phys_segments);
 306}
 307
 308static int nvme_init_iod(struct request *rq, unsigned size,
 309                struct nvme_dev *dev)
 310{
 311        struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
 312        int nseg = rq->nr_phys_segments;
 313
 314        if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
 315                iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
 316                if (!iod->sg)
 317                        return BLK_MQ_RQ_QUEUE_BUSY;
 318        } else {
 319                iod->sg = iod->inline_sg;
 320        }
 321
 322        iod->aborted = 0;
 323        iod->npages = -1;
 324        iod->nents = 0;
 325        iod->length = size;
 326
 327        if (!(rq->cmd_flags & REQ_DONTPREP)) {
 328                rq->retries = 0;
 329                rq->cmd_flags |= REQ_DONTPREP;
 330        }
 331        return 0;
 332}
 333
 334static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
 335{
 336        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 337        const int last_prp = dev->ctrl.page_size / 8 - 1;
 338        int i;
 339        __le64 **list = iod_list(req);
 340        dma_addr_t prp_dma = iod->first_dma;
 341
 342        nvme_cleanup_cmd(req);
 343
 344        if (iod->npages == 0)
 345                dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
 346        for (i = 0; i < iod->npages; i++) {
 347                __le64 *prp_list = list[i];
 348                dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
 349                dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
 350                prp_dma = next_prp_dma;
 351        }
 352
 353        if (iod->sg != iod->inline_sg)
 354                kfree(iod->sg);
 355}
 356
 357#ifdef CONFIG_BLK_DEV_INTEGRITY
 358static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 359{
 360        if (be32_to_cpu(pi->ref_tag) == v)
 361                pi->ref_tag = cpu_to_be32(p);
 362}
 363
 364static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 365{
 366        if (be32_to_cpu(pi->ref_tag) == p)
 367                pi->ref_tag = cpu_to_be32(v);
 368}
 369
 370/**
 371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
 372 *
 373 * The virtual start sector is the one that was originally submitted by the
 374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
 375 * start sector may be different. Remap protection information to match the
 376 * physical LBA on writes, and back to the original seed on reads.
 377 *
 378 * Type 0 and 3 do not have a ref tag, so no remapping required.
 379 */
 380static void nvme_dif_remap(struct request *req,
 381                        void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 382{
 383        struct nvme_ns *ns = req->rq_disk->private_data;
 384        struct bio_integrity_payload *bip;
 385        struct t10_pi_tuple *pi;
 386        void *p, *pmap;
 387        u32 i, nlb, ts, phys, virt;
 388
 389        if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
 390                return;
 391
 392        bip = bio_integrity(req->bio);
 393        if (!bip)
 394                return;
 395
 396        pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
 397
 398        p = pmap;
 399        virt = bip_get_seed(bip);
 400        phys = nvme_block_nr(ns, blk_rq_pos(req));
 401        nlb = (blk_rq_bytes(req) >> ns->lba_shift);
 402        ts = ns->disk->queue->integrity.tuple_size;
 403
 404        for (i = 0; i < nlb; i++, virt++, phys++) {
 405                pi = (struct t10_pi_tuple *)p;
 406                dif_swap(phys, virt, pi);
 407                p += ts;
 408        }
 409        kunmap_atomic(pmap);
 410}
 411#else /* CONFIG_BLK_DEV_INTEGRITY */
 412static void nvme_dif_remap(struct request *req,
 413                        void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 414{
 415}
 416static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 417{
 418}
 419static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 420{
 421}
 422#endif
 423
 424static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
 425                int total_len)
 426{
 427        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 428        struct dma_pool *pool;
 429        int length = total_len;
 430        struct scatterlist *sg = iod->sg;
 431        int dma_len = sg_dma_len(sg);
 432        u64 dma_addr = sg_dma_address(sg);
 433        u32 page_size = dev->ctrl.page_size;
 434        int offset = dma_addr & (page_size - 1);
 435        __le64 *prp_list;
 436        __le64 **list = iod_list(req);
 437        dma_addr_t prp_dma;
 438        int nprps, i;
 439
 440        length -= (page_size - offset);
 441        if (length <= 0)
 442                return true;
 443
 444        dma_len -= (page_size - offset);
 445        if (dma_len) {
 446                dma_addr += (page_size - offset);
 447        } else {
 448                sg = sg_next(sg);
 449                dma_addr = sg_dma_address(sg);
 450                dma_len = sg_dma_len(sg);
 451        }
 452
 453        if (length <= page_size) {
 454                iod->first_dma = dma_addr;
 455                return true;
 456        }
 457
 458        nprps = DIV_ROUND_UP(length, page_size);
 459        if (nprps <= (256 / 8)) {
 460                pool = dev->prp_small_pool;
 461                iod->npages = 0;
 462        } else {
 463                pool = dev->prp_page_pool;
 464                iod->npages = 1;
 465        }
 466
 467        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 468        if (!prp_list) {
 469                iod->first_dma = dma_addr;
 470                iod->npages = -1;
 471                return false;
 472        }
 473        list[0] = prp_list;
 474        iod->first_dma = prp_dma;
 475        i = 0;
 476        for (;;) {
 477                if (i == page_size >> 3) {
 478                        __le64 *old_prp_list = prp_list;
 479                        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 480                        if (!prp_list)
 481                                return false;
 482                        list[iod->npages++] = prp_list;
 483                        prp_list[0] = old_prp_list[i - 1];
 484                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 485                        i = 1;
 486                }
 487                prp_list[i++] = cpu_to_le64(dma_addr);
 488                dma_len -= page_size;
 489                dma_addr += page_size;
 490                length -= page_size;
 491                if (length <= 0)
 492                        break;
 493                if (dma_len > 0)
 494                        continue;
 495                BUG_ON(dma_len < 0);
 496                sg = sg_next(sg);
 497                dma_addr = sg_dma_address(sg);
 498                dma_len = sg_dma_len(sg);
 499        }
 500
 501        return true;
 502}
 503
 504static int nvme_map_data(struct nvme_dev *dev, struct request *req,
 505                unsigned size, struct nvme_command *cmnd)
 506{
 507        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 508        struct request_queue *q = req->q;
 509        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 510                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 511        int ret = BLK_MQ_RQ_QUEUE_ERROR;
 512
 513        sg_init_table(iod->sg, req->nr_phys_segments);
 514        iod->nents = blk_rq_map_sg(q, req, iod->sg);
 515        if (!iod->nents)
 516                goto out;
 517
 518        ret = BLK_MQ_RQ_QUEUE_BUSY;
 519        if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
 520                                DMA_ATTR_NO_WARN))
 521                goto out;
 522
 523        if (!nvme_setup_prps(dev, req, size))
 524                goto out_unmap;
 525
 526        ret = BLK_MQ_RQ_QUEUE_ERROR;
 527        if (blk_integrity_rq(req)) {
 528                if (blk_rq_count_integrity_sg(q, req->bio) != 1)
 529                        goto out_unmap;
 530
 531                sg_init_table(&iod->meta_sg, 1);
 532                if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
 533                        goto out_unmap;
 534
 535                if (rq_data_dir(req))
 536                        nvme_dif_remap(req, nvme_dif_prep);
 537
 538                if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
 539                        goto out_unmap;
 540        }
 541
 542        cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 543        cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
 544        if (blk_integrity_rq(req))
 545                cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
 546        return BLK_MQ_RQ_QUEUE_OK;
 547
 548out_unmap:
 549        dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 550out:
 551        return ret;
 552}
 553
 554static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 555{
 556        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 557        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 558                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 559
 560        if (iod->nents) {
 561                dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 562                if (blk_integrity_rq(req)) {
 563                        if (!rq_data_dir(req))
 564                                nvme_dif_remap(req, nvme_dif_complete);
 565                        dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
 566                }
 567        }
 568
 569        nvme_free_iod(dev, req);
 570}
 571
 572/*
 573 * NOTE: ns is NULL when called on the admin queue.
 574 */
 575static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 576                         const struct blk_mq_queue_data *bd)
 577{
 578        struct nvme_ns *ns = hctx->queue->queuedata;
 579        struct nvme_queue *nvmeq = hctx->driver_data;
 580        struct nvme_dev *dev = nvmeq->dev;
 581        struct request *req = bd->rq;
 582        struct nvme_command cmnd;
 583        unsigned map_len;
 584        int ret = BLK_MQ_RQ_QUEUE_OK;
 585
 586        /*
 587         * If formated with metadata, require the block layer provide a buffer
 588         * unless this namespace is formated such that the metadata can be
 589         * stripped/generated by the controller with PRACT=1.
 590         */
 591        if (ns && ns->ms && !blk_integrity_rq(req)) {
 592                if (!(ns->pi_type && ns->ms == 8) &&
 593                                        req->cmd_type != REQ_TYPE_DRV_PRIV) {
 594                        blk_mq_end_request(req, -EFAULT);
 595                        return BLK_MQ_RQ_QUEUE_OK;
 596                }
 597        }
 598
 599        map_len = nvme_map_len(req);
 600        ret = nvme_init_iod(req, map_len, dev);
 601        if (ret)
 602                return ret;
 603
 604        ret = nvme_setup_cmd(ns, req, &cmnd);
 605        if (ret)
 606                goto out;
 607
 608        if (req->nr_phys_segments)
 609                ret = nvme_map_data(dev, req, map_len, &cmnd);
 610
 611        if (ret)
 612                goto out;
 613
 614        cmnd.common.command_id = req->tag;
 615        blk_mq_start_request(req);
 616
 617        spin_lock_irq(&nvmeq->q_lock);
 618        if (unlikely(nvmeq->cq_vector < 0)) {
 619                if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
 620                        ret = BLK_MQ_RQ_QUEUE_BUSY;
 621                else
 622                        ret = BLK_MQ_RQ_QUEUE_ERROR;
 623                spin_unlock_irq(&nvmeq->q_lock);
 624                goto out;
 625        }
 626        __nvme_submit_cmd(nvmeq, &cmnd);
 627        nvme_process_cq(nvmeq);
 628        spin_unlock_irq(&nvmeq->q_lock);
 629        return BLK_MQ_RQ_QUEUE_OK;
 630out:
 631        nvme_free_iod(dev, req);
 632        return ret;
 633}
 634
 635static void nvme_complete_rq(struct request *req)
 636{
 637        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 638        struct nvme_dev *dev = iod->nvmeq->dev;
 639        int error = 0;
 640
 641        nvme_unmap_data(dev, req);
 642
 643        if (unlikely(req->errors)) {
 644                if (nvme_req_needs_retry(req, req->errors)) {
 645                        req->retries++;
 646                        nvme_requeue_req(req);
 647                        return;
 648                }
 649
 650                if (req->cmd_type == REQ_TYPE_DRV_PRIV)
 651                        error = req->errors;
 652                else
 653                        error = nvme_error_status(req->errors);
 654        }
 655
 656        if (unlikely(iod->aborted)) {
 657                dev_warn(dev->ctrl.device,
 658                        "completing aborted command with status: %04x\n",
 659                        req->errors);
 660        }
 661
 662        blk_mq_end_request(req, error);
 663}
 664
 665/* We read the CQE phase first to check if the rest of the entry is valid */
 666static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
 667                u16 phase)
 668{
 669        return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
 670}
 671
 672static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
 673{
 674        u16 head, phase;
 675
 676        head = nvmeq->cq_head;
 677        phase = nvmeq->cq_phase;
 678
 679        while (nvme_cqe_valid(nvmeq, head, phase)) {
 680                struct nvme_completion cqe = nvmeq->cqes[head];
 681                struct request *req;
 682
 683                if (++head == nvmeq->q_depth) {
 684                        head = 0;
 685                        phase = !phase;
 686                }
 687
 688                if (tag && *tag == cqe.command_id)
 689                        *tag = -1;
 690
 691                if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
 692                        dev_warn(nvmeq->dev->ctrl.device,
 693                                "invalid id %d completed on queue %d\n",
 694                                cqe.command_id, le16_to_cpu(cqe.sq_id));
 695                        continue;
 696                }
 697
 698                /*
 699                 * AEN requests are special as they don't time out and can
 700                 * survive any kind of queue freeze and often don't respond to
 701                 * aborts.  We don't even bother to allocate a struct request
 702                 * for them but rather special case them here.
 703                 */
 704                if (unlikely(nvmeq->qid == 0 &&
 705                                cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
 706                        nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
 707                        continue;
 708                }
 709
 710                req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
 711                if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
 712                        memcpy(req->special, &cqe, sizeof(cqe));
 713                blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
 714
 715        }
 716
 717        /* If the controller ignores the cq head doorbell and continuously
 718         * writes to the queue, it is theoretically possible to wrap around
 719         * the queue twice and mistakenly return IRQ_NONE.  Linux only
 720         * requires that 0.1% of your interrupts are handled, so this isn't
 721         * a big problem.
 722         */
 723        if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
 724                return;
 725
 726        if (likely(nvmeq->cq_vector >= 0))
 727                writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 728        nvmeq->cq_head = head;
 729        nvmeq->cq_phase = phase;
 730
 731        nvmeq->cqe_seen = 1;
 732}
 733
 734static void nvme_process_cq(struct nvme_queue *nvmeq)
 735{
 736        __nvme_process_cq(nvmeq, NULL);
 737}
 738
 739static irqreturn_t nvme_irq(int irq, void *data)
 740{
 741        irqreturn_t result;
 742        struct nvme_queue *nvmeq = data;
 743        spin_lock(&nvmeq->q_lock);
 744        nvme_process_cq(nvmeq);
 745        result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
 746        nvmeq->cqe_seen = 0;
 747        spin_unlock(&nvmeq->q_lock);
 748        return result;
 749}
 750
 751static irqreturn_t nvme_irq_check(int irq, void *data)
 752{
 753        struct nvme_queue *nvmeq = data;
 754        if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
 755                return IRQ_WAKE_THREAD;
 756        return IRQ_NONE;
 757}
 758
 759static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
 760{
 761        struct nvme_queue *nvmeq = hctx->driver_data;
 762
 763        if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
 764                spin_lock_irq(&nvmeq->q_lock);
 765                __nvme_process_cq(nvmeq, &tag);
 766                spin_unlock_irq(&nvmeq->q_lock);
 767
 768                if (tag == -1)
 769                        return 1;
 770        }
 771
 772        return 0;
 773}
 774
 775static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
 776{
 777        struct nvme_dev *dev = to_nvme_dev(ctrl);
 778        struct nvme_queue *nvmeq = dev->queues[0];
 779        struct nvme_command c;
 780
 781        memset(&c, 0, sizeof(c));
 782        c.common.opcode = nvme_admin_async_event;
 783        c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
 784
 785        spin_lock_irq(&nvmeq->q_lock);
 786        __nvme_submit_cmd(nvmeq, &c);
 787        spin_unlock_irq(&nvmeq->q_lock);
 788}
 789
 790static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
 791{
 792        struct nvme_command c;
 793
 794        memset(&c, 0, sizeof(c));
 795        c.delete_queue.opcode = opcode;
 796        c.delete_queue.qid = cpu_to_le16(id);
 797
 798        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 799}
 800
 801static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
 802                                                struct nvme_queue *nvmeq)
 803{
 804        struct nvme_command c;
 805        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
 806
 807        /*
 808         * Note: we (ab)use the fact the the prp fields survive if no data
 809         * is attached to the request.
 810         */
 811        memset(&c, 0, sizeof(c));
 812        c.create_cq.opcode = nvme_admin_create_cq;
 813        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
 814        c.create_cq.cqid = cpu_to_le16(qid);
 815        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 816        c.create_cq.cq_flags = cpu_to_le16(flags);
 817        c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
 818
 819        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 820}
 821
 822static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
 823                                                struct nvme_queue *nvmeq)
 824{
 825        struct nvme_command c;
 826        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
 827
 828        /*
 829         * Note: we (ab)use the fact the the prp fields survive if no data
 830         * is attached to the request.
 831         */
 832        memset(&c, 0, sizeof(c));
 833        c.create_sq.opcode = nvme_admin_create_sq;
 834        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
 835        c.create_sq.sqid = cpu_to_le16(qid);
 836        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 837        c.create_sq.sq_flags = cpu_to_le16(flags);
 838        c.create_sq.cqid = cpu_to_le16(qid);
 839
 840        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 841}
 842
 843static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
 844{
 845        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
 846}
 847
 848static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
 849{
 850        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
 851}
 852
 853static void abort_endio(struct request *req, int error)
 854{
 855        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 856        struct nvme_queue *nvmeq = iod->nvmeq;
 857        u16 status = req->errors;
 858
 859        dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
 860        atomic_inc(&nvmeq->dev->ctrl.abort_limit);
 861        blk_mq_free_request(req);
 862}
 863
 864static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
 865{
 866        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 867        struct nvme_queue *nvmeq = iod->nvmeq;
 868        struct nvme_dev *dev = nvmeq->dev;
 869        struct request *abort_req;
 870        struct nvme_command cmd;
 871
 872        /*
 873         * Shutdown immediately if controller times out while starting. The
 874         * reset work will see the pci device disabled when it gets the forced
 875         * cancellation error. All outstanding requests are completed on
 876         * shutdown, so we return BLK_EH_HANDLED.
 877         */
 878        if (dev->ctrl.state == NVME_CTRL_RESETTING) {
 879                dev_warn(dev->ctrl.device,
 880                         "I/O %d QID %d timeout, disable controller\n",
 881                         req->tag, nvmeq->qid);
 882                nvme_dev_disable(dev, false);
 883                req->errors = NVME_SC_CANCELLED;
 884                return BLK_EH_HANDLED;
 885        }
 886
 887        /*
 888         * Shutdown the controller immediately and schedule a reset if the
 889         * command was already aborted once before and still hasn't been
 890         * returned to the driver, or if this is the admin queue.
 891         */
 892        if (!nvmeq->qid || iod->aborted) {
 893                dev_warn(dev->ctrl.device,
 894                         "I/O %d QID %d timeout, reset controller\n",
 895                         req->tag, nvmeq->qid);
 896                nvme_dev_disable(dev, false);
 897                nvme_reset(dev);
 898
 899                /*
 900                 * Mark the request as handled, since the inline shutdown
 901                 * forces all outstanding requests to complete.
 902                 */
 903                req->errors = NVME_SC_CANCELLED;
 904                return BLK_EH_HANDLED;
 905        }
 906
 907        iod->aborted = 1;
 908
 909        if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
 910                atomic_inc(&dev->ctrl.abort_limit);
 911                return BLK_EH_RESET_TIMER;
 912        }
 913
 914        memset(&cmd, 0, sizeof(cmd));
 915        cmd.abort.opcode = nvme_admin_abort_cmd;
 916        cmd.abort.cid = req->tag;
 917        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
 918
 919        dev_warn(nvmeq->dev->ctrl.device,
 920                "I/O %d QID %d timeout, aborting\n",
 921                 req->tag, nvmeq->qid);
 922
 923        abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
 924                        BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
 925        if (IS_ERR(abort_req)) {
 926                atomic_inc(&dev->ctrl.abort_limit);
 927                return BLK_EH_RESET_TIMER;
 928        }
 929
 930        abort_req->timeout = ADMIN_TIMEOUT;
 931        abort_req->end_io_data = NULL;
 932        blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
 933
 934        /*
 935         * The aborted req will be completed on receiving the abort req.
 936         * We enable the timer again. If hit twice, it'll cause a device reset,
 937         * as the device then is in a faulty state.
 938         */
 939        return BLK_EH_RESET_TIMER;
 940}
 941
 942static void nvme_free_queue(struct nvme_queue *nvmeq)
 943{
 944        dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
 945                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
 946        if (nvmeq->sq_cmds)
 947                dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
 948                                        nvmeq->sq_cmds, nvmeq->sq_dma_addr);
 949        kfree(nvmeq);
 950}
 951
 952static void nvme_free_queues(struct nvme_dev *dev, int lowest)
 953{
 954        int i;
 955
 956        for (i = dev->queue_count - 1; i >= lowest; i--) {
 957                struct nvme_queue *nvmeq = dev->queues[i];
 958                dev->queue_count--;
 959                dev->queues[i] = NULL;
 960                nvme_free_queue(nvmeq);
 961        }
 962}
 963
 964/**
 965 * nvme_suspend_queue - put queue into suspended state
 966 * @nvmeq - queue to suspend
 967 */
 968static int nvme_suspend_queue(struct nvme_queue *nvmeq)
 969{
 970        int vector;
 971
 972        spin_lock_irq(&nvmeq->q_lock);
 973        if (nvmeq->cq_vector == -1) {
 974                spin_unlock_irq(&nvmeq->q_lock);
 975                return 1;
 976        }
 977        vector = nvmeq_irq(nvmeq);
 978        nvmeq->dev->online_queues--;
 979        nvmeq->cq_vector = -1;
 980        spin_unlock_irq(&nvmeq->q_lock);
 981
 982        if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
 983                blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
 984
 985        free_irq(vector, nvmeq);
 986
 987        return 0;
 988}
 989
 990static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
 991{
 992        struct nvme_queue *nvmeq = dev->queues[0];
 993
 994        if (!nvmeq)
 995                return;
 996        if (nvme_suspend_queue(nvmeq))
 997                return;
 998
 999        if (shutdown)
1000                nvme_shutdown_ctrl(&dev->ctrl);
1001        else
1002                nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1003                                                dev->bar + NVME_REG_CAP));
1004
1005        spin_lock_irq(&nvmeq->q_lock);
1006        nvme_process_cq(nvmeq);
1007        spin_unlock_irq(&nvmeq->q_lock);
1008}
1009
1010static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1011                                int entry_size)
1012{
1013        int q_depth = dev->q_depth;
1014        unsigned q_size_aligned = roundup(q_depth * entry_size,
1015                                          dev->ctrl.page_size);
1016
1017        if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1018                u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1019                mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1020                q_depth = div_u64(mem_per_q, entry_size);
1021
1022                /*
1023                 * Ensure the reduced q_depth is above some threshold where it
1024                 * would be better to map queues in system memory with the
1025                 * original depth
1026                 */
1027                if (q_depth < 64)
1028                        return -ENOMEM;
1029        }
1030
1031        return q_depth;
1032}
1033
1034static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1035                                int qid, int depth)
1036{
1037        if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1038                unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1039                                                      dev->ctrl.page_size);
1040                nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1041                nvmeq->sq_cmds_io = dev->cmb + offset;
1042        } else {
1043                nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1044                                        &nvmeq->sq_dma_addr, GFP_KERNEL);
1045                if (!nvmeq->sq_cmds)
1046                        return -ENOMEM;
1047        }
1048
1049        return 0;
1050}
1051
1052static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1053                                                        int depth)
1054{
1055        struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1056        if (!nvmeq)
1057                return NULL;
1058
1059        nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1060                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1061        if (!nvmeq->cqes)
1062                goto free_nvmeq;
1063
1064        if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1065                goto free_cqdma;
1066
1067        nvmeq->q_dmadev = dev->dev;
1068        nvmeq->dev = dev;
1069        snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1070                        dev->ctrl.instance, qid);
1071        spin_lock_init(&nvmeq->q_lock);
1072        nvmeq->cq_head = 0;
1073        nvmeq->cq_phase = 1;
1074        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1075        nvmeq->q_depth = depth;
1076        nvmeq->qid = qid;
1077        nvmeq->cq_vector = -1;
1078        dev->queues[qid] = nvmeq;
1079        dev->queue_count++;
1080
1081        return nvmeq;
1082
1083 free_cqdma:
1084        dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1085                                                        nvmeq->cq_dma_addr);
1086 free_nvmeq:
1087        kfree(nvmeq);
1088        return NULL;
1089}
1090
1091static int queue_request_irq(struct nvme_queue *nvmeq)
1092{
1093        if (use_threaded_interrupts)
1094                return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1095                                nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1096        else
1097                return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1098                                nvmeq->irqname, nvmeq);
1099}
1100
1101static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1102{
1103        struct nvme_dev *dev = nvmeq->dev;
1104
1105        spin_lock_irq(&nvmeq->q_lock);
1106        nvmeq->sq_tail = 0;
1107        nvmeq->cq_head = 0;
1108        nvmeq->cq_phase = 1;
1109        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1110        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1111        dev->online_queues++;
1112        spin_unlock_irq(&nvmeq->q_lock);
1113}
1114
1115static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1116{
1117        struct nvme_dev *dev = nvmeq->dev;
1118        int result;
1119
1120        nvmeq->cq_vector = qid - 1;
1121        result = adapter_alloc_cq(dev, qid, nvmeq);
1122        if (result < 0)
1123                return result;
1124
1125        result = adapter_alloc_sq(dev, qid, nvmeq);
1126        if (result < 0)
1127                goto release_cq;
1128
1129        result = queue_request_irq(nvmeq);
1130        if (result < 0)
1131                goto release_sq;
1132
1133        nvme_init_queue(nvmeq, qid);
1134        return result;
1135
1136 release_sq:
1137        adapter_delete_sq(dev, qid);
1138 release_cq:
1139        adapter_delete_cq(dev, qid);
1140        return result;
1141}
1142
1143static struct blk_mq_ops nvme_mq_admin_ops = {
1144        .queue_rq       = nvme_queue_rq,
1145        .complete       = nvme_complete_rq,
1146        .init_hctx      = nvme_admin_init_hctx,
1147        .exit_hctx      = nvme_admin_exit_hctx,
1148        .init_request   = nvme_admin_init_request,
1149        .timeout        = nvme_timeout,
1150};
1151
1152static struct blk_mq_ops nvme_mq_ops = {
1153        .queue_rq       = nvme_queue_rq,
1154        .complete       = nvme_complete_rq,
1155        .init_hctx      = nvme_init_hctx,
1156        .init_request   = nvme_init_request,
1157        .map_queues     = nvme_pci_map_queues,
1158        .timeout        = nvme_timeout,
1159        .poll           = nvme_poll,
1160};
1161
1162static void nvme_dev_remove_admin(struct nvme_dev *dev)
1163{
1164        if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1165                /*
1166                 * If the controller was reset during removal, it's possible
1167                 * user requests may be waiting on a stopped queue. Start the
1168                 * queue to flush these to completion.
1169                 */
1170                blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1171                blk_cleanup_queue(dev->ctrl.admin_q);
1172                blk_mq_free_tag_set(&dev->admin_tagset);
1173        }
1174}
1175
1176static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1177{
1178        if (!dev->ctrl.admin_q) {
1179                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1180                dev->admin_tagset.nr_hw_queues = 1;
1181
1182                /*
1183                 * Subtract one to leave an empty queue entry for 'Full Queue'
1184                 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1185                 */
1186                dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1187                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1188                dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1189                dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1190                dev->admin_tagset.driver_data = dev;
1191
1192                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1193                        return -ENOMEM;
1194
1195                dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1196                if (IS_ERR(dev->ctrl.admin_q)) {
1197                        blk_mq_free_tag_set(&dev->admin_tagset);
1198                        return -ENOMEM;
1199                }
1200                if (!blk_get_queue(dev->ctrl.admin_q)) {
1201                        nvme_dev_remove_admin(dev);
1202                        dev->ctrl.admin_q = NULL;
1203                        return -ENODEV;
1204                }
1205        } else
1206                blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1207
1208        return 0;
1209}
1210
1211static int nvme_configure_admin_queue(struct nvme_dev *dev)
1212{
1213        int result;
1214        u32 aqa;
1215        u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1216        struct nvme_queue *nvmeq;
1217
1218        dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1219                                                NVME_CAP_NSSRC(cap) : 0;
1220
1221        if (dev->subsystem &&
1222            (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1223                writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1224
1225        result = nvme_disable_ctrl(&dev->ctrl, cap);
1226        if (result < 0)
1227                return result;
1228
1229        nvmeq = dev->queues[0];
1230        if (!nvmeq) {
1231                nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1232                if (!nvmeq)
1233                        return -ENOMEM;
1234        }
1235
1236        aqa = nvmeq->q_depth - 1;
1237        aqa |= aqa << 16;
1238
1239        writel(aqa, dev->bar + NVME_REG_AQA);
1240        lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1241        lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1242
1243        result = nvme_enable_ctrl(&dev->ctrl, cap);
1244        if (result)
1245                return result;
1246
1247        nvmeq->cq_vector = 0;
1248        result = queue_request_irq(nvmeq);
1249        if (result) {
1250                nvmeq->cq_vector = -1;
1251                return result;
1252        }
1253
1254        return result;
1255}
1256
1257static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1258{
1259
1260        /* If true, indicates loss of adapter communication, possibly by a
1261         * NVMe Subsystem reset.
1262         */
1263        bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1264
1265        /* If there is a reset ongoing, we shouldn't reset again. */
1266        if (work_busy(&dev->reset_work))
1267                return false;
1268
1269        /* We shouldn't reset unless the controller is on fatal error state
1270         * _or_ if we lost the communication with it.
1271         */
1272        if (!(csts & NVME_CSTS_CFS) && !nssro)
1273                return false;
1274
1275        /* If PCI error recovery process is happening, we cannot reset or
1276         * the recovery mechanism will surely fail.
1277         */
1278        if (pci_channel_offline(to_pci_dev(dev->dev)))
1279                return false;
1280
1281        return true;
1282}
1283
1284static void nvme_watchdog_timer(unsigned long data)
1285{
1286        struct nvme_dev *dev = (struct nvme_dev *)data;
1287        u32 csts = readl(dev->bar + NVME_REG_CSTS);
1288
1289        /* Skip controllers under certain specific conditions. */
1290        if (nvme_should_reset(dev, csts)) {
1291                if (!nvme_reset(dev))
1292                        dev_warn(dev->dev,
1293                                "Failed status: 0x%x, reset controller.\n",
1294                                csts);
1295                return;
1296        }
1297
1298        mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1299}
1300
1301static int nvme_create_io_queues(struct nvme_dev *dev)
1302{
1303        unsigned i, max;
1304        int ret = 0;
1305
1306        for (i = dev->queue_count; i <= dev->max_qid; i++) {
1307                if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1308                        ret = -ENOMEM;
1309                        break;
1310                }
1311        }
1312
1313        max = min(dev->max_qid, dev->queue_count - 1);
1314        for (i = dev->online_queues; i <= max; i++) {
1315                ret = nvme_create_queue(dev->queues[i], i);
1316                if (ret)
1317                        break;
1318        }
1319
1320        /*
1321         * Ignore failing Create SQ/CQ commands, we can continue with less
1322         * than the desired aount of queues, and even a controller without
1323         * I/O queues an still be used to issue admin commands.  This might
1324         * be useful to upgrade a buggy firmware for example.
1325         */
1326        return ret >= 0 ? 0 : ret;
1327}
1328
1329static ssize_t nvme_cmb_show(struct device *dev,
1330                             struct device_attribute *attr,
1331                             char *buf)
1332{
1333        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1334
1335        return snprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1336                       ndev->cmbloc, ndev->cmbsz);
1337}
1338static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1339
1340static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1341{
1342        u64 szu, size, offset;
1343        resource_size_t bar_size;
1344        struct pci_dev *pdev = to_pci_dev(dev->dev);
1345        void __iomem *cmb;
1346        dma_addr_t dma_addr;
1347
1348        dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1349        if (!(NVME_CMB_SZ(dev->cmbsz)))
1350                return NULL;
1351        dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1352
1353        if (!use_cmb_sqes)
1354                return NULL;
1355
1356        szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1357        size = szu * NVME_CMB_SZ(dev->cmbsz);
1358        offset = szu * NVME_CMB_OFST(dev->cmbloc);
1359        bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1360
1361        if (offset > bar_size)
1362                return NULL;
1363
1364        /*
1365         * Controllers may support a CMB size larger than their BAR,
1366         * for example, due to being behind a bridge. Reduce the CMB to
1367         * the reported size of the BAR
1368         */
1369        if (size > bar_size - offset)
1370                size = bar_size - offset;
1371
1372        dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1373        cmb = ioremap_wc(dma_addr, size);
1374        if (!cmb)
1375                return NULL;
1376
1377        dev->cmb_dma_addr = dma_addr;
1378        dev->cmb_size = size;
1379        return cmb;
1380}
1381
1382static inline void nvme_release_cmb(struct nvme_dev *dev)
1383{
1384        if (dev->cmb) {
1385                iounmap(dev->cmb);
1386                dev->cmb = NULL;
1387        }
1388}
1389
1390static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1391{
1392        return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1393}
1394
1395static int nvme_setup_io_queues(struct nvme_dev *dev)
1396{
1397        struct nvme_queue *adminq = dev->queues[0];
1398        struct pci_dev *pdev = to_pci_dev(dev->dev);
1399        int result, nr_io_queues, size;
1400
1401        nr_io_queues = num_online_cpus();
1402        result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1403        if (result < 0)
1404                return result;
1405
1406        if (nr_io_queues == 0)
1407                return 0;
1408
1409        if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1410                result = nvme_cmb_qdepth(dev, nr_io_queues,
1411                                sizeof(struct nvme_command));
1412                if (result > 0)
1413                        dev->q_depth = result;
1414                else
1415                        nvme_release_cmb(dev);
1416        }
1417
1418        size = db_bar_size(dev, nr_io_queues);
1419        if (size > 8192) {
1420                iounmap(dev->bar);
1421                do {
1422                        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1423                        if (dev->bar)
1424                                break;
1425                        if (!--nr_io_queues)
1426                                return -ENOMEM;
1427                        size = db_bar_size(dev, nr_io_queues);
1428                } while (1);
1429                dev->dbs = dev->bar + 4096;
1430                adminq->q_db = dev->dbs;
1431        }
1432
1433        /* Deregister the admin queue's interrupt */
1434        free_irq(pci_irq_vector(pdev, 0), adminq);
1435
1436        /*
1437         * If we enable msix early due to not intx, disable it again before
1438         * setting up the full range we need.
1439         */
1440        pci_free_irq_vectors(pdev);
1441        nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1442                        PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1443        if (nr_io_queues <= 0)
1444                return -EIO;
1445        dev->max_qid = nr_io_queues;
1446
1447        /*
1448         * Should investigate if there's a performance win from allocating
1449         * more queues than interrupt vectors; it might allow the submission
1450         * path to scale better, even if the receive path is limited by the
1451         * number of interrupts.
1452         */
1453
1454        result = queue_request_irq(adminq);
1455        if (result) {
1456                adminq->cq_vector = -1;
1457                return result;
1458        }
1459        return nvme_create_io_queues(dev);
1460}
1461
1462static void nvme_del_queue_end(struct request *req, int error)
1463{
1464        struct nvme_queue *nvmeq = req->end_io_data;
1465
1466        blk_mq_free_request(req);
1467        complete(&nvmeq->dev->ioq_wait);
1468}
1469
1470static void nvme_del_cq_end(struct request *req, int error)
1471{
1472        struct nvme_queue *nvmeq = req->end_io_data;
1473
1474        if (!error) {
1475                unsigned long flags;
1476
1477                /*
1478                 * We might be called with the AQ q_lock held
1479                 * and the I/O queue q_lock should always
1480                 * nest inside the AQ one.
1481                 */
1482                spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1483                                        SINGLE_DEPTH_NESTING);
1484                nvme_process_cq(nvmeq);
1485                spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1486        }
1487
1488        nvme_del_queue_end(req, error);
1489}
1490
1491static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1492{
1493        struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1494        struct request *req;
1495        struct nvme_command cmd;
1496
1497        memset(&cmd, 0, sizeof(cmd));
1498        cmd.delete_queue.opcode = opcode;
1499        cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1500
1501        req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1502        if (IS_ERR(req))
1503                return PTR_ERR(req);
1504
1505        req->timeout = ADMIN_TIMEOUT;
1506        req->end_io_data = nvmeq;
1507
1508        blk_execute_rq_nowait(q, NULL, req, false,
1509                        opcode == nvme_admin_delete_cq ?
1510                                nvme_del_cq_end : nvme_del_queue_end);
1511        return 0;
1512}
1513
1514static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1515{
1516        int pass;
1517        unsigned long timeout;
1518        u8 opcode = nvme_admin_delete_sq;
1519
1520        for (pass = 0; pass < 2; pass++) {
1521                int sent = 0, i = queues;
1522
1523                reinit_completion(&dev->ioq_wait);
1524 retry:
1525                timeout = ADMIN_TIMEOUT;
1526                for (; i > 0; i--, sent++)
1527                        if (nvme_delete_queue(dev->queues[i], opcode))
1528                                break;
1529
1530                while (sent--) {
1531                        timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1532                        if (timeout == 0)
1533                                return;
1534                        if (i)
1535                                goto retry;
1536                }
1537                opcode = nvme_admin_delete_cq;
1538        }
1539}
1540
1541/*
1542 * Return: error value if an error occurred setting up the queues or calling
1543 * Identify Device.  0 if these succeeded, even if adding some of the
1544 * namespaces failed.  At the moment, these failures are silent.  TBD which
1545 * failures should be reported.
1546 */
1547static int nvme_dev_add(struct nvme_dev *dev)
1548{
1549        if (!dev->ctrl.tagset) {
1550                dev->tagset.ops = &nvme_mq_ops;
1551                dev->tagset.nr_hw_queues = dev->online_queues - 1;
1552                dev->tagset.timeout = NVME_IO_TIMEOUT;
1553                dev->tagset.numa_node = dev_to_node(dev->dev);
1554                dev->tagset.queue_depth =
1555                                min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1556                dev->tagset.cmd_size = nvme_cmd_size(dev);
1557                dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1558                dev->tagset.driver_data = dev;
1559
1560                if (blk_mq_alloc_tag_set(&dev->tagset))
1561                        return 0;
1562                dev->ctrl.tagset = &dev->tagset;
1563        } else {
1564                blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1565
1566                /* Free previously allocated queues that are no longer usable */
1567                nvme_free_queues(dev, dev->online_queues);
1568        }
1569
1570        return 0;
1571}
1572
1573static int nvme_pci_enable(struct nvme_dev *dev)
1574{
1575        u64 cap;
1576        int result = -ENOMEM;
1577        struct pci_dev *pdev = to_pci_dev(dev->dev);
1578
1579        if (pci_enable_device_mem(pdev))
1580                return result;
1581
1582        pci_set_master(pdev);
1583
1584        if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1585            dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1586                goto disable;
1587
1588        if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1589                result = -ENODEV;
1590                goto disable;
1591        }
1592
1593        /*
1594         * Some devices and/or platforms don't advertise or work with INTx
1595         * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1596         * adjust this later.
1597         */
1598        result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1599        if (result < 0)
1600                return result;
1601
1602        cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1603
1604        dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1605        dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1606        dev->dbs = dev->bar + 4096;
1607
1608        /*
1609         * Temporary fix for the Apple controller found in the MacBook8,1 and
1610         * some MacBook7,1 to avoid controller resets and data loss.
1611         */
1612        if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1613                dev->q_depth = 2;
1614                dev_warn(dev->dev, "detected Apple NVMe controller, set "
1615                        "queue depth=%u to work around controller resets\n",
1616                        dev->q_depth);
1617        }
1618
1619        /*
1620         * CMBs can currently only exist on >=1.2 PCIe devices. We only
1621         * populate sysfs if a CMB is implemented. Note that we add the
1622         * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1623         * it on exit. Since nvme_dev_attrs_group has no name we can pass
1624         * NULL as final argument to sysfs_add_file_to_group.
1625         */
1626
1627        if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1628                dev->cmb = nvme_map_cmb(dev);
1629
1630                if (dev->cmbsz) {
1631                        if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1632                                                    &dev_attr_cmb.attr, NULL))
1633                                dev_warn(dev->dev,
1634                                         "failed to add sysfs attribute for CMB\n");
1635                }
1636        }
1637
1638        pci_enable_pcie_error_reporting(pdev);
1639        pci_save_state(pdev);
1640        return 0;
1641
1642 disable:
1643        pci_disable_device(pdev);
1644        return result;
1645}
1646
1647static void nvme_dev_unmap(struct nvme_dev *dev)
1648{
1649        if (dev->bar)
1650                iounmap(dev->bar);
1651        pci_release_mem_regions(to_pci_dev(dev->dev));
1652}
1653
1654static void nvme_pci_disable(struct nvme_dev *dev)
1655{
1656        struct pci_dev *pdev = to_pci_dev(dev->dev);
1657
1658        pci_free_irq_vectors(pdev);
1659
1660        if (pci_is_enabled(pdev)) {
1661                pci_disable_pcie_error_reporting(pdev);
1662                pci_disable_device(pdev);
1663        }
1664}
1665
1666static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1667{
1668        int i, queues;
1669        u32 csts = -1;
1670
1671        del_timer_sync(&dev->watchdog_timer);
1672
1673        mutex_lock(&dev->shutdown_lock);
1674        if (pci_is_enabled(to_pci_dev(dev->dev))) {
1675                nvme_stop_queues(&dev->ctrl);
1676                csts = readl(dev->bar + NVME_REG_CSTS);
1677        }
1678
1679        queues = dev->online_queues - 1;
1680        for (i = dev->queue_count - 1; i > 0; i--)
1681                nvme_suspend_queue(dev->queues[i]);
1682
1683        if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1684                /* A device might become IO incapable very soon during
1685                 * probe, before the admin queue is configured. Thus,
1686                 * queue_count can be 0 here.
1687                 */
1688                if (dev->queue_count)
1689                        nvme_suspend_queue(dev->queues[0]);
1690        } else {
1691                nvme_disable_io_queues(dev, queues);
1692                nvme_disable_admin_queue(dev, shutdown);
1693        }
1694        nvme_pci_disable(dev);
1695
1696        blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1697        blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1698        mutex_unlock(&dev->shutdown_lock);
1699}
1700
1701static int nvme_setup_prp_pools(struct nvme_dev *dev)
1702{
1703        dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1704                                                PAGE_SIZE, PAGE_SIZE, 0);
1705        if (!dev->prp_page_pool)
1706                return -ENOMEM;
1707
1708        /* Optimisation for I/Os between 4k and 128k */
1709        dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1710                                                256, 256, 0);
1711        if (!dev->prp_small_pool) {
1712                dma_pool_destroy(dev->prp_page_pool);
1713                return -ENOMEM;
1714        }
1715        return 0;
1716}
1717
1718static void nvme_release_prp_pools(struct nvme_dev *dev)
1719{
1720        dma_pool_destroy(dev->prp_page_pool);
1721        dma_pool_destroy(dev->prp_small_pool);
1722}
1723
1724static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1725{
1726        struct nvme_dev *dev = to_nvme_dev(ctrl);
1727
1728        put_device(dev->dev);
1729        if (dev->tagset.tags)
1730                blk_mq_free_tag_set(&dev->tagset);
1731        if (dev->ctrl.admin_q)
1732                blk_put_queue(dev->ctrl.admin_q);
1733        kfree(dev->queues);
1734        kfree(dev);
1735}
1736
1737static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1738{
1739        dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1740
1741        kref_get(&dev->ctrl.kref);
1742        nvme_dev_disable(dev, false);
1743        if (!schedule_work(&dev->remove_work))
1744                nvme_put_ctrl(&dev->ctrl);
1745}
1746
1747static void nvme_reset_work(struct work_struct *work)
1748{
1749        struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1750        int result = -ENODEV;
1751
1752        if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1753                goto out;
1754
1755        /*
1756         * If we're called to reset a live controller first shut it down before
1757         * moving on.
1758         */
1759        if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1760                nvme_dev_disable(dev, false);
1761
1762        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1763                goto out;
1764
1765        result = nvme_pci_enable(dev);
1766        if (result)
1767                goto out;
1768
1769        result = nvme_configure_admin_queue(dev);
1770        if (result)
1771                goto out;
1772
1773        nvme_init_queue(dev->queues[0], 0);
1774        result = nvme_alloc_admin_tags(dev);
1775        if (result)
1776                goto out;
1777
1778        result = nvme_init_identify(&dev->ctrl);
1779        if (result)
1780                goto out;
1781
1782        result = nvme_setup_io_queues(dev);
1783        if (result)
1784                goto out;
1785
1786        /*
1787         * A controller that can not execute IO typically requires user
1788         * intervention to correct. For such degraded controllers, the driver
1789         * should not submit commands the user did not request, so skip
1790         * registering for asynchronous event notification on this condition.
1791         */
1792        if (dev->online_queues > 1)
1793                nvme_queue_async_events(&dev->ctrl);
1794
1795        mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1796
1797        /*
1798         * Keep the controller around but remove all namespaces if we don't have
1799         * any working I/O queue.
1800         */
1801        if (dev->online_queues < 2) {
1802                dev_warn(dev->ctrl.device, "IO queues not created\n");
1803                nvme_kill_queues(&dev->ctrl);
1804                nvme_remove_namespaces(&dev->ctrl);
1805        } else {
1806                nvme_start_queues(&dev->ctrl);
1807                nvme_dev_add(dev);
1808        }
1809
1810        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1811                dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1812                goto out;
1813        }
1814
1815        if (dev->online_queues > 1)
1816                nvme_queue_scan(&dev->ctrl);
1817        return;
1818
1819 out:
1820        nvme_remove_dead_ctrl(dev, result);
1821}
1822
1823static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1824{
1825        struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1826        struct pci_dev *pdev = to_pci_dev(dev->dev);
1827
1828        nvme_kill_queues(&dev->ctrl);
1829        if (pci_get_drvdata(pdev))
1830                device_release_driver(&pdev->dev);
1831        nvme_put_ctrl(&dev->ctrl);
1832}
1833
1834static int nvme_reset(struct nvme_dev *dev)
1835{
1836        if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1837                return -ENODEV;
1838        if (work_busy(&dev->reset_work))
1839                return -ENODEV;
1840        if (!queue_work(nvme_workq, &dev->reset_work))
1841                return -EBUSY;
1842        return 0;
1843}
1844
1845static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1846{
1847        *val = readl(to_nvme_dev(ctrl)->bar + off);
1848        return 0;
1849}
1850
1851static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1852{
1853        writel(val, to_nvme_dev(ctrl)->bar + off);
1854        return 0;
1855}
1856
1857static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1858{
1859        *val = readq(to_nvme_dev(ctrl)->bar + off);
1860        return 0;
1861}
1862
1863static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1864{
1865        struct nvme_dev *dev = to_nvme_dev(ctrl);
1866        int ret = nvme_reset(dev);
1867
1868        if (!ret)
1869                flush_work(&dev->reset_work);
1870        return ret;
1871}
1872
1873static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1874        .name                   = "pcie",
1875        .module                 = THIS_MODULE,
1876        .reg_read32             = nvme_pci_reg_read32,
1877        .reg_write32            = nvme_pci_reg_write32,
1878        .reg_read64             = nvme_pci_reg_read64,
1879        .reset_ctrl             = nvme_pci_reset_ctrl,
1880        .free_ctrl              = nvme_pci_free_ctrl,
1881        .submit_async_event     = nvme_pci_submit_async_event,
1882};
1883
1884static int nvme_dev_map(struct nvme_dev *dev)
1885{
1886        struct pci_dev *pdev = to_pci_dev(dev->dev);
1887
1888        if (pci_request_mem_regions(pdev, "nvme"))
1889                return -ENODEV;
1890
1891        dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1892        if (!dev->bar)
1893                goto release;
1894
1895       return 0;
1896  release:
1897       pci_release_mem_regions(pdev);
1898       return -ENODEV;
1899}
1900
1901static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1902{
1903        int node, result = -ENOMEM;
1904        struct nvme_dev *dev;
1905
1906        node = dev_to_node(&pdev->dev);
1907        if (node == NUMA_NO_NODE)
1908                set_dev_node(&pdev->dev, first_memory_node);
1909
1910        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1911        if (!dev)
1912                return -ENOMEM;
1913        dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1914                                                        GFP_KERNEL, node);
1915        if (!dev->queues)
1916                goto free;
1917
1918        dev->dev = get_device(&pdev->dev);
1919        pci_set_drvdata(pdev, dev);
1920
1921        result = nvme_dev_map(dev);
1922        if (result)
1923                goto free;
1924
1925        INIT_WORK(&dev->reset_work, nvme_reset_work);
1926        INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1927        setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1928                (unsigned long)dev);
1929        mutex_init(&dev->shutdown_lock);
1930        init_completion(&dev->ioq_wait);
1931
1932        result = nvme_setup_prp_pools(dev);
1933        if (result)
1934                goto put_pci;
1935
1936        result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1937                        id->driver_data);
1938        if (result)
1939                goto release_pools;
1940
1941        dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1942
1943        queue_work(nvme_workq, &dev->reset_work);
1944        return 0;
1945
1946 release_pools:
1947        nvme_release_prp_pools(dev);
1948 put_pci:
1949        put_device(dev->dev);
1950        nvme_dev_unmap(dev);
1951 free:
1952        kfree(dev->queues);
1953        kfree(dev);
1954        return result;
1955}
1956
1957static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1958{
1959        struct nvme_dev *dev = pci_get_drvdata(pdev);
1960
1961        if (prepare)
1962                nvme_dev_disable(dev, false);
1963        else
1964                nvme_reset(dev);
1965}
1966
1967static void nvme_shutdown(struct pci_dev *pdev)
1968{
1969        struct nvme_dev *dev = pci_get_drvdata(pdev);
1970        nvme_dev_disable(dev, true);
1971}
1972
1973/*
1974 * The driver's remove may be called on a device in a partially initialized
1975 * state. This function must not have any dependencies on the device state in
1976 * order to proceed.
1977 */
1978static void nvme_remove(struct pci_dev *pdev)
1979{
1980        struct nvme_dev *dev = pci_get_drvdata(pdev);
1981
1982        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1983
1984        pci_set_drvdata(pdev, NULL);
1985
1986        if (!pci_device_is_present(pdev))
1987                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1988
1989        flush_work(&dev->reset_work);
1990        nvme_uninit_ctrl(&dev->ctrl);
1991        nvme_dev_disable(dev, true);
1992        nvme_dev_remove_admin(dev);
1993        nvme_free_queues(dev, 0);
1994        nvme_release_cmb(dev);
1995        nvme_release_prp_pools(dev);
1996        nvme_dev_unmap(dev);
1997        nvme_put_ctrl(&dev->ctrl);
1998}
1999
2000static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2001{
2002        int ret = 0;
2003
2004        if (numvfs == 0) {
2005                if (pci_vfs_assigned(pdev)) {
2006                        dev_warn(&pdev->dev,
2007                                "Cannot disable SR-IOV VFs while assigned\n");
2008                        return -EPERM;
2009                }
2010                pci_disable_sriov(pdev);
2011                return 0;
2012        }
2013
2014        ret = pci_enable_sriov(pdev, numvfs);
2015        return ret ? ret : numvfs;
2016}
2017
2018#ifdef CONFIG_PM_SLEEP
2019static int nvme_suspend(struct device *dev)
2020{
2021        struct pci_dev *pdev = to_pci_dev(dev);
2022        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2023
2024        nvme_dev_disable(ndev, true);
2025        return 0;
2026}
2027
2028static int nvme_resume(struct device *dev)
2029{
2030        struct pci_dev *pdev = to_pci_dev(dev);
2031        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2032
2033        nvme_reset(ndev);
2034        return 0;
2035}
2036#endif
2037
2038static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2039
2040static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2041                                                pci_channel_state_t state)
2042{
2043        struct nvme_dev *dev = pci_get_drvdata(pdev);
2044
2045        /*
2046         * A frozen channel requires a reset. When detected, this method will
2047         * shutdown the controller to quiesce. The controller will be restarted
2048         * after the slot reset through driver's slot_reset callback.
2049         */
2050        switch (state) {
2051        case pci_channel_io_normal:
2052                return PCI_ERS_RESULT_CAN_RECOVER;
2053        case pci_channel_io_frozen:
2054                dev_warn(dev->ctrl.device,
2055                        "frozen state error detected, reset controller\n");
2056                nvme_dev_disable(dev, false);
2057                return PCI_ERS_RESULT_NEED_RESET;
2058        case pci_channel_io_perm_failure:
2059                dev_warn(dev->ctrl.device,
2060                        "failure state error detected, request disconnect\n");
2061                return PCI_ERS_RESULT_DISCONNECT;
2062        }
2063        return PCI_ERS_RESULT_NEED_RESET;
2064}
2065
2066static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2067{
2068        struct nvme_dev *dev = pci_get_drvdata(pdev);
2069
2070        dev_info(dev->ctrl.device, "restart after slot reset\n");
2071        pci_restore_state(pdev);
2072        nvme_reset(dev);
2073        return PCI_ERS_RESULT_RECOVERED;
2074}
2075
2076static void nvme_error_resume(struct pci_dev *pdev)
2077{
2078        pci_cleanup_aer_uncorrect_error_status(pdev);
2079}
2080
2081static const struct pci_error_handlers nvme_err_handler = {
2082        .error_detected = nvme_error_detected,
2083        .slot_reset     = nvme_slot_reset,
2084        .resume         = nvme_error_resume,
2085        .reset_notify   = nvme_reset_notify,
2086};
2087
2088/* Move to pci_ids.h later */
2089#define PCI_CLASS_STORAGE_EXPRESS       0x010802
2090
2091static const struct pci_device_id nvme_id_table[] = {
2092        { PCI_VDEVICE(INTEL, 0x0953),
2093                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2094                                NVME_QUIRK_DISCARD_ZEROES, },
2095        { PCI_VDEVICE(INTEL, 0x0a53),
2096                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2097                                NVME_QUIRK_DISCARD_ZEROES, },
2098        { PCI_VDEVICE(INTEL, 0x0a54),
2099                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2100                                NVME_QUIRK_DISCARD_ZEROES, },
2101        { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2102                .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2103        { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2104                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2105        { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2106                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2107        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2108        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2109        { 0, }
2110};
2111MODULE_DEVICE_TABLE(pci, nvme_id_table);
2112
2113static struct pci_driver nvme_driver = {
2114        .name           = "nvme",
2115        .id_table       = nvme_id_table,
2116        .probe          = nvme_probe,
2117        .remove         = nvme_remove,
2118        .shutdown       = nvme_shutdown,
2119        .driver         = {
2120                .pm     = &nvme_dev_pm_ops,
2121        },
2122        .sriov_configure = nvme_pci_sriov_configure,
2123        .err_handler    = &nvme_err_handler,
2124};
2125
2126static int __init nvme_init(void)
2127{
2128        int result;
2129
2130        nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2131        if (!nvme_workq)
2132                return -ENOMEM;
2133
2134        result = pci_register_driver(&nvme_driver);
2135        if (result)
2136                destroy_workqueue(nvme_workq);
2137        return result;
2138}
2139
2140static void __exit nvme_exit(void)
2141{
2142        pci_unregister_driver(&nvme_driver);
2143        destroy_workqueue(nvme_workq);
2144        _nvme_check_size();
2145}
2146
2147MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2148MODULE_LICENSE("GPL");
2149MODULE_VERSION("1.0");
2150module_init(nvme_init);
2151module_exit(nvme_exit);
2152