linux/drivers/power/supply/ab8500_fg.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) ST-Ericsson AB 2012
   3 *
   4 * Main and Back-up battery management driver.
   5 *
   6 * Note: Backup battery management is required in case of Li-Ion battery and not
   7 * for capacitive battery. HREF boards have capacitive battery and hence backup
   8 * battery management is not used and the supported code is available in this
   9 * driver.
  10 *
  11 * License Terms: GNU General Public License v2
  12 * Author:
  13 *      Johan Palsson <johan.palsson@stericsson.com>
  14 *      Karl Komierowski <karl.komierowski@stericsson.com>
  15 *      Arun R Murthy <arun.murthy@stericsson.com>
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/device.h>
  21#include <linux/interrupt.h>
  22#include <linux/platform_device.h>
  23#include <linux/power_supply.h>
  24#include <linux/kobject.h>
  25#include <linux/slab.h>
  26#include <linux/delay.h>
  27#include <linux/time.h>
  28#include <linux/time64.h>
  29#include <linux/of.h>
  30#include <linux/completion.h>
  31#include <linux/mfd/core.h>
  32#include <linux/mfd/abx500.h>
  33#include <linux/mfd/abx500/ab8500.h>
  34#include <linux/mfd/abx500/ab8500-bm.h>
  35#include <linux/mfd/abx500/ab8500-gpadc.h>
  36#include <linux/kernel.h>
  37
  38#define MILLI_TO_MICRO                  1000
  39#define FG_LSB_IN_MA                    1627
  40#define QLSB_NANO_AMP_HOURS_X10         1071
  41#define INS_CURR_TIMEOUT                (3 * HZ)
  42
  43#define SEC_TO_SAMPLE(S)                (S * 4)
  44
  45#define NBR_AVG_SAMPLES                 20
  46
  47#define LOW_BAT_CHECK_INTERVAL          (HZ / 16) /* 62.5 ms */
  48
  49#define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
  50#define BATT_OK_MIN                     2360 /* mV */
  51#define BATT_OK_INCREMENT               50 /* mV */
  52#define BATT_OK_MAX_NR_INCREMENTS       0xE
  53
  54/* FG constants */
  55#define BATT_OVV                        0x01
  56
  57#define interpolate(x, x1, y1, x2, y2) \
  58        ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
  59
  60/**
  61 * struct ab8500_fg_interrupts - ab8500 fg interupts
  62 * @name:       name of the interrupt
  63 * @isr         function pointer to the isr
  64 */
  65struct ab8500_fg_interrupts {
  66        char *name;
  67        irqreturn_t (*isr)(int irq, void *data);
  68};
  69
  70enum ab8500_fg_discharge_state {
  71        AB8500_FG_DISCHARGE_INIT,
  72        AB8500_FG_DISCHARGE_INITMEASURING,
  73        AB8500_FG_DISCHARGE_INIT_RECOVERY,
  74        AB8500_FG_DISCHARGE_RECOVERY,
  75        AB8500_FG_DISCHARGE_READOUT_INIT,
  76        AB8500_FG_DISCHARGE_READOUT,
  77        AB8500_FG_DISCHARGE_WAKEUP,
  78};
  79
  80static char *discharge_state[] = {
  81        "DISCHARGE_INIT",
  82        "DISCHARGE_INITMEASURING",
  83        "DISCHARGE_INIT_RECOVERY",
  84        "DISCHARGE_RECOVERY",
  85        "DISCHARGE_READOUT_INIT",
  86        "DISCHARGE_READOUT",
  87        "DISCHARGE_WAKEUP",
  88};
  89
  90enum ab8500_fg_charge_state {
  91        AB8500_FG_CHARGE_INIT,
  92        AB8500_FG_CHARGE_READOUT,
  93};
  94
  95static char *charge_state[] = {
  96        "CHARGE_INIT",
  97        "CHARGE_READOUT",
  98};
  99
 100enum ab8500_fg_calibration_state {
 101        AB8500_FG_CALIB_INIT,
 102        AB8500_FG_CALIB_WAIT,
 103        AB8500_FG_CALIB_END,
 104};
 105
 106struct ab8500_fg_avg_cap {
 107        int avg;
 108        int samples[NBR_AVG_SAMPLES];
 109        time64_t time_stamps[NBR_AVG_SAMPLES];
 110        int pos;
 111        int nbr_samples;
 112        int sum;
 113};
 114
 115struct ab8500_fg_cap_scaling {
 116        bool enable;
 117        int cap_to_scale[2];
 118        int disable_cap_level;
 119        int scaled_cap;
 120};
 121
 122struct ab8500_fg_battery_capacity {
 123        int max_mah_design;
 124        int max_mah;
 125        int mah;
 126        int permille;
 127        int level;
 128        int prev_mah;
 129        int prev_percent;
 130        int prev_level;
 131        int user_mah;
 132        struct ab8500_fg_cap_scaling cap_scale;
 133};
 134
 135struct ab8500_fg_flags {
 136        bool fg_enabled;
 137        bool conv_done;
 138        bool charging;
 139        bool fully_charged;
 140        bool force_full;
 141        bool low_bat_delay;
 142        bool low_bat;
 143        bool bat_ovv;
 144        bool batt_unknown;
 145        bool calibrate;
 146        bool user_cap;
 147        bool batt_id_received;
 148};
 149
 150struct inst_curr_result_list {
 151        struct list_head list;
 152        int *result;
 153};
 154
 155/**
 156 * struct ab8500_fg - ab8500 FG device information
 157 * @dev:                Pointer to the structure device
 158 * @node:               a list of AB8500 FGs, hence prepared for reentrance
 159 * @irq                 holds the CCEOC interrupt number
 160 * @vbat:               Battery voltage in mV
 161 * @vbat_nom:           Nominal battery voltage in mV
 162 * @inst_curr:          Instantenous battery current in mA
 163 * @avg_curr:           Average battery current in mA
 164 * @bat_temp            battery temperature
 165 * @fg_samples:         Number of samples used in the FG accumulation
 166 * @accu_charge:        Accumulated charge from the last conversion
 167 * @recovery_cnt:       Counter for recovery mode
 168 * @high_curr_cnt:      Counter for high current mode
 169 * @init_cnt:           Counter for init mode
 170 * @low_bat_cnt         Counter for number of consecutive low battery measures
 171 * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
 172 * @recovery_needed:    Indicate if recovery is needed
 173 * @high_curr_mode:     Indicate if we're in high current mode
 174 * @init_capacity:      Indicate if initial capacity measuring should be done
 175 * @turn_off_fg:        True if fg was off before current measurement
 176 * @calib_state         State during offset calibration
 177 * @discharge_state:    Current discharge state
 178 * @charge_state:       Current charge state
 179 * @ab8500_fg_started   Completion struct used for the instant current start
 180 * @ab8500_fg_complete  Completion struct used for the instant current reading
 181 * @flags:              Structure for information about events triggered
 182 * @bat_cap:            Structure for battery capacity specific parameters
 183 * @avg_cap:            Average capacity filter
 184 * @parent:             Pointer to the struct ab8500
 185 * @gpadc:              Pointer to the struct gpadc
 186 * @bm:                 Platform specific battery management information
 187 * @fg_psy:             Structure that holds the FG specific battery properties
 188 * @fg_wq:              Work queue for running the FG algorithm
 189 * @fg_periodic_work:   Work to run the FG algorithm periodically
 190 * @fg_low_bat_work:    Work to check low bat condition
 191 * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
 192 * @fg_work:            Work to run the FG algorithm instantly
 193 * @fg_acc_cur_work:    Work to read the FG accumulator
 194 * @fg_check_hw_failure_work:   Work for checking HW state
 195 * @cc_lock:            Mutex for locking the CC
 196 * @fg_kobject:         Structure of type kobject
 197 */
 198struct ab8500_fg {
 199        struct device *dev;
 200        struct list_head node;
 201        int irq;
 202        int vbat;
 203        int vbat_nom;
 204        int inst_curr;
 205        int avg_curr;
 206        int bat_temp;
 207        int fg_samples;
 208        int accu_charge;
 209        int recovery_cnt;
 210        int high_curr_cnt;
 211        int init_cnt;
 212        int low_bat_cnt;
 213        int nbr_cceoc_irq_cnt;
 214        bool recovery_needed;
 215        bool high_curr_mode;
 216        bool init_capacity;
 217        bool turn_off_fg;
 218        enum ab8500_fg_calibration_state calib_state;
 219        enum ab8500_fg_discharge_state discharge_state;
 220        enum ab8500_fg_charge_state charge_state;
 221        struct completion ab8500_fg_started;
 222        struct completion ab8500_fg_complete;
 223        struct ab8500_fg_flags flags;
 224        struct ab8500_fg_battery_capacity bat_cap;
 225        struct ab8500_fg_avg_cap avg_cap;
 226        struct ab8500 *parent;
 227        struct ab8500_gpadc *gpadc;
 228        struct abx500_bm_data *bm;
 229        struct power_supply *fg_psy;
 230        struct workqueue_struct *fg_wq;
 231        struct delayed_work fg_periodic_work;
 232        struct delayed_work fg_low_bat_work;
 233        struct delayed_work fg_reinit_work;
 234        struct work_struct fg_work;
 235        struct work_struct fg_acc_cur_work;
 236        struct delayed_work fg_check_hw_failure_work;
 237        struct mutex cc_lock;
 238        struct kobject fg_kobject;
 239};
 240static LIST_HEAD(ab8500_fg_list);
 241
 242/**
 243 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
 244 * (i.e. the first fuel gauge in the instance list)
 245 */
 246struct ab8500_fg *ab8500_fg_get(void)
 247{
 248        return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
 249                                        node);
 250}
 251
 252/* Main battery properties */
 253static enum power_supply_property ab8500_fg_props[] = {
 254        POWER_SUPPLY_PROP_VOLTAGE_NOW,
 255        POWER_SUPPLY_PROP_CURRENT_NOW,
 256        POWER_SUPPLY_PROP_CURRENT_AVG,
 257        POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
 258        POWER_SUPPLY_PROP_ENERGY_FULL,
 259        POWER_SUPPLY_PROP_ENERGY_NOW,
 260        POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
 261        POWER_SUPPLY_PROP_CHARGE_FULL,
 262        POWER_SUPPLY_PROP_CHARGE_NOW,
 263        POWER_SUPPLY_PROP_CAPACITY,
 264        POWER_SUPPLY_PROP_CAPACITY_LEVEL,
 265};
 266
 267/*
 268 * This array maps the raw hex value to lowbat voltage used by the AB8500
 269 * Values taken from the UM0836
 270 */
 271static int ab8500_fg_lowbat_voltage_map[] = {
 272        2300 ,
 273        2325 ,
 274        2350 ,
 275        2375 ,
 276        2400 ,
 277        2425 ,
 278        2450 ,
 279        2475 ,
 280        2500 ,
 281        2525 ,
 282        2550 ,
 283        2575 ,
 284        2600 ,
 285        2625 ,
 286        2650 ,
 287        2675 ,
 288        2700 ,
 289        2725 ,
 290        2750 ,
 291        2775 ,
 292        2800 ,
 293        2825 ,
 294        2850 ,
 295        2875 ,
 296        2900 ,
 297        2925 ,
 298        2950 ,
 299        2975 ,
 300        3000 ,
 301        3025 ,
 302        3050 ,
 303        3075 ,
 304        3100 ,
 305        3125 ,
 306        3150 ,
 307        3175 ,
 308        3200 ,
 309        3225 ,
 310        3250 ,
 311        3275 ,
 312        3300 ,
 313        3325 ,
 314        3350 ,
 315        3375 ,
 316        3400 ,
 317        3425 ,
 318        3450 ,
 319        3475 ,
 320        3500 ,
 321        3525 ,
 322        3550 ,
 323        3575 ,
 324        3600 ,
 325        3625 ,
 326        3650 ,
 327        3675 ,
 328        3700 ,
 329        3725 ,
 330        3750 ,
 331        3775 ,
 332        3800 ,
 333        3825 ,
 334        3850 ,
 335        3850 ,
 336};
 337
 338static u8 ab8500_volt_to_regval(int voltage)
 339{
 340        int i;
 341
 342        if (voltage < ab8500_fg_lowbat_voltage_map[0])
 343                return 0;
 344
 345        for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
 346                if (voltage < ab8500_fg_lowbat_voltage_map[i])
 347                        return (u8) i - 1;
 348        }
 349
 350        /* If not captured above, return index of last element */
 351        return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
 352}
 353
 354/**
 355 * ab8500_fg_is_low_curr() - Low or high current mode
 356 * @di:         pointer to the ab8500_fg structure
 357 * @curr:       the current to base or our decision on
 358 *
 359 * Low current mode if the current consumption is below a certain threshold
 360 */
 361static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
 362{
 363        /*
 364         * We want to know if we're in low current mode
 365         */
 366        if (curr > -di->bm->fg_params->high_curr_threshold)
 367                return true;
 368        else
 369                return false;
 370}
 371
 372/**
 373 * ab8500_fg_add_cap_sample() - Add capacity to average filter
 374 * @di:         pointer to the ab8500_fg structure
 375 * @sample:     the capacity in mAh to add to the filter
 376 *
 377 * A capacity is added to the filter and a new mean capacity is calculated and
 378 * returned
 379 */
 380static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
 381{
 382        struct timespec64 ts64;
 383        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 384
 385        getnstimeofday64(&ts64);
 386
 387        do {
 388                avg->sum += sample - avg->samples[avg->pos];
 389                avg->samples[avg->pos] = sample;
 390                avg->time_stamps[avg->pos] = ts64.tv_sec;
 391                avg->pos++;
 392
 393                if (avg->pos == NBR_AVG_SAMPLES)
 394                        avg->pos = 0;
 395
 396                if (avg->nbr_samples < NBR_AVG_SAMPLES)
 397                        avg->nbr_samples++;
 398
 399                /*
 400                 * Check the time stamp for each sample. If too old,
 401                 * replace with latest sample
 402                 */
 403        } while (ts64.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
 404
 405        avg->avg = avg->sum / avg->nbr_samples;
 406
 407        return avg->avg;
 408}
 409
 410/**
 411 * ab8500_fg_clear_cap_samples() - Clear average filter
 412 * @di:         pointer to the ab8500_fg structure
 413 *
 414 * The capacity filter is is reset to zero.
 415 */
 416static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
 417{
 418        int i;
 419        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 420
 421        avg->pos = 0;
 422        avg->nbr_samples = 0;
 423        avg->sum = 0;
 424        avg->avg = 0;
 425
 426        for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 427                avg->samples[i] = 0;
 428                avg->time_stamps[i] = 0;
 429        }
 430}
 431
 432/**
 433 * ab8500_fg_fill_cap_sample() - Fill average filter
 434 * @di:         pointer to the ab8500_fg structure
 435 * @sample:     the capacity in mAh to fill the filter with
 436 *
 437 * The capacity filter is filled with a capacity in mAh
 438 */
 439static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
 440{
 441        int i;
 442        struct timespec64 ts64;
 443        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 444
 445        getnstimeofday64(&ts64);
 446
 447        for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 448                avg->samples[i] = sample;
 449                avg->time_stamps[i] = ts64.tv_sec;
 450        }
 451
 452        avg->pos = 0;
 453        avg->nbr_samples = NBR_AVG_SAMPLES;
 454        avg->sum = sample * NBR_AVG_SAMPLES;
 455        avg->avg = sample;
 456}
 457
 458/**
 459 * ab8500_fg_coulomb_counter() - enable coulomb counter
 460 * @di:         pointer to the ab8500_fg structure
 461 * @enable:     enable/disable
 462 *
 463 * Enable/Disable coulomb counter.
 464 * On failure returns negative value.
 465 */
 466static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
 467{
 468        int ret = 0;
 469        mutex_lock(&di->cc_lock);
 470        if (enable) {
 471                /* To be able to reprogram the number of samples, we have to
 472                 * first stop the CC and then enable it again */
 473                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 474                        AB8500_RTC_CC_CONF_REG, 0x00);
 475                if (ret)
 476                        goto cc_err;
 477
 478                /* Program the samples */
 479                ret = abx500_set_register_interruptible(di->dev,
 480                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 481                        di->fg_samples);
 482                if (ret)
 483                        goto cc_err;
 484
 485                /* Start the CC */
 486                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 487                        AB8500_RTC_CC_CONF_REG,
 488                        (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 489                if (ret)
 490                        goto cc_err;
 491
 492                di->flags.fg_enabled = true;
 493        } else {
 494                /* Clear any pending read requests */
 495                ret = abx500_mask_and_set_register_interruptible(di->dev,
 496                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 497                        (RESET_ACCU | READ_REQ), 0);
 498                if (ret)
 499                        goto cc_err;
 500
 501                ret = abx500_set_register_interruptible(di->dev,
 502                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
 503                if (ret)
 504                        goto cc_err;
 505
 506                /* Stop the CC */
 507                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 508                        AB8500_RTC_CC_CONF_REG, 0);
 509                if (ret)
 510                        goto cc_err;
 511
 512                di->flags.fg_enabled = false;
 513
 514        }
 515        dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
 516                enable, di->fg_samples);
 517
 518        mutex_unlock(&di->cc_lock);
 519
 520        return ret;
 521cc_err:
 522        dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
 523        mutex_unlock(&di->cc_lock);
 524        return ret;
 525}
 526
 527/**
 528 * ab8500_fg_inst_curr_start() - start battery instantaneous current
 529 * @di:         pointer to the ab8500_fg structure
 530 *
 531 * Returns 0 or error code
 532 * Note: This is part "one" and has to be called before
 533 * ab8500_fg_inst_curr_finalize()
 534 */
 535int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
 536{
 537        u8 reg_val;
 538        int ret;
 539
 540        mutex_lock(&di->cc_lock);
 541
 542        di->nbr_cceoc_irq_cnt = 0;
 543        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 544                AB8500_RTC_CC_CONF_REG, &reg_val);
 545        if (ret < 0)
 546                goto fail;
 547
 548        if (!(reg_val & CC_PWR_UP_ENA)) {
 549                dev_dbg(di->dev, "%s Enable FG\n", __func__);
 550                di->turn_off_fg = true;
 551
 552                /* Program the samples */
 553                ret = abx500_set_register_interruptible(di->dev,
 554                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 555                        SEC_TO_SAMPLE(10));
 556                if (ret)
 557                        goto fail;
 558
 559                /* Start the CC */
 560                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 561                        AB8500_RTC_CC_CONF_REG,
 562                        (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 563                if (ret)
 564                        goto fail;
 565        } else {
 566                di->turn_off_fg = false;
 567        }
 568
 569        /* Return and WFI */
 570        reinit_completion(&di->ab8500_fg_started);
 571        reinit_completion(&di->ab8500_fg_complete);
 572        enable_irq(di->irq);
 573
 574        /* Note: cc_lock is still locked */
 575        return 0;
 576fail:
 577        mutex_unlock(&di->cc_lock);
 578        return ret;
 579}
 580
 581/**
 582 * ab8500_fg_inst_curr_started() - check if fg conversion has started
 583 * @di:         pointer to the ab8500_fg structure
 584 *
 585 * Returns 1 if conversion started, 0 if still waiting
 586 */
 587int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
 588{
 589        return completion_done(&di->ab8500_fg_started);
 590}
 591
 592/**
 593 * ab8500_fg_inst_curr_done() - check if fg conversion is done
 594 * @di:         pointer to the ab8500_fg structure
 595 *
 596 * Returns 1 if conversion done, 0 if still waiting
 597 */
 598int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
 599{
 600        return completion_done(&di->ab8500_fg_complete);
 601}
 602
 603/**
 604 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
 605 * @di:         pointer to the ab8500_fg structure
 606 * @res:        battery instantenous current(on success)
 607 *
 608 * Returns 0 or an error code
 609 * Note: This is part "two" and has to be called at earliest 250 ms
 610 * after ab8500_fg_inst_curr_start()
 611 */
 612int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
 613{
 614        u8 low, high;
 615        int val;
 616        int ret;
 617        unsigned long timeout;
 618
 619        if (!completion_done(&di->ab8500_fg_complete)) {
 620                timeout = wait_for_completion_timeout(
 621                        &di->ab8500_fg_complete,
 622                        INS_CURR_TIMEOUT);
 623                dev_dbg(di->dev, "Finalize time: %d ms\n",
 624                        jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
 625                if (!timeout) {
 626                        ret = -ETIME;
 627                        disable_irq(di->irq);
 628                        di->nbr_cceoc_irq_cnt = 0;
 629                        dev_err(di->dev, "completion timed out [%d]\n",
 630                                __LINE__);
 631                        goto fail;
 632                }
 633        }
 634
 635        disable_irq(di->irq);
 636        di->nbr_cceoc_irq_cnt = 0;
 637
 638        ret = abx500_mask_and_set_register_interruptible(di->dev,
 639                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 640                        READ_REQ, READ_REQ);
 641
 642        /* 100uS between read request and read is needed */
 643        usleep_range(100, 100);
 644
 645        /* Read CC Sample conversion value Low and high */
 646        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 647                AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
 648        if (ret < 0)
 649                goto fail;
 650
 651        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 652                AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
 653        if (ret < 0)
 654                goto fail;
 655
 656        /*
 657         * negative value for Discharging
 658         * convert 2's compliment into decimal
 659         */
 660        if (high & 0x10)
 661                val = (low | (high << 8) | 0xFFFFE000);
 662        else
 663                val = (low | (high << 8));
 664
 665        /*
 666         * Convert to unit value in mA
 667         * Full scale input voltage is
 668         * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
 669         * Given a 250ms conversion cycle time the LSB corresponds
 670         * to 107.1 nAh. Convert to current by dividing by the conversion
 671         * time in hours (250ms = 1 / (3600 * 4)h)
 672         * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 673         */
 674        val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
 675                (1000 * di->bm->fg_res);
 676
 677        if (di->turn_off_fg) {
 678                dev_dbg(di->dev, "%s Disable FG\n", __func__);
 679
 680                /* Clear any pending read requests */
 681                ret = abx500_set_register_interruptible(di->dev,
 682                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
 683                if (ret)
 684                        goto fail;
 685
 686                /* Stop the CC */
 687                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 688                        AB8500_RTC_CC_CONF_REG, 0);
 689                if (ret)
 690                        goto fail;
 691        }
 692        mutex_unlock(&di->cc_lock);
 693        (*res) = val;
 694
 695        return 0;
 696fail:
 697        mutex_unlock(&di->cc_lock);
 698        return ret;
 699}
 700
 701/**
 702 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
 703 * @di:         pointer to the ab8500_fg structure
 704 * @res:        battery instantenous current(on success)
 705 *
 706 * Returns 0 else error code
 707 */
 708int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
 709{
 710        int ret;
 711        unsigned long timeout;
 712        int res = 0;
 713
 714        ret = ab8500_fg_inst_curr_start(di);
 715        if (ret) {
 716                dev_err(di->dev, "Failed to initialize fg_inst\n");
 717                return 0;
 718        }
 719
 720        /* Wait for CC to actually start */
 721        if (!completion_done(&di->ab8500_fg_started)) {
 722                timeout = wait_for_completion_timeout(
 723                        &di->ab8500_fg_started,
 724                        INS_CURR_TIMEOUT);
 725                dev_dbg(di->dev, "Start time: %d ms\n",
 726                        jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
 727                if (!timeout) {
 728                        ret = -ETIME;
 729                        dev_err(di->dev, "completion timed out [%d]\n",
 730                                __LINE__);
 731                        goto fail;
 732                }
 733        }
 734
 735        ret = ab8500_fg_inst_curr_finalize(di, &res);
 736        if (ret) {
 737                dev_err(di->dev, "Failed to finalize fg_inst\n");
 738                return 0;
 739        }
 740
 741        dev_dbg(di->dev, "%s instant current: %d", __func__, res);
 742        return res;
 743fail:
 744        disable_irq(di->irq);
 745        mutex_unlock(&di->cc_lock);
 746        return ret;
 747}
 748
 749/**
 750 * ab8500_fg_acc_cur_work() - average battery current
 751 * @work:       pointer to the work_struct structure
 752 *
 753 * Updated the average battery current obtained from the
 754 * coulomb counter.
 755 */
 756static void ab8500_fg_acc_cur_work(struct work_struct *work)
 757{
 758        int val;
 759        int ret;
 760        u8 low, med, high;
 761
 762        struct ab8500_fg *di = container_of(work,
 763                struct ab8500_fg, fg_acc_cur_work);
 764
 765        mutex_lock(&di->cc_lock);
 766        ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 767                AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
 768        if (ret)
 769                goto exit;
 770
 771        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 772                AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
 773        if (ret < 0)
 774                goto exit;
 775
 776        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 777                AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
 778        if (ret < 0)
 779                goto exit;
 780
 781        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 782                AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
 783        if (ret < 0)
 784                goto exit;
 785
 786        /* Check for sign bit in case of negative value, 2's compliment */
 787        if (high & 0x10)
 788                val = (low | (med << 8) | (high << 16) | 0xFFE00000);
 789        else
 790                val = (low | (med << 8) | (high << 16));
 791
 792        /*
 793         * Convert to uAh
 794         * Given a 250ms conversion cycle time the LSB corresponds
 795         * to 112.9 nAh.
 796         * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 797         */
 798        di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
 799                (100 * di->bm->fg_res);
 800
 801        /*
 802         * Convert to unit value in mA
 803         * by dividing by the conversion
 804         * time in hours (= samples / (3600 * 4)h)
 805         * and multiply with 1000
 806         */
 807        di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
 808                (1000 * di->bm->fg_res * (di->fg_samples / 4));
 809
 810        di->flags.conv_done = true;
 811
 812        mutex_unlock(&di->cc_lock);
 813
 814        queue_work(di->fg_wq, &di->fg_work);
 815
 816        dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
 817                                di->bm->fg_res, di->fg_samples, val, di->accu_charge);
 818        return;
 819exit:
 820        dev_err(di->dev,
 821                "Failed to read or write gas gauge registers\n");
 822        mutex_unlock(&di->cc_lock);
 823        queue_work(di->fg_wq, &di->fg_work);
 824}
 825
 826/**
 827 * ab8500_fg_bat_voltage() - get battery voltage
 828 * @di:         pointer to the ab8500_fg structure
 829 *
 830 * Returns battery voltage(on success) else error code
 831 */
 832static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
 833{
 834        int vbat;
 835        static int prev;
 836
 837        vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
 838        if (vbat < 0) {
 839                dev_err(di->dev,
 840                        "%s gpadc conversion failed, using previous value\n",
 841                        __func__);
 842                return prev;
 843        }
 844
 845        prev = vbat;
 846        return vbat;
 847}
 848
 849/**
 850 * ab8500_fg_volt_to_capacity() - Voltage based capacity
 851 * @di:         pointer to the ab8500_fg structure
 852 * @voltage:    The voltage to convert to a capacity
 853 *
 854 * Returns battery capacity in per mille based on voltage
 855 */
 856static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
 857{
 858        int i, tbl_size;
 859        const struct abx500_v_to_cap *tbl;
 860        int cap = 0;
 861
 862        tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
 863        tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
 864
 865        for (i = 0; i < tbl_size; ++i) {
 866                if (voltage > tbl[i].voltage)
 867                        break;
 868        }
 869
 870        if ((i > 0) && (i < tbl_size)) {
 871                cap = interpolate(voltage,
 872                        tbl[i].voltage,
 873                        tbl[i].capacity * 10,
 874                        tbl[i-1].voltage,
 875                        tbl[i-1].capacity * 10);
 876        } else if (i == 0) {
 877                cap = 1000;
 878        } else {
 879                cap = 0;
 880        }
 881
 882        dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
 883                __func__, voltage, cap);
 884
 885        return cap;
 886}
 887
 888/**
 889 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
 890 * @di:         pointer to the ab8500_fg structure
 891 *
 892 * Returns battery capacity based on battery voltage that is not compensated
 893 * for the voltage drop due to the load
 894 */
 895static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
 896{
 897        di->vbat = ab8500_fg_bat_voltage(di);
 898        return ab8500_fg_volt_to_capacity(di, di->vbat);
 899}
 900
 901/**
 902 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
 903 * @di:         pointer to the ab8500_fg structure
 904 *
 905 * Returns battery inner resistance added with the fuel gauge resistor value
 906 * to get the total resistance in the whole link from gnd to bat+ node.
 907 */
 908static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
 909{
 910        int i, tbl_size;
 911        const struct batres_vs_temp *tbl;
 912        int resist = 0;
 913
 914        tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
 915        tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
 916
 917        for (i = 0; i < tbl_size; ++i) {
 918                if (di->bat_temp / 10 > tbl[i].temp)
 919                        break;
 920        }
 921
 922        if ((i > 0) && (i < tbl_size)) {
 923                resist = interpolate(di->bat_temp / 10,
 924                        tbl[i].temp,
 925                        tbl[i].resist,
 926                        tbl[i-1].temp,
 927                        tbl[i-1].resist);
 928        } else if (i == 0) {
 929                resist = tbl[0].resist;
 930        } else {
 931                resist = tbl[tbl_size - 1].resist;
 932        }
 933
 934        dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
 935            " fg resistance %d, total: %d (mOhm)\n",
 936                __func__, di->bat_temp, resist, di->bm->fg_res / 10,
 937                (di->bm->fg_res / 10) + resist);
 938
 939        /* fg_res variable is in 0.1mOhm */
 940        resist += di->bm->fg_res / 10;
 941
 942        return resist;
 943}
 944
 945/**
 946 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
 947 * @di:         pointer to the ab8500_fg structure
 948 *
 949 * Returns battery capacity based on battery voltage that is load compensated
 950 * for the voltage drop
 951 */
 952static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
 953{
 954        int vbat_comp, res;
 955        int i = 0;
 956        int vbat = 0;
 957
 958        ab8500_fg_inst_curr_start(di);
 959
 960        do {
 961                vbat += ab8500_fg_bat_voltage(di);
 962                i++;
 963                usleep_range(5000, 6000);
 964        } while (!ab8500_fg_inst_curr_done(di));
 965
 966        ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
 967
 968        di->vbat = vbat / i;
 969        res = ab8500_fg_battery_resistance(di);
 970
 971        /* Use Ohms law to get the load compensated voltage */
 972        vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
 973
 974        dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
 975                "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
 976                __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
 977
 978        return ab8500_fg_volt_to_capacity(di, vbat_comp);
 979}
 980
 981/**
 982 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
 983 * @di:         pointer to the ab8500_fg structure
 984 * @cap_mah:    capacity in mAh
 985 *
 986 * Converts capacity in mAh to capacity in permille
 987 */
 988static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
 989{
 990        return (cap_mah * 1000) / di->bat_cap.max_mah_design;
 991}
 992
 993/**
 994 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
 995 * @di:         pointer to the ab8500_fg structure
 996 * @cap_pm:     capacity in permille
 997 *
 998 * Converts capacity in permille to capacity in mAh
 999 */
1000static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1001{
1002        return cap_pm * di->bat_cap.max_mah_design / 1000;
1003}
1004
1005/**
1006 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1007 * @di:         pointer to the ab8500_fg structure
1008 * @cap_mah:    capacity in mAh
1009 *
1010 * Converts capacity in mAh to capacity in uWh
1011 */
1012static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1013{
1014        u64 div_res;
1015        u32 div_rem;
1016
1017        div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1018        div_rem = do_div(div_res, 1000);
1019
1020        /* Make sure to round upwards if necessary */
1021        if (div_rem >= 1000 / 2)
1022                div_res++;
1023
1024        return (int) div_res;
1025}
1026
1027/**
1028 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1029 * @di:         pointer to the ab8500_fg structure
1030 *
1031 * Return the capacity in mAh based on previous calculated capcity and the FG
1032 * accumulator register value. The filter is filled with this capacity
1033 */
1034static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1035{
1036        dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1037                __func__,
1038                di->bat_cap.mah,
1039                di->accu_charge);
1040
1041        /* Capacity should not be less than 0 */
1042        if (di->bat_cap.mah + di->accu_charge > 0)
1043                di->bat_cap.mah += di->accu_charge;
1044        else
1045                di->bat_cap.mah = 0;
1046        /*
1047         * We force capacity to 100% once when the algorithm
1048         * reports that it's full.
1049         */
1050        if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1051                di->flags.force_full) {
1052                di->bat_cap.mah = di->bat_cap.max_mah_design;
1053        }
1054
1055        ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1056        di->bat_cap.permille =
1057                ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1058
1059        /* We need to update battery voltage and inst current when charging */
1060        di->vbat = ab8500_fg_bat_voltage(di);
1061        di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1062
1063        return di->bat_cap.mah;
1064}
1065
1066/**
1067 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1068 * @di:         pointer to the ab8500_fg structure
1069 * @comp:       if voltage should be load compensated before capacity calc
1070 *
1071 * Return the capacity in mAh based on the battery voltage. The voltage can
1072 * either be load compensated or not. This value is added to the filter and a
1073 * new mean value is calculated and returned.
1074 */
1075static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1076{
1077        int permille, mah;
1078
1079        if (comp)
1080                permille = ab8500_fg_load_comp_volt_to_capacity(di);
1081        else
1082                permille = ab8500_fg_uncomp_volt_to_capacity(di);
1083
1084        mah = ab8500_fg_convert_permille_to_mah(di, permille);
1085
1086        di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1087        di->bat_cap.permille =
1088                ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1089
1090        return di->bat_cap.mah;
1091}
1092
1093/**
1094 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1095 * @di:         pointer to the ab8500_fg structure
1096 *
1097 * Return the capacity in mAh based on previous calculated capcity and the FG
1098 * accumulator register value. This value is added to the filter and a
1099 * new mean value is calculated and returned.
1100 */
1101static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1102{
1103        int permille_volt, permille;
1104
1105        dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1106                __func__,
1107                di->bat_cap.mah,
1108                di->accu_charge);
1109
1110        /* Capacity should not be less than 0 */
1111        if (di->bat_cap.mah + di->accu_charge > 0)
1112                di->bat_cap.mah += di->accu_charge;
1113        else
1114                di->bat_cap.mah = 0;
1115
1116        if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1117                di->bat_cap.mah = di->bat_cap.max_mah_design;
1118
1119        /*
1120         * Check against voltage based capacity. It can not be lower
1121         * than what the uncompensated voltage says
1122         */
1123        permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1124        permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1125
1126        if (permille < permille_volt) {
1127                di->bat_cap.permille = permille_volt;
1128                di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1129                        di->bat_cap.permille);
1130
1131                dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1132                        __func__,
1133                        permille,
1134                        permille_volt);
1135
1136                ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1137        } else {
1138                ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1139                di->bat_cap.permille =
1140                        ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1141        }
1142
1143        return di->bat_cap.mah;
1144}
1145
1146/**
1147 * ab8500_fg_capacity_level() - Get the battery capacity level
1148 * @di:         pointer to the ab8500_fg structure
1149 *
1150 * Get the battery capacity level based on the capacity in percent
1151 */
1152static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1153{
1154        int ret, percent;
1155
1156        percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1157
1158        if (percent <= di->bm->cap_levels->critical ||
1159                di->flags.low_bat)
1160                ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1161        else if (percent <= di->bm->cap_levels->low)
1162                ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1163        else if (percent <= di->bm->cap_levels->normal)
1164                ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1165        else if (percent <= di->bm->cap_levels->high)
1166                ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1167        else
1168                ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1169
1170        return ret;
1171}
1172
1173/**
1174 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1175 * @di:         pointer to the ab8500_fg structure
1176 *
1177 * Calculates the capacity to be shown to upper layers. Scales the capacity
1178 * to have 100% as a reference from the actual capacity upon removal of charger
1179 * when charging is in maintenance mode.
1180 */
1181static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1182{
1183        struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1184        int capacity = di->bat_cap.prev_percent;
1185
1186        if (!cs->enable)
1187                return capacity;
1188
1189        /*
1190         * As long as we are in fully charge mode scale the capacity
1191         * to show 100%.
1192         */
1193        if (di->flags.fully_charged) {
1194                cs->cap_to_scale[0] = 100;
1195                cs->cap_to_scale[1] =
1196                        max(capacity, di->bm->fg_params->maint_thres);
1197                dev_dbg(di->dev, "Scale cap with %d/%d\n",
1198                         cs->cap_to_scale[0], cs->cap_to_scale[1]);
1199        }
1200
1201        /* Calculates the scaled capacity. */
1202        if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1203                                        && (cs->cap_to_scale[1] > 0))
1204                capacity = min(100,
1205                                 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1206                                                 cs->cap_to_scale[0],
1207                                                 cs->cap_to_scale[1]));
1208
1209        if (di->flags.charging) {
1210                if (capacity < cs->disable_cap_level) {
1211                        cs->disable_cap_level = capacity;
1212                        dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1213                                cs->disable_cap_level);
1214                } else if (!di->flags.fully_charged) {
1215                        if (di->bat_cap.prev_percent >=
1216                            cs->disable_cap_level) {
1217                                dev_dbg(di->dev, "Disabling scaled capacity\n");
1218                                cs->enable = false;
1219                                capacity = di->bat_cap.prev_percent;
1220                        } else {
1221                                dev_dbg(di->dev,
1222                                        "Waiting in cap to level %d%%\n",
1223                                        cs->disable_cap_level);
1224                                capacity = cs->disable_cap_level;
1225                        }
1226                }
1227        }
1228
1229        return capacity;
1230}
1231
1232/**
1233 * ab8500_fg_update_cap_scalers() - Capacity scaling
1234 * @di:         pointer to the ab8500_fg structure
1235 *
1236 * To be called when state change from charge<->discharge to update
1237 * the capacity scalers.
1238 */
1239static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1240{
1241        struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1242
1243        if (!cs->enable)
1244                return;
1245        if (di->flags.charging) {
1246                di->bat_cap.cap_scale.disable_cap_level =
1247                        di->bat_cap.cap_scale.scaled_cap;
1248                dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1249                                di->bat_cap.cap_scale.disable_cap_level);
1250        } else {
1251                if (cs->scaled_cap != 100) {
1252                        cs->cap_to_scale[0] = cs->scaled_cap;
1253                        cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1254                } else {
1255                        cs->cap_to_scale[0] = 100;
1256                        cs->cap_to_scale[1] =
1257                                max(di->bat_cap.prev_percent,
1258                                    di->bm->fg_params->maint_thres);
1259                }
1260
1261                dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1262                                cs->cap_to_scale[0], cs->cap_to_scale[1]);
1263        }
1264}
1265
1266/**
1267 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1268 * @di:         pointer to the ab8500_fg structure
1269 * @init:       capacity is allowed to go up in init mode
1270 *
1271 * Check if capacity or capacity limit has changed and notify the system
1272 * about it using the power_supply framework
1273 */
1274static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1275{
1276        bool changed = false;
1277        int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1278
1279        di->bat_cap.level = ab8500_fg_capacity_level(di);
1280
1281        if (di->bat_cap.level != di->bat_cap.prev_level) {
1282                /*
1283                 * We do not allow reported capacity level to go up
1284                 * unless we're charging or if we're in init
1285                 */
1286                if (!(!di->flags.charging && di->bat_cap.level >
1287                        di->bat_cap.prev_level) || init) {
1288                        dev_dbg(di->dev, "level changed from %d to %d\n",
1289                                di->bat_cap.prev_level,
1290                                di->bat_cap.level);
1291                        di->bat_cap.prev_level = di->bat_cap.level;
1292                        changed = true;
1293                } else {
1294                        dev_dbg(di->dev, "level not allowed to go up "
1295                                "since no charger is connected: %d to %d\n",
1296                                di->bat_cap.prev_level,
1297                                di->bat_cap.level);
1298                }
1299        }
1300
1301        /*
1302         * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1303         * shutdown
1304         */
1305        if (di->flags.low_bat) {
1306                dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1307                di->bat_cap.prev_percent = 0;
1308                di->bat_cap.permille = 0;
1309                percent = 0;
1310                di->bat_cap.prev_mah = 0;
1311                di->bat_cap.mah = 0;
1312                changed = true;
1313        } else if (di->flags.fully_charged) {
1314                /*
1315                 * We report 100% if algorithm reported fully charged
1316                 * and show 100% during maintenance charging (scaling).
1317                 */
1318                if (di->flags.force_full) {
1319                        di->bat_cap.prev_percent = percent;
1320                        di->bat_cap.prev_mah = di->bat_cap.mah;
1321
1322                        changed = true;
1323
1324                        if (!di->bat_cap.cap_scale.enable &&
1325                                                di->bm->capacity_scaling) {
1326                                di->bat_cap.cap_scale.enable = true;
1327                                di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1328                                di->bat_cap.cap_scale.cap_to_scale[1] =
1329                                                di->bat_cap.prev_percent;
1330                                di->bat_cap.cap_scale.disable_cap_level = 100;
1331                        }
1332                } else if (di->bat_cap.prev_percent != percent) {
1333                        dev_dbg(di->dev,
1334                                "battery reported full "
1335                                "but capacity dropping: %d\n",
1336                                percent);
1337                        di->bat_cap.prev_percent = percent;
1338                        di->bat_cap.prev_mah = di->bat_cap.mah;
1339
1340                        changed = true;
1341                }
1342        } else if (di->bat_cap.prev_percent != percent) {
1343                if (percent == 0) {
1344                        /*
1345                         * We will not report 0% unless we've got
1346                         * the LOW_BAT IRQ, no matter what the FG
1347                         * algorithm says.
1348                         */
1349                        di->bat_cap.prev_percent = 1;
1350                        percent = 1;
1351
1352                        changed = true;
1353                } else if (!(!di->flags.charging &&
1354                        percent > di->bat_cap.prev_percent) || init) {
1355                        /*
1356                         * We do not allow reported capacity to go up
1357                         * unless we're charging or if we're in init
1358                         */
1359                        dev_dbg(di->dev,
1360                                "capacity changed from %d to %d (%d)\n",
1361                                di->bat_cap.prev_percent,
1362                                percent,
1363                                di->bat_cap.permille);
1364                        di->bat_cap.prev_percent = percent;
1365                        di->bat_cap.prev_mah = di->bat_cap.mah;
1366
1367                        changed = true;
1368                } else {
1369                        dev_dbg(di->dev, "capacity not allowed to go up since "
1370                                "no charger is connected: %d to %d (%d)\n",
1371                                di->bat_cap.prev_percent,
1372                                percent,
1373                                di->bat_cap.permille);
1374                }
1375        }
1376
1377        if (changed) {
1378                if (di->bm->capacity_scaling) {
1379                        di->bat_cap.cap_scale.scaled_cap =
1380                                ab8500_fg_calculate_scaled_capacity(di);
1381
1382                        dev_info(di->dev, "capacity=%d (%d)\n",
1383                                di->bat_cap.prev_percent,
1384                                di->bat_cap.cap_scale.scaled_cap);
1385                }
1386                power_supply_changed(di->fg_psy);
1387                if (di->flags.fully_charged && di->flags.force_full) {
1388                        dev_dbg(di->dev, "Battery full, notifying.\n");
1389                        di->flags.force_full = false;
1390                        sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1391                }
1392                sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1393        }
1394}
1395
1396static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1397        enum ab8500_fg_charge_state new_state)
1398{
1399        dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1400                di->charge_state,
1401                charge_state[di->charge_state],
1402                new_state,
1403                charge_state[new_state]);
1404
1405        di->charge_state = new_state;
1406}
1407
1408static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1409        enum ab8500_fg_discharge_state new_state)
1410{
1411        dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1412                di->discharge_state,
1413                discharge_state[di->discharge_state],
1414                new_state,
1415                discharge_state[new_state]);
1416
1417        di->discharge_state = new_state;
1418}
1419
1420/**
1421 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1422 * @di:         pointer to the ab8500_fg structure
1423 *
1424 * Battery capacity calculation state machine for when we're charging
1425 */
1426static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1427{
1428        /*
1429         * If we change to discharge mode
1430         * we should start with recovery
1431         */
1432        if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1433                ab8500_fg_discharge_state_to(di,
1434                        AB8500_FG_DISCHARGE_INIT_RECOVERY);
1435
1436        switch (di->charge_state) {
1437        case AB8500_FG_CHARGE_INIT:
1438                di->fg_samples = SEC_TO_SAMPLE(
1439                        di->bm->fg_params->accu_charging);
1440
1441                ab8500_fg_coulomb_counter(di, true);
1442                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1443
1444                break;
1445
1446        case AB8500_FG_CHARGE_READOUT:
1447                /*
1448                 * Read the FG and calculate the new capacity
1449                 */
1450                mutex_lock(&di->cc_lock);
1451                if (!di->flags.conv_done && !di->flags.force_full) {
1452                        /* Wasn't the CC IRQ that got us here */
1453                        mutex_unlock(&di->cc_lock);
1454                        dev_dbg(di->dev, "%s CC conv not done\n",
1455                                __func__);
1456
1457                        break;
1458                }
1459                di->flags.conv_done = false;
1460                mutex_unlock(&di->cc_lock);
1461
1462                ab8500_fg_calc_cap_charging(di);
1463
1464                break;
1465
1466        default:
1467                break;
1468        }
1469
1470        /* Check capacity limits */
1471        ab8500_fg_check_capacity_limits(di, false);
1472}
1473
1474static void force_capacity(struct ab8500_fg *di)
1475{
1476        int cap;
1477
1478        ab8500_fg_clear_cap_samples(di);
1479        cap = di->bat_cap.user_mah;
1480        if (cap > di->bat_cap.max_mah_design) {
1481                dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1482                        " %d\n", cap, di->bat_cap.max_mah_design);
1483                cap = di->bat_cap.max_mah_design;
1484        }
1485        ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1486        di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1487        di->bat_cap.mah = cap;
1488        ab8500_fg_check_capacity_limits(di, true);
1489}
1490
1491static bool check_sysfs_capacity(struct ab8500_fg *di)
1492{
1493        int cap, lower, upper;
1494        int cap_permille;
1495
1496        cap = di->bat_cap.user_mah;
1497
1498        cap_permille = ab8500_fg_convert_mah_to_permille(di,
1499                di->bat_cap.user_mah);
1500
1501        lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1502        upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1503
1504        if (lower < 0)
1505                lower = 0;
1506        /* 1000 is permille, -> 100 percent */
1507        if (upper > 1000)
1508                upper = 1000;
1509
1510        dev_dbg(di->dev, "Capacity limits:"
1511                " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1512                lower, cap_permille, upper, cap, di->bat_cap.mah);
1513
1514        /* If within limits, use the saved capacity and exit estimation...*/
1515        if (cap_permille > lower && cap_permille < upper) {
1516                dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1517                force_capacity(di);
1518                return true;
1519        }
1520        dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1521        return false;
1522}
1523
1524/**
1525 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1526 * @di:         pointer to the ab8500_fg structure
1527 *
1528 * Battery capacity calculation state machine for when we're discharging
1529 */
1530static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1531{
1532        int sleep_time;
1533
1534        /* If we change to charge mode we should start with init */
1535        if (di->charge_state != AB8500_FG_CHARGE_INIT)
1536                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1537
1538        switch (di->discharge_state) {
1539        case AB8500_FG_DISCHARGE_INIT:
1540                /* We use the FG IRQ to work on */
1541                di->init_cnt = 0;
1542                di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1543                ab8500_fg_coulomb_counter(di, true);
1544                ab8500_fg_discharge_state_to(di,
1545                        AB8500_FG_DISCHARGE_INITMEASURING);
1546
1547                /* Intentional fallthrough */
1548        case AB8500_FG_DISCHARGE_INITMEASURING:
1549                /*
1550                 * Discard a number of samples during startup.
1551                 * After that, use compensated voltage for a few
1552                 * samples to get an initial capacity.
1553                 * Then go to READOUT
1554                 */
1555                sleep_time = di->bm->fg_params->init_timer;
1556
1557                /* Discard the first [x] seconds */
1558                if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1559                        ab8500_fg_calc_cap_discharge_voltage(di, true);
1560
1561                        ab8500_fg_check_capacity_limits(di, true);
1562                }
1563
1564                di->init_cnt += sleep_time;
1565                if (di->init_cnt > di->bm->fg_params->init_total_time)
1566                        ab8500_fg_discharge_state_to(di,
1567                                AB8500_FG_DISCHARGE_READOUT_INIT);
1568
1569                break;
1570
1571        case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1572                di->recovery_cnt = 0;
1573                di->recovery_needed = true;
1574                ab8500_fg_discharge_state_to(di,
1575                        AB8500_FG_DISCHARGE_RECOVERY);
1576
1577                /* Intentional fallthrough */
1578
1579        case AB8500_FG_DISCHARGE_RECOVERY:
1580                sleep_time = di->bm->fg_params->recovery_sleep_timer;
1581
1582                /*
1583                 * We should check the power consumption
1584                 * If low, go to READOUT (after x min) or
1585                 * RECOVERY_SLEEP if time left.
1586                 * If high, go to READOUT
1587                 */
1588                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1589
1590                if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1591                        if (di->recovery_cnt >
1592                                di->bm->fg_params->recovery_total_time) {
1593                                di->fg_samples = SEC_TO_SAMPLE(
1594                                        di->bm->fg_params->accu_high_curr);
1595                                ab8500_fg_coulomb_counter(di, true);
1596                                ab8500_fg_discharge_state_to(di,
1597                                        AB8500_FG_DISCHARGE_READOUT);
1598                                di->recovery_needed = false;
1599                        } else {
1600                                queue_delayed_work(di->fg_wq,
1601                                        &di->fg_periodic_work,
1602                                        sleep_time * HZ);
1603                        }
1604                        di->recovery_cnt += sleep_time;
1605                } else {
1606                        di->fg_samples = SEC_TO_SAMPLE(
1607                                di->bm->fg_params->accu_high_curr);
1608                        ab8500_fg_coulomb_counter(di, true);
1609                        ab8500_fg_discharge_state_to(di,
1610                                AB8500_FG_DISCHARGE_READOUT);
1611                }
1612                break;
1613
1614        case AB8500_FG_DISCHARGE_READOUT_INIT:
1615                di->fg_samples = SEC_TO_SAMPLE(
1616                        di->bm->fg_params->accu_high_curr);
1617                ab8500_fg_coulomb_counter(di, true);
1618                ab8500_fg_discharge_state_to(di,
1619                                AB8500_FG_DISCHARGE_READOUT);
1620                break;
1621
1622        case AB8500_FG_DISCHARGE_READOUT:
1623                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1624
1625                if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1626                        /* Detect mode change */
1627                        if (di->high_curr_mode) {
1628                                di->high_curr_mode = false;
1629                                di->high_curr_cnt = 0;
1630                        }
1631
1632                        if (di->recovery_needed) {
1633                                ab8500_fg_discharge_state_to(di,
1634                                        AB8500_FG_DISCHARGE_INIT_RECOVERY);
1635
1636                                queue_delayed_work(di->fg_wq,
1637                                        &di->fg_periodic_work, 0);
1638
1639                                break;
1640                        }
1641
1642                        ab8500_fg_calc_cap_discharge_voltage(di, true);
1643                } else {
1644                        mutex_lock(&di->cc_lock);
1645                        if (!di->flags.conv_done) {
1646                                /* Wasn't the CC IRQ that got us here */
1647                                mutex_unlock(&di->cc_lock);
1648                                dev_dbg(di->dev, "%s CC conv not done\n",
1649                                        __func__);
1650
1651                                break;
1652                        }
1653                        di->flags.conv_done = false;
1654                        mutex_unlock(&di->cc_lock);
1655
1656                        /* Detect mode change */
1657                        if (!di->high_curr_mode) {
1658                                di->high_curr_mode = true;
1659                                di->high_curr_cnt = 0;
1660                        }
1661
1662                        di->high_curr_cnt +=
1663                                di->bm->fg_params->accu_high_curr;
1664                        if (di->high_curr_cnt >
1665                                di->bm->fg_params->high_curr_time)
1666                                di->recovery_needed = true;
1667
1668                        ab8500_fg_calc_cap_discharge_fg(di);
1669                }
1670
1671                ab8500_fg_check_capacity_limits(di, false);
1672
1673                break;
1674
1675        case AB8500_FG_DISCHARGE_WAKEUP:
1676                ab8500_fg_calc_cap_discharge_voltage(di, true);
1677
1678                di->fg_samples = SEC_TO_SAMPLE(
1679                        di->bm->fg_params->accu_high_curr);
1680                ab8500_fg_coulomb_counter(di, true);
1681                ab8500_fg_discharge_state_to(di,
1682                                AB8500_FG_DISCHARGE_READOUT);
1683
1684                ab8500_fg_check_capacity_limits(di, false);
1685
1686                break;
1687
1688        default:
1689                break;
1690        }
1691}
1692
1693/**
1694 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1695 * @di:         pointer to the ab8500_fg structure
1696 *
1697 */
1698static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1699{
1700        int ret;
1701
1702        switch (di->calib_state) {
1703        case AB8500_FG_CALIB_INIT:
1704                dev_dbg(di->dev, "Calibration ongoing...\n");
1705
1706                ret = abx500_mask_and_set_register_interruptible(di->dev,
1707                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1708                        CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1709                if (ret < 0)
1710                        goto err;
1711
1712                ret = abx500_mask_and_set_register_interruptible(di->dev,
1713                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1714                        CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1715                if (ret < 0)
1716                        goto err;
1717                di->calib_state = AB8500_FG_CALIB_WAIT;
1718                break;
1719        case AB8500_FG_CALIB_END:
1720                ret = abx500_mask_and_set_register_interruptible(di->dev,
1721                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1722                        CC_MUXOFFSET, CC_MUXOFFSET);
1723                if (ret < 0)
1724                        goto err;
1725                di->flags.calibrate = false;
1726                dev_dbg(di->dev, "Calibration done...\n");
1727                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1728                break;
1729        case AB8500_FG_CALIB_WAIT:
1730                dev_dbg(di->dev, "Calibration WFI\n");
1731        default:
1732                break;
1733        }
1734        return;
1735err:
1736        /* Something went wrong, don't calibrate then */
1737        dev_err(di->dev, "failed to calibrate the CC\n");
1738        di->flags.calibrate = false;
1739        di->calib_state = AB8500_FG_CALIB_INIT;
1740        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1741}
1742
1743/**
1744 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1745 * @di:         pointer to the ab8500_fg structure
1746 *
1747 * Entry point for the battery capacity calculation state machine
1748 */
1749static void ab8500_fg_algorithm(struct ab8500_fg *di)
1750{
1751        if (di->flags.calibrate)
1752                ab8500_fg_algorithm_calibrate(di);
1753        else {
1754                if (di->flags.charging)
1755                        ab8500_fg_algorithm_charging(di);
1756                else
1757                        ab8500_fg_algorithm_discharging(di);
1758        }
1759
1760        dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1761                "%d %d %d %d %d %d %d\n",
1762                di->bat_cap.max_mah_design,
1763                di->bat_cap.max_mah,
1764                di->bat_cap.mah,
1765                di->bat_cap.permille,
1766                di->bat_cap.level,
1767                di->bat_cap.prev_mah,
1768                di->bat_cap.prev_percent,
1769                di->bat_cap.prev_level,
1770                di->vbat,
1771                di->inst_curr,
1772                di->avg_curr,
1773                di->accu_charge,
1774                di->flags.charging,
1775                di->charge_state,
1776                di->discharge_state,
1777                di->high_curr_mode,
1778                di->recovery_needed);
1779}
1780
1781/**
1782 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1783 * @work:       pointer to the work_struct structure
1784 *
1785 * Work queue function for periodic work
1786 */
1787static void ab8500_fg_periodic_work(struct work_struct *work)
1788{
1789        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1790                fg_periodic_work.work);
1791
1792        if (di->init_capacity) {
1793                /* Get an initial capacity calculation */
1794                ab8500_fg_calc_cap_discharge_voltage(di, true);
1795                ab8500_fg_check_capacity_limits(di, true);
1796                di->init_capacity = false;
1797
1798                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1799        } else if (di->flags.user_cap) {
1800                if (check_sysfs_capacity(di)) {
1801                        ab8500_fg_check_capacity_limits(di, true);
1802                        if (di->flags.charging)
1803                                ab8500_fg_charge_state_to(di,
1804                                        AB8500_FG_CHARGE_INIT);
1805                        else
1806                                ab8500_fg_discharge_state_to(di,
1807                                        AB8500_FG_DISCHARGE_READOUT_INIT);
1808                }
1809                di->flags.user_cap = false;
1810                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1811        } else
1812                ab8500_fg_algorithm(di);
1813
1814}
1815
1816/**
1817 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1818 * @work:       pointer to the work_struct structure
1819 *
1820 * Work queue function for checking the OVV_BAT condition
1821 */
1822static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1823{
1824        int ret;
1825        u8 reg_value;
1826
1827        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1828                fg_check_hw_failure_work.work);
1829
1830        /*
1831         * If we have had a battery over-voltage situation,
1832         * check ovv-bit to see if it should be reset.
1833         */
1834        ret = abx500_get_register_interruptible(di->dev,
1835                AB8500_CHARGER, AB8500_CH_STAT_REG,
1836                &reg_value);
1837        if (ret < 0) {
1838                dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1839                return;
1840        }
1841        if ((reg_value & BATT_OVV) == BATT_OVV) {
1842                if (!di->flags.bat_ovv) {
1843                        dev_dbg(di->dev, "Battery OVV\n");
1844                        di->flags.bat_ovv = true;
1845                        power_supply_changed(di->fg_psy);
1846                }
1847                /* Not yet recovered from ovv, reschedule this test */
1848                queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1849                                   HZ);
1850                } else {
1851                        dev_dbg(di->dev, "Battery recovered from OVV\n");
1852                        di->flags.bat_ovv = false;
1853                        power_supply_changed(di->fg_psy);
1854        }
1855}
1856
1857/**
1858 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1859 * @work:       pointer to the work_struct structure
1860 *
1861 * Work queue function for checking the LOW_BAT condition
1862 */
1863static void ab8500_fg_low_bat_work(struct work_struct *work)
1864{
1865        int vbat;
1866
1867        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1868                fg_low_bat_work.work);
1869
1870        vbat = ab8500_fg_bat_voltage(di);
1871
1872        /* Check if LOW_BAT still fulfilled */
1873        if (vbat < di->bm->fg_params->lowbat_threshold) {
1874                /* Is it time to shut down? */
1875                if (di->low_bat_cnt < 1) {
1876                        di->flags.low_bat = true;
1877                        dev_warn(di->dev, "Shut down pending...\n");
1878                } else {
1879                        /*
1880                        * Else we need to re-schedule this check to be able to detect
1881                        * if the voltage increases again during charging or
1882                        * due to decreasing load.
1883                        */
1884                        di->low_bat_cnt--;
1885                        dev_warn(di->dev, "Battery voltage still LOW\n");
1886                        queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1887                                round_jiffies(LOW_BAT_CHECK_INTERVAL));
1888                }
1889        } else {
1890                di->flags.low_bat_delay = false;
1891                di->low_bat_cnt = 10;
1892                dev_warn(di->dev, "Battery voltage OK again\n");
1893        }
1894
1895        /* This is needed to dispatch LOW_BAT */
1896        ab8500_fg_check_capacity_limits(di, false);
1897}
1898
1899/**
1900 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1901 * to the target voltage.
1902 * @di:       pointer to the ab8500_fg structure
1903 * @target    target voltage
1904 *
1905 * Returns bit pattern closest to the target voltage
1906 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1907 */
1908
1909static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1910{
1911        if (target > BATT_OK_MIN +
1912                (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1913                return BATT_OK_MAX_NR_INCREMENTS;
1914        if (target < BATT_OK_MIN)
1915                return 0;
1916        return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1917}
1918
1919/**
1920 * ab8500_fg_battok_init_hw_register - init battok levels
1921 * @di:       pointer to the ab8500_fg structure
1922 *
1923 */
1924
1925static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1926{
1927        int selected;
1928        int sel0;
1929        int sel1;
1930        int cbp_sel0;
1931        int cbp_sel1;
1932        int ret;
1933        int new_val;
1934
1935        sel0 = di->bm->fg_params->battok_falling_th_sel0;
1936        sel1 = di->bm->fg_params->battok_raising_th_sel1;
1937
1938        cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1939        cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1940
1941        selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1942
1943        if (selected != sel0)
1944                dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1945                        sel0, selected, cbp_sel0);
1946
1947        selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1948
1949        if (selected != sel1)
1950                dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1951                        sel1, selected, cbp_sel1);
1952
1953        new_val = cbp_sel0 | (cbp_sel1 << 4);
1954
1955        dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1956        ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1957                AB8500_BATT_OK_REG, new_val);
1958        return ret;
1959}
1960
1961/**
1962 * ab8500_fg_instant_work() - Run the FG state machine instantly
1963 * @work:       pointer to the work_struct structure
1964 *
1965 * Work queue function for instant work
1966 */
1967static void ab8500_fg_instant_work(struct work_struct *work)
1968{
1969        struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1970
1971        ab8500_fg_algorithm(di);
1972}
1973
1974/**
1975 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1976 * @irq:       interrupt number
1977 * @_di:       pointer to the ab8500_fg structure
1978 *
1979 * Returns IRQ status(IRQ_HANDLED)
1980 */
1981static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1982{
1983        struct ab8500_fg *di = _di;
1984        if (!di->nbr_cceoc_irq_cnt) {
1985                di->nbr_cceoc_irq_cnt++;
1986                complete(&di->ab8500_fg_started);
1987        } else {
1988                di->nbr_cceoc_irq_cnt = 0;
1989                complete(&di->ab8500_fg_complete);
1990        }
1991        return IRQ_HANDLED;
1992}
1993
1994/**
1995 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
1996 * @irq:       interrupt number
1997 * @_di:       pointer to the ab8500_fg structure
1998 *
1999 * Returns IRQ status(IRQ_HANDLED)
2000 */
2001static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2002{
2003        struct ab8500_fg *di = _di;
2004        di->calib_state = AB8500_FG_CALIB_END;
2005        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2006        return IRQ_HANDLED;
2007}
2008
2009/**
2010 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2011 * @irq:       interrupt number
2012 * @_di:       pointer to the ab8500_fg structure
2013 *
2014 * Returns IRQ status(IRQ_HANDLED)
2015 */
2016static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2017{
2018        struct ab8500_fg *di = _di;
2019
2020        queue_work(di->fg_wq, &di->fg_acc_cur_work);
2021
2022        return IRQ_HANDLED;
2023}
2024
2025/**
2026 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2027 * @irq:       interrupt number
2028 * @_di:       pointer to the ab8500_fg structure
2029 *
2030 * Returns IRQ status(IRQ_HANDLED)
2031 */
2032static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2033{
2034        struct ab8500_fg *di = _di;
2035
2036        dev_dbg(di->dev, "Battery OVV\n");
2037
2038        /* Schedule a new HW failure check */
2039        queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2040
2041        return IRQ_HANDLED;
2042}
2043
2044/**
2045 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2046 * @irq:       interrupt number
2047 * @_di:       pointer to the ab8500_fg structure
2048 *
2049 * Returns IRQ status(IRQ_HANDLED)
2050 */
2051static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2052{
2053        struct ab8500_fg *di = _di;
2054
2055        /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2056        if (!di->flags.low_bat_delay) {
2057                dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2058                di->flags.low_bat_delay = true;
2059                /*
2060                 * Start a timer to check LOW_BAT again after some time
2061                 * This is done to avoid shutdown on single voltage dips
2062                 */
2063                queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2064                        round_jiffies(LOW_BAT_CHECK_INTERVAL));
2065        }
2066        return IRQ_HANDLED;
2067}
2068
2069/**
2070 * ab8500_fg_get_property() - get the fg properties
2071 * @psy:        pointer to the power_supply structure
2072 * @psp:        pointer to the power_supply_property structure
2073 * @val:        pointer to the power_supply_propval union
2074 *
2075 * This function gets called when an application tries to get the
2076 * fg properties by reading the sysfs files.
2077 * voltage_now:         battery voltage
2078 * current_now:         battery instant current
2079 * current_avg:         battery average current
2080 * charge_full_design:  capacity where battery is considered full
2081 * charge_now:          battery capacity in nAh
2082 * capacity:            capacity in percent
2083 * capacity_level:      capacity level
2084 *
2085 * Returns error code in case of failure else 0 on success
2086 */
2087static int ab8500_fg_get_property(struct power_supply *psy,
2088        enum power_supply_property psp,
2089        union power_supply_propval *val)
2090{
2091        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2092
2093        /*
2094         * If battery is identified as unknown and charging of unknown
2095         * batteries is disabled, we always report 100% capacity and
2096         * capacity level UNKNOWN, since we can't calculate
2097         * remaining capacity
2098         */
2099
2100        switch (psp) {
2101        case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2102                if (di->flags.bat_ovv)
2103                        val->intval = BATT_OVV_VALUE * 1000;
2104                else
2105                        val->intval = di->vbat * 1000;
2106                break;
2107        case POWER_SUPPLY_PROP_CURRENT_NOW:
2108                val->intval = di->inst_curr * 1000;
2109                break;
2110        case POWER_SUPPLY_PROP_CURRENT_AVG:
2111                val->intval = di->avg_curr * 1000;
2112                break;
2113        case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2114                val->intval = ab8500_fg_convert_mah_to_uwh(di,
2115                                di->bat_cap.max_mah_design);
2116                break;
2117        case POWER_SUPPLY_PROP_ENERGY_FULL:
2118                val->intval = ab8500_fg_convert_mah_to_uwh(di,
2119                                di->bat_cap.max_mah);
2120                break;
2121        case POWER_SUPPLY_PROP_ENERGY_NOW:
2122                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2123                                di->flags.batt_id_received)
2124                        val->intval = ab8500_fg_convert_mah_to_uwh(di,
2125                                        di->bat_cap.max_mah);
2126                else
2127                        val->intval = ab8500_fg_convert_mah_to_uwh(di,
2128                                        di->bat_cap.prev_mah);
2129                break;
2130        case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2131                val->intval = di->bat_cap.max_mah_design;
2132                break;
2133        case POWER_SUPPLY_PROP_CHARGE_FULL:
2134                val->intval = di->bat_cap.max_mah;
2135                break;
2136        case POWER_SUPPLY_PROP_CHARGE_NOW:
2137                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2138                                di->flags.batt_id_received)
2139                        val->intval = di->bat_cap.max_mah;
2140                else
2141                        val->intval = di->bat_cap.prev_mah;
2142                break;
2143        case POWER_SUPPLY_PROP_CAPACITY:
2144                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2145                                di->flags.batt_id_received)
2146                        val->intval = 100;
2147                else
2148                        val->intval = di->bat_cap.prev_percent;
2149                break;
2150        case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2151                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2152                                di->flags.batt_id_received)
2153                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2154                else
2155                        val->intval = di->bat_cap.prev_level;
2156                break;
2157        default:
2158                return -EINVAL;
2159        }
2160        return 0;
2161}
2162
2163static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2164{
2165        struct power_supply *psy;
2166        struct power_supply *ext = dev_get_drvdata(dev);
2167        const char **supplicants = (const char **)ext->supplied_to;
2168        struct ab8500_fg *di;
2169        union power_supply_propval ret;
2170        int j;
2171
2172        psy = (struct power_supply *)data;
2173        di = power_supply_get_drvdata(psy);
2174
2175        /*
2176         * For all psy where the name of your driver
2177         * appears in any supplied_to
2178         */
2179        j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2180        if (j < 0)
2181                return 0;
2182
2183        /* Go through all properties for the psy */
2184        for (j = 0; j < ext->desc->num_properties; j++) {
2185                enum power_supply_property prop;
2186                prop = ext->desc->properties[j];
2187
2188                if (power_supply_get_property(ext, prop, &ret))
2189                        continue;
2190
2191                switch (prop) {
2192                case POWER_SUPPLY_PROP_STATUS:
2193                        switch (ext->desc->type) {
2194                        case POWER_SUPPLY_TYPE_BATTERY:
2195                                switch (ret.intval) {
2196                                case POWER_SUPPLY_STATUS_UNKNOWN:
2197                                case POWER_SUPPLY_STATUS_DISCHARGING:
2198                                case POWER_SUPPLY_STATUS_NOT_CHARGING:
2199                                        if (!di->flags.charging)
2200                                                break;
2201                                        di->flags.charging = false;
2202                                        di->flags.fully_charged = false;
2203                                        if (di->bm->capacity_scaling)
2204                                                ab8500_fg_update_cap_scalers(di);
2205                                        queue_work(di->fg_wq, &di->fg_work);
2206                                        break;
2207                                case POWER_SUPPLY_STATUS_FULL:
2208                                        if (di->flags.fully_charged)
2209                                                break;
2210                                        di->flags.fully_charged = true;
2211                                        di->flags.force_full = true;
2212                                        /* Save current capacity as maximum */
2213                                        di->bat_cap.max_mah = di->bat_cap.mah;
2214                                        queue_work(di->fg_wq, &di->fg_work);
2215                                        break;
2216                                case POWER_SUPPLY_STATUS_CHARGING:
2217                                        if (di->flags.charging &&
2218                                                !di->flags.fully_charged)
2219                                                break;
2220                                        di->flags.charging = true;
2221                                        di->flags.fully_charged = false;
2222                                        if (di->bm->capacity_scaling)
2223                                                ab8500_fg_update_cap_scalers(di);
2224                                        queue_work(di->fg_wq, &di->fg_work);
2225                                        break;
2226                                };
2227                        default:
2228                                break;
2229                        };
2230                        break;
2231                case POWER_SUPPLY_PROP_TECHNOLOGY:
2232                        switch (ext->desc->type) {
2233                        case POWER_SUPPLY_TYPE_BATTERY:
2234                                if (!di->flags.batt_id_received &&
2235                                    di->bm->batt_id != BATTERY_UNKNOWN) {
2236                                        const struct abx500_battery_type *b;
2237
2238                                        b = &(di->bm->bat_type[di->bm->batt_id]);
2239
2240                                        di->flags.batt_id_received = true;
2241
2242                                        di->bat_cap.max_mah_design =
2243                                                MILLI_TO_MICRO *
2244                                                b->charge_full_design;
2245
2246                                        di->bat_cap.max_mah =
2247                                                di->bat_cap.max_mah_design;
2248
2249                                        di->vbat_nom = b->nominal_voltage;
2250                                }
2251
2252                                if (ret.intval)
2253                                        di->flags.batt_unknown = false;
2254                                else
2255                                        di->flags.batt_unknown = true;
2256                                break;
2257                        default:
2258                                break;
2259                        }
2260                        break;
2261                case POWER_SUPPLY_PROP_TEMP:
2262                        switch (ext->desc->type) {
2263                        case POWER_SUPPLY_TYPE_BATTERY:
2264                                if (di->flags.batt_id_received)
2265                                        di->bat_temp = ret.intval;
2266                                break;
2267                        default:
2268                                break;
2269                        }
2270                        break;
2271                default:
2272                        break;
2273                }
2274        }
2275        return 0;
2276}
2277
2278/**
2279 * ab8500_fg_init_hw_registers() - Set up FG related registers
2280 * @di:         pointer to the ab8500_fg structure
2281 *
2282 * Set up battery OVV, low battery voltage registers
2283 */
2284static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2285{
2286        int ret;
2287
2288        /* Set VBAT OVV threshold */
2289        ret = abx500_mask_and_set_register_interruptible(di->dev,
2290                AB8500_CHARGER,
2291                AB8500_BATT_OVV,
2292                BATT_OVV_TH_4P75,
2293                BATT_OVV_TH_4P75);
2294        if (ret) {
2295                dev_err(di->dev, "failed to set BATT_OVV\n");
2296                goto out;
2297        }
2298
2299        /* Enable VBAT OVV detection */
2300        ret = abx500_mask_and_set_register_interruptible(di->dev,
2301                AB8500_CHARGER,
2302                AB8500_BATT_OVV,
2303                BATT_OVV_ENA,
2304                BATT_OVV_ENA);
2305        if (ret) {
2306                dev_err(di->dev, "failed to enable BATT_OVV\n");
2307                goto out;
2308        }
2309
2310        /* Low Battery Voltage */
2311        ret = abx500_set_register_interruptible(di->dev,
2312                AB8500_SYS_CTRL2_BLOCK,
2313                AB8500_LOW_BAT_REG,
2314                ab8500_volt_to_regval(
2315                        di->bm->fg_params->lowbat_threshold) << 1 |
2316                LOW_BAT_ENABLE);
2317        if (ret) {
2318                dev_err(di->dev, "%s write failed\n", __func__);
2319                goto out;
2320        }
2321
2322        /* Battery OK threshold */
2323        ret = ab8500_fg_battok_init_hw_register(di);
2324        if (ret) {
2325                dev_err(di->dev, "BattOk init write failed.\n");
2326                goto out;
2327        }
2328
2329        if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2330                        abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2331                        || is_ab8540(di->parent)) {
2332                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2333                        AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2334
2335                if (ret) {
2336                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2337                        goto out;
2338                };
2339
2340                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2341                        AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2342
2343                if (ret) {
2344                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2345                        goto out;
2346                };
2347
2348                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2349                        AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2350
2351                if (ret) {
2352                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2353                        goto out;
2354                };
2355
2356                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2357                        AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2358
2359                if (ret) {
2360                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2361                        goto out;
2362                };
2363
2364                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2365                        AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2366
2367                if (ret) {
2368                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2369                        goto out;
2370                };
2371        }
2372out:
2373        return ret;
2374}
2375
2376/**
2377 * ab8500_fg_external_power_changed() - callback for power supply changes
2378 * @psy:       pointer to the structure power_supply
2379 *
2380 * This function is the entry point of the pointer external_power_changed
2381 * of the structure power_supply.
2382 * This function gets executed when there is a change in any external power
2383 * supply that this driver needs to be notified of.
2384 */
2385static void ab8500_fg_external_power_changed(struct power_supply *psy)
2386{
2387        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2388
2389        class_for_each_device(power_supply_class, NULL,
2390                di->fg_psy, ab8500_fg_get_ext_psy_data);
2391}
2392
2393/**
2394 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2395 * @work:       pointer to the work_struct structure
2396 *
2397 * Used to reset the current battery capacity to be able to
2398 * retrigger a new voltage base capacity calculation. For
2399 * test and verification purpose.
2400 */
2401static void ab8500_fg_reinit_work(struct work_struct *work)
2402{
2403        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2404                fg_reinit_work.work);
2405
2406        if (di->flags.calibrate == false) {
2407                dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2408                ab8500_fg_clear_cap_samples(di);
2409                ab8500_fg_calc_cap_discharge_voltage(di, true);
2410                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2411                ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2412                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2413
2414        } else {
2415                dev_err(di->dev, "Residual offset calibration ongoing "
2416                        "retrying..\n");
2417                /* Wait one second until next try*/
2418                queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2419                        round_jiffies(1));
2420        }
2421}
2422
2423/* Exposure to the sysfs interface */
2424
2425struct ab8500_fg_sysfs_entry {
2426        struct attribute attr;
2427        ssize_t (*show)(struct ab8500_fg *, char *);
2428        ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2429};
2430
2431static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2432{
2433        return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2434}
2435
2436static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2437                                 size_t count)
2438{
2439        unsigned long charge_full;
2440        ssize_t ret;
2441
2442        ret = kstrtoul(buf, 10, &charge_full);
2443
2444        dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2445
2446        if (!ret) {
2447                di->bat_cap.max_mah = (int) charge_full;
2448                ret = count;
2449        }
2450        return ret;
2451}
2452
2453static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2454{
2455        return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2456}
2457
2458static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2459                                 size_t count)
2460{
2461        unsigned long charge_now;
2462        ssize_t ret;
2463
2464        ret = kstrtoul(buf, 10, &charge_now);
2465
2466        dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2467                ret, charge_now, di->bat_cap.prev_mah);
2468
2469        if (!ret) {
2470                di->bat_cap.user_mah = (int) charge_now;
2471                di->flags.user_cap = true;
2472                ret = count;
2473                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2474        }
2475        return ret;
2476}
2477
2478static struct ab8500_fg_sysfs_entry charge_full_attr =
2479        __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2480
2481static struct ab8500_fg_sysfs_entry charge_now_attr =
2482        __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2483
2484static ssize_t
2485ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2486{
2487        struct ab8500_fg_sysfs_entry *entry;
2488        struct ab8500_fg *di;
2489
2490        entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2491        di = container_of(kobj, struct ab8500_fg, fg_kobject);
2492
2493        if (!entry->show)
2494                return -EIO;
2495
2496        return entry->show(di, buf);
2497}
2498static ssize_t
2499ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2500                size_t count)
2501{
2502        struct ab8500_fg_sysfs_entry *entry;
2503        struct ab8500_fg *di;
2504
2505        entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2506        di = container_of(kobj, struct ab8500_fg, fg_kobject);
2507
2508        if (!entry->store)
2509                return -EIO;
2510
2511        return entry->store(di, buf, count);
2512}
2513
2514static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2515        .show = ab8500_fg_show,
2516        .store = ab8500_fg_store,
2517};
2518
2519static struct attribute *ab8500_fg_attrs[] = {
2520        &charge_full_attr.attr,
2521        &charge_now_attr.attr,
2522        NULL,
2523};
2524
2525static struct kobj_type ab8500_fg_ktype = {
2526        .sysfs_ops = &ab8500_fg_sysfs_ops,
2527        .default_attrs = ab8500_fg_attrs,
2528};
2529
2530/**
2531 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2532 * @di:                pointer to the struct ab8500_chargalg
2533 *
2534 * This function removes the entry in sysfs.
2535 */
2536static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2537{
2538        kobject_del(&di->fg_kobject);
2539}
2540
2541/**
2542 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2543 * @di:                pointer to the struct ab8500_chargalg
2544 *
2545 * This function adds an entry in sysfs.
2546 * Returns error code in case of failure else 0(on success)
2547 */
2548static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2549{
2550        int ret = 0;
2551
2552        ret = kobject_init_and_add(&di->fg_kobject,
2553                &ab8500_fg_ktype,
2554                NULL, "battery");
2555        if (ret < 0)
2556                dev_err(di->dev, "failed to create sysfs entry\n");
2557
2558        return ret;
2559}
2560
2561static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2562                             struct device_attribute *attr,
2563                             char *buf)
2564{
2565        int ret;
2566        u8 reg_value;
2567        struct power_supply *psy = dev_get_drvdata(dev);
2568        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2569
2570        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2571                AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2572
2573        if (ret < 0) {
2574                dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2575                goto fail;
2576        }
2577
2578        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2579
2580fail:
2581        return ret;
2582}
2583
2584static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2585                                  struct device_attribute *attr,
2586                                  const char *buf, size_t count)
2587{
2588        int ret;
2589        long unsigned reg_value;
2590        struct power_supply *psy = dev_get_drvdata(dev);
2591        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2592
2593        reg_value = simple_strtoul(buf, NULL, 10);
2594
2595        if (reg_value > 0x7F) {
2596                dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2597                goto fail;
2598        }
2599
2600        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2601                AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2602
2603        if (ret < 0)
2604                dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2605
2606fail:
2607        return count;
2608}
2609
2610static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2611                             struct device_attribute *attr,
2612                             char *buf)
2613{
2614        int ret;
2615        u8 reg_value;
2616        struct power_supply *psy = dev_get_drvdata(dev);
2617        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2618
2619        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2620                AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2621
2622        if (ret < 0) {
2623                dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2624                goto fail;
2625        }
2626
2627        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2628
2629fail:
2630        return ret;
2631
2632}
2633
2634static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2635                                  struct device_attribute *attr,
2636                                  const char *buf, size_t count)
2637{
2638        int ret;
2639        int reg_value;
2640        struct power_supply *psy = dev_get_drvdata(dev);
2641        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2642
2643        reg_value = simple_strtoul(buf, NULL, 10);
2644        if (reg_value > 0x7F) {
2645                dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2646                goto fail;
2647        }
2648
2649        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2650                AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2651
2652        if (ret < 0)
2653                dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2654
2655fail:
2656        return count;
2657}
2658
2659static ssize_t ab8505_powercut_restart_read(struct device *dev,
2660                             struct device_attribute *attr,
2661                             char *buf)
2662{
2663        int ret;
2664        u8 reg_value;
2665        struct power_supply *psy = dev_get_drvdata(dev);
2666        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2667
2668        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2669                AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2670
2671        if (ret < 0) {
2672                dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2673                goto fail;
2674        }
2675
2676        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2677
2678fail:
2679        return ret;
2680}
2681
2682static ssize_t ab8505_powercut_restart_write(struct device *dev,
2683                                             struct device_attribute *attr,
2684                                             const char *buf, size_t count)
2685{
2686        int ret;
2687        int reg_value;
2688        struct power_supply *psy = dev_get_drvdata(dev);
2689        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2690
2691        reg_value = simple_strtoul(buf, NULL, 10);
2692        if (reg_value > 0xF) {
2693                dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2694                goto fail;
2695        }
2696
2697        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2698                                                AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2699
2700        if (ret < 0)
2701                dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2702
2703fail:
2704        return count;
2705
2706}
2707
2708static ssize_t ab8505_powercut_timer_read(struct device *dev,
2709                                          struct device_attribute *attr,
2710                                          char *buf)
2711{
2712        int ret;
2713        u8 reg_value;
2714        struct power_supply *psy = dev_get_drvdata(dev);
2715        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2716
2717        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2718                                                AB8505_RTC_PCUT_TIME_REG, &reg_value);
2719
2720        if (ret < 0) {
2721                dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2722                goto fail;
2723        }
2724
2725        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2726
2727fail:
2728        return ret;
2729}
2730
2731static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2732                                                    struct device_attribute *attr,
2733                                                    char *buf)
2734{
2735        int ret;
2736        u8 reg_value;
2737        struct power_supply *psy = dev_get_drvdata(dev);
2738        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2739
2740        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2741                                                AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2742
2743        if (ret < 0) {
2744                dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2745                goto fail;
2746        }
2747
2748        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2749
2750fail:
2751        return ret;
2752}
2753
2754static ssize_t ab8505_powercut_read(struct device *dev,
2755                                    struct device_attribute *attr,
2756                                    char *buf)
2757{
2758        int ret;
2759        u8 reg_value;
2760        struct power_supply *psy = dev_get_drvdata(dev);
2761        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2762
2763        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2764                                                AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2765
2766        if (ret < 0)
2767                goto fail;
2768
2769        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2770
2771fail:
2772        return ret;
2773}
2774
2775static ssize_t ab8505_powercut_write(struct device *dev,
2776                                     struct device_attribute *attr,
2777                                     const char *buf, size_t count)
2778{
2779        int ret;
2780        int reg_value;
2781        struct power_supply *psy = dev_get_drvdata(dev);
2782        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2783
2784        reg_value = simple_strtoul(buf, NULL, 10);
2785        if (reg_value > 0x1) {
2786                dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2787                goto fail;
2788        }
2789
2790        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2791                                                AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2792
2793        if (ret < 0)
2794                dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2795
2796fail:
2797        return count;
2798}
2799
2800static ssize_t ab8505_powercut_flag_read(struct device *dev,
2801                                         struct device_attribute *attr,
2802                                         char *buf)
2803{
2804
2805        int ret;
2806        u8 reg_value;
2807        struct power_supply *psy = dev_get_drvdata(dev);
2808        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2809
2810        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2811                                                AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2812
2813        if (ret < 0) {
2814                dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2815                goto fail;
2816        }
2817
2818        return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2819
2820fail:
2821        return ret;
2822}
2823
2824static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2825                                             struct device_attribute *attr,
2826                                             char *buf)
2827{
2828        int ret;
2829        u8 reg_value;
2830        struct power_supply *psy = dev_get_drvdata(dev);
2831        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2832
2833        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2834                                                AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2835
2836        if (ret < 0) {
2837                dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2838                goto fail;
2839        }
2840
2841        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2842
2843fail:
2844        return ret;
2845}
2846
2847static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2848                                              struct device_attribute *attr,
2849                                              const char *buf, size_t count)
2850{
2851        int ret;
2852        int reg_value;
2853        struct power_supply *psy = dev_get_drvdata(dev);
2854        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2855
2856        reg_value = simple_strtoul(buf, NULL, 10);
2857        if (reg_value > 0x7) {
2858                dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2859                goto fail;
2860        }
2861
2862        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2863                                                AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2864
2865        if (ret < 0)
2866                dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2867
2868fail:
2869        return count;
2870}
2871
2872static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2873                                                  struct device_attribute *attr,
2874                                                  char *buf)
2875{
2876        int ret;
2877        u8 reg_value;
2878        struct power_supply *psy = dev_get_drvdata(dev);
2879        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2880
2881        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2882                                                AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2883
2884        if (ret < 0) {
2885                dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2886                goto fail;
2887        }
2888
2889        return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2890
2891fail:
2892        return ret;
2893}
2894
2895static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2896        __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2897                ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2898        __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2899                ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2900        __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2901                ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2902        __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2903        __ATTR(powercut_restart_counter, S_IRUGO,
2904                ab8505_powercut_restart_counter_read, NULL),
2905        __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2906                ab8505_powercut_read, ab8505_powercut_write),
2907        __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2908        __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2909                ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2910        __ATTR(powercut_enable_status, S_IRUGO,
2911                ab8505_powercut_enable_status_read, NULL),
2912};
2913
2914static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2915{
2916        unsigned int i;
2917
2918        if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2919             abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2920            || is_ab8540(di->parent)) {
2921                for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2922                        if (device_create_file(&di->fg_psy->dev,
2923                                               &ab8505_fg_sysfs_psy_attrs[i]))
2924                                goto sysfs_psy_create_attrs_failed_ab8505;
2925        }
2926        return 0;
2927sysfs_psy_create_attrs_failed_ab8505:
2928        dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2929        while (i--)
2930                device_remove_file(&di->fg_psy->dev,
2931                                   &ab8505_fg_sysfs_psy_attrs[i]);
2932
2933        return -EIO;
2934}
2935
2936static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2937{
2938        unsigned int i;
2939
2940        if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2941             abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2942            || is_ab8540(di->parent)) {
2943                for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2944                        (void)device_remove_file(&di->fg_psy->dev,
2945                                                 &ab8505_fg_sysfs_psy_attrs[i]);
2946        }
2947}
2948
2949/* Exposure to the sysfs interface <<END>> */
2950
2951#if defined(CONFIG_PM)
2952static int ab8500_fg_resume(struct platform_device *pdev)
2953{
2954        struct ab8500_fg *di = platform_get_drvdata(pdev);
2955
2956        /*
2957         * Change state if we're not charging. If we're charging we will wake
2958         * up on the FG IRQ
2959         */
2960        if (!di->flags.charging) {
2961                ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2962                queue_work(di->fg_wq, &di->fg_work);
2963        }
2964
2965        return 0;
2966}
2967
2968static int ab8500_fg_suspend(struct platform_device *pdev,
2969        pm_message_t state)
2970{
2971        struct ab8500_fg *di = platform_get_drvdata(pdev);
2972
2973        flush_delayed_work(&di->fg_periodic_work);
2974        flush_work(&di->fg_work);
2975        flush_work(&di->fg_acc_cur_work);
2976        flush_delayed_work(&di->fg_reinit_work);
2977        flush_delayed_work(&di->fg_low_bat_work);
2978        flush_delayed_work(&di->fg_check_hw_failure_work);
2979
2980        /*
2981         * If the FG is enabled we will disable it before going to suspend
2982         * only if we're not charging
2983         */
2984        if (di->flags.fg_enabled && !di->flags.charging)
2985                ab8500_fg_coulomb_counter(di, false);
2986
2987        return 0;
2988}
2989#else
2990#define ab8500_fg_suspend      NULL
2991#define ab8500_fg_resume       NULL
2992#endif
2993
2994static int ab8500_fg_remove(struct platform_device *pdev)
2995{
2996        int ret = 0;
2997        struct ab8500_fg *di = platform_get_drvdata(pdev);
2998
2999        list_del(&di->node);
3000
3001        /* Disable coulomb counter */
3002        ret = ab8500_fg_coulomb_counter(di, false);
3003        if (ret)
3004                dev_err(di->dev, "failed to disable coulomb counter\n");
3005
3006        destroy_workqueue(di->fg_wq);
3007        ab8500_fg_sysfs_exit(di);
3008
3009        flush_scheduled_work();
3010        ab8500_fg_sysfs_psy_remove_attrs(di);
3011        power_supply_unregister(di->fg_psy);
3012        return ret;
3013}
3014
3015/* ab8500 fg driver interrupts and their respective isr */
3016static struct ab8500_fg_interrupts ab8500_fg_irq_th[] = {
3017        {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3018        {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3019        {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3020        {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3021};
3022
3023static struct ab8500_fg_interrupts ab8500_fg_irq_bh[] = {
3024        {"CCEOC", ab8500_fg_cc_data_end_handler},
3025};
3026
3027static char *supply_interface[] = {
3028        "ab8500_chargalg",
3029        "ab8500_usb",
3030};
3031
3032static const struct power_supply_desc ab8500_fg_desc = {
3033        .name                   = "ab8500_fg",
3034        .type                   = POWER_SUPPLY_TYPE_BATTERY,
3035        .properties             = ab8500_fg_props,
3036        .num_properties         = ARRAY_SIZE(ab8500_fg_props),
3037        .get_property           = ab8500_fg_get_property,
3038        .external_power_changed = ab8500_fg_external_power_changed,
3039};
3040
3041static int ab8500_fg_probe(struct platform_device *pdev)
3042{
3043        struct device_node *np = pdev->dev.of_node;
3044        struct abx500_bm_data *plat = pdev->dev.platform_data;
3045        struct power_supply_config psy_cfg = {};
3046        struct ab8500_fg *di;
3047        int i, irq;
3048        int ret = 0;
3049
3050        di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3051        if (!di) {
3052                dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3053                return -ENOMEM;
3054        }
3055
3056        if (!plat) {
3057                dev_err(&pdev->dev, "no battery management data supplied\n");
3058                return -EINVAL;
3059        }
3060        di->bm = plat;
3061
3062        if (np) {
3063                ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3064                if (ret) {
3065                        dev_err(&pdev->dev, "failed to get battery information\n");
3066                        return ret;
3067                }
3068        }
3069
3070        mutex_init(&di->cc_lock);
3071
3072        /* get parent data */
3073        di->dev = &pdev->dev;
3074        di->parent = dev_get_drvdata(pdev->dev.parent);
3075        di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3076
3077        psy_cfg.supplied_to = supply_interface;
3078        psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3079        psy_cfg.drv_data = di;
3080
3081        di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3082                di->bm->bat_type[di->bm->batt_id].charge_full_design;
3083
3084        di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3085
3086        di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3087
3088        di->init_capacity = true;
3089
3090        ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3091        ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3092
3093        /* Create a work queue for running the FG algorithm */
3094        di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3095        if (di->fg_wq == NULL) {
3096                dev_err(di->dev, "failed to create work queue\n");
3097                return -ENOMEM;
3098        }
3099
3100        /* Init work for running the fg algorithm instantly */
3101        INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3102
3103        /* Init work for getting the battery accumulated current */
3104        INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3105
3106        /* Init work for reinitialising the fg algorithm */
3107        INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3108                ab8500_fg_reinit_work);
3109
3110        /* Work delayed Queue to run the state machine */
3111        INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3112                ab8500_fg_periodic_work);
3113
3114        /* Work to check low battery condition */
3115        INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3116                ab8500_fg_low_bat_work);
3117
3118        /* Init work for HW failure check */
3119        INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3120                ab8500_fg_check_hw_failure_work);
3121
3122        /* Reset battery low voltage flag */
3123        di->flags.low_bat = false;
3124
3125        /* Initialize low battery counter */
3126        di->low_bat_cnt = 10;
3127
3128        /* Initialize OVV, and other registers */
3129        ret = ab8500_fg_init_hw_registers(di);
3130        if (ret) {
3131                dev_err(di->dev, "failed to initialize registers\n");
3132                goto free_inst_curr_wq;
3133        }
3134
3135        /* Consider battery unknown until we're informed otherwise */
3136        di->flags.batt_unknown = true;
3137        di->flags.batt_id_received = false;
3138
3139        /* Register FG power supply class */
3140        di->fg_psy = power_supply_register(di->dev, &ab8500_fg_desc, &psy_cfg);
3141        if (IS_ERR(di->fg_psy)) {
3142                dev_err(di->dev, "failed to register FG psy\n");
3143                ret = PTR_ERR(di->fg_psy);
3144                goto free_inst_curr_wq;
3145        }
3146
3147        di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3148        ab8500_fg_coulomb_counter(di, true);
3149
3150        /*
3151         * Initialize completion used to notify completion and start
3152         * of inst current
3153         */
3154        init_completion(&di->ab8500_fg_started);
3155        init_completion(&di->ab8500_fg_complete);
3156
3157        /* Register primary interrupt handlers */
3158        for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3159                irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3160                ret = request_irq(irq, ab8500_fg_irq_th[i].isr,
3161                                  IRQF_SHARED | IRQF_NO_SUSPEND,
3162                                  ab8500_fg_irq_th[i].name, di);
3163
3164                if (ret != 0) {
3165                        dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3166                                ab8500_fg_irq_th[i].name, irq, ret);
3167                        goto free_irq;
3168                }
3169                dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3170                        ab8500_fg_irq_th[i].name, irq, ret);
3171        }
3172
3173        /* Register threaded interrupt handler */
3174        irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3175        ret = request_threaded_irq(irq, NULL, ab8500_fg_irq_bh[0].isr,
3176                                IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3177                        ab8500_fg_irq_bh[0].name, di);
3178
3179        if (ret != 0) {
3180                dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3181                        ab8500_fg_irq_bh[0].name, irq, ret);
3182                goto free_irq;
3183        }
3184        dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3185                ab8500_fg_irq_bh[0].name, irq, ret);
3186
3187        di->irq = platform_get_irq_byname(pdev, "CCEOC");
3188        disable_irq(di->irq);
3189        di->nbr_cceoc_irq_cnt = 0;
3190
3191        platform_set_drvdata(pdev, di);
3192
3193        ret = ab8500_fg_sysfs_init(di);
3194        if (ret) {
3195                dev_err(di->dev, "failed to create sysfs entry\n");
3196                goto free_irq;
3197        }
3198
3199        ret = ab8500_fg_sysfs_psy_create_attrs(di);
3200        if (ret) {
3201                dev_err(di->dev, "failed to create FG psy\n");
3202                ab8500_fg_sysfs_exit(di);
3203                goto free_irq;
3204        }
3205
3206        /* Calibrate the fg first time */
3207        di->flags.calibrate = true;
3208        di->calib_state = AB8500_FG_CALIB_INIT;
3209
3210        /* Use room temp as default value until we get an update from driver. */
3211        di->bat_temp = 210;
3212
3213        /* Run the FG algorithm */
3214        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3215
3216        list_add_tail(&di->node, &ab8500_fg_list);
3217
3218        return ret;
3219
3220free_irq:
3221        power_supply_unregister(di->fg_psy);
3222
3223        /* We also have to free all registered irqs */
3224        for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3225                irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3226                free_irq(irq, di);
3227        }
3228        irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3229        free_irq(irq, di);
3230free_inst_curr_wq:
3231        destroy_workqueue(di->fg_wq);
3232        return ret;
3233}
3234
3235static const struct of_device_id ab8500_fg_match[] = {
3236        { .compatible = "stericsson,ab8500-fg", },
3237        { },
3238};
3239
3240static struct platform_driver ab8500_fg_driver = {
3241        .probe = ab8500_fg_probe,
3242        .remove = ab8500_fg_remove,
3243        .suspend = ab8500_fg_suspend,
3244        .resume = ab8500_fg_resume,
3245        .driver = {
3246                .name = "ab8500-fg",
3247                .of_match_table = ab8500_fg_match,
3248        },
3249};
3250
3251static int __init ab8500_fg_init(void)
3252{
3253        return platform_driver_register(&ab8500_fg_driver);
3254}
3255
3256static void __exit ab8500_fg_exit(void)
3257{
3258        platform_driver_unregister(&ab8500_fg_driver);
3259}
3260
3261subsys_initcall_sync(ab8500_fg_init);
3262module_exit(ab8500_fg_exit);
3263
3264MODULE_LICENSE("GPL v2");
3265MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3266MODULE_ALIAS("platform:ab8500-fg");
3267MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3268