linux/drivers/usb/gadget/function/f_fs.c
<<
>>
Prefs
   1/*
   2 * f_fs.c -- user mode file system API for USB composite function controllers
   3 *
   4 * Copyright (C) 2010 Samsung Electronics
   5 * Author: Michal Nazarewicz <mina86@mina86.com>
   6 *
   7 * Based on inode.c (GadgetFS) which was:
   8 * Copyright (C) 2003-2004 David Brownell
   9 * Copyright (C) 2003 Agilent Technologies
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 */
  16
  17
  18/* #define DEBUG */
  19/* #define VERBOSE_DEBUG */
  20
  21#include <linux/blkdev.h>
  22#include <linux/pagemap.h>
  23#include <linux/export.h>
  24#include <linux/hid.h>
  25#include <linux/module.h>
  26#include <linux/uio.h>
  27#include <asm/unaligned.h>
  28
  29#include <linux/usb/composite.h>
  30#include <linux/usb/functionfs.h>
  31
  32#include <linux/aio.h>
  33#include <linux/mmu_context.h>
  34#include <linux/poll.h>
  35#include <linux/eventfd.h>
  36
  37#include "u_fs.h"
  38#include "u_f.h"
  39#include "u_os_desc.h"
  40#include "configfs.h"
  41
  42#define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
  43
  44/* Reference counter handling */
  45static void ffs_data_get(struct ffs_data *ffs);
  46static void ffs_data_put(struct ffs_data *ffs);
  47/* Creates new ffs_data object. */
  48static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
  49
  50/* Opened counter handling. */
  51static void ffs_data_opened(struct ffs_data *ffs);
  52static void ffs_data_closed(struct ffs_data *ffs);
  53
  54/* Called with ffs->mutex held; take over ownership of data. */
  55static int __must_check
  56__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  57static int __must_check
  58__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  59
  60
  61/* The function structure ***************************************************/
  62
  63struct ffs_ep;
  64
  65struct ffs_function {
  66        struct usb_configuration        *conf;
  67        struct usb_gadget               *gadget;
  68        struct ffs_data                 *ffs;
  69
  70        struct ffs_ep                   *eps;
  71        u8                              eps_revmap[16];
  72        short                           *interfaces_nums;
  73
  74        struct usb_function             function;
  75};
  76
  77
  78static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  79{
  80        return container_of(f, struct ffs_function, function);
  81}
  82
  83
  84static inline enum ffs_setup_state
  85ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  86{
  87        return (enum ffs_setup_state)
  88                cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  89}
  90
  91
  92static void ffs_func_eps_disable(struct ffs_function *func);
  93static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  94
  95static int ffs_func_bind(struct usb_configuration *,
  96                         struct usb_function *);
  97static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
  98static void ffs_func_disable(struct usb_function *);
  99static int ffs_func_setup(struct usb_function *,
 100                          const struct usb_ctrlrequest *);
 101static bool ffs_func_req_match(struct usb_function *,
 102                               const struct usb_ctrlrequest *,
 103                               bool config0);
 104static void ffs_func_suspend(struct usb_function *);
 105static void ffs_func_resume(struct usb_function *);
 106
 107
 108static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 109static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 110
 111
 112/* The endpoints structures *************************************************/
 113
 114struct ffs_ep {
 115        struct usb_ep                   *ep;    /* P: ffs->eps_lock */
 116        struct usb_request              *req;   /* P: epfile->mutex */
 117
 118        /* [0]: full speed, [1]: high speed, [2]: super speed */
 119        struct usb_endpoint_descriptor  *descs[3];
 120
 121        u8                              num;
 122
 123        int                             status; /* P: epfile->mutex */
 124};
 125
 126struct ffs_epfile {
 127        /* Protects ep->ep and ep->req. */
 128        struct mutex                    mutex;
 129        wait_queue_head_t               wait;
 130
 131        struct ffs_data                 *ffs;
 132        struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
 133
 134        struct dentry                   *dentry;
 135
 136        /*
 137         * Buffer for holding data from partial reads which may happen since
 138         * we’re rounding user read requests to a multiple of a max packet size.
 139         *
 140         * The pointer is initialised with NULL value and may be set by
 141         * __ffs_epfile_read_data function to point to a temporary buffer.
 142         *
 143         * In normal operation, calls to __ffs_epfile_read_buffered will consume
 144         * data from said buffer and eventually free it.  Importantly, while the
 145         * function is using the buffer, it sets the pointer to NULL.  This is
 146         * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 147         * can never run concurrently (they are synchronised by epfile->mutex)
 148         * so the latter will not assign a new value to the pointer.
 149         *
 150         * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 151         * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 152         * value is crux of the synchronisation between ffs_func_eps_disable and
 153         * __ffs_epfile_read_data.
 154         *
 155         * Once __ffs_epfile_read_data is about to finish it will try to set the
 156         * pointer back to its old value (as described above), but seeing as the
 157         * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 158         * the buffer.
 159         *
 160         * == State transitions ==
 161         *
 162         * • ptr == NULL:  (initial state)
 163         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 164         *   ◦ __ffs_epfile_read_buffered:    nop
 165         *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 166         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 167         * • ptr == DROP:
 168         *   ◦ __ffs_epfile_read_buffer_free: nop
 169         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
 170         *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 171         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 172         * • ptr == buf:
 173         *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 174         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 175         *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 176         *                                    is always called first
 177         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 178         * • ptr == NULL and reading:
 179         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 180         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 181         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 182         *   ◦ reading finishes and …
 183         *     … all data read:               free buf, go to ptr == NULL
 184         *     … otherwise:                   go to ptr == buf and reading
 185         * • ptr == DROP and reading:
 186         *   ◦ __ffs_epfile_read_buffer_free: nop
 187         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 188         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 189         *   ◦ reading finishes:              free buf, go to ptr == DROP
 190         */
 191        struct ffs_buffer               *read_buffer;
 192#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 193
 194        char                            name[5];
 195
 196        unsigned char                   in;     /* P: ffs->eps_lock */
 197        unsigned char                   isoc;   /* P: ffs->eps_lock */
 198
 199        unsigned char                   _pad;
 200};
 201
 202struct ffs_buffer {
 203        size_t length;
 204        char *data;
 205        char storage[];
 206};
 207
 208/*  ffs_io_data structure ***************************************************/
 209
 210struct ffs_io_data {
 211        bool aio;
 212        bool read;
 213
 214        struct kiocb *kiocb;
 215        struct iov_iter data;
 216        const void *to_free;
 217        char *buf;
 218
 219        struct mm_struct *mm;
 220        struct work_struct work;
 221
 222        struct usb_ep *ep;
 223        struct usb_request *req;
 224
 225        struct ffs_data *ffs;
 226};
 227
 228struct ffs_desc_helper {
 229        struct ffs_data *ffs;
 230        unsigned interfaces_count;
 231        unsigned eps_count;
 232};
 233
 234static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 235static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 236
 237static struct dentry *
 238ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 239                   const struct file_operations *fops);
 240
 241/* Devices management *******************************************************/
 242
 243DEFINE_MUTEX(ffs_lock);
 244EXPORT_SYMBOL_GPL(ffs_lock);
 245
 246static struct ffs_dev *_ffs_find_dev(const char *name);
 247static struct ffs_dev *_ffs_alloc_dev(void);
 248static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
 249static void _ffs_free_dev(struct ffs_dev *dev);
 250static void *ffs_acquire_dev(const char *dev_name);
 251static void ffs_release_dev(struct ffs_data *ffs_data);
 252static int ffs_ready(struct ffs_data *ffs);
 253static void ffs_closed(struct ffs_data *ffs);
 254
 255/* Misc helper functions ****************************************************/
 256
 257static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 258        __attribute__((warn_unused_result, nonnull));
 259static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 260        __attribute__((warn_unused_result, nonnull));
 261
 262
 263/* Control file aka ep0 *****************************************************/
 264
 265static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 266{
 267        struct ffs_data *ffs = req->context;
 268
 269        complete_all(&ffs->ep0req_completion);
 270}
 271
 272static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 273{
 274        struct usb_request *req = ffs->ep0req;
 275        int ret;
 276
 277        req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 278
 279        spin_unlock_irq(&ffs->ev.waitq.lock);
 280
 281        req->buf      = data;
 282        req->length   = len;
 283
 284        /*
 285         * UDC layer requires to provide a buffer even for ZLP, but should
 286         * not use it at all. Let's provide some poisoned pointer to catch
 287         * possible bug in the driver.
 288         */
 289        if (req->buf == NULL)
 290                req->buf = (void *)0xDEADBABE;
 291
 292        reinit_completion(&ffs->ep0req_completion);
 293
 294        ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 295        if (unlikely(ret < 0))
 296                return ret;
 297
 298        ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 299        if (unlikely(ret)) {
 300                usb_ep_dequeue(ffs->gadget->ep0, req);
 301                return -EINTR;
 302        }
 303
 304        ffs->setup_state = FFS_NO_SETUP;
 305        return req->status ? req->status : req->actual;
 306}
 307
 308static int __ffs_ep0_stall(struct ffs_data *ffs)
 309{
 310        if (ffs->ev.can_stall) {
 311                pr_vdebug("ep0 stall\n");
 312                usb_ep_set_halt(ffs->gadget->ep0);
 313                ffs->setup_state = FFS_NO_SETUP;
 314                return -EL2HLT;
 315        } else {
 316                pr_debug("bogus ep0 stall!\n");
 317                return -ESRCH;
 318        }
 319}
 320
 321static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 322                             size_t len, loff_t *ptr)
 323{
 324        struct ffs_data *ffs = file->private_data;
 325        ssize_t ret;
 326        char *data;
 327
 328        ENTER();
 329
 330        /* Fast check if setup was canceled */
 331        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 332                return -EIDRM;
 333
 334        /* Acquire mutex */
 335        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 336        if (unlikely(ret < 0))
 337                return ret;
 338
 339        /* Check state */
 340        switch (ffs->state) {
 341        case FFS_READ_DESCRIPTORS:
 342        case FFS_READ_STRINGS:
 343                /* Copy data */
 344                if (unlikely(len < 16)) {
 345                        ret = -EINVAL;
 346                        break;
 347                }
 348
 349                data = ffs_prepare_buffer(buf, len);
 350                if (IS_ERR(data)) {
 351                        ret = PTR_ERR(data);
 352                        break;
 353                }
 354
 355                /* Handle data */
 356                if (ffs->state == FFS_READ_DESCRIPTORS) {
 357                        pr_info("read descriptors\n");
 358                        ret = __ffs_data_got_descs(ffs, data, len);
 359                        if (unlikely(ret < 0))
 360                                break;
 361
 362                        ffs->state = FFS_READ_STRINGS;
 363                        ret = len;
 364                } else {
 365                        pr_info("read strings\n");
 366                        ret = __ffs_data_got_strings(ffs, data, len);
 367                        if (unlikely(ret < 0))
 368                                break;
 369
 370                        ret = ffs_epfiles_create(ffs);
 371                        if (unlikely(ret)) {
 372                                ffs->state = FFS_CLOSING;
 373                                break;
 374                        }
 375
 376                        ffs->state = FFS_ACTIVE;
 377                        mutex_unlock(&ffs->mutex);
 378
 379                        ret = ffs_ready(ffs);
 380                        if (unlikely(ret < 0)) {
 381                                ffs->state = FFS_CLOSING;
 382                                return ret;
 383                        }
 384
 385                        return len;
 386                }
 387                break;
 388
 389        case FFS_ACTIVE:
 390                data = NULL;
 391                /*
 392                 * We're called from user space, we can use _irq
 393                 * rather then _irqsave
 394                 */
 395                spin_lock_irq(&ffs->ev.waitq.lock);
 396                switch (ffs_setup_state_clear_cancelled(ffs)) {
 397                case FFS_SETUP_CANCELLED:
 398                        ret = -EIDRM;
 399                        goto done_spin;
 400
 401                case FFS_NO_SETUP:
 402                        ret = -ESRCH;
 403                        goto done_spin;
 404
 405                case FFS_SETUP_PENDING:
 406                        break;
 407                }
 408
 409                /* FFS_SETUP_PENDING */
 410                if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 411                        spin_unlock_irq(&ffs->ev.waitq.lock);
 412                        ret = __ffs_ep0_stall(ffs);
 413                        break;
 414                }
 415
 416                /* FFS_SETUP_PENDING and not stall */
 417                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 418
 419                spin_unlock_irq(&ffs->ev.waitq.lock);
 420
 421                data = ffs_prepare_buffer(buf, len);
 422                if (IS_ERR(data)) {
 423                        ret = PTR_ERR(data);
 424                        break;
 425                }
 426
 427                spin_lock_irq(&ffs->ev.waitq.lock);
 428
 429                /*
 430                 * We are guaranteed to be still in FFS_ACTIVE state
 431                 * but the state of setup could have changed from
 432                 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 433                 * to check for that.  If that happened we copied data
 434                 * from user space in vain but it's unlikely.
 435                 *
 436                 * For sure we are not in FFS_NO_SETUP since this is
 437                 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 438                 * transition can be performed and it's protected by
 439                 * mutex.
 440                 */
 441                if (ffs_setup_state_clear_cancelled(ffs) ==
 442                    FFS_SETUP_CANCELLED) {
 443                        ret = -EIDRM;
 444done_spin:
 445                        spin_unlock_irq(&ffs->ev.waitq.lock);
 446                } else {
 447                        /* unlocks spinlock */
 448                        ret = __ffs_ep0_queue_wait(ffs, data, len);
 449                }
 450                kfree(data);
 451                break;
 452
 453        default:
 454                ret = -EBADFD;
 455                break;
 456        }
 457
 458        mutex_unlock(&ffs->mutex);
 459        return ret;
 460}
 461
 462/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 463static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 464                                     size_t n)
 465{
 466        /*
 467         * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 468         * size of ffs->ev.types array (which is four) so that's how much space
 469         * we reserve.
 470         */
 471        struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 472        const size_t size = n * sizeof *events;
 473        unsigned i = 0;
 474
 475        memset(events, 0, size);
 476
 477        do {
 478                events[i].type = ffs->ev.types[i];
 479                if (events[i].type == FUNCTIONFS_SETUP) {
 480                        events[i].u.setup = ffs->ev.setup;
 481                        ffs->setup_state = FFS_SETUP_PENDING;
 482                }
 483        } while (++i < n);
 484
 485        ffs->ev.count -= n;
 486        if (ffs->ev.count)
 487                memmove(ffs->ev.types, ffs->ev.types + n,
 488                        ffs->ev.count * sizeof *ffs->ev.types);
 489
 490        spin_unlock_irq(&ffs->ev.waitq.lock);
 491        mutex_unlock(&ffs->mutex);
 492
 493        return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 494}
 495
 496static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 497                            size_t len, loff_t *ptr)
 498{
 499        struct ffs_data *ffs = file->private_data;
 500        char *data = NULL;
 501        size_t n;
 502        int ret;
 503
 504        ENTER();
 505
 506        /* Fast check if setup was canceled */
 507        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 508                return -EIDRM;
 509
 510        /* Acquire mutex */
 511        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 512        if (unlikely(ret < 0))
 513                return ret;
 514
 515        /* Check state */
 516        if (ffs->state != FFS_ACTIVE) {
 517                ret = -EBADFD;
 518                goto done_mutex;
 519        }
 520
 521        /*
 522         * We're called from user space, we can use _irq rather then
 523         * _irqsave
 524         */
 525        spin_lock_irq(&ffs->ev.waitq.lock);
 526
 527        switch (ffs_setup_state_clear_cancelled(ffs)) {
 528        case FFS_SETUP_CANCELLED:
 529                ret = -EIDRM;
 530                break;
 531
 532        case FFS_NO_SETUP:
 533                n = len / sizeof(struct usb_functionfs_event);
 534                if (unlikely(!n)) {
 535                        ret = -EINVAL;
 536                        break;
 537                }
 538
 539                if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 540                        ret = -EAGAIN;
 541                        break;
 542                }
 543
 544                if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 545                                                        ffs->ev.count)) {
 546                        ret = -EINTR;
 547                        break;
 548                }
 549
 550                return __ffs_ep0_read_events(ffs, buf,
 551                                             min(n, (size_t)ffs->ev.count));
 552
 553        case FFS_SETUP_PENDING:
 554                if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 555                        spin_unlock_irq(&ffs->ev.waitq.lock);
 556                        ret = __ffs_ep0_stall(ffs);
 557                        goto done_mutex;
 558                }
 559
 560                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 561
 562                spin_unlock_irq(&ffs->ev.waitq.lock);
 563
 564                if (likely(len)) {
 565                        data = kmalloc(len, GFP_KERNEL);
 566                        if (unlikely(!data)) {
 567                                ret = -ENOMEM;
 568                                goto done_mutex;
 569                        }
 570                }
 571
 572                spin_lock_irq(&ffs->ev.waitq.lock);
 573
 574                /* See ffs_ep0_write() */
 575                if (ffs_setup_state_clear_cancelled(ffs) ==
 576                    FFS_SETUP_CANCELLED) {
 577                        ret = -EIDRM;
 578                        break;
 579                }
 580
 581                /* unlocks spinlock */
 582                ret = __ffs_ep0_queue_wait(ffs, data, len);
 583                if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 584                        ret = -EFAULT;
 585                goto done_mutex;
 586
 587        default:
 588                ret = -EBADFD;
 589                break;
 590        }
 591
 592        spin_unlock_irq(&ffs->ev.waitq.lock);
 593done_mutex:
 594        mutex_unlock(&ffs->mutex);
 595        kfree(data);
 596        return ret;
 597}
 598
 599static int ffs_ep0_open(struct inode *inode, struct file *file)
 600{
 601        struct ffs_data *ffs = inode->i_private;
 602
 603        ENTER();
 604
 605        if (unlikely(ffs->state == FFS_CLOSING))
 606                return -EBUSY;
 607
 608        file->private_data = ffs;
 609        ffs_data_opened(ffs);
 610
 611        return 0;
 612}
 613
 614static int ffs_ep0_release(struct inode *inode, struct file *file)
 615{
 616        struct ffs_data *ffs = file->private_data;
 617
 618        ENTER();
 619
 620        ffs_data_closed(ffs);
 621
 622        return 0;
 623}
 624
 625static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 626{
 627        struct ffs_data *ffs = file->private_data;
 628        struct usb_gadget *gadget = ffs->gadget;
 629        long ret;
 630
 631        ENTER();
 632
 633        if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 634                struct ffs_function *func = ffs->func;
 635                ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 636        } else if (gadget && gadget->ops->ioctl) {
 637                ret = gadget->ops->ioctl(gadget, code, value);
 638        } else {
 639                ret = -ENOTTY;
 640        }
 641
 642        return ret;
 643}
 644
 645static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
 646{
 647        struct ffs_data *ffs = file->private_data;
 648        unsigned int mask = POLLWRNORM;
 649        int ret;
 650
 651        poll_wait(file, &ffs->ev.waitq, wait);
 652
 653        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 654        if (unlikely(ret < 0))
 655                return mask;
 656
 657        switch (ffs->state) {
 658        case FFS_READ_DESCRIPTORS:
 659        case FFS_READ_STRINGS:
 660                mask |= POLLOUT;
 661                break;
 662
 663        case FFS_ACTIVE:
 664                switch (ffs->setup_state) {
 665                case FFS_NO_SETUP:
 666                        if (ffs->ev.count)
 667                                mask |= POLLIN;
 668                        break;
 669
 670                case FFS_SETUP_PENDING:
 671                case FFS_SETUP_CANCELLED:
 672                        mask |= (POLLIN | POLLOUT);
 673                        break;
 674                }
 675        case FFS_CLOSING:
 676                break;
 677        case FFS_DEACTIVATED:
 678                break;
 679        }
 680
 681        mutex_unlock(&ffs->mutex);
 682
 683        return mask;
 684}
 685
 686static const struct file_operations ffs_ep0_operations = {
 687        .llseek =       no_llseek,
 688
 689        .open =         ffs_ep0_open,
 690        .write =        ffs_ep0_write,
 691        .read =         ffs_ep0_read,
 692        .release =      ffs_ep0_release,
 693        .unlocked_ioctl =       ffs_ep0_ioctl,
 694        .poll =         ffs_ep0_poll,
 695};
 696
 697
 698/* "Normal" endpoints operations ********************************************/
 699
 700static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 701{
 702        ENTER();
 703        if (likely(req->context)) {
 704                struct ffs_ep *ep = _ep->driver_data;
 705                ep->status = req->status ? req->status : req->actual;
 706                complete(req->context);
 707        }
 708}
 709
 710static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 711{
 712        ssize_t ret = copy_to_iter(data, data_len, iter);
 713        if (likely(ret == data_len))
 714                return ret;
 715
 716        if (unlikely(iov_iter_count(iter)))
 717                return -EFAULT;
 718
 719        /*
 720         * Dear user space developer!
 721         *
 722         * TL;DR: To stop getting below error message in your kernel log, change
 723         * user space code using functionfs to align read buffers to a max
 724         * packet size.
 725         *
 726         * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 727         * packet size.  When unaligned buffer is passed to functionfs, it
 728         * internally uses a larger, aligned buffer so that such UDCs are happy.
 729         *
 730         * Unfortunately, this means that host may send more data than was
 731         * requested in read(2) system call.  f_fs doesn’t know what to do with
 732         * that excess data so it simply drops it.
 733         *
 734         * Was the buffer aligned in the first place, no such problem would
 735         * happen.
 736         *
 737         * Data may be dropped only in AIO reads.  Synchronous reads are handled
 738         * by splitting a request into multiple parts.  This splitting may still
 739         * be a problem though so it’s likely best to align the buffer
 740         * regardless of it being AIO or not..
 741         *
 742         * This only affects OUT endpoints, i.e. reading data with a read(2),
 743         * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 744         * affected.
 745         */
 746        pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 747               "Align read buffer size to max packet size to avoid the problem.\n",
 748               data_len, ret);
 749
 750        return ret;
 751}
 752
 753static void ffs_user_copy_worker(struct work_struct *work)
 754{
 755        struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 756                                                   work);
 757        int ret = io_data->req->status ? io_data->req->status :
 758                                         io_data->req->actual;
 759        bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 760
 761        if (io_data->read && ret > 0) {
 762                use_mm(io_data->mm);
 763                ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 764                unuse_mm(io_data->mm);
 765        }
 766
 767        io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 768
 769        if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 770                eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 771
 772        usb_ep_free_request(io_data->ep, io_data->req);
 773
 774        if (io_data->read)
 775                kfree(io_data->to_free);
 776        kfree(io_data->buf);
 777        kfree(io_data);
 778}
 779
 780static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 781                                         struct usb_request *req)
 782{
 783        struct ffs_io_data *io_data = req->context;
 784
 785        ENTER();
 786
 787        INIT_WORK(&io_data->work, ffs_user_copy_worker);
 788        schedule_work(&io_data->work);
 789}
 790
 791static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 792{
 793        /*
 794         * See comment in struct ffs_epfile for full read_buffer pointer
 795         * synchronisation story.
 796         */
 797        struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 798        if (buf && buf != READ_BUFFER_DROP)
 799                kfree(buf);
 800}
 801
 802/* Assumes epfile->mutex is held. */
 803static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 804                                          struct iov_iter *iter)
 805{
 806        /*
 807         * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 808         * the buffer while we are using it.  See comment in struct ffs_epfile
 809         * for full read_buffer pointer synchronisation story.
 810         */
 811        struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 812        ssize_t ret;
 813        if (!buf || buf == READ_BUFFER_DROP)
 814                return 0;
 815
 816        ret = copy_to_iter(buf->data, buf->length, iter);
 817        if (buf->length == ret) {
 818                kfree(buf);
 819                return ret;
 820        }
 821
 822        if (unlikely(iov_iter_count(iter))) {
 823                ret = -EFAULT;
 824        } else {
 825                buf->length -= ret;
 826                buf->data += ret;
 827        }
 828
 829        if (cmpxchg(&epfile->read_buffer, NULL, buf))
 830                kfree(buf);
 831
 832        return ret;
 833}
 834
 835/* Assumes epfile->mutex is held. */
 836static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 837                                      void *data, int data_len,
 838                                      struct iov_iter *iter)
 839{
 840        struct ffs_buffer *buf;
 841
 842        ssize_t ret = copy_to_iter(data, data_len, iter);
 843        if (likely(data_len == ret))
 844                return ret;
 845
 846        if (unlikely(iov_iter_count(iter)))
 847                return -EFAULT;
 848
 849        /* See ffs_copy_to_iter for more context. */
 850        pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 851                data_len, ret);
 852
 853        data_len -= ret;
 854        buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 855        if (!buf)
 856                return -ENOMEM;
 857        buf->length = data_len;
 858        buf->data = buf->storage;
 859        memcpy(buf->storage, data + ret, data_len);
 860
 861        /*
 862         * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 863         * ffs_func_eps_disable has been called in the meanwhile).  See comment
 864         * in struct ffs_epfile for full read_buffer pointer synchronisation
 865         * story.
 866         */
 867        if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
 868                kfree(buf);
 869
 870        return ret;
 871}
 872
 873static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 874{
 875        struct ffs_epfile *epfile = file->private_data;
 876        struct usb_request *req;
 877        struct ffs_ep *ep;
 878        char *data = NULL;
 879        ssize_t ret, data_len = -EINVAL;
 880        int halt;
 881
 882        /* Are we still active? */
 883        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 884                return -ENODEV;
 885
 886        /* Wait for endpoint to be enabled */
 887        ep = epfile->ep;
 888        if (!ep) {
 889                if (file->f_flags & O_NONBLOCK)
 890                        return -EAGAIN;
 891
 892                ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
 893                if (ret)
 894                        return -EINTR;
 895        }
 896
 897        /* Do we halt? */
 898        halt = (!io_data->read == !epfile->in);
 899        if (halt && epfile->isoc)
 900                return -EINVAL;
 901
 902        /* We will be using request and read_buffer */
 903        ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 904        if (unlikely(ret))
 905                goto error;
 906
 907        /* Allocate & copy */
 908        if (!halt) {
 909                struct usb_gadget *gadget;
 910
 911                /*
 912                 * Do we have buffered data from previous partial read?  Check
 913                 * that for synchronous case only because we do not have
 914                 * facility to ‘wake up’ a pending asynchronous read and push
 915                 * buffered data to it which we would need to make things behave
 916                 * consistently.
 917                 */
 918                if (!io_data->aio && io_data->read) {
 919                        ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 920                        if (ret)
 921                                goto error_mutex;
 922                }
 923
 924                /*
 925                 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 926                 * before the waiting completes, so do not assign to 'gadget'
 927                 * earlier
 928                 */
 929                gadget = epfile->ffs->gadget;
 930
 931                spin_lock_irq(&epfile->ffs->eps_lock);
 932                /* In the meantime, endpoint got disabled or changed. */
 933                if (epfile->ep != ep) {
 934                        ret = -ESHUTDOWN;
 935                        goto error_lock;
 936                }
 937                data_len = iov_iter_count(&io_data->data);
 938                /*
 939                 * Controller may require buffer size to be aligned to
 940                 * maxpacketsize of an out endpoint.
 941                 */
 942                if (io_data->read)
 943                        data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
 944                spin_unlock_irq(&epfile->ffs->eps_lock);
 945
 946                data = kmalloc(data_len, GFP_KERNEL);
 947                if (unlikely(!data)) {
 948                        ret = -ENOMEM;
 949                        goto error_mutex;
 950                }
 951                if (!io_data->read &&
 952                    copy_from_iter(data, data_len, &io_data->data) != data_len) {
 953                        ret = -EFAULT;
 954                        goto error_mutex;
 955                }
 956        }
 957
 958        spin_lock_irq(&epfile->ffs->eps_lock);
 959
 960        if (epfile->ep != ep) {
 961                /* In the meantime, endpoint got disabled or changed. */
 962                ret = -ESHUTDOWN;
 963        } else if (halt) {
 964                /* Halt */
 965                if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
 966                        usb_ep_set_halt(ep->ep);
 967                ret = -EBADMSG;
 968        } else if (unlikely(data_len == -EINVAL)) {
 969                /*
 970                 * Sanity Check: even though data_len can't be used
 971                 * uninitialized at the time I write this comment, some
 972                 * compilers complain about this situation.
 973                 * In order to keep the code clean from warnings, data_len is
 974                 * being initialized to -EINVAL during its declaration, which
 975                 * means we can't rely on compiler anymore to warn no future
 976                 * changes won't result in data_len being used uninitialized.
 977                 * For such reason, we're adding this redundant sanity check
 978                 * here.
 979                 */
 980                WARN(1, "%s: data_len == -EINVAL\n", __func__);
 981                ret = -EINVAL;
 982        } else if (!io_data->aio) {
 983                DECLARE_COMPLETION_ONSTACK(done);
 984                bool interrupted = false;
 985
 986                req = ep->req;
 987                req->buf      = data;
 988                req->length   = data_len;
 989
 990                req->context  = &done;
 991                req->complete = ffs_epfile_io_complete;
 992
 993                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
 994                if (unlikely(ret < 0))
 995                        goto error_lock;
 996
 997                spin_unlock_irq(&epfile->ffs->eps_lock);
 998
 999                if (unlikely(wait_for_completion_interruptible(&done))) {
1000                        /*
1001                         * To avoid race condition with ffs_epfile_io_complete,
1002                         * dequeue the request first then check
1003                         * status. usb_ep_dequeue API should guarantee no race
1004                         * condition with req->complete callback.
1005                         */
1006                        usb_ep_dequeue(ep->ep, req);
1007                        interrupted = ep->status < 0;
1008                }
1009
1010                if (interrupted)
1011                        ret = -EINTR;
1012                else if (io_data->read && ep->status > 0)
1013                        ret = __ffs_epfile_read_data(epfile, data, ep->status,
1014                                                     &io_data->data);
1015                else
1016                        ret = ep->status;
1017                goto error_mutex;
1018        } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1019                ret = -ENOMEM;
1020        } else {
1021                req->buf      = data;
1022                req->length   = data_len;
1023
1024                io_data->buf = data;
1025                io_data->ep = ep->ep;
1026                io_data->req = req;
1027                io_data->ffs = epfile->ffs;
1028
1029                req->context  = io_data;
1030                req->complete = ffs_epfile_async_io_complete;
1031
1032                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1033                if (unlikely(ret)) {
1034                        usb_ep_free_request(ep->ep, req);
1035                        goto error_lock;
1036                }
1037
1038                ret = -EIOCBQUEUED;
1039                /*
1040                 * Do not kfree the buffer in this function.  It will be freed
1041                 * by ffs_user_copy_worker.
1042                 */
1043                data = NULL;
1044        }
1045
1046error_lock:
1047        spin_unlock_irq(&epfile->ffs->eps_lock);
1048error_mutex:
1049        mutex_unlock(&epfile->mutex);
1050error:
1051        kfree(data);
1052        return ret;
1053}
1054
1055static int
1056ffs_epfile_open(struct inode *inode, struct file *file)
1057{
1058        struct ffs_epfile *epfile = inode->i_private;
1059
1060        ENTER();
1061
1062        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1063                return -ENODEV;
1064
1065        file->private_data = epfile;
1066        ffs_data_opened(epfile->ffs);
1067
1068        return 0;
1069}
1070
1071static int ffs_aio_cancel(struct kiocb *kiocb)
1072{
1073        struct ffs_io_data *io_data = kiocb->private;
1074        struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1075        int value;
1076
1077        ENTER();
1078
1079        spin_lock_irq(&epfile->ffs->eps_lock);
1080
1081        if (likely(io_data && io_data->ep && io_data->req))
1082                value = usb_ep_dequeue(io_data->ep, io_data->req);
1083        else
1084                value = -EINVAL;
1085
1086        spin_unlock_irq(&epfile->ffs->eps_lock);
1087
1088        return value;
1089}
1090
1091static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092{
1093        struct ffs_io_data io_data, *p = &io_data;
1094        ssize_t res;
1095
1096        ENTER();
1097
1098        if (!is_sync_kiocb(kiocb)) {
1099                p = kmalloc(sizeof(io_data), GFP_KERNEL);
1100                if (unlikely(!p))
1101                        return -ENOMEM;
1102                p->aio = true;
1103        } else {
1104                p->aio = false;
1105        }
1106
1107        p->read = false;
1108        p->kiocb = kiocb;
1109        p->data = *from;
1110        p->mm = current->mm;
1111
1112        kiocb->private = p;
1113
1114        if (p->aio)
1115                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116
1117        res = ffs_epfile_io(kiocb->ki_filp, p);
1118        if (res == -EIOCBQUEUED)
1119                return res;
1120        if (p->aio)
1121                kfree(p);
1122        else
1123                *from = p->data;
1124        return res;
1125}
1126
1127static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128{
1129        struct ffs_io_data io_data, *p = &io_data;
1130        ssize_t res;
1131
1132        ENTER();
1133
1134        if (!is_sync_kiocb(kiocb)) {
1135                p = kmalloc(sizeof(io_data), GFP_KERNEL);
1136                if (unlikely(!p))
1137                        return -ENOMEM;
1138                p->aio = true;
1139        } else {
1140                p->aio = false;
1141        }
1142
1143        p->read = true;
1144        p->kiocb = kiocb;
1145        if (p->aio) {
1146                p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1147                if (!p->to_free) {
1148                        kfree(p);
1149                        return -ENOMEM;
1150                }
1151        } else {
1152                p->data = *to;
1153                p->to_free = NULL;
1154        }
1155        p->mm = current->mm;
1156
1157        kiocb->private = p;
1158
1159        if (p->aio)
1160                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161
1162        res = ffs_epfile_io(kiocb->ki_filp, p);
1163        if (res == -EIOCBQUEUED)
1164                return res;
1165
1166        if (p->aio) {
1167                kfree(p->to_free);
1168                kfree(p);
1169        } else {
1170                *to = p->data;
1171        }
1172        return res;
1173}
1174
1175static int
1176ffs_epfile_release(struct inode *inode, struct file *file)
1177{
1178        struct ffs_epfile *epfile = inode->i_private;
1179
1180        ENTER();
1181
1182        __ffs_epfile_read_buffer_free(epfile);
1183        ffs_data_closed(epfile->ffs);
1184
1185        return 0;
1186}
1187
1188static long ffs_epfile_ioctl(struct file *file, unsigned code,
1189                             unsigned long value)
1190{
1191        struct ffs_epfile *epfile = file->private_data;
1192        int ret;
1193
1194        ENTER();
1195
1196        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1197                return -ENODEV;
1198
1199        spin_lock_irq(&epfile->ffs->eps_lock);
1200        if (likely(epfile->ep)) {
1201                switch (code) {
1202                case FUNCTIONFS_FIFO_STATUS:
1203                        ret = usb_ep_fifo_status(epfile->ep->ep);
1204                        break;
1205                case FUNCTIONFS_FIFO_FLUSH:
1206                        usb_ep_fifo_flush(epfile->ep->ep);
1207                        ret = 0;
1208                        break;
1209                case FUNCTIONFS_CLEAR_HALT:
1210                        ret = usb_ep_clear_halt(epfile->ep->ep);
1211                        break;
1212                case FUNCTIONFS_ENDPOINT_REVMAP:
1213                        ret = epfile->ep->num;
1214                        break;
1215                case FUNCTIONFS_ENDPOINT_DESC:
1216                {
1217                        int desc_idx;
1218                        struct usb_endpoint_descriptor *desc;
1219
1220                        switch (epfile->ffs->gadget->speed) {
1221                        case USB_SPEED_SUPER:
1222                                desc_idx = 2;
1223                                break;
1224                        case USB_SPEED_HIGH:
1225                                desc_idx = 1;
1226                                break;
1227                        default:
1228                                desc_idx = 0;
1229                        }
1230                        desc = epfile->ep->descs[desc_idx];
1231
1232                        spin_unlock_irq(&epfile->ffs->eps_lock);
1233                        ret = copy_to_user((void *)value, desc, sizeof(*desc));
1234                        if (ret)
1235                                ret = -EFAULT;
1236                        return ret;
1237                }
1238                default:
1239                        ret = -ENOTTY;
1240                }
1241        } else {
1242                ret = -ENODEV;
1243        }
1244        spin_unlock_irq(&epfile->ffs->eps_lock);
1245
1246        return ret;
1247}
1248
1249static const struct file_operations ffs_epfile_operations = {
1250        .llseek =       no_llseek,
1251
1252        .open =         ffs_epfile_open,
1253        .write_iter =   ffs_epfile_write_iter,
1254        .read_iter =    ffs_epfile_read_iter,
1255        .release =      ffs_epfile_release,
1256        .unlocked_ioctl =       ffs_epfile_ioctl,
1257};
1258
1259
1260/* File system and super block operations ***********************************/
1261
1262/*
1263 * Mounting the file system creates a controller file, used first for
1264 * function configuration then later for event monitoring.
1265 */
1266
1267static struct inode *__must_check
1268ffs_sb_make_inode(struct super_block *sb, void *data,
1269                  const struct file_operations *fops,
1270                  const struct inode_operations *iops,
1271                  struct ffs_file_perms *perms)
1272{
1273        struct inode *inode;
1274
1275        ENTER();
1276
1277        inode = new_inode(sb);
1278
1279        if (likely(inode)) {
1280                struct timespec ts = current_time(inode);
1281
1282                inode->i_ino     = get_next_ino();
1283                inode->i_mode    = perms->mode;
1284                inode->i_uid     = perms->uid;
1285                inode->i_gid     = perms->gid;
1286                inode->i_atime   = ts;
1287                inode->i_mtime   = ts;
1288                inode->i_ctime   = ts;
1289                inode->i_private = data;
1290                if (fops)
1291                        inode->i_fop = fops;
1292                if (iops)
1293                        inode->i_op  = iops;
1294        }
1295
1296        return inode;
1297}
1298
1299/* Create "regular" file */
1300static struct dentry *ffs_sb_create_file(struct super_block *sb,
1301                                        const char *name, void *data,
1302                                        const struct file_operations *fops)
1303{
1304        struct ffs_data *ffs = sb->s_fs_info;
1305        struct dentry   *dentry;
1306        struct inode    *inode;
1307
1308        ENTER();
1309
1310        dentry = d_alloc_name(sb->s_root, name);
1311        if (unlikely(!dentry))
1312                return NULL;
1313
1314        inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1315        if (unlikely(!inode)) {
1316                dput(dentry);
1317                return NULL;
1318        }
1319
1320        d_add(dentry, inode);
1321        return dentry;
1322}
1323
1324/* Super block */
1325static const struct super_operations ffs_sb_operations = {
1326        .statfs =       simple_statfs,
1327        .drop_inode =   generic_delete_inode,
1328};
1329
1330struct ffs_sb_fill_data {
1331        struct ffs_file_perms perms;
1332        umode_t root_mode;
1333        const char *dev_name;
1334        bool no_disconnect;
1335        struct ffs_data *ffs_data;
1336};
1337
1338static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1339{
1340        struct ffs_sb_fill_data *data = _data;
1341        struct inode    *inode;
1342        struct ffs_data *ffs = data->ffs_data;
1343
1344        ENTER();
1345
1346        ffs->sb              = sb;
1347        data->ffs_data       = NULL;
1348        sb->s_fs_info        = ffs;
1349        sb->s_blocksize      = PAGE_SIZE;
1350        sb->s_blocksize_bits = PAGE_SHIFT;
1351        sb->s_magic          = FUNCTIONFS_MAGIC;
1352        sb->s_op             = &ffs_sb_operations;
1353        sb->s_time_gran      = 1;
1354
1355        /* Root inode */
1356        data->perms.mode = data->root_mode;
1357        inode = ffs_sb_make_inode(sb, NULL,
1358                                  &simple_dir_operations,
1359                                  &simple_dir_inode_operations,
1360                                  &data->perms);
1361        sb->s_root = d_make_root(inode);
1362        if (unlikely(!sb->s_root))
1363                return -ENOMEM;
1364
1365        /* EP0 file */
1366        if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1367                                         &ffs_ep0_operations)))
1368                return -ENOMEM;
1369
1370        return 0;
1371}
1372
1373static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1374{
1375        ENTER();
1376
1377        if (!opts || !*opts)
1378                return 0;
1379
1380        for (;;) {
1381                unsigned long value;
1382                char *eq, *comma;
1383
1384                /* Option limit */
1385                comma = strchr(opts, ',');
1386                if (comma)
1387                        *comma = 0;
1388
1389                /* Value limit */
1390                eq = strchr(opts, '=');
1391                if (unlikely(!eq)) {
1392                        pr_err("'=' missing in %s\n", opts);
1393                        return -EINVAL;
1394                }
1395                *eq = 0;
1396
1397                /* Parse value */
1398                if (kstrtoul(eq + 1, 0, &value)) {
1399                        pr_err("%s: invalid value: %s\n", opts, eq + 1);
1400                        return -EINVAL;
1401                }
1402
1403                /* Interpret option */
1404                switch (eq - opts) {
1405                case 13:
1406                        if (!memcmp(opts, "no_disconnect", 13))
1407                                data->no_disconnect = !!value;
1408                        else
1409                                goto invalid;
1410                        break;
1411                case 5:
1412                        if (!memcmp(opts, "rmode", 5))
1413                                data->root_mode  = (value & 0555) | S_IFDIR;
1414                        else if (!memcmp(opts, "fmode", 5))
1415                                data->perms.mode = (value & 0666) | S_IFREG;
1416                        else
1417                                goto invalid;
1418                        break;
1419
1420                case 4:
1421                        if (!memcmp(opts, "mode", 4)) {
1422                                data->root_mode  = (value & 0555) | S_IFDIR;
1423                                data->perms.mode = (value & 0666) | S_IFREG;
1424                        } else {
1425                                goto invalid;
1426                        }
1427                        break;
1428
1429                case 3:
1430                        if (!memcmp(opts, "uid", 3)) {
1431                                data->perms.uid = make_kuid(current_user_ns(), value);
1432                                if (!uid_valid(data->perms.uid)) {
1433                                        pr_err("%s: unmapped value: %lu\n", opts, value);
1434                                        return -EINVAL;
1435                                }
1436                        } else if (!memcmp(opts, "gid", 3)) {
1437                                data->perms.gid = make_kgid(current_user_ns(), value);
1438                                if (!gid_valid(data->perms.gid)) {
1439                                        pr_err("%s: unmapped value: %lu\n", opts, value);
1440                                        return -EINVAL;
1441                                }
1442                        } else {
1443                                goto invalid;
1444                        }
1445                        break;
1446
1447                default:
1448invalid:
1449                        pr_err("%s: invalid option\n", opts);
1450                        return -EINVAL;
1451                }
1452
1453                /* Next iteration */
1454                if (!comma)
1455                        break;
1456                opts = comma + 1;
1457        }
1458
1459        return 0;
1460}
1461
1462/* "mount -t functionfs dev_name /dev/function" ends up here */
1463
1464static struct dentry *
1465ffs_fs_mount(struct file_system_type *t, int flags,
1466              const char *dev_name, void *opts)
1467{
1468        struct ffs_sb_fill_data data = {
1469                .perms = {
1470                        .mode = S_IFREG | 0600,
1471                        .uid = GLOBAL_ROOT_UID,
1472                        .gid = GLOBAL_ROOT_GID,
1473                },
1474                .root_mode = S_IFDIR | 0500,
1475                .no_disconnect = false,
1476        };
1477        struct dentry *rv;
1478        int ret;
1479        void *ffs_dev;
1480        struct ffs_data *ffs;
1481
1482        ENTER();
1483
1484        ret = ffs_fs_parse_opts(&data, opts);
1485        if (unlikely(ret < 0))
1486                return ERR_PTR(ret);
1487
1488        ffs = ffs_data_new();
1489        if (unlikely(!ffs))
1490                return ERR_PTR(-ENOMEM);
1491        ffs->file_perms = data.perms;
1492        ffs->no_disconnect = data.no_disconnect;
1493
1494        ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1495        if (unlikely(!ffs->dev_name)) {
1496                ffs_data_put(ffs);
1497                return ERR_PTR(-ENOMEM);
1498        }
1499
1500        ffs_dev = ffs_acquire_dev(dev_name);
1501        if (IS_ERR(ffs_dev)) {
1502                ffs_data_put(ffs);
1503                return ERR_CAST(ffs_dev);
1504        }
1505        ffs->private_data = ffs_dev;
1506        data.ffs_data = ffs;
1507
1508        rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1509        if (IS_ERR(rv) && data.ffs_data) {
1510                ffs_release_dev(data.ffs_data);
1511                ffs_data_put(data.ffs_data);
1512        }
1513        return rv;
1514}
1515
1516static void
1517ffs_fs_kill_sb(struct super_block *sb)
1518{
1519        ENTER();
1520
1521        kill_litter_super(sb);
1522        if (sb->s_fs_info) {
1523                ffs_release_dev(sb->s_fs_info);
1524                ffs_data_closed(sb->s_fs_info);
1525                ffs_data_put(sb->s_fs_info);
1526        }
1527}
1528
1529static struct file_system_type ffs_fs_type = {
1530        .owner          = THIS_MODULE,
1531        .name           = "functionfs",
1532        .mount          = ffs_fs_mount,
1533        .kill_sb        = ffs_fs_kill_sb,
1534};
1535MODULE_ALIAS_FS("functionfs");
1536
1537
1538/* Driver's main init/cleanup functions *************************************/
1539
1540static int functionfs_init(void)
1541{
1542        int ret;
1543
1544        ENTER();
1545
1546        ret = register_filesystem(&ffs_fs_type);
1547        if (likely(!ret))
1548                pr_info("file system registered\n");
1549        else
1550                pr_err("failed registering file system (%d)\n", ret);
1551
1552        return ret;
1553}
1554
1555static void functionfs_cleanup(void)
1556{
1557        ENTER();
1558
1559        pr_info("unloading\n");
1560        unregister_filesystem(&ffs_fs_type);
1561}
1562
1563
1564/* ffs_data and ffs_function construction and destruction code **************/
1565
1566static void ffs_data_clear(struct ffs_data *ffs);
1567static void ffs_data_reset(struct ffs_data *ffs);
1568
1569static void ffs_data_get(struct ffs_data *ffs)
1570{
1571        ENTER();
1572
1573        atomic_inc(&ffs->ref);
1574}
1575
1576static void ffs_data_opened(struct ffs_data *ffs)
1577{
1578        ENTER();
1579
1580        atomic_inc(&ffs->ref);
1581        if (atomic_add_return(1, &ffs->opened) == 1 &&
1582                        ffs->state == FFS_DEACTIVATED) {
1583                ffs->state = FFS_CLOSING;
1584                ffs_data_reset(ffs);
1585        }
1586}
1587
1588static void ffs_data_put(struct ffs_data *ffs)
1589{
1590        ENTER();
1591
1592        if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1593                pr_info("%s(): freeing\n", __func__);
1594                ffs_data_clear(ffs);
1595                BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1596                       waitqueue_active(&ffs->ep0req_completion.wait));
1597                kfree(ffs->dev_name);
1598                kfree(ffs);
1599        }
1600}
1601
1602static void ffs_data_closed(struct ffs_data *ffs)
1603{
1604        ENTER();
1605
1606        if (atomic_dec_and_test(&ffs->opened)) {
1607                if (ffs->no_disconnect) {
1608                        ffs->state = FFS_DEACTIVATED;
1609                        if (ffs->epfiles) {
1610                                ffs_epfiles_destroy(ffs->epfiles,
1611                                                   ffs->eps_count);
1612                                ffs->epfiles = NULL;
1613                        }
1614                        if (ffs->setup_state == FFS_SETUP_PENDING)
1615                                __ffs_ep0_stall(ffs);
1616                } else {
1617                        ffs->state = FFS_CLOSING;
1618                        ffs_data_reset(ffs);
1619                }
1620        }
1621        if (atomic_read(&ffs->opened) < 0) {
1622                ffs->state = FFS_CLOSING;
1623                ffs_data_reset(ffs);
1624        }
1625
1626        ffs_data_put(ffs);
1627}
1628
1629static struct ffs_data *ffs_data_new(void)
1630{
1631        struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1632        if (unlikely(!ffs))
1633                return NULL;
1634
1635        ENTER();
1636
1637        atomic_set(&ffs->ref, 1);
1638        atomic_set(&ffs->opened, 0);
1639        ffs->state = FFS_READ_DESCRIPTORS;
1640        mutex_init(&ffs->mutex);
1641        spin_lock_init(&ffs->eps_lock);
1642        init_waitqueue_head(&ffs->ev.waitq);
1643        init_completion(&ffs->ep0req_completion);
1644
1645        /* XXX REVISIT need to update it in some places, or do we? */
1646        ffs->ev.can_stall = 1;
1647
1648        return ffs;
1649}
1650
1651static void ffs_data_clear(struct ffs_data *ffs)
1652{
1653        ENTER();
1654
1655        ffs_closed(ffs);
1656
1657        BUG_ON(ffs->gadget);
1658
1659        if (ffs->epfiles)
1660                ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1661
1662        if (ffs->ffs_eventfd)
1663                eventfd_ctx_put(ffs->ffs_eventfd);
1664
1665        kfree(ffs->raw_descs_data);
1666        kfree(ffs->raw_strings);
1667        kfree(ffs->stringtabs);
1668}
1669
1670static void ffs_data_reset(struct ffs_data *ffs)
1671{
1672        ENTER();
1673
1674        ffs_data_clear(ffs);
1675
1676        ffs->epfiles = NULL;
1677        ffs->raw_descs_data = NULL;
1678        ffs->raw_descs = NULL;
1679        ffs->raw_strings = NULL;
1680        ffs->stringtabs = NULL;
1681
1682        ffs->raw_descs_length = 0;
1683        ffs->fs_descs_count = 0;
1684        ffs->hs_descs_count = 0;
1685        ffs->ss_descs_count = 0;
1686
1687        ffs->strings_count = 0;
1688        ffs->interfaces_count = 0;
1689        ffs->eps_count = 0;
1690
1691        ffs->ev.count = 0;
1692
1693        ffs->state = FFS_READ_DESCRIPTORS;
1694        ffs->setup_state = FFS_NO_SETUP;
1695        ffs->flags = 0;
1696}
1697
1698
1699static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1700{
1701        struct usb_gadget_strings **lang;
1702        int first_id;
1703
1704        ENTER();
1705
1706        if (WARN_ON(ffs->state != FFS_ACTIVE
1707                 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1708                return -EBADFD;
1709
1710        first_id = usb_string_ids_n(cdev, ffs->strings_count);
1711        if (unlikely(first_id < 0))
1712                return first_id;
1713
1714        ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1715        if (unlikely(!ffs->ep0req))
1716                return -ENOMEM;
1717        ffs->ep0req->complete = ffs_ep0_complete;
1718        ffs->ep0req->context = ffs;
1719
1720        lang = ffs->stringtabs;
1721        if (lang) {
1722                for (; *lang; ++lang) {
1723                        struct usb_string *str = (*lang)->strings;
1724                        int id = first_id;
1725                        for (; str->s; ++id, ++str)
1726                                str->id = id;
1727                }
1728        }
1729
1730        ffs->gadget = cdev->gadget;
1731        ffs_data_get(ffs);
1732        return 0;
1733}
1734
1735static void functionfs_unbind(struct ffs_data *ffs)
1736{
1737        ENTER();
1738
1739        if (!WARN_ON(!ffs->gadget)) {
1740                usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1741                ffs->ep0req = NULL;
1742                ffs->gadget = NULL;
1743                clear_bit(FFS_FL_BOUND, &ffs->flags);
1744                ffs_data_put(ffs);
1745        }
1746}
1747
1748static int ffs_epfiles_create(struct ffs_data *ffs)
1749{
1750        struct ffs_epfile *epfile, *epfiles;
1751        unsigned i, count;
1752
1753        ENTER();
1754
1755        count = ffs->eps_count;
1756        epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1757        if (!epfiles)
1758                return -ENOMEM;
1759
1760        epfile = epfiles;
1761        for (i = 1; i <= count; ++i, ++epfile) {
1762                epfile->ffs = ffs;
1763                mutex_init(&epfile->mutex);
1764                init_waitqueue_head(&epfile->wait);
1765                if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1766                        sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1767                else
1768                        sprintf(epfile->name, "ep%u", i);
1769                epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1770                                                 epfile,
1771                                                 &ffs_epfile_operations);
1772                if (unlikely(!epfile->dentry)) {
1773                        ffs_epfiles_destroy(epfiles, i - 1);
1774                        return -ENOMEM;
1775                }
1776        }
1777
1778        ffs->epfiles = epfiles;
1779        return 0;
1780}
1781
1782static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1783{
1784        struct ffs_epfile *epfile = epfiles;
1785
1786        ENTER();
1787
1788        for (; count; --count, ++epfile) {
1789                BUG_ON(mutex_is_locked(&epfile->mutex) ||
1790                       waitqueue_active(&epfile->wait));
1791                if (epfile->dentry) {
1792                        d_delete(epfile->dentry);
1793                        dput(epfile->dentry);
1794                        epfile->dentry = NULL;
1795                }
1796        }
1797
1798        kfree(epfiles);
1799}
1800
1801static void ffs_func_eps_disable(struct ffs_function *func)
1802{
1803        struct ffs_ep *ep         = func->eps;
1804        struct ffs_epfile *epfile = func->ffs->epfiles;
1805        unsigned count            = func->ffs->eps_count;
1806        unsigned long flags;
1807
1808        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1809        do {
1810                /* pending requests get nuked */
1811                if (likely(ep->ep))
1812                        usb_ep_disable(ep->ep);
1813                ++ep;
1814
1815                if (epfile) {
1816                        epfile->ep = NULL;
1817                        __ffs_epfile_read_buffer_free(epfile);
1818                        ++epfile;
1819                }
1820        } while (--count);
1821        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1822}
1823
1824static int ffs_func_eps_enable(struct ffs_function *func)
1825{
1826        struct ffs_data *ffs      = func->ffs;
1827        struct ffs_ep *ep         = func->eps;
1828        struct ffs_epfile *epfile = ffs->epfiles;
1829        unsigned count            = ffs->eps_count;
1830        unsigned long flags;
1831        int ret = 0;
1832
1833        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1834        do {
1835                struct usb_endpoint_descriptor *ds;
1836                int desc_idx;
1837
1838                if (ffs->gadget->speed == USB_SPEED_SUPER)
1839                        desc_idx = 2;
1840                else if (ffs->gadget->speed == USB_SPEED_HIGH)
1841                        desc_idx = 1;
1842                else
1843                        desc_idx = 0;
1844
1845                /* fall-back to lower speed if desc missing for current speed */
1846                do {
1847                        ds = ep->descs[desc_idx];
1848                } while (!ds && --desc_idx >= 0);
1849
1850                if (!ds) {
1851                        ret = -EINVAL;
1852                        break;
1853                }
1854
1855                ep->ep->driver_data = ep;
1856                ep->ep->desc = ds;
1857                ret = usb_ep_enable(ep->ep);
1858                if (likely(!ret)) {
1859                        epfile->ep = ep;
1860                        epfile->in = usb_endpoint_dir_in(ds);
1861                        epfile->isoc = usb_endpoint_xfer_isoc(ds);
1862                } else {
1863                        break;
1864                }
1865
1866                wake_up(&epfile->wait);
1867
1868                ++ep;
1869                ++epfile;
1870        } while (--count);
1871        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1872
1873        return ret;
1874}
1875
1876
1877/* Parsing and building descriptors and strings *****************************/
1878
1879/*
1880 * This validates if data pointed by data is a valid USB descriptor as
1881 * well as record how many interfaces, endpoints and strings are
1882 * required by given configuration.  Returns address after the
1883 * descriptor or NULL if data is invalid.
1884 */
1885
1886enum ffs_entity_type {
1887        FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1888};
1889
1890enum ffs_os_desc_type {
1891        FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1892};
1893
1894typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1895                                   u8 *valuep,
1896                                   struct usb_descriptor_header *desc,
1897                                   void *priv);
1898
1899typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1900                                    struct usb_os_desc_header *h, void *data,
1901                                    unsigned len, void *priv);
1902
1903static int __must_check ffs_do_single_desc(char *data, unsigned len,
1904                                           ffs_entity_callback entity,
1905                                           void *priv)
1906{
1907        struct usb_descriptor_header *_ds = (void *)data;
1908        u8 length;
1909        int ret;
1910
1911        ENTER();
1912
1913        /* At least two bytes are required: length and type */
1914        if (len < 2) {
1915                pr_vdebug("descriptor too short\n");
1916                return -EINVAL;
1917        }
1918
1919        /* If we have at least as many bytes as the descriptor takes? */
1920        length = _ds->bLength;
1921        if (len < length) {
1922                pr_vdebug("descriptor longer then available data\n");
1923                return -EINVAL;
1924        }
1925
1926#define __entity_check_INTERFACE(val)  1
1927#define __entity_check_STRING(val)     (val)
1928#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1929#define __entity(type, val) do {                                        \
1930                pr_vdebug("entity " #type "(%02x)\n", (val));           \
1931                if (unlikely(!__entity_check_ ##type(val))) {           \
1932                        pr_vdebug("invalid entity's value\n");          \
1933                        return -EINVAL;                                 \
1934                }                                                       \
1935                ret = entity(FFS_ ##type, &val, _ds, priv);             \
1936                if (unlikely(ret < 0)) {                                \
1937                        pr_debug("entity " #type "(%02x); ret = %d\n",  \
1938                                 (val), ret);                           \
1939                        return ret;                                     \
1940                }                                                       \
1941        } while (0)
1942
1943        /* Parse descriptor depending on type. */
1944        switch (_ds->bDescriptorType) {
1945        case USB_DT_DEVICE:
1946        case USB_DT_CONFIG:
1947        case USB_DT_STRING:
1948        case USB_DT_DEVICE_QUALIFIER:
1949                /* function can't have any of those */
1950                pr_vdebug("descriptor reserved for gadget: %d\n",
1951                      _ds->bDescriptorType);
1952                return -EINVAL;
1953
1954        case USB_DT_INTERFACE: {
1955                struct usb_interface_descriptor *ds = (void *)_ds;
1956                pr_vdebug("interface descriptor\n");
1957                if (length != sizeof *ds)
1958                        goto inv_length;
1959
1960                __entity(INTERFACE, ds->bInterfaceNumber);
1961                if (ds->iInterface)
1962                        __entity(STRING, ds->iInterface);
1963        }
1964                break;
1965
1966        case USB_DT_ENDPOINT: {
1967                struct usb_endpoint_descriptor *ds = (void *)_ds;
1968                pr_vdebug("endpoint descriptor\n");
1969                if (length != USB_DT_ENDPOINT_SIZE &&
1970                    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1971                        goto inv_length;
1972                __entity(ENDPOINT, ds->bEndpointAddress);
1973        }
1974                break;
1975
1976        case HID_DT_HID:
1977                pr_vdebug("hid descriptor\n");
1978                if (length != sizeof(struct hid_descriptor))
1979                        goto inv_length;
1980                break;
1981
1982        case USB_DT_OTG:
1983                if (length != sizeof(struct usb_otg_descriptor))
1984                        goto inv_length;
1985                break;
1986
1987        case USB_DT_INTERFACE_ASSOCIATION: {
1988                struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1989                pr_vdebug("interface association descriptor\n");
1990                if (length != sizeof *ds)
1991                        goto inv_length;
1992                if (ds->iFunction)
1993                        __entity(STRING, ds->iFunction);
1994        }
1995                break;
1996
1997        case USB_DT_SS_ENDPOINT_COMP:
1998                pr_vdebug("EP SS companion descriptor\n");
1999                if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2000                        goto inv_length;
2001                break;
2002
2003        case USB_DT_OTHER_SPEED_CONFIG:
2004        case USB_DT_INTERFACE_POWER:
2005        case USB_DT_DEBUG:
2006        case USB_DT_SECURITY:
2007        case USB_DT_CS_RADIO_CONTROL:
2008                /* TODO */
2009                pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2010                return -EINVAL;
2011
2012        default:
2013                /* We should never be here */
2014                pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2015                return -EINVAL;
2016
2017inv_length:
2018                pr_vdebug("invalid length: %d (descriptor %d)\n",
2019                          _ds->bLength, _ds->bDescriptorType);
2020                return -EINVAL;
2021        }
2022
2023#undef __entity
2024#undef __entity_check_DESCRIPTOR
2025#undef __entity_check_INTERFACE
2026#undef __entity_check_STRING
2027#undef __entity_check_ENDPOINT
2028
2029        return length;
2030}
2031
2032static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2033                                     ffs_entity_callback entity, void *priv)
2034{
2035        const unsigned _len = len;
2036        unsigned long num = 0;
2037
2038        ENTER();
2039
2040        for (;;) {
2041                int ret;
2042
2043                if (num == count)
2044                        data = NULL;
2045
2046                /* Record "descriptor" entity */
2047                ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2048                if (unlikely(ret < 0)) {
2049                        pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2050                                 num, ret);
2051                        return ret;
2052                }
2053
2054                if (!data)
2055                        return _len - len;
2056
2057                ret = ffs_do_single_desc(data, len, entity, priv);
2058                if (unlikely(ret < 0)) {
2059                        pr_debug("%s returns %d\n", __func__, ret);
2060                        return ret;
2061                }
2062
2063                len -= ret;
2064                data += ret;
2065                ++num;
2066        }
2067}
2068
2069static int __ffs_data_do_entity(enum ffs_entity_type type,
2070                                u8 *valuep, struct usb_descriptor_header *desc,
2071                                void *priv)
2072{
2073        struct ffs_desc_helper *helper = priv;
2074        struct usb_endpoint_descriptor *d;
2075
2076        ENTER();
2077
2078        switch (type) {
2079        case FFS_DESCRIPTOR:
2080                break;
2081
2082        case FFS_INTERFACE:
2083                /*
2084                 * Interfaces are indexed from zero so if we
2085                 * encountered interface "n" then there are at least
2086                 * "n+1" interfaces.
2087                 */
2088                if (*valuep >= helper->interfaces_count)
2089                        helper->interfaces_count = *valuep + 1;
2090                break;
2091
2092        case FFS_STRING:
2093                /*
2094                 * Strings are indexed from 1 (0 is magic ;) reserved
2095                 * for languages list or some such)
2096                 */
2097                if (*valuep > helper->ffs->strings_count)
2098                        helper->ffs->strings_count = *valuep;
2099                break;
2100
2101        case FFS_ENDPOINT:
2102                d = (void *)desc;
2103                helper->eps_count++;
2104                if (helper->eps_count >= 15)
2105                        return -EINVAL;
2106                /* Check if descriptors for any speed were already parsed */
2107                if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2108                        helper->ffs->eps_addrmap[helper->eps_count] =
2109                                d->bEndpointAddress;
2110                else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2111                                d->bEndpointAddress)
2112                        return -EINVAL;
2113                break;
2114        }
2115
2116        return 0;
2117}
2118
2119static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2120                                   struct usb_os_desc_header *desc)
2121{
2122        u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2123        u16 w_index = le16_to_cpu(desc->wIndex);
2124
2125        if (bcd_version != 1) {
2126                pr_vdebug("unsupported os descriptors version: %d",
2127                          bcd_version);
2128                return -EINVAL;
2129        }
2130        switch (w_index) {
2131        case 0x4:
2132                *next_type = FFS_OS_DESC_EXT_COMPAT;
2133                break;
2134        case 0x5:
2135                *next_type = FFS_OS_DESC_EXT_PROP;
2136                break;
2137        default:
2138                pr_vdebug("unsupported os descriptor type: %d", w_index);
2139                return -EINVAL;
2140        }
2141
2142        return sizeof(*desc);
2143}
2144
2145/*
2146 * Process all extended compatibility/extended property descriptors
2147 * of a feature descriptor
2148 */
2149static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2150                                              enum ffs_os_desc_type type,
2151                                              u16 feature_count,
2152                                              ffs_os_desc_callback entity,
2153                                              void *priv,
2154                                              struct usb_os_desc_header *h)
2155{
2156        int ret;
2157        const unsigned _len = len;
2158
2159        ENTER();
2160
2161        /* loop over all ext compat/ext prop descriptors */
2162        while (feature_count--) {
2163                ret = entity(type, h, data, len, priv);
2164                if (unlikely(ret < 0)) {
2165                        pr_debug("bad OS descriptor, type: %d\n", type);
2166                        return ret;
2167                }
2168                data += ret;
2169                len -= ret;
2170        }
2171        return _len - len;
2172}
2173
2174/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2175static int __must_check ffs_do_os_descs(unsigned count,
2176                                        char *data, unsigned len,
2177                                        ffs_os_desc_callback entity, void *priv)
2178{
2179        const unsigned _len = len;
2180        unsigned long num = 0;
2181
2182        ENTER();
2183
2184        for (num = 0; num < count; ++num) {
2185                int ret;
2186                enum ffs_os_desc_type type;
2187                u16 feature_count;
2188                struct usb_os_desc_header *desc = (void *)data;
2189
2190                if (len < sizeof(*desc))
2191                        return -EINVAL;
2192
2193                /*
2194                 * Record "descriptor" entity.
2195                 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2196                 * Move the data pointer to the beginning of extended
2197                 * compatibilities proper or extended properties proper
2198                 * portions of the data
2199                 */
2200                if (le32_to_cpu(desc->dwLength) > len)
2201                        return -EINVAL;
2202
2203                ret = __ffs_do_os_desc_header(&type, desc);
2204                if (unlikely(ret < 0)) {
2205                        pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2206                                 num, ret);
2207                        return ret;
2208                }
2209                /*
2210                 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2211                 */
2212                feature_count = le16_to_cpu(desc->wCount);
2213                if (type == FFS_OS_DESC_EXT_COMPAT &&
2214                    (feature_count > 255 || desc->Reserved))
2215                                return -EINVAL;
2216                len -= ret;
2217                data += ret;
2218
2219                /*
2220                 * Process all function/property descriptors
2221                 * of this Feature Descriptor
2222                 */
2223                ret = ffs_do_single_os_desc(data, len, type,
2224                                            feature_count, entity, priv, desc);
2225                if (unlikely(ret < 0)) {
2226                        pr_debug("%s returns %d\n", __func__, ret);
2227                        return ret;
2228                }
2229
2230                len -= ret;
2231                data += ret;
2232        }
2233        return _len - len;
2234}
2235
2236/**
2237 * Validate contents of the buffer from userspace related to OS descriptors.
2238 */
2239static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2240                                 struct usb_os_desc_header *h, void *data,
2241                                 unsigned len, void *priv)
2242{
2243        struct ffs_data *ffs = priv;
2244        u8 length;
2245
2246        ENTER();
2247
2248        switch (type) {
2249        case FFS_OS_DESC_EXT_COMPAT: {
2250                struct usb_ext_compat_desc *d = data;
2251                int i;
2252
2253                if (len < sizeof(*d) ||
2254                    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2255                    !d->Reserved1)
2256                        return -EINVAL;
2257                for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2258                        if (d->Reserved2[i])
2259                                return -EINVAL;
2260
2261                length = sizeof(struct usb_ext_compat_desc);
2262        }
2263                break;
2264        case FFS_OS_DESC_EXT_PROP: {
2265                struct usb_ext_prop_desc *d = data;
2266                u32 type, pdl;
2267                u16 pnl;
2268
2269                if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2270                        return -EINVAL;
2271                length = le32_to_cpu(d->dwSize);
2272                type = le32_to_cpu(d->dwPropertyDataType);
2273                if (type < USB_EXT_PROP_UNICODE ||
2274                    type > USB_EXT_PROP_UNICODE_MULTI) {
2275                        pr_vdebug("unsupported os descriptor property type: %d",
2276                                  type);
2277                        return -EINVAL;
2278                }
2279                pnl = le16_to_cpu(d->wPropertyNameLength);
2280                pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2281                if (length != 14 + pnl + pdl) {
2282                        pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2283                                  length, pnl, pdl, type);
2284                        return -EINVAL;
2285                }
2286                ++ffs->ms_os_descs_ext_prop_count;
2287                /* property name reported to the host as "WCHAR"s */
2288                ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2289                ffs->ms_os_descs_ext_prop_data_len += pdl;
2290        }
2291                break;
2292        default:
2293                pr_vdebug("unknown descriptor: %d\n", type);
2294                return -EINVAL;
2295        }
2296        return length;
2297}
2298
2299static int __ffs_data_got_descs(struct ffs_data *ffs,
2300                                char *const _data, size_t len)
2301{
2302        char *data = _data, *raw_descs;
2303        unsigned os_descs_count = 0, counts[3], flags;
2304        int ret = -EINVAL, i;
2305        struct ffs_desc_helper helper;
2306
2307        ENTER();
2308
2309        if (get_unaligned_le32(data + 4) != len)
2310                goto error;
2311
2312        switch (get_unaligned_le32(data)) {
2313        case FUNCTIONFS_DESCRIPTORS_MAGIC:
2314                flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2315                data += 8;
2316                len  -= 8;
2317                break;
2318        case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2319                flags = get_unaligned_le32(data + 8);
2320                ffs->user_flags = flags;
2321                if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2322                              FUNCTIONFS_HAS_HS_DESC |
2323                              FUNCTIONFS_HAS_SS_DESC |
2324                              FUNCTIONFS_HAS_MS_OS_DESC |
2325                              FUNCTIONFS_VIRTUAL_ADDR |
2326                              FUNCTIONFS_EVENTFD |
2327                              FUNCTIONFS_ALL_CTRL_RECIP |
2328                              FUNCTIONFS_CONFIG0_SETUP)) {
2329                        ret = -ENOSYS;
2330                        goto error;
2331                }
2332                data += 12;
2333                len  -= 12;
2334                break;
2335        default:
2336                goto error;
2337        }
2338
2339        if (flags & FUNCTIONFS_EVENTFD) {
2340                if (len < 4)
2341                        goto error;
2342                ffs->ffs_eventfd =
2343                        eventfd_ctx_fdget((int)get_unaligned_le32(data));
2344                if (IS_ERR(ffs->ffs_eventfd)) {
2345                        ret = PTR_ERR(ffs->ffs_eventfd);
2346                        ffs->ffs_eventfd = NULL;
2347                        goto error;
2348                }
2349                data += 4;
2350                len  -= 4;
2351        }
2352
2353        /* Read fs_count, hs_count and ss_count (if present) */
2354        for (i = 0; i < 3; ++i) {
2355                if (!(flags & (1 << i))) {
2356                        counts[i] = 0;
2357                } else if (len < 4) {
2358                        goto error;
2359                } else {
2360                        counts[i] = get_unaligned_le32(data);
2361                        data += 4;
2362                        len  -= 4;
2363                }
2364        }
2365        if (flags & (1 << i)) {
2366                os_descs_count = get_unaligned_le32(data);
2367                data += 4;
2368                len -= 4;
2369        };
2370
2371        /* Read descriptors */
2372        raw_descs = data;
2373        helper.ffs = ffs;
2374        for (i = 0; i < 3; ++i) {
2375                if (!counts[i])
2376                        continue;
2377                helper.interfaces_count = 0;
2378                helper.eps_count = 0;
2379                ret = ffs_do_descs(counts[i], data, len,
2380                                   __ffs_data_do_entity, &helper);
2381                if (ret < 0)
2382                        goto error;
2383                if (!ffs->eps_count && !ffs->interfaces_count) {
2384                        ffs->eps_count = helper.eps_count;
2385                        ffs->interfaces_count = helper.interfaces_count;
2386                } else {
2387                        if (ffs->eps_count != helper.eps_count) {
2388                                ret = -EINVAL;
2389                                goto error;
2390                        }
2391                        if (ffs->interfaces_count != helper.interfaces_count) {
2392                                ret = -EINVAL;
2393                                goto error;
2394                        }
2395                }
2396                data += ret;
2397                len  -= ret;
2398        }
2399        if (os_descs_count) {
2400                ret = ffs_do_os_descs(os_descs_count, data, len,
2401                                      __ffs_data_do_os_desc, ffs);
2402                if (ret < 0)
2403                        goto error;
2404                data += ret;
2405                len -= ret;
2406        }
2407
2408        if (raw_descs == data || len) {
2409                ret = -EINVAL;
2410                goto error;
2411        }
2412
2413        ffs->raw_descs_data     = _data;
2414        ffs->raw_descs          = raw_descs;
2415        ffs->raw_descs_length   = data - raw_descs;
2416        ffs->fs_descs_count     = counts[0];
2417        ffs->hs_descs_count     = counts[1];
2418        ffs->ss_descs_count     = counts[2];
2419        ffs->ms_os_descs_count  = os_descs_count;
2420
2421        return 0;
2422
2423error:
2424        kfree(_data);
2425        return ret;
2426}
2427
2428static int __ffs_data_got_strings(struct ffs_data *ffs,
2429                                  char *const _data, size_t len)
2430{
2431        u32 str_count, needed_count, lang_count;
2432        struct usb_gadget_strings **stringtabs, *t;
2433        const char *data = _data;
2434        struct usb_string *s;
2435
2436        ENTER();
2437
2438        if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2439                     get_unaligned_le32(data + 4) != len))
2440                goto error;
2441        str_count  = get_unaligned_le32(data + 8);
2442        lang_count = get_unaligned_le32(data + 12);
2443
2444        /* if one is zero the other must be zero */
2445        if (unlikely(!str_count != !lang_count))
2446                goto error;
2447
2448        /* Do we have at least as many strings as descriptors need? */
2449        needed_count = ffs->strings_count;
2450        if (unlikely(str_count < needed_count))
2451                goto error;
2452
2453        /*
2454         * If we don't need any strings just return and free all
2455         * memory.
2456         */
2457        if (!needed_count) {
2458                kfree(_data);
2459                return 0;
2460        }
2461
2462        /* Allocate everything in one chunk so there's less maintenance. */
2463        {
2464                unsigned i = 0;
2465                vla_group(d);
2466                vla_item(d, struct usb_gadget_strings *, stringtabs,
2467                        lang_count + 1);
2468                vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2469                vla_item(d, struct usb_string, strings,
2470                        lang_count*(needed_count+1));
2471
2472                char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2473
2474                if (unlikely(!vlabuf)) {
2475                        kfree(_data);
2476                        return -ENOMEM;
2477                }
2478
2479                /* Initialize the VLA pointers */
2480                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2481                t = vla_ptr(vlabuf, d, stringtab);
2482                i = lang_count;
2483                do {
2484                        *stringtabs++ = t++;
2485                } while (--i);
2486                *stringtabs = NULL;
2487
2488                /* stringtabs = vlabuf = d_stringtabs for later kfree */
2489                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2490                t = vla_ptr(vlabuf, d, stringtab);
2491                s = vla_ptr(vlabuf, d, strings);
2492        }
2493
2494        /* For each language */
2495        data += 16;
2496        len -= 16;
2497
2498        do { /* lang_count > 0 so we can use do-while */
2499                unsigned needed = needed_count;
2500
2501                if (unlikely(len < 3))
2502                        goto error_free;
2503                t->language = get_unaligned_le16(data);
2504                t->strings  = s;
2505                ++t;
2506
2507                data += 2;
2508                len -= 2;
2509
2510                /* For each string */
2511                do { /* str_count > 0 so we can use do-while */
2512                        size_t length = strnlen(data, len);
2513
2514                        if (unlikely(length == len))
2515                                goto error_free;
2516
2517                        /*
2518                         * User may provide more strings then we need,
2519                         * if that's the case we simply ignore the
2520                         * rest
2521                         */
2522                        if (likely(needed)) {
2523                                /*
2524                                 * s->id will be set while adding
2525                                 * function to configuration so for
2526                                 * now just leave garbage here.
2527                                 */
2528                                s->s = data;
2529                                --needed;
2530                                ++s;
2531                        }
2532
2533                        data += length + 1;
2534                        len -= length + 1;
2535                } while (--str_count);
2536
2537                s->id = 0;   /* terminator */
2538                s->s = NULL;
2539                ++s;
2540
2541        } while (--lang_count);
2542
2543        /* Some garbage left? */
2544        if (unlikely(len))
2545                goto error_free;
2546
2547        /* Done! */
2548        ffs->stringtabs = stringtabs;
2549        ffs->raw_strings = _data;
2550
2551        return 0;
2552
2553error_free:
2554        kfree(stringtabs);
2555error:
2556        kfree(_data);
2557        return -EINVAL;
2558}
2559
2560
2561/* Events handling and management *******************************************/
2562
2563static void __ffs_event_add(struct ffs_data *ffs,
2564                            enum usb_functionfs_event_type type)
2565{
2566        enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2567        int neg = 0;
2568
2569        /*
2570         * Abort any unhandled setup
2571         *
2572         * We do not need to worry about some cmpxchg() changing value
2573         * of ffs->setup_state without holding the lock because when
2574         * state is FFS_SETUP_PENDING cmpxchg() in several places in
2575         * the source does nothing.
2576         */
2577        if (ffs->setup_state == FFS_SETUP_PENDING)
2578                ffs->setup_state = FFS_SETUP_CANCELLED;
2579
2580        /*
2581         * Logic of this function guarantees that there are at most four pending
2582         * evens on ffs->ev.types queue.  This is important because the queue
2583         * has space for four elements only and __ffs_ep0_read_events function
2584         * depends on that limit as well.  If more event types are added, those
2585         * limits have to be revisited or guaranteed to still hold.
2586         */
2587        switch (type) {
2588        case FUNCTIONFS_RESUME:
2589                rem_type2 = FUNCTIONFS_SUSPEND;
2590                /* FALL THROUGH */
2591        case FUNCTIONFS_SUSPEND:
2592        case FUNCTIONFS_SETUP:
2593                rem_type1 = type;
2594                /* Discard all similar events */
2595                break;
2596
2597        case FUNCTIONFS_BIND:
2598        case FUNCTIONFS_UNBIND:
2599        case FUNCTIONFS_DISABLE:
2600        case FUNCTIONFS_ENABLE:
2601                /* Discard everything other then power management. */
2602                rem_type1 = FUNCTIONFS_SUSPEND;
2603                rem_type2 = FUNCTIONFS_RESUME;
2604                neg = 1;
2605                break;
2606
2607        default:
2608                WARN(1, "%d: unknown event, this should not happen\n", type);
2609                return;
2610        }
2611
2612        {
2613                u8 *ev  = ffs->ev.types, *out = ev;
2614                unsigned n = ffs->ev.count;
2615                for (; n; --n, ++ev)
2616                        if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2617                                *out++ = *ev;
2618                        else
2619                                pr_vdebug("purging event %d\n", *ev);
2620                ffs->ev.count = out - ffs->ev.types;
2621        }
2622
2623        pr_vdebug("adding event %d\n", type);
2624        ffs->ev.types[ffs->ev.count++] = type;
2625        wake_up_locked(&ffs->ev.waitq);
2626        if (ffs->ffs_eventfd)
2627                eventfd_signal(ffs->ffs_eventfd, 1);
2628}
2629
2630static void ffs_event_add(struct ffs_data *ffs,
2631                          enum usb_functionfs_event_type type)
2632{
2633        unsigned long flags;
2634        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2635        __ffs_event_add(ffs, type);
2636        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2637}
2638
2639/* Bind/unbind USB function hooks *******************************************/
2640
2641static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2642{
2643        int i;
2644
2645        for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2646                if (ffs->eps_addrmap[i] == endpoint_address)
2647                        return i;
2648        return -ENOENT;
2649}
2650
2651static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2652                                    struct usb_descriptor_header *desc,
2653                                    void *priv)
2654{
2655        struct usb_endpoint_descriptor *ds = (void *)desc;
2656        struct ffs_function *func = priv;
2657        struct ffs_ep *ffs_ep;
2658        unsigned ep_desc_id;
2659        int idx;
2660        static const char *speed_names[] = { "full", "high", "super" };
2661
2662        if (type != FFS_DESCRIPTOR)
2663                return 0;
2664
2665        /*
2666         * If ss_descriptors is not NULL, we are reading super speed
2667         * descriptors; if hs_descriptors is not NULL, we are reading high
2668         * speed descriptors; otherwise, we are reading full speed
2669         * descriptors.
2670         */
2671        if (func->function.ss_descriptors) {
2672                ep_desc_id = 2;
2673                func->function.ss_descriptors[(long)valuep] = desc;
2674        } else if (func->function.hs_descriptors) {
2675                ep_desc_id = 1;
2676                func->function.hs_descriptors[(long)valuep] = desc;
2677        } else {
2678                ep_desc_id = 0;
2679                func->function.fs_descriptors[(long)valuep]    = desc;
2680        }
2681
2682        if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2683                return 0;
2684
2685        idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2686        if (idx < 0)
2687                return idx;
2688
2689        ffs_ep = func->eps + idx;
2690
2691        if (unlikely(ffs_ep->descs[ep_desc_id])) {
2692                pr_err("two %sspeed descriptors for EP %d\n",
2693                          speed_names[ep_desc_id],
2694                          ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2695                return -EINVAL;
2696        }
2697        ffs_ep->descs[ep_desc_id] = ds;
2698
2699        ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2700        if (ffs_ep->ep) {
2701                ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2702                if (!ds->wMaxPacketSize)
2703                        ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2704        } else {
2705                struct usb_request *req;
2706                struct usb_ep *ep;
2707                u8 bEndpointAddress;
2708
2709                /*
2710                 * We back up bEndpointAddress because autoconfig overwrites
2711                 * it with physical endpoint address.
2712                 */
2713                bEndpointAddress = ds->bEndpointAddress;
2714                pr_vdebug("autoconfig\n");
2715                ep = usb_ep_autoconfig(func->gadget, ds);
2716                if (unlikely(!ep))
2717                        return -ENOTSUPP;
2718                ep->driver_data = func->eps + idx;
2719
2720                req = usb_ep_alloc_request(ep, GFP_KERNEL);
2721                if (unlikely(!req))
2722                        return -ENOMEM;
2723
2724                ffs_ep->ep  = ep;
2725                ffs_ep->req = req;
2726                func->eps_revmap[ds->bEndpointAddress &
2727                                 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2728                /*
2729                 * If we use virtual address mapping, we restore
2730                 * original bEndpointAddress value.
2731                 */
2732                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2733                        ds->bEndpointAddress = bEndpointAddress;
2734        }
2735        ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2736
2737        return 0;
2738}
2739
2740static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2741                                   struct usb_descriptor_header *desc,
2742                                   void *priv)
2743{
2744        struct ffs_function *func = priv;
2745        unsigned idx;
2746        u8 newValue;
2747
2748        switch (type) {
2749        default:
2750        case FFS_DESCRIPTOR:
2751                /* Handled in previous pass by __ffs_func_bind_do_descs() */
2752                return 0;
2753
2754        case FFS_INTERFACE:
2755                idx = *valuep;
2756                if (func->interfaces_nums[idx] < 0) {
2757                        int id = usb_interface_id(func->conf, &func->function);
2758                        if (unlikely(id < 0))
2759                                return id;
2760                        func->interfaces_nums[idx] = id;
2761                }
2762                newValue = func->interfaces_nums[idx];
2763                break;
2764
2765        case FFS_STRING:
2766                /* String' IDs are allocated when fsf_data is bound to cdev */
2767                newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2768                break;
2769
2770        case FFS_ENDPOINT:
2771                /*
2772                 * USB_DT_ENDPOINT are handled in
2773                 * __ffs_func_bind_do_descs().
2774                 */
2775                if (desc->bDescriptorType == USB_DT_ENDPOINT)
2776                        return 0;
2777
2778                idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2779                if (unlikely(!func->eps[idx].ep))
2780                        return -EINVAL;
2781
2782                {
2783                        struct usb_endpoint_descriptor **descs;
2784                        descs = func->eps[idx].descs;
2785                        newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2786                }
2787                break;
2788        }
2789
2790        pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2791        *valuep = newValue;
2792        return 0;
2793}
2794
2795static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2796                                      struct usb_os_desc_header *h, void *data,
2797                                      unsigned len, void *priv)
2798{
2799        struct ffs_function *func = priv;
2800        u8 length = 0;
2801
2802        switch (type) {
2803        case FFS_OS_DESC_EXT_COMPAT: {
2804                struct usb_ext_compat_desc *desc = data;
2805                struct usb_os_desc_table *t;
2806
2807                t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2808                t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2809                memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2810                       ARRAY_SIZE(desc->CompatibleID) +
2811                       ARRAY_SIZE(desc->SubCompatibleID));
2812                length = sizeof(*desc);
2813        }
2814                break;
2815        case FFS_OS_DESC_EXT_PROP: {
2816                struct usb_ext_prop_desc *desc = data;
2817                struct usb_os_desc_table *t;
2818                struct usb_os_desc_ext_prop *ext_prop;
2819                char *ext_prop_name;
2820                char *ext_prop_data;
2821
2822                t = &func->function.os_desc_table[h->interface];
2823                t->if_id = func->interfaces_nums[h->interface];
2824
2825                ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2826                func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2827
2828                ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2829                ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2830                ext_prop->data_len = le32_to_cpu(*(u32 *)
2831                        usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2832                length = ext_prop->name_len + ext_prop->data_len + 14;
2833
2834                ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2835                func->ffs->ms_os_descs_ext_prop_name_avail +=
2836                        ext_prop->name_len;
2837
2838                ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2839                func->ffs->ms_os_descs_ext_prop_data_avail +=
2840                        ext_prop->data_len;
2841                memcpy(ext_prop_data,
2842                       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2843                       ext_prop->data_len);
2844                /* unicode data reported to the host as "WCHAR"s */
2845                switch (ext_prop->type) {
2846                case USB_EXT_PROP_UNICODE:
2847                case USB_EXT_PROP_UNICODE_ENV:
2848                case USB_EXT_PROP_UNICODE_LINK:
2849                case USB_EXT_PROP_UNICODE_MULTI:
2850                        ext_prop->data_len *= 2;
2851                        break;
2852                }
2853                ext_prop->data = ext_prop_data;
2854
2855                memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2856                       ext_prop->name_len);
2857                /* property name reported to the host as "WCHAR"s */
2858                ext_prop->name_len *= 2;
2859                ext_prop->name = ext_prop_name;
2860
2861                t->os_desc->ext_prop_len +=
2862                        ext_prop->name_len + ext_prop->data_len + 14;
2863                ++t->os_desc->ext_prop_count;
2864                list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2865        }
2866                break;
2867        default:
2868                pr_vdebug("unknown descriptor: %d\n", type);
2869        }
2870
2871        return length;
2872}
2873
2874static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2875                                                struct usb_configuration *c)
2876{
2877        struct ffs_function *func = ffs_func_from_usb(f);
2878        struct f_fs_opts *ffs_opts =
2879                container_of(f->fi, struct f_fs_opts, func_inst);
2880        int ret;
2881
2882        ENTER();
2883
2884        /*
2885         * Legacy gadget triggers binding in functionfs_ready_callback,
2886         * which already uses locking; taking the same lock here would
2887         * cause a deadlock.
2888         *
2889         * Configfs-enabled gadgets however do need ffs_dev_lock.
2890         */
2891        if (!ffs_opts->no_configfs)
2892                ffs_dev_lock();
2893        ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2894        func->ffs = ffs_opts->dev->ffs_data;
2895        if (!ffs_opts->no_configfs)
2896                ffs_dev_unlock();
2897        if (ret)
2898                return ERR_PTR(ret);
2899
2900        func->conf = c;
2901        func->gadget = c->cdev->gadget;
2902
2903        /*
2904         * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2905         * configurations are bound in sequence with list_for_each_entry,
2906         * in each configuration its functions are bound in sequence
2907         * with list_for_each_entry, so we assume no race condition
2908         * with regard to ffs_opts->bound access
2909         */
2910        if (!ffs_opts->refcnt) {
2911                ret = functionfs_bind(func->ffs, c->cdev);
2912                if (ret)
2913                        return ERR_PTR(ret);
2914        }
2915        ffs_opts->refcnt++;
2916        func->function.strings = func->ffs->stringtabs;
2917
2918        return ffs_opts;
2919}
2920
2921static int _ffs_func_bind(struct usb_configuration *c,
2922                          struct usb_function *f)
2923{
2924        struct ffs_function *func = ffs_func_from_usb(f);
2925        struct ffs_data *ffs = func->ffs;
2926
2927        const int full = !!func->ffs->fs_descs_count;
2928        const int high = gadget_is_dualspeed(func->gadget) &&
2929                func->ffs->hs_descs_count;
2930        const int super = gadget_is_superspeed(func->gadget) &&
2931                func->ffs->ss_descs_count;
2932
2933        int fs_len, hs_len, ss_len, ret, i;
2934        struct ffs_ep *eps_ptr;
2935
2936        /* Make it a single chunk, less management later on */
2937        vla_group(d);
2938        vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2939        vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2940                full ? ffs->fs_descs_count + 1 : 0);
2941        vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2942                high ? ffs->hs_descs_count + 1 : 0);
2943        vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2944                super ? ffs->ss_descs_count + 1 : 0);
2945        vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2946        vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2947                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2948        vla_item_with_sz(d, char[16], ext_compat,
2949                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2950        vla_item_with_sz(d, struct usb_os_desc, os_desc,
2951                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2952        vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2953                         ffs->ms_os_descs_ext_prop_count);
2954        vla_item_with_sz(d, char, ext_prop_name,
2955                         ffs->ms_os_descs_ext_prop_name_len);
2956        vla_item_with_sz(d, char, ext_prop_data,
2957                         ffs->ms_os_descs_ext_prop_data_len);
2958        vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2959        char *vlabuf;
2960
2961        ENTER();
2962
2963        /* Has descriptors only for speeds gadget does not support */
2964        if (unlikely(!(full | high | super)))
2965                return -ENOTSUPP;
2966
2967        /* Allocate a single chunk, less management later on */
2968        vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2969        if (unlikely(!vlabuf))
2970                return -ENOMEM;
2971
2972        ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2973        ffs->ms_os_descs_ext_prop_name_avail =
2974                vla_ptr(vlabuf, d, ext_prop_name);
2975        ffs->ms_os_descs_ext_prop_data_avail =
2976                vla_ptr(vlabuf, d, ext_prop_data);
2977
2978        /* Copy descriptors  */
2979        memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2980               ffs->raw_descs_length);
2981
2982        memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2983        eps_ptr = vla_ptr(vlabuf, d, eps);
2984        for (i = 0; i < ffs->eps_count; i++)
2985                eps_ptr[i].num = -1;
2986
2987        /* Save pointers
2988         * d_eps == vlabuf, func->eps used to kfree vlabuf later
2989        */
2990        func->eps             = vla_ptr(vlabuf, d, eps);
2991        func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2992
2993        /*
2994         * Go through all the endpoint descriptors and allocate
2995         * endpoints first, so that later we can rewrite the endpoint
2996         * numbers without worrying that it may be described later on.
2997         */
2998        if (likely(full)) {
2999                func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3000                fs_len = ffs_do_descs(ffs->fs_descs_count,
3001                                      vla_ptr(vlabuf, d, raw_descs),
3002                                      d_raw_descs__sz,
3003                                      __ffs_func_bind_do_descs, func);
3004                if (unlikely(fs_len < 0)) {
3005                        ret = fs_len;
3006                        goto error;
3007                }
3008        } else {
3009                fs_len = 0;
3010        }
3011
3012        if (likely(high)) {
3013                func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3014                hs_len = ffs_do_descs(ffs->hs_descs_count,
3015                                      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3016                                      d_raw_descs__sz - fs_len,
3017                                      __ffs_func_bind_do_descs, func);
3018                if (unlikely(hs_len < 0)) {
3019                        ret = hs_len;
3020                        goto error;
3021                }
3022        } else {
3023                hs_len = 0;
3024        }
3025
3026        if (likely(super)) {
3027                func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3028                ss_len = ffs_do_descs(ffs->ss_descs_count,
3029                                vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3030                                d_raw_descs__sz - fs_len - hs_len,
3031                                __ffs_func_bind_do_descs, func);
3032                if (unlikely(ss_len < 0)) {
3033                        ret = ss_len;
3034                        goto error;
3035                }
3036        } else {
3037                ss_len = 0;
3038        }
3039
3040        /*
3041         * Now handle interface numbers allocation and interface and
3042         * endpoint numbers rewriting.  We can do that in one go
3043         * now.
3044         */
3045        ret = ffs_do_descs(ffs->fs_descs_count +
3046                           (high ? ffs->hs_descs_count : 0) +
3047                           (super ? ffs->ss_descs_count : 0),
3048                           vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3049                           __ffs_func_bind_do_nums, func);
3050        if (unlikely(ret < 0))
3051                goto error;
3052
3053        func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3054        if (c->cdev->use_os_string) {
3055                for (i = 0; i < ffs->interfaces_count; ++i) {
3056                        struct usb_os_desc *desc;
3057
3058                        desc = func->function.os_desc_table[i].os_desc =
3059                                vla_ptr(vlabuf, d, os_desc) +
3060                                i * sizeof(struct usb_os_desc);
3061                        desc->ext_compat_id =
3062                                vla_ptr(vlabuf, d, ext_compat) + i * 16;
3063                        INIT_LIST_HEAD(&desc->ext_prop);
3064                }
3065                ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3066                                      vla_ptr(vlabuf, d, raw_descs) +
3067                                      fs_len + hs_len + ss_len,
3068                                      d_raw_descs__sz - fs_len - hs_len -
3069                                      ss_len,
3070                                      __ffs_func_bind_do_os_desc, func);
3071                if (unlikely(ret < 0))
3072                        goto error;
3073        }
3074        func->function.os_desc_n =
3075                c->cdev->use_os_string ? ffs->interfaces_count : 0;
3076
3077        /* And we're done */
3078        ffs_event_add(ffs, FUNCTIONFS_BIND);
3079        return 0;
3080
3081error:
3082        /* XXX Do we need to release all claimed endpoints here? */
3083        return ret;
3084}
3085
3086static int ffs_func_bind(struct usb_configuration *c,
3087                         struct usb_function *f)
3088{
3089        struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3090        struct ffs_function *func = ffs_func_from_usb(f);
3091        int ret;
3092
3093        if (IS_ERR(ffs_opts))
3094                return PTR_ERR(ffs_opts);
3095
3096        ret = _ffs_func_bind(c, f);
3097        if (ret && !--ffs_opts->refcnt)
3098                functionfs_unbind(func->ffs);
3099
3100        return ret;
3101}
3102
3103
3104/* Other USB function hooks *************************************************/
3105
3106static void ffs_reset_work(struct work_struct *work)
3107{
3108        struct ffs_data *ffs = container_of(work,
3109                struct ffs_data, reset_work);
3110        ffs_data_reset(ffs);
3111}
3112
3113static int ffs_func_set_alt(struct usb_function *f,
3114                            unsigned interface, unsigned alt)
3115{
3116        struct ffs_function *func = ffs_func_from_usb(f);
3117        struct ffs_data *ffs = func->ffs;
3118        int ret = 0, intf;
3119
3120        if (alt != (unsigned)-1) {
3121                intf = ffs_func_revmap_intf(func, interface);
3122                if (unlikely(intf < 0))
3123                        return intf;
3124        }
3125
3126        if (ffs->func)
3127                ffs_func_eps_disable(ffs->func);
3128
3129        if (ffs->state == FFS_DEACTIVATED) {
3130                ffs->state = FFS_CLOSING;
3131                INIT_WORK(&ffs->reset_work, ffs_reset_work);
3132                schedule_work(&ffs->reset_work);
3133                return -ENODEV;
3134        }
3135
3136        if (ffs->state != FFS_ACTIVE)
3137                return -ENODEV;
3138
3139        if (alt == (unsigned)-1) {
3140                ffs->func = NULL;
3141                ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3142                return 0;
3143        }
3144
3145        ffs->func = func;
3146        ret = ffs_func_eps_enable(func);
3147        if (likely(ret >= 0))
3148                ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3149        return ret;
3150}
3151
3152static void ffs_func_disable(struct usb_function *f)
3153{
3154        ffs_func_set_alt(f, 0, (unsigned)-1);
3155}
3156
3157static int ffs_func_setup(struct usb_function *f,
3158                          const struct usb_ctrlrequest *creq)
3159{
3160        struct ffs_function *func = ffs_func_from_usb(f);
3161        struct ffs_data *ffs = func->ffs;
3162        unsigned long flags;
3163        int ret;
3164
3165        ENTER();
3166
3167        pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3168        pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3169        pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3170        pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3171        pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3172
3173        /*
3174         * Most requests directed to interface go through here
3175         * (notable exceptions are set/get interface) so we need to
3176         * handle them.  All other either handled by composite or
3177         * passed to usb_configuration->setup() (if one is set).  No
3178         * matter, we will handle requests directed to endpoint here
3179         * as well (as it's straightforward).  Other request recipient
3180         * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3181         * is being used.
3182         */
3183        if (ffs->state != FFS_ACTIVE)
3184                return -ENODEV;
3185
3186        switch (creq->bRequestType & USB_RECIP_MASK) {
3187        case USB_RECIP_INTERFACE:
3188                ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3189                if (unlikely(ret < 0))
3190                        return ret;
3191                break;
3192
3193        case USB_RECIP_ENDPOINT:
3194                ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3195                if (unlikely(ret < 0))
3196                        return ret;
3197                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3198                        ret = func->ffs->eps_addrmap[ret];
3199                break;
3200
3201        default:
3202                if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3203                        ret = le16_to_cpu(creq->wIndex);
3204                else
3205                        return -EOPNOTSUPP;
3206        }
3207
3208        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3209        ffs->ev.setup = *creq;
3210        ffs->ev.setup.wIndex = cpu_to_le16(ret);
3211        __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3212        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3213
3214        return 0;
3215}
3216
3217static bool ffs_func_req_match(struct usb_function *f,
3218                               const struct usb_ctrlrequest *creq,
3219                               bool config0)
3220{
3221        struct ffs_function *func = ffs_func_from_usb(f);
3222
3223        if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3224                return false;
3225
3226        switch (creq->bRequestType & USB_RECIP_MASK) {
3227        case USB_RECIP_INTERFACE:
3228                return (ffs_func_revmap_intf(func,
3229                                             le16_to_cpu(creq->wIndex)) >= 0);
3230        case USB_RECIP_ENDPOINT:
3231                return (ffs_func_revmap_ep(func,
3232                                           le16_to_cpu(creq->wIndex)) >= 0);
3233        default:
3234                return (bool) (func->ffs->user_flags &
3235                               FUNCTIONFS_ALL_CTRL_RECIP);
3236        }
3237}
3238
3239static void ffs_func_suspend(struct usb_function *f)
3240{
3241        ENTER();
3242        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3243}
3244
3245static void ffs_func_resume(struct usb_function *f)
3246{
3247        ENTER();
3248        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3249}
3250
3251
3252/* Endpoint and interface numbers reverse mapping ***************************/
3253
3254static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3255{
3256        num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3257        return num ? num : -EDOM;
3258}
3259
3260static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3261{
3262        short *nums = func->interfaces_nums;
3263        unsigned count = func->ffs->interfaces_count;
3264
3265        for (; count; --count, ++nums) {
3266                if (*nums >= 0 && *nums == intf)
3267                        return nums - func->interfaces_nums;
3268        }
3269
3270        return -EDOM;
3271}
3272
3273
3274/* Devices management *******************************************************/
3275
3276static LIST_HEAD(ffs_devices);
3277
3278static struct ffs_dev *_ffs_do_find_dev(const char *name)
3279{
3280        struct ffs_dev *dev;
3281
3282        list_for_each_entry(dev, &ffs_devices, entry) {
3283                if (!dev->name || !name)
3284                        continue;
3285                if (strcmp(dev->name, name) == 0)
3286                        return dev;
3287        }
3288
3289        return NULL;
3290}
3291
3292/*
3293 * ffs_lock must be taken by the caller of this function
3294 */
3295static struct ffs_dev *_ffs_get_single_dev(void)
3296{
3297        struct ffs_dev *dev;
3298
3299        if (list_is_singular(&ffs_devices)) {
3300                dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3301                if (dev->single)
3302                        return dev;
3303        }
3304
3305        return NULL;
3306}
3307
3308/*
3309 * ffs_lock must be taken by the caller of this function
3310 */
3311static struct ffs_dev *_ffs_find_dev(const char *name)
3312{
3313        struct ffs_dev *dev;
3314
3315        dev = _ffs_get_single_dev();
3316        if (dev)
3317                return dev;
3318
3319        return _ffs_do_find_dev(name);
3320}
3321
3322/* Configfs support *********************************************************/
3323
3324static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3325{
3326        return container_of(to_config_group(item), struct f_fs_opts,
3327                            func_inst.group);
3328}
3329
3330static void ffs_attr_release(struct config_item *item)
3331{
3332        struct f_fs_opts *opts = to_ffs_opts(item);
3333
3334        usb_put_function_instance(&opts->func_inst);
3335}
3336
3337static struct configfs_item_operations ffs_item_ops = {
3338        .release        = ffs_attr_release,
3339};
3340
3341static struct config_item_type ffs_func_type = {
3342        .ct_item_ops    = &ffs_item_ops,
3343        .ct_owner       = THIS_MODULE,
3344};
3345
3346
3347/* Function registration interface ******************************************/
3348
3349static void ffs_free_inst(struct usb_function_instance *f)
3350{
3351        struct f_fs_opts *opts;
3352
3353        opts = to_f_fs_opts(f);
3354        ffs_dev_lock();
3355        _ffs_free_dev(opts->dev);
3356        ffs_dev_unlock();
3357        kfree(opts);
3358}
3359
3360#define MAX_INST_NAME_LEN       40
3361
3362static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3363{
3364        struct f_fs_opts *opts;
3365        char *ptr;
3366        const char *tmp;
3367        int name_len, ret;
3368
3369        name_len = strlen(name) + 1;
3370        if (name_len > MAX_INST_NAME_LEN)
3371                return -ENAMETOOLONG;
3372
3373        ptr = kstrndup(name, name_len, GFP_KERNEL);
3374        if (!ptr)
3375                return -ENOMEM;
3376
3377        opts = to_f_fs_opts(fi);
3378        tmp = NULL;
3379
3380        ffs_dev_lock();
3381
3382        tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3383        ret = _ffs_name_dev(opts->dev, ptr);
3384        if (ret) {
3385                kfree(ptr);
3386                ffs_dev_unlock();
3387                return ret;
3388        }
3389        opts->dev->name_allocated = true;
3390
3391        ffs_dev_unlock();
3392
3393        kfree(tmp);
3394
3395        return 0;
3396}
3397
3398static struct usb_function_instance *ffs_alloc_inst(void)
3399{
3400        struct f_fs_opts *opts;
3401        struct ffs_dev *dev;
3402
3403        opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3404        if (!opts)
3405                return ERR_PTR(-ENOMEM);
3406
3407        opts->func_inst.set_inst_name = ffs_set_inst_name;
3408        opts->func_inst.free_func_inst = ffs_free_inst;
3409        ffs_dev_lock();
3410        dev = _ffs_alloc_dev();
3411        ffs_dev_unlock();
3412        if (IS_ERR(dev)) {
3413                kfree(opts);
3414                return ERR_CAST(dev);
3415        }
3416        opts->dev = dev;
3417        dev->opts = opts;
3418
3419        config_group_init_type_name(&opts->func_inst.group, "",
3420                                    &ffs_func_type);
3421        return &opts->func_inst;
3422}
3423
3424static void ffs_free(struct usb_function *f)
3425{
3426        kfree(ffs_func_from_usb(f));
3427}
3428
3429static void ffs_func_unbind(struct usb_configuration *c,
3430                            struct usb_function *f)
3431{
3432        struct ffs_function *func = ffs_func_from_usb(f);
3433        struct ffs_data *ffs = func->ffs;
3434        struct f_fs_opts *opts =
3435                container_of(f->fi, struct f_fs_opts, func_inst);
3436        struct ffs_ep *ep = func->eps;
3437        unsigned count = ffs->eps_count;
3438        unsigned long flags;
3439
3440        ENTER();
3441        if (ffs->func == func) {
3442                ffs_func_eps_disable(func);
3443                ffs->func = NULL;
3444        }
3445
3446        if (!--opts->refcnt)
3447                functionfs_unbind(ffs);
3448
3449        /* cleanup after autoconfig */
3450        spin_lock_irqsave(&func->ffs->eps_lock, flags);
3451        do {
3452                if (ep->ep && ep->req)
3453                        usb_ep_free_request(ep->ep, ep->req);
3454                ep->req = NULL;
3455                ++ep;
3456        } while (--count);
3457        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3458        kfree(func->eps);
3459        func->eps = NULL;
3460        /*
3461         * eps, descriptors and interfaces_nums are allocated in the
3462         * same chunk so only one free is required.
3463         */
3464        func->function.fs_descriptors = NULL;
3465        func->function.hs_descriptors = NULL;
3466        func->function.ss_descriptors = NULL;
3467        func->interfaces_nums = NULL;
3468
3469        ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3470}
3471
3472static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3473{
3474        struct ffs_function *func;
3475
3476        ENTER();
3477
3478        func = kzalloc(sizeof(*func), GFP_KERNEL);
3479        if (unlikely(!func))
3480                return ERR_PTR(-ENOMEM);
3481
3482        func->function.name    = "Function FS Gadget";
3483
3484        func->function.bind    = ffs_func_bind;
3485        func->function.unbind  = ffs_func_unbind;
3486        func->function.set_alt = ffs_func_set_alt;
3487        func->function.disable = ffs_func_disable;
3488        func->function.setup   = ffs_func_setup;
3489        func->function.req_match = ffs_func_req_match;
3490        func->function.suspend = ffs_func_suspend;
3491        func->function.resume  = ffs_func_resume;
3492        func->function.free_func = ffs_free;
3493
3494        return &func->function;
3495}
3496
3497/*
3498 * ffs_lock must be taken by the caller of this function
3499 */
3500static struct ffs_dev *_ffs_alloc_dev(void)
3501{
3502        struct ffs_dev *dev;
3503        int ret;
3504
3505        if (_ffs_get_single_dev())
3506                        return ERR_PTR(-EBUSY);
3507
3508        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3509        if (!dev)
3510                return ERR_PTR(-ENOMEM);
3511
3512        if (list_empty(&ffs_devices)) {
3513                ret = functionfs_init();
3514                if (ret) {
3515                        kfree(dev);
3516                        return ERR_PTR(ret);
3517                }
3518        }
3519
3520        list_add(&dev->entry, &ffs_devices);
3521
3522        return dev;
3523}
3524
3525/*
3526 * ffs_lock must be taken by the caller of this function
3527 * The caller is responsible for "name" being available whenever f_fs needs it
3528 */
3529static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3530{
3531        struct ffs_dev *existing;
3532
3533        existing = _ffs_do_find_dev(name);
3534        if (existing)
3535                return -EBUSY;
3536
3537        dev->name = name;
3538
3539        return 0;
3540}
3541
3542/*
3543 * The caller is responsible for "name" being available whenever f_fs needs it
3544 */
3545int ffs_name_dev(struct ffs_dev *dev, const char *name)
3546{
3547        int ret;
3548
3549        ffs_dev_lock();
3550        ret = _ffs_name_dev(dev, name);
3551        ffs_dev_unlock();
3552
3553        return ret;
3554}
3555EXPORT_SYMBOL_GPL(ffs_name_dev);
3556
3557int ffs_single_dev(struct ffs_dev *dev)
3558{
3559        int ret;
3560
3561        ret = 0;
3562        ffs_dev_lock();
3563
3564        if (!list_is_singular(&ffs_devices))
3565                ret = -EBUSY;
3566        else
3567                dev->single = true;
3568
3569        ffs_dev_unlock();
3570        return ret;
3571}
3572EXPORT_SYMBOL_GPL(ffs_single_dev);
3573
3574/*
3575 * ffs_lock must be taken by the caller of this function
3576 */
3577static void _ffs_free_dev(struct ffs_dev *dev)
3578{
3579        list_del(&dev->entry);
3580        if (dev->name_allocated)
3581                kfree(dev->name);
3582
3583        /* Clear the private_data pointer to stop incorrect dev access */
3584        if (dev->ffs_data)
3585                dev->ffs_data->private_data = NULL;
3586
3587        kfree(dev);
3588        if (list_empty(&ffs_devices))
3589                functionfs_cleanup();
3590}
3591
3592static void *ffs_acquire_dev(const char *dev_name)
3593{
3594        struct ffs_dev *ffs_dev;
3595
3596        ENTER();
3597        ffs_dev_lock();
3598
3599        ffs_dev = _ffs_find_dev(dev_name);
3600        if (!ffs_dev)
3601                ffs_dev = ERR_PTR(-ENOENT);
3602        else if (ffs_dev->mounted)
3603                ffs_dev = ERR_PTR(-EBUSY);
3604        else if (ffs_dev->ffs_acquire_dev_callback &&
3605            ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3606                ffs_dev = ERR_PTR(-ENOENT);
3607        else
3608                ffs_dev->mounted = true;
3609
3610        ffs_dev_unlock();
3611        return ffs_dev;
3612}
3613
3614static void ffs_release_dev(struct ffs_data *ffs_data)
3615{
3616        struct ffs_dev *ffs_dev;
3617
3618        ENTER();
3619        ffs_dev_lock();
3620
3621        ffs_dev = ffs_data->private_data;
3622        if (ffs_dev) {
3623                ffs_dev->mounted = false;
3624
3625                if (ffs_dev->ffs_release_dev_callback)
3626                        ffs_dev->ffs_release_dev_callback(ffs_dev);
3627        }
3628
3629        ffs_dev_unlock();
3630}
3631
3632static int ffs_ready(struct ffs_data *ffs)
3633{
3634        struct ffs_dev *ffs_obj;
3635        int ret = 0;
3636
3637        ENTER();
3638        ffs_dev_lock();
3639
3640        ffs_obj = ffs->private_data;
3641        if (!ffs_obj) {
3642                ret = -EINVAL;
3643                goto done;
3644        }
3645        if (WARN_ON(ffs_obj->desc_ready)) {
3646                ret = -EBUSY;
3647                goto done;
3648        }
3649
3650        ffs_obj->desc_ready = true;
3651        ffs_obj->ffs_data = ffs;
3652
3653        if (ffs_obj->ffs_ready_callback) {
3654                ret = ffs_obj->ffs_ready_callback(ffs);
3655                if (ret)
3656                        goto done;
3657        }
3658
3659        set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3660done:
3661        ffs_dev_unlock();
3662        return ret;
3663}
3664
3665static void ffs_closed(struct ffs_data *ffs)
3666{
3667        struct ffs_dev *ffs_obj;
3668        struct f_fs_opts *opts;
3669
3670        ENTER();
3671        ffs_dev_lock();
3672
3673        ffs_obj = ffs->private_data;
3674        if (!ffs_obj)
3675                goto done;
3676
3677        ffs_obj->desc_ready = false;
3678
3679        if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3680            ffs_obj->ffs_closed_callback)
3681                ffs_obj->ffs_closed_callback(ffs);
3682
3683        if (ffs_obj->opts)
3684                opts = ffs_obj->opts;
3685        else
3686                goto done;
3687
3688        if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3689            || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3690                goto done;
3691
3692        unregister_gadget_item(ffs_obj->opts->
3693                               func_inst.group.cg_item.ci_parent->ci_parent);
3694done:
3695        ffs_dev_unlock();
3696}
3697
3698/* Misc helper functions ****************************************************/
3699
3700static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3701{
3702        return nonblock
3703                ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3704                : mutex_lock_interruptible(mutex);
3705}
3706
3707static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3708{
3709        char *data;
3710
3711        if (unlikely(!len))
3712                return NULL;
3713
3714        data = kmalloc(len, GFP_KERNEL);
3715        if (unlikely(!data))
3716                return ERR_PTR(-ENOMEM);
3717
3718        if (unlikely(copy_from_user(data, buf, len))) {
3719                kfree(data);
3720                return ERR_PTR(-EFAULT);
3721        }
3722
3723        pr_vdebug("Buffer from user space:\n");
3724        ffs_dump_mem("", data, len);
3725
3726        return data;
3727}
3728
3729DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3730MODULE_LICENSE("GPL");
3731MODULE_AUTHOR("Michal Nazarewicz");
3732