linux/drivers/usb/storage/sddr09.c
<<
>>
Prefs
   1/*
   2 * Driver for SanDisk SDDR-09 SmartMedia reader
   3 *
   4 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   5 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   6 * Developed with the assistance of:
   7 *   (c) 2002 Alan Stern <stern@rowland.org>
   8 *
   9 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
  10 * This chip is a programmable USB controller. In the SDDR-09, it has
  11 * been programmed to obey a certain limited set of SCSI commands.
  12 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  13 * commands.
  14 *
  15 * This program is free software; you can redistribute it and/or modify it
  16 * under the terms of the GNU General Public License as published by the
  17 * Free Software Foundation; either version 2, or (at your option) any
  18 * later version.
  19 *
  20 * This program is distributed in the hope that it will be useful, but
  21 * WITHOUT ANY WARRANTY; without even the implied warranty of
  22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  23 * General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU General Public License along
  26 * with this program; if not, write to the Free Software Foundation, Inc.,
  27 * 675 Mass Ave, Cambridge, MA 02139, USA.
  28 */
  29
  30/*
  31 * Known vendor commands: 12 bytes, first byte is opcode
  32 *
  33 * E7: read scatter gather
  34 * E8: read
  35 * E9: write
  36 * EA: erase
  37 * EB: reset
  38 * EC: read status
  39 * ED: read ID
  40 * EE: write CIS (?)
  41 * EF: compute checksum (?)
  42 */
  43
  44#include <linux/errno.h>
  45#include <linux/module.h>
  46#include <linux/slab.h>
  47
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_device.h>
  51
  52#include "usb.h"
  53#include "transport.h"
  54#include "protocol.h"
  55#include "debug.h"
  56#include "scsiglue.h"
  57
  58#define DRV_NAME "ums-sddr09"
  59
  60MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  61MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  62MODULE_LICENSE("GPL");
  63
  64static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  65static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  66static int usb_stor_sddr09_init(struct us_data *us);
  67
  68
  69/*
  70 * The table of devices
  71 */
  72#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  73                    vendorName, productName, useProtocol, useTransport, \
  74                    initFunction, flags) \
  75{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  76  .driver_info = (flags) }
  77
  78static struct usb_device_id sddr09_usb_ids[] = {
  79#       include "unusual_sddr09.h"
  80        { }             /* Terminating entry */
  81};
  82MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  83
  84#undef UNUSUAL_DEV
  85
  86/*
  87 * The flags table
  88 */
  89#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  90                    vendor_name, product_name, use_protocol, use_transport, \
  91                    init_function, Flags) \
  92{ \
  93        .vendorName = vendor_name,      \
  94        .productName = product_name,    \
  95        .useProtocol = use_protocol,    \
  96        .useTransport = use_transport,  \
  97        .initFunction = init_function,  \
  98}
  99
 100static struct us_unusual_dev sddr09_unusual_dev_list[] = {
 101#       include "unusual_sddr09.h"
 102        { }             /* Terminating entry */
 103};
 104
 105#undef UNUSUAL_DEV
 106
 107
 108#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 109#define LSB_of(s) ((s)&0xFF)
 110#define MSB_of(s) ((s)>>8)
 111
 112/*
 113 * First some stuff that does not belong here:
 114 * data on SmartMedia and other cards, completely
 115 * unrelated to this driver.
 116 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 117 */
 118
 119struct nand_flash_dev {
 120        int model_id;
 121        int chipshift;          /* 1<<cs bytes total capacity */
 122        char pageshift;         /* 1<<ps bytes in a page */
 123        char blockshift;        /* 1<<bs pages in an erase block */
 124        char zoneshift;         /* 1<<zs blocks in a zone */
 125                                /* # of logical blocks is 125/128 of this */
 126        char pageadrlen;        /* length of an address in bytes - 1 */
 127};
 128
 129/*
 130 * NAND Flash Manufacturer ID Codes
 131 */
 132#define NAND_MFR_AMD            0x01
 133#define NAND_MFR_NATSEMI        0x8f
 134#define NAND_MFR_TOSHIBA        0x98
 135#define NAND_MFR_SAMSUNG        0xec
 136
 137static inline char *nand_flash_manufacturer(int manuf_id) {
 138        switch(manuf_id) {
 139        case NAND_MFR_AMD:
 140                return "AMD";
 141        case NAND_MFR_NATSEMI:
 142                return "NATSEMI";
 143        case NAND_MFR_TOSHIBA:
 144                return "Toshiba";
 145        case NAND_MFR_SAMSUNG:
 146                return "Samsung";
 147        default:
 148                return "unknown";
 149        }
 150}
 151
 152/*
 153 * It looks like it is unnecessary to attach manufacturer to the
 154 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 155 *
 156 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 157 */
 158
 159static struct nand_flash_dev nand_flash_ids[] = {
 160        /* NAND flash */
 161        { 0x6e, 20, 8, 4, 8, 2},        /* 1 MB */
 162        { 0xe8, 20, 8, 4, 8, 2},        /* 1 MB */
 163        { 0xec, 20, 8, 4, 8, 2},        /* 1 MB */
 164        { 0x64, 21, 8, 4, 9, 2},        /* 2 MB */
 165        { 0xea, 21, 8, 4, 9, 2},        /* 2 MB */
 166        { 0x6b, 22, 9, 4, 9, 2},        /* 4 MB */
 167        { 0xe3, 22, 9, 4, 9, 2},        /* 4 MB */
 168        { 0xe5, 22, 9, 4, 9, 2},        /* 4 MB */
 169        { 0xe6, 23, 9, 4, 10, 2},       /* 8 MB */
 170        { 0x73, 24, 9, 5, 10, 2},       /* 16 MB */
 171        { 0x75, 25, 9, 5, 10, 2},       /* 32 MB */
 172        { 0x76, 26, 9, 5, 10, 3},       /* 64 MB */
 173        { 0x79, 27, 9, 5, 10, 3},       /* 128 MB */
 174
 175        /* MASK ROM */
 176        { 0x5d, 21, 9, 4, 8, 2},        /* 2 MB */
 177        { 0xd5, 22, 9, 4, 9, 2},        /* 4 MB */
 178        { 0xd6, 23, 9, 4, 10, 2},       /* 8 MB */
 179        { 0x57, 24, 9, 4, 11, 2},       /* 16 MB */
 180        { 0x58, 25, 9, 4, 12, 2},       /* 32 MB */
 181        { 0,}
 182};
 183
 184static struct nand_flash_dev *
 185nand_find_id(unsigned char id) {
 186        int i;
 187
 188        for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 189                if (nand_flash_ids[i].model_id == id)
 190                        return &(nand_flash_ids[i]);
 191        return NULL;
 192}
 193
 194/*
 195 * ECC computation.
 196 */
 197static unsigned char parity[256];
 198static unsigned char ecc2[256];
 199
 200static void nand_init_ecc(void) {
 201        int i, j, a;
 202
 203        parity[0] = 0;
 204        for (i = 1; i < 256; i++)
 205                parity[i] = (parity[i&(i-1)] ^ 1);
 206
 207        for (i = 0; i < 256; i++) {
 208                a = 0;
 209                for (j = 0; j < 8; j++) {
 210                        if (i & (1<<j)) {
 211                                if ((j & 1) == 0)
 212                                        a ^= 0x04;
 213                                if ((j & 2) == 0)
 214                                        a ^= 0x10;
 215                                if ((j & 4) == 0)
 216                                        a ^= 0x40;
 217                        }
 218                }
 219                ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 220        }
 221}
 222
 223/* compute 3-byte ecc on 256 bytes */
 224static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 225        int i, j, a;
 226        unsigned char par = 0, bit, bits[8] = {0};
 227
 228        /* collect 16 checksum bits */
 229        for (i = 0; i < 256; i++) {
 230                par ^= data[i];
 231                bit = parity[data[i]];
 232                for (j = 0; j < 8; j++)
 233                        if ((i & (1<<j)) == 0)
 234                                bits[j] ^= bit;
 235        }
 236
 237        /* put 4+4+4 = 12 bits in the ecc */
 238        a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 239        ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 240
 241        a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 242        ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 243
 244        ecc[2] = ecc2[par];
 245}
 246
 247static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 248        return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 249}
 250
 251static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 252        memcpy(data, ecc, 3);
 253}
 254
 255/*
 256 * The actual driver starts here.
 257 */
 258
 259struct sddr09_card_info {
 260        unsigned long   capacity;       /* Size of card in bytes */
 261        int             pagesize;       /* Size of page in bytes */
 262        int             pageshift;      /* log2 of pagesize */
 263        int             blocksize;      /* Size of block in pages */
 264        int             blockshift;     /* log2 of blocksize */
 265        int             blockmask;      /* 2^blockshift - 1 */
 266        int             *lba_to_pba;    /* logical to physical map */
 267        int             *pba_to_lba;    /* physical to logical map */
 268        int             lbact;          /* number of available pages */
 269        int             flags;
 270#define SDDR09_WP       1               /* write protected */
 271};
 272
 273/*
 274 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 275 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 276 * so the reader makes up the remaining 48. Don't know whether these numbers
 277 * depend on the card. For now a constant.
 278 */
 279#define CONTROL_SHIFT 6
 280
 281/*
 282 * On my Combo CF/SM reader, the SM reader has LUN 1.
 283 * (and things fail with LUN 0).
 284 * It seems LUN is irrelevant for others.
 285 */
 286#define LUN     1
 287#define LUNBITS (LUN << 5)
 288
 289/*
 290 * LBA and PBA are unsigned ints. Special values.
 291 */
 292#define UNDEF    0xffffffff
 293#define SPARE    0xfffffffe
 294#define UNUSABLE 0xfffffffd
 295
 296static const int erase_bad_lba_entries = 0;
 297
 298/* send vendor interface command (0x41) */
 299/* called for requests 0, 1, 8 */
 300static int
 301sddr09_send_command(struct us_data *us,
 302                    unsigned char request,
 303                    unsigned char direction,
 304                    unsigned char *xfer_data,
 305                    unsigned int xfer_len) {
 306        unsigned int pipe;
 307        unsigned char requesttype = (0x41 | direction);
 308        int rc;
 309
 310        // Get the receive or send control pipe number
 311
 312        if (direction == USB_DIR_IN)
 313                pipe = us->recv_ctrl_pipe;
 314        else
 315                pipe = us->send_ctrl_pipe;
 316
 317        rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 318                                   0, 0, xfer_data, xfer_len);
 319        switch (rc) {
 320                case USB_STOR_XFER_GOOD:        return 0;
 321                case USB_STOR_XFER_STALLED:     return -EPIPE;
 322                default:                        return -EIO;
 323        }
 324}
 325
 326static int
 327sddr09_send_scsi_command(struct us_data *us,
 328                         unsigned char *command,
 329                         unsigned int command_len) {
 330        return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 331}
 332
 333#if 0
 334/*
 335 * Test Unit Ready Command: 12 bytes.
 336 * byte 0: opcode: 00
 337 */
 338static int
 339sddr09_test_unit_ready(struct us_data *us) {
 340        unsigned char *command = us->iobuf;
 341        int result;
 342
 343        memset(command, 0, 6);
 344        command[1] = LUNBITS;
 345
 346        result = sddr09_send_scsi_command(us, command, 6);
 347
 348        usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 349
 350        return result;
 351}
 352#endif
 353
 354/*
 355 * Request Sense Command: 12 bytes.
 356 * byte 0: opcode: 03
 357 * byte 4: data length
 358 */
 359static int
 360sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 361        unsigned char *command = us->iobuf;
 362        int result;
 363
 364        memset(command, 0, 12);
 365        command[0] = 0x03;
 366        command[1] = LUNBITS;
 367        command[4] = buflen;
 368
 369        result = sddr09_send_scsi_command(us, command, 12);
 370        if (result)
 371                return result;
 372
 373        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 374                        sensebuf, buflen, NULL);
 375        return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 376}
 377
 378/*
 379 * Read Command: 12 bytes.
 380 * byte 0: opcode: E8
 381 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 382 *                      10: read both, 11: read pagewise control.
 383 *       It turns out we need values 20, 21, 22, 23 here (LUN 1).
 384 * bytes 2-5: address (interpretation depends on byte 1, see below)
 385 * bytes 10-11: count (idem)
 386 *
 387 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 388 * A read data command gets data in 512-byte pages.
 389 * A read control command gets control in 64-byte chunks.
 390 * A read both command gets data+control in 576-byte chunks.
 391 *
 392 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 393 * next block, while read pagewise control jumps to the next page after
 394 * reading a group of 64 control bytes.
 395 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 396 *
 397 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 398 */
 399
 400static int
 401sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 402             int nr_of_pages, int bulklen, unsigned char *buf,
 403             int use_sg) {
 404
 405        unsigned char *command = us->iobuf;
 406        int result;
 407
 408        command[0] = 0xE8;
 409        command[1] = LUNBITS | x;
 410        command[2] = MSB_of(fromaddress>>16);
 411        command[3] = LSB_of(fromaddress>>16); 
 412        command[4] = MSB_of(fromaddress & 0xFFFF);
 413        command[5] = LSB_of(fromaddress & 0xFFFF); 
 414        command[6] = 0;
 415        command[7] = 0;
 416        command[8] = 0;
 417        command[9] = 0;
 418        command[10] = MSB_of(nr_of_pages);
 419        command[11] = LSB_of(nr_of_pages);
 420
 421        result = sddr09_send_scsi_command(us, command, 12);
 422
 423        if (result) {
 424                usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 425                             x, result);
 426                return result;
 427        }
 428
 429        result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 430                                       buf, bulklen, use_sg, NULL);
 431
 432        if (result != USB_STOR_XFER_GOOD) {
 433                usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 434                             x, result);
 435                return -EIO;
 436        }
 437        return 0;
 438}
 439
 440/*
 441 * Read Data
 442 *
 443 * fromaddress counts data shorts:
 444 * increasing it by 256 shifts the bytestream by 512 bytes;
 445 * the last 8 bits are ignored.
 446 *
 447 * nr_of_pages counts pages of size (1 << pageshift).
 448 */
 449static int
 450sddr09_read20(struct us_data *us, unsigned long fromaddress,
 451              int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 452        int bulklen = nr_of_pages << pageshift;
 453
 454        /* The last 8 bits of fromaddress are ignored. */
 455        return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 456                            buf, use_sg);
 457}
 458
 459/*
 460 * Read Blockwise Control
 461 *
 462 * fromaddress gives the starting position (as in read data;
 463 * the last 8 bits are ignored); increasing it by 32*256 shifts
 464 * the output stream by 64 bytes.
 465 *
 466 * count counts control groups of size (1 << controlshift).
 467 * For me, controlshift = 6. Is this constant?
 468 *
 469 * After getting one control group, jump to the next block
 470 * (fromaddress += 8192).
 471 */
 472static int
 473sddr09_read21(struct us_data *us, unsigned long fromaddress,
 474              int count, int controlshift, unsigned char *buf, int use_sg) {
 475
 476        int bulklen = (count << controlshift);
 477        return sddr09_readX(us, 1, fromaddress, count, bulklen,
 478                            buf, use_sg);
 479}
 480
 481/*
 482 * Read both Data and Control
 483 *
 484 * fromaddress counts data shorts, ignoring control:
 485 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 486 * the last 8 bits are ignored.
 487 *
 488 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 489 */
 490static int
 491sddr09_read22(struct us_data *us, unsigned long fromaddress,
 492              int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 493
 494        int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 495        usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 496        return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 497                            buf, use_sg);
 498}
 499
 500#if 0
 501/*
 502 * Read Pagewise Control
 503 *
 504 * fromaddress gives the starting position (as in read data;
 505 * the last 8 bits are ignored); increasing it by 256 shifts
 506 * the output stream by 64 bytes.
 507 *
 508 * count counts control groups of size (1 << controlshift).
 509 * For me, controlshift = 6. Is this constant?
 510 *
 511 * After getting one control group, jump to the next page
 512 * (fromaddress += 256).
 513 */
 514static int
 515sddr09_read23(struct us_data *us, unsigned long fromaddress,
 516              int count, int controlshift, unsigned char *buf, int use_sg) {
 517
 518        int bulklen = (count << controlshift);
 519        return sddr09_readX(us, 3, fromaddress, count, bulklen,
 520                            buf, use_sg);
 521}
 522#endif
 523
 524/*
 525 * Erase Command: 12 bytes.
 526 * byte 0: opcode: EA
 527 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 528 * 
 529 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 530 * The byte address being erased is 2*Eaddress.
 531 * The CIS cannot be erased.
 532 */
 533static int
 534sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 535        unsigned char *command = us->iobuf;
 536        int result;
 537
 538        usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 539
 540        memset(command, 0, 12);
 541        command[0] = 0xEA;
 542        command[1] = LUNBITS;
 543        command[6] = MSB_of(Eaddress>>16);
 544        command[7] = LSB_of(Eaddress>>16);
 545        command[8] = MSB_of(Eaddress & 0xFFFF);
 546        command[9] = LSB_of(Eaddress & 0xFFFF);
 547
 548        result = sddr09_send_scsi_command(us, command, 12);
 549
 550        if (result)
 551                usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 552                             result);
 553
 554        return result;
 555}
 556
 557/*
 558 * Write CIS Command: 12 bytes.
 559 * byte 0: opcode: EE
 560 * bytes 2-5: write address in shorts
 561 * bytes 10-11: sector count
 562 *
 563 * This writes at the indicated address. Don't know how it differs
 564 * from E9. Maybe it does not erase? However, it will also write to
 565 * the CIS.
 566 *
 567 * When two such commands on the same page follow each other directly,
 568 * the second one is not done.
 569 */
 570
 571/*
 572 * Write Command: 12 bytes.
 573 * byte 0: opcode: E9
 574 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 575 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 576 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 577 *
 578 * If write address equals erase address, the erase is done first,
 579 * otherwise the write is done first. When erase address equals zero
 580 * no erase is done?
 581 */
 582static int
 583sddr09_writeX(struct us_data *us,
 584              unsigned long Waddress, unsigned long Eaddress,
 585              int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 586
 587        unsigned char *command = us->iobuf;
 588        int result;
 589
 590        command[0] = 0xE9;
 591        command[1] = LUNBITS;
 592
 593        command[2] = MSB_of(Waddress>>16);
 594        command[3] = LSB_of(Waddress>>16);
 595        command[4] = MSB_of(Waddress & 0xFFFF);
 596        command[5] = LSB_of(Waddress & 0xFFFF);
 597
 598        command[6] = MSB_of(Eaddress>>16);
 599        command[7] = LSB_of(Eaddress>>16);
 600        command[8] = MSB_of(Eaddress & 0xFFFF);
 601        command[9] = LSB_of(Eaddress & 0xFFFF);
 602
 603        command[10] = MSB_of(nr_of_pages);
 604        command[11] = LSB_of(nr_of_pages);
 605
 606        result = sddr09_send_scsi_command(us, command, 12);
 607
 608        if (result) {
 609                usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 610                             result);
 611                return result;
 612        }
 613
 614        result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 615                                       buf, bulklen, use_sg, NULL);
 616
 617        if (result != USB_STOR_XFER_GOOD) {
 618                usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 619                             result);
 620                return -EIO;
 621        }
 622        return 0;
 623}
 624
 625/* erase address, write same address */
 626static int
 627sddr09_write_inplace(struct us_data *us, unsigned long address,
 628                     int nr_of_pages, int pageshift, unsigned char *buf,
 629                     int use_sg) {
 630        int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 631        return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 632                             buf, use_sg);
 633}
 634
 635#if 0
 636/*
 637 * Read Scatter Gather Command: 3+4n bytes.
 638 * byte 0: opcode E7
 639 * byte 2: n
 640 * bytes 4i-1,4i,4i+1: page address
 641 * byte 4i+2: page count
 642 * (i=1..n)
 643 *
 644 * This reads several pages from the card to a single memory buffer.
 645 * The last two bits of byte 1 have the same meaning as for E8.
 646 */
 647static int
 648sddr09_read_sg_test_only(struct us_data *us) {
 649        unsigned char *command = us->iobuf;
 650        int result, bulklen, nsg, ct;
 651        unsigned char *buf;
 652        unsigned long address;
 653
 654        nsg = bulklen = 0;
 655        command[0] = 0xE7;
 656        command[1] = LUNBITS;
 657        command[2] = 0;
 658        address = 040000; ct = 1;
 659        nsg++;
 660        bulklen += (ct << 9);
 661        command[4*nsg+2] = ct;
 662        command[4*nsg+1] = ((address >> 9) & 0xFF);
 663        command[4*nsg+0] = ((address >> 17) & 0xFF);
 664        command[4*nsg-1] = ((address >> 25) & 0xFF);
 665
 666        address = 0340000; ct = 1;
 667        nsg++;
 668        bulklen += (ct << 9);
 669        command[4*nsg+2] = ct;
 670        command[4*nsg+1] = ((address >> 9) & 0xFF);
 671        command[4*nsg+0] = ((address >> 17) & 0xFF);
 672        command[4*nsg-1] = ((address >> 25) & 0xFF);
 673
 674        address = 01000000; ct = 2;
 675        nsg++;
 676        bulklen += (ct << 9);
 677        command[4*nsg+2] = ct;
 678        command[4*nsg+1] = ((address >> 9) & 0xFF);
 679        command[4*nsg+0] = ((address >> 17) & 0xFF);
 680        command[4*nsg-1] = ((address >> 25) & 0xFF);
 681
 682        command[2] = nsg;
 683
 684        result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 685
 686        if (result) {
 687                usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 688                             result);
 689                return result;
 690        }
 691
 692        buf = kmalloc(bulklen, GFP_NOIO);
 693        if (!buf)
 694                return -ENOMEM;
 695
 696        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 697                                       buf, bulklen, NULL);
 698        kfree(buf);
 699        if (result != USB_STOR_XFER_GOOD) {
 700                usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 701                             result);
 702                return -EIO;
 703        }
 704
 705        return 0;
 706}
 707#endif
 708
 709/*
 710 * Read Status Command: 12 bytes.
 711 * byte 0: opcode: EC
 712 *
 713 * Returns 64 bytes, all zero except for the first.
 714 * bit 0: 1: Error
 715 * bit 5: 1: Suspended
 716 * bit 6: 1: Ready
 717 * bit 7: 1: Not write-protected
 718 */
 719
 720static int
 721sddr09_read_status(struct us_data *us, unsigned char *status) {
 722
 723        unsigned char *command = us->iobuf;
 724        unsigned char *data = us->iobuf;
 725        int result;
 726
 727        usb_stor_dbg(us, "Reading status...\n");
 728
 729        memset(command, 0, 12);
 730        command[0] = 0xEC;
 731        command[1] = LUNBITS;
 732
 733        result = sddr09_send_scsi_command(us, command, 12);
 734        if (result)
 735                return result;
 736
 737        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 738                                       data, 64, NULL);
 739        *status = data[0];
 740        return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 741}
 742
 743static int
 744sddr09_read_data(struct us_data *us,
 745                 unsigned long address,
 746                 unsigned int sectors) {
 747
 748        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 749        unsigned char *buffer;
 750        unsigned int lba, maxlba, pba;
 751        unsigned int page, pages;
 752        unsigned int len, offset;
 753        struct scatterlist *sg;
 754        int result;
 755
 756        // Figure out the initial LBA and page
 757        lba = address >> info->blockshift;
 758        page = (address & info->blockmask);
 759        maxlba = info->capacity >> (info->pageshift + info->blockshift);
 760        if (lba >= maxlba)
 761                return -EIO;
 762
 763        // Since we only read in one block at a time, we have to create
 764        // a bounce buffer and move the data a piece at a time between the
 765        // bounce buffer and the actual transfer buffer.
 766
 767        len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 768        buffer = kmalloc(len, GFP_NOIO);
 769        if (!buffer)
 770                return -ENOMEM;
 771
 772        // This could be made much more efficient by checking for
 773        // contiguous LBA's. Another exercise left to the student.
 774
 775        result = 0;
 776        offset = 0;
 777        sg = NULL;
 778
 779        while (sectors > 0) {
 780
 781                /* Find number of pages we can read in this block */
 782                pages = min(sectors, info->blocksize - page);
 783                len = pages << info->pageshift;
 784
 785                /* Not overflowing capacity? */
 786                if (lba >= maxlba) {
 787                        usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 788                                     lba, maxlba);
 789                        result = -EIO;
 790                        break;
 791                }
 792
 793                /* Find where this lba lives on disk */
 794                pba = info->lba_to_pba[lba];
 795
 796                if (pba == UNDEF) {     /* this lba was never written */
 797
 798                        usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 799                                     pages, lba, page);
 800
 801                        /*
 802                         * This is not really an error. It just means
 803                         * that the block has never been written.
 804                         * Instead of returning an error
 805                         * it is better to return all zero data.
 806                         */
 807
 808                        memset(buffer, 0, len);
 809
 810                } else {
 811                        usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 812                                     pages, pba, lba, page);
 813
 814                        address = ((pba << info->blockshift) + page) << 
 815                                info->pageshift;
 816
 817                        result = sddr09_read20(us, address>>1,
 818                                        pages, info->pageshift, buffer, 0);
 819                        if (result)
 820                                break;
 821                }
 822
 823                // Store the data in the transfer buffer
 824                usb_stor_access_xfer_buf(buffer, len, us->srb,
 825                                &sg, &offset, TO_XFER_BUF);
 826
 827                page = 0;
 828                lba++;
 829                sectors -= pages;
 830        }
 831
 832        kfree(buffer);
 833        return result;
 834}
 835
 836static unsigned int
 837sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 838        static unsigned int lastpba = 1;
 839        int zonestart, end, i;
 840
 841        zonestart = (lba/1000) << 10;
 842        end = info->capacity >> (info->blockshift + info->pageshift);
 843        end -= zonestart;
 844        if (end > 1024)
 845                end = 1024;
 846
 847        for (i = lastpba+1; i < end; i++) {
 848                if (info->pba_to_lba[zonestart+i] == UNDEF) {
 849                        lastpba = i;
 850                        return zonestart+i;
 851                }
 852        }
 853        for (i = 0; i <= lastpba; i++) {
 854                if (info->pba_to_lba[zonestart+i] == UNDEF) {
 855                        lastpba = i;
 856                        return zonestart+i;
 857                }
 858        }
 859        return 0;
 860}
 861
 862static int
 863sddr09_write_lba(struct us_data *us, unsigned int lba,
 864                 unsigned int page, unsigned int pages,
 865                 unsigned char *ptr, unsigned char *blockbuffer) {
 866
 867        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 868        unsigned long address;
 869        unsigned int pba, lbap;
 870        unsigned int pagelen;
 871        unsigned char *bptr, *cptr, *xptr;
 872        unsigned char ecc[3];
 873        int i, result, isnew;
 874
 875        lbap = ((lba % 1000) << 1) | 0x1000;
 876        if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 877                lbap ^= 1;
 878        pba = info->lba_to_pba[lba];
 879        isnew = 0;
 880
 881        if (pba == UNDEF) {
 882                pba = sddr09_find_unused_pba(info, lba);
 883                if (!pba) {
 884                        printk(KERN_WARNING
 885                               "sddr09_write_lba: Out of unused blocks\n");
 886                        return -ENOSPC;
 887                }
 888                info->pba_to_lba[pba] = lba;
 889                info->lba_to_pba[lba] = pba;
 890                isnew = 1;
 891        }
 892
 893        if (pba == 1) {
 894                /*
 895                 * Maybe it is impossible to write to PBA 1.
 896                 * Fake success, but don't do anything.
 897                 */
 898                printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 899                return 0;
 900        }
 901
 902        pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 903
 904        /* read old contents */
 905        address = (pba << (info->pageshift + info->blockshift));
 906        result = sddr09_read22(us, address>>1, info->blocksize,
 907                               info->pageshift, blockbuffer, 0);
 908        if (result)
 909                return result;
 910
 911        /* check old contents and fill lba */
 912        for (i = 0; i < info->blocksize; i++) {
 913                bptr = blockbuffer + i*pagelen;
 914                cptr = bptr + info->pagesize;
 915                nand_compute_ecc(bptr, ecc);
 916                if (!nand_compare_ecc(cptr+13, ecc)) {
 917                        usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 918                                     i, pba);
 919                        nand_store_ecc(cptr+13, ecc);
 920                }
 921                nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 922                if (!nand_compare_ecc(cptr+8, ecc)) {
 923                        usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 924                                     i, pba);
 925                        nand_store_ecc(cptr+8, ecc);
 926                }
 927                cptr[6] = cptr[11] = MSB_of(lbap);
 928                cptr[7] = cptr[12] = LSB_of(lbap);
 929        }
 930
 931        /* copy in new stuff and compute ECC */
 932        xptr = ptr;
 933        for (i = page; i < page+pages; i++) {
 934                bptr = blockbuffer + i*pagelen;
 935                cptr = bptr + info->pagesize;
 936                memcpy(bptr, xptr, info->pagesize);
 937                xptr += info->pagesize;
 938                nand_compute_ecc(bptr, ecc);
 939                nand_store_ecc(cptr+13, ecc);
 940                nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 941                nand_store_ecc(cptr+8, ecc);
 942        }
 943
 944        usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 945
 946        result = sddr09_write_inplace(us, address>>1, info->blocksize,
 947                                      info->pageshift, blockbuffer, 0);
 948
 949        usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 950
 951#if 0
 952        {
 953                unsigned char status = 0;
 954                int result2 = sddr09_read_status(us, &status);
 955                if (result2)
 956                        usb_stor_dbg(us, "cannot read status\n");
 957                else if (status != 0xc0)
 958                        usb_stor_dbg(us, "status after write: 0x%x\n", status);
 959        }
 960#endif
 961
 962#if 0
 963        {
 964                int result2 = sddr09_test_unit_ready(us);
 965        }
 966#endif
 967
 968        return result;
 969}
 970
 971static int
 972sddr09_write_data(struct us_data *us,
 973                  unsigned long address,
 974                  unsigned int sectors) {
 975
 976        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 977        unsigned int lba, maxlba, page, pages;
 978        unsigned int pagelen, blocklen;
 979        unsigned char *blockbuffer;
 980        unsigned char *buffer;
 981        unsigned int len, offset;
 982        struct scatterlist *sg;
 983        int result;
 984
 985        /* Figure out the initial LBA and page */
 986        lba = address >> info->blockshift;
 987        page = (address & info->blockmask);
 988        maxlba = info->capacity >> (info->pageshift + info->blockshift);
 989        if (lba >= maxlba)
 990                return -EIO;
 991
 992        /*
 993         * blockbuffer is used for reading in the old data, overwriting
 994         * with the new data, and performing ECC calculations
 995         */
 996
 997        /*
 998         * TODO: instead of doing kmalloc/kfree for each write,
 999         * add a bufferpointer to the info structure
1000         */
1001
1002        pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1003        blocklen = (pagelen << info->blockshift);
1004        blockbuffer = kmalloc(blocklen, GFP_NOIO);
1005        if (!blockbuffer)
1006                return -ENOMEM;
1007
1008        /*
1009         * Since we don't write the user data directly to the device,
1010         * we have to create a bounce buffer and move the data a piece
1011         * at a time between the bounce buffer and the actual transfer buffer.
1012         */
1013
1014        len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1015        buffer = kmalloc(len, GFP_NOIO);
1016        if (!buffer) {
1017                kfree(blockbuffer);
1018                return -ENOMEM;
1019        }
1020
1021        result = 0;
1022        offset = 0;
1023        sg = NULL;
1024
1025        while (sectors > 0) {
1026
1027                /* Write as many sectors as possible in this block */
1028
1029                pages = min(sectors, info->blocksize - page);
1030                len = (pages << info->pageshift);
1031
1032                /* Not overflowing capacity? */
1033                if (lba >= maxlba) {
1034                        usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1035                                     lba, maxlba);
1036                        result = -EIO;
1037                        break;
1038                }
1039
1040                /* Get the data from the transfer buffer */
1041                usb_stor_access_xfer_buf(buffer, len, us->srb,
1042                                &sg, &offset, FROM_XFER_BUF);
1043
1044                result = sddr09_write_lba(us, lba, page, pages,
1045                                buffer, blockbuffer);
1046                if (result)
1047                        break;
1048
1049                page = 0;
1050                lba++;
1051                sectors -= pages;
1052        }
1053
1054        kfree(buffer);
1055        kfree(blockbuffer);
1056
1057        return result;
1058}
1059
1060static int
1061sddr09_read_control(struct us_data *us,
1062                unsigned long address,
1063                unsigned int blocks,
1064                unsigned char *content,
1065                int use_sg) {
1066
1067        usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1068                     address, blocks);
1069
1070        return sddr09_read21(us, address, blocks,
1071                             CONTROL_SHIFT, content, use_sg);
1072}
1073
1074/*
1075 * Read Device ID Command: 12 bytes.
1076 * byte 0: opcode: ED
1077 *
1078 * Returns 2 bytes: Manufacturer ID and Device ID.
1079 * On more recent cards 3 bytes: the third byte is an option code A5
1080 * signifying that the secret command to read an 128-bit ID is available.
1081 * On still more recent cards 4 bytes: the fourth byte C0 means that
1082 * a second read ID cmd is available.
1083 */
1084static int
1085sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1086        unsigned char *command = us->iobuf;
1087        unsigned char *content = us->iobuf;
1088        int result, i;
1089
1090        memset(command, 0, 12);
1091        command[0] = 0xED;
1092        command[1] = LUNBITS;
1093
1094        result = sddr09_send_scsi_command(us, command, 12);
1095        if (result)
1096                return result;
1097
1098        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1099                        content, 64, NULL);
1100
1101        for (i = 0; i < 4; i++)
1102                deviceID[i] = content[i];
1103
1104        return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105}
1106
1107static int
1108sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1109        int result;
1110        unsigned char status;
1111        const char *wp_fmt;
1112
1113        result = sddr09_read_status(us, &status);
1114        if (result) {
1115                usb_stor_dbg(us, "read_status fails\n");
1116                return result;
1117        }
1118        if ((status & 0x80) == 0) {
1119                info->flags |= SDDR09_WP;       /* write protected */
1120                wp_fmt = " WP";
1121        } else {
1122                wp_fmt = "";
1123        }
1124        usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1125                     status & 0x40 ? " Ready" : "",
1126                     status & LUNBITS ? " Suspended" : "",
1127                     status & 0x01 ? " Error" : "");
1128
1129        return 0;
1130}
1131
1132#if 0
1133/*
1134 * Reset Command: 12 bytes.
1135 * byte 0: opcode: EB
1136 */
1137static int
1138sddr09_reset(struct us_data *us) {
1139
1140        unsigned char *command = us->iobuf;
1141
1142        memset(command, 0, 12);
1143        command[0] = 0xEB;
1144        command[1] = LUNBITS;
1145
1146        return sddr09_send_scsi_command(us, command, 12);
1147}
1148#endif
1149
1150static struct nand_flash_dev *
1151sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1152        struct nand_flash_dev *cardinfo;
1153        unsigned char deviceID[4];
1154        char blurbtxt[256];
1155        int result;
1156
1157        usb_stor_dbg(us, "Reading capacity...\n");
1158
1159        result = sddr09_read_deviceID(us, deviceID);
1160
1161        if (result) {
1162                usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1163                printk(KERN_WARNING "sddr09: could not read card info\n");
1164                return NULL;
1165        }
1166
1167        sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1168
1169        /* Byte 0 is the manufacturer */
1170        sprintf(blurbtxt + strlen(blurbtxt),
1171                ": Manuf. %s",
1172                nand_flash_manufacturer(deviceID[0]));
1173
1174        /* Byte 1 is the device type */
1175        cardinfo = nand_find_id(deviceID[1]);
1176        if (cardinfo) {
1177                /*
1178                 * MB or MiB? It is neither. A 16 MB card has
1179                 * 17301504 raw bytes, of which 16384000 are
1180                 * usable for user data.
1181                 */
1182                sprintf(blurbtxt + strlen(blurbtxt),
1183                        ", %d MB", 1<<(cardinfo->chipshift - 20));
1184        } else {
1185                sprintf(blurbtxt + strlen(blurbtxt),
1186                        ", type unrecognized");
1187        }
1188
1189        /* Byte 2 is code to signal availability of 128-bit ID */
1190        if (deviceID[2] == 0xa5) {
1191                sprintf(blurbtxt + strlen(blurbtxt),
1192                        ", 128-bit ID");
1193        }
1194
1195        /* Byte 3 announces the availability of another read ID command */
1196        if (deviceID[3] == 0xc0) {
1197                sprintf(blurbtxt + strlen(blurbtxt),
1198                        ", extra cmd");
1199        }
1200
1201        if (flags & SDDR09_WP)
1202                sprintf(blurbtxt + strlen(blurbtxt),
1203                        ", WP");
1204
1205        printk(KERN_WARNING "%s\n", blurbtxt);
1206
1207        return cardinfo;
1208}
1209
1210static int
1211sddr09_read_map(struct us_data *us) {
1212
1213        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1214        int numblocks, alloc_len, alloc_blocks;
1215        int i, j, result;
1216        unsigned char *buffer, *buffer_end, *ptr;
1217        unsigned int lba, lbact;
1218
1219        if (!info->capacity)
1220                return -1;
1221
1222        /*
1223         * size of a block is 1 << (blockshift + pageshift) bytes
1224         * divide into the total capacity to get the number of blocks
1225         */
1226
1227        numblocks = info->capacity >> (info->blockshift + info->pageshift);
1228
1229        /*
1230         * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1231         * but only use a 64 KB buffer
1232         * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1233         */
1234#define SDDR09_READ_MAP_BUFSZ 65536
1235
1236        alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1237        alloc_len = (alloc_blocks << CONTROL_SHIFT);
1238        buffer = kmalloc(alloc_len, GFP_NOIO);
1239        if (!buffer) {
1240                result = -1;
1241                goto done;
1242        }
1243        buffer_end = buffer + alloc_len;
1244
1245#undef SDDR09_READ_MAP_BUFSZ
1246
1247        kfree(info->lba_to_pba);
1248        kfree(info->pba_to_lba);
1249        info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1250        info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1251
1252        if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1253                printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1254                result = -1;
1255                goto done;
1256        }
1257
1258        for (i = 0; i < numblocks; i++)
1259                info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1260
1261        /*
1262         * Define lba-pba translation table
1263         */
1264
1265        ptr = buffer_end;
1266        for (i = 0; i < numblocks; i++) {
1267                ptr += (1 << CONTROL_SHIFT);
1268                if (ptr >= buffer_end) {
1269                        unsigned long address;
1270
1271                        address = i << (info->pageshift + info->blockshift);
1272                        result = sddr09_read_control(
1273                                us, address>>1,
1274                                min(alloc_blocks, numblocks - i),
1275                                buffer, 0);
1276                        if (result) {
1277                                result = -1;
1278                                goto done;
1279                        }
1280                        ptr = buffer;
1281                }
1282
1283                if (i == 0 || i == 1) {
1284                        info->pba_to_lba[i] = UNUSABLE;
1285                        continue;
1286                }
1287
1288                /* special PBAs have control field 0^16 */
1289                for (j = 0; j < 16; j++)
1290                        if (ptr[j] != 0)
1291                                goto nonz;
1292                info->pba_to_lba[i] = UNUSABLE;
1293                printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1294                       i);
1295                continue;
1296
1297        nonz:
1298                /* unwritten PBAs have control field FF^16 */
1299                for (j = 0; j < 16; j++)
1300                        if (ptr[j] != 0xff)
1301                                goto nonff;
1302                continue;
1303
1304        nonff:
1305                /* normal PBAs start with six FFs */
1306                if (j < 6) {
1307                        printk(KERN_WARNING
1308                               "sddr09: PBA %d has no logical mapping: "
1309                               "reserved area = %02X%02X%02X%02X "
1310                               "data status %02X block status %02X\n",
1311                               i, ptr[0], ptr[1], ptr[2], ptr[3],
1312                               ptr[4], ptr[5]);
1313                        info->pba_to_lba[i] = UNUSABLE;
1314                        continue;
1315                }
1316
1317                if ((ptr[6] >> 4) != 0x01) {
1318                        printk(KERN_WARNING
1319                               "sddr09: PBA %d has invalid address field "
1320                               "%02X%02X/%02X%02X\n",
1321                               i, ptr[6], ptr[7], ptr[11], ptr[12]);
1322                        info->pba_to_lba[i] = UNUSABLE;
1323                        continue;
1324                }
1325
1326                /* check even parity */
1327                if (parity[ptr[6] ^ ptr[7]]) {
1328                        printk(KERN_WARNING
1329                               "sddr09: Bad parity in LBA for block %d"
1330                               " (%02X %02X)\n", i, ptr[6], ptr[7]);
1331                        info->pba_to_lba[i] = UNUSABLE;
1332                        continue;
1333                }
1334
1335                lba = short_pack(ptr[7], ptr[6]);
1336                lba = (lba & 0x07FF) >> 1;
1337
1338                /*
1339                 * Every 1024 physical blocks ("zone"), the LBA numbers
1340                 * go back to zero, but are within a higher block of LBA's.
1341                 * Also, there is a maximum of 1000 LBA's per zone.
1342                 * In other words, in PBA 1024-2047 you will find LBA 0-999
1343                 * which are really LBA 1000-1999. This allows for 24 bad
1344                 * or special physical blocks per zone.
1345                 */
1346
1347                if (lba >= 1000) {
1348                        printk(KERN_WARNING
1349                               "sddr09: Bad low LBA %d for block %d\n",
1350                               lba, i);
1351                        goto possibly_erase;
1352                }
1353
1354                lba += 1000*(i/0x400);
1355
1356                if (info->lba_to_pba[lba] != UNDEF) {
1357                        printk(KERN_WARNING
1358                               "sddr09: LBA %d seen for PBA %d and %d\n",
1359                               lba, info->lba_to_pba[lba], i);
1360                        goto possibly_erase;
1361                }
1362
1363                info->pba_to_lba[i] = lba;
1364                info->lba_to_pba[lba] = i;
1365                continue;
1366
1367        possibly_erase:
1368                if (erase_bad_lba_entries) {
1369                        unsigned long address;
1370
1371                        address = (i << (info->pageshift + info->blockshift));
1372                        sddr09_erase(us, address>>1);
1373                        info->pba_to_lba[i] = UNDEF;
1374                } else
1375                        info->pba_to_lba[i] = UNUSABLE;
1376        }
1377
1378        /*
1379         * Approximate capacity. This is not entirely correct yet,
1380         * since a zone with less than 1000 usable pages leads to
1381         * missing LBAs. Especially if it is the last zone, some
1382         * LBAs can be past capacity.
1383         */
1384        lbact = 0;
1385        for (i = 0; i < numblocks; i += 1024) {
1386                int ct = 0;
1387
1388                for (j = 0; j < 1024 && i+j < numblocks; j++) {
1389                        if (info->pba_to_lba[i+j] != UNUSABLE) {
1390                                if (ct >= 1000)
1391                                        info->pba_to_lba[i+j] = SPARE;
1392                                else
1393                                        ct++;
1394                        }
1395                }
1396                lbact += ct;
1397        }
1398        info->lbact = lbact;
1399        usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1400        result = 0;
1401
1402 done:
1403        if (result != 0) {
1404                kfree(info->lba_to_pba);
1405                kfree(info->pba_to_lba);
1406                info->lba_to_pba = NULL;
1407                info->pba_to_lba = NULL;
1408        }
1409        kfree(buffer);
1410        return result;
1411}
1412
1413static void
1414sddr09_card_info_destructor(void *extra) {
1415        struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1416
1417        if (!info)
1418                return;
1419
1420        kfree(info->lba_to_pba);
1421        kfree(info->pba_to_lba);
1422}
1423
1424static int
1425sddr09_common_init(struct us_data *us) {
1426        int result;
1427
1428        /* set the configuration -- STALL is an acceptable response here */
1429        if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1430                usb_stor_dbg(us, "active config #%d != 1 ??\n",
1431                             us->pusb_dev->actconfig->desc.bConfigurationValue);
1432                return -EINVAL;
1433        }
1434
1435        result = usb_reset_configuration(us->pusb_dev);
1436        usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1437        if (result == -EPIPE) {
1438                usb_stor_dbg(us, "-- stall on control interface\n");
1439        } else if (result != 0) {
1440                /* it's not a stall, but another error -- time to bail */
1441                usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1442                return -EINVAL;
1443        }
1444
1445        us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1446        if (!us->extra)
1447                return -ENOMEM;
1448        us->extra_destructor = sddr09_card_info_destructor;
1449
1450        nand_init_ecc();
1451        return 0;
1452}
1453
1454
1455/*
1456 * This is needed at a very early stage. If this is not listed in the
1457 * unusual devices list but called from here then LUN 0 of the combo reader
1458 * is not recognized. But I do not know what precisely these calls do.
1459 */
1460static int
1461usb_stor_sddr09_dpcm_init(struct us_data *us) {
1462        int result;
1463        unsigned char *data = us->iobuf;
1464
1465        result = sddr09_common_init(us);
1466        if (result)
1467                return result;
1468
1469        result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1470        if (result) {
1471                usb_stor_dbg(us, "send_command fails\n");
1472                return result;
1473        }
1474
1475        usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1476        // get 07 02
1477
1478        result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1479        if (result) {
1480                usb_stor_dbg(us, "2nd send_command fails\n");
1481                return result;
1482        }
1483
1484        usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1485        // get 07 00
1486
1487        result = sddr09_request_sense(us, data, 18);
1488        if (result == 0 && data[2] != 0) {
1489                int j;
1490                for (j=0; j<18; j++)
1491                        printk(" %02X", data[j]);
1492                printk("\n");
1493                // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1494                // 70: current command
1495                // sense key 0, sense code 0, extd sense code 0
1496                // additional transfer length * = sizeof(data) - 7
1497                // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1498                // sense key 06, sense code 28: unit attention,
1499                // not ready to ready transition
1500        }
1501
1502        // test unit ready
1503
1504        return 0;               /* not result */
1505}
1506
1507/*
1508 * Transport for the Microtech DPCM-USB
1509 */
1510static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1511{
1512        int ret;
1513
1514        usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1515
1516        switch (srb->device->lun) {
1517        case 0:
1518
1519                /*
1520                 * LUN 0 corresponds to the CompactFlash card reader.
1521                 */
1522                ret = usb_stor_CB_transport(srb, us);
1523                break;
1524
1525        case 1:
1526
1527                /*
1528                 * LUN 1 corresponds to the SmartMedia card reader.
1529                 */
1530
1531                /*
1532                 * Set the LUN to 0 (just in case).
1533                 */
1534                srb->device->lun = 0;
1535                ret = sddr09_transport(srb, us);
1536                srb->device->lun = 1;
1537                break;
1538
1539        default:
1540            usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1541                ret = USB_STOR_TRANSPORT_ERROR;
1542                break;
1543        }
1544        return ret;
1545}
1546
1547
1548/*
1549 * Transport for the Sandisk SDDR-09
1550 */
1551static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1552{
1553        static unsigned char sensekey = 0, sensecode = 0;
1554        static unsigned char havefakesense = 0;
1555        int result, i;
1556        unsigned char *ptr = us->iobuf;
1557        unsigned long capacity;
1558        unsigned int page, pages;
1559
1560        struct sddr09_card_info *info;
1561
1562        static unsigned char inquiry_response[8] = {
1563                0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1564        };
1565
1566        /* note: no block descriptor support */
1567        static unsigned char mode_page_01[19] = {
1568                0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1569                0x01, 0x0A,
1570                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1571        };
1572
1573        info = (struct sddr09_card_info *)us->extra;
1574
1575        if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1576                /* for a faked command, we have to follow with a faked sense */
1577                memset(ptr, 0, 18);
1578                ptr[0] = 0x70;
1579                ptr[2] = sensekey;
1580                ptr[7] = 11;
1581                ptr[12] = sensecode;
1582                usb_stor_set_xfer_buf(ptr, 18, srb);
1583                sensekey = sensecode = havefakesense = 0;
1584                return USB_STOR_TRANSPORT_GOOD;
1585        }
1586
1587        havefakesense = 1;
1588
1589        /*
1590         * Dummy up a response for INQUIRY since SDDR09 doesn't
1591         * respond to INQUIRY commands
1592         */
1593
1594        if (srb->cmnd[0] == INQUIRY) {
1595                memcpy(ptr, inquiry_response, 8);
1596                fill_inquiry_response(us, ptr, 36);
1597                return USB_STOR_TRANSPORT_GOOD;
1598        }
1599
1600        if (srb->cmnd[0] == READ_CAPACITY) {
1601                struct nand_flash_dev *cardinfo;
1602
1603                sddr09_get_wp(us, info);        /* read WP bit */
1604
1605                cardinfo = sddr09_get_cardinfo(us, info->flags);
1606                if (!cardinfo) {
1607                        /* probably no media */
1608                init_error:
1609                        sensekey = 0x02;        /* not ready */
1610                        sensecode = 0x3a;       /* medium not present */
1611                        return USB_STOR_TRANSPORT_FAILED;
1612                }
1613
1614                info->capacity = (1 << cardinfo->chipshift);
1615                info->pageshift = cardinfo->pageshift;
1616                info->pagesize = (1 << info->pageshift);
1617                info->blockshift = cardinfo->blockshift;
1618                info->blocksize = (1 << info->blockshift);
1619                info->blockmask = info->blocksize - 1;
1620
1621                // map initialization, must follow get_cardinfo()
1622                if (sddr09_read_map(us)) {
1623                        /* probably out of memory */
1624                        goto init_error;
1625                }
1626
1627                // Report capacity
1628
1629                capacity = (info->lbact << info->blockshift) - 1;
1630
1631                ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1632
1633                // Report page size
1634
1635                ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1636                usb_stor_set_xfer_buf(ptr, 8, srb);
1637
1638                return USB_STOR_TRANSPORT_GOOD;
1639        }
1640
1641        if (srb->cmnd[0] == MODE_SENSE_10) {
1642                int modepage = (srb->cmnd[2] & 0x3F);
1643
1644                /*
1645                 * They ask for the Read/Write error recovery page,
1646                 * or for all pages.
1647                 */
1648                /* %% We should check DBD %% */
1649                if (modepage == 0x01 || modepage == 0x3F) {
1650                        usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1651                                     modepage);
1652
1653                        memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1654                        ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1655                        ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1656                        usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1657                        return USB_STOR_TRANSPORT_GOOD;
1658                }
1659
1660                sensekey = 0x05;        /* illegal request */
1661                sensecode = 0x24;       /* invalid field in CDB */
1662                return USB_STOR_TRANSPORT_FAILED;
1663        }
1664
1665        if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1666                return USB_STOR_TRANSPORT_GOOD;
1667
1668        havefakesense = 0;
1669
1670        if (srb->cmnd[0] == READ_10) {
1671
1672                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673                page <<= 16;
1674                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677                usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1678                             page, pages);
1679
1680                result = sddr09_read_data(us, page, pages);
1681                return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682                                USB_STOR_TRANSPORT_ERROR);
1683        }
1684
1685        if (srb->cmnd[0] == WRITE_10) {
1686
1687                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1688                page <<= 16;
1689                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1690                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1691
1692                usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1693                             page, pages);
1694
1695                result = sddr09_write_data(us, page, pages);
1696                return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1697                                USB_STOR_TRANSPORT_ERROR);
1698        }
1699
1700        /*
1701         * catch-all for all other commands, except
1702         * pass TEST_UNIT_READY and REQUEST_SENSE through
1703         */
1704        if (srb->cmnd[0] != TEST_UNIT_READY &&
1705            srb->cmnd[0] != REQUEST_SENSE) {
1706                sensekey = 0x05;        /* illegal request */
1707                sensecode = 0x20;       /* invalid command */
1708                havefakesense = 1;
1709                return USB_STOR_TRANSPORT_FAILED;
1710        }
1711
1712        for (; srb->cmd_len<12; srb->cmd_len++)
1713                srb->cmnd[srb->cmd_len] = 0;
1714
1715        srb->cmnd[1] = LUNBITS;
1716
1717        ptr[0] = 0;
1718        for (i=0; i<12; i++)
1719                sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1720
1721        usb_stor_dbg(us, "Send control for command %s\n", ptr);
1722
1723        result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1724        if (result) {
1725                usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1726                             result);
1727                return USB_STOR_TRANSPORT_ERROR;
1728        }
1729
1730        if (scsi_bufflen(srb) == 0)
1731                return USB_STOR_TRANSPORT_GOOD;
1732
1733        if (srb->sc_data_direction == DMA_TO_DEVICE ||
1734            srb->sc_data_direction == DMA_FROM_DEVICE) {
1735                unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1736                                ? us->send_bulk_pipe : us->recv_bulk_pipe;
1737
1738                usb_stor_dbg(us, "%s %d bytes\n",
1739                             (srb->sc_data_direction == DMA_TO_DEVICE) ?
1740                             "sending" : "receiving",
1741                             scsi_bufflen(srb));
1742
1743                result = usb_stor_bulk_srb(us, pipe, srb);
1744
1745                return (result == USB_STOR_XFER_GOOD ?
1746                        USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1747        } 
1748
1749        return USB_STOR_TRANSPORT_GOOD;
1750}
1751
1752/*
1753 * Initialization routine for the sddr09 subdriver
1754 */
1755static int
1756usb_stor_sddr09_init(struct us_data *us) {
1757        return sddr09_common_init(us);
1758}
1759
1760static struct scsi_host_template sddr09_host_template;
1761
1762static int sddr09_probe(struct usb_interface *intf,
1763                         const struct usb_device_id *id)
1764{
1765        struct us_data *us;
1766        int result;
1767
1768        result = usb_stor_probe1(&us, intf, id,
1769                        (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1770                        &sddr09_host_template);
1771        if (result)
1772                return result;
1773
1774        if (us->protocol == USB_PR_DPCM_USB) {
1775                us->transport_name = "Control/Bulk-EUSB/SDDR09";
1776                us->transport = dpcm_transport;
1777                us->transport_reset = usb_stor_CB_reset;
1778                us->max_lun = 1;
1779        } else {
1780                us->transport_name = "EUSB/SDDR09";
1781                us->transport = sddr09_transport;
1782                us->transport_reset = usb_stor_CB_reset;
1783                us->max_lun = 0;
1784        }
1785
1786        result = usb_stor_probe2(us);
1787        return result;
1788}
1789
1790static struct usb_driver sddr09_driver = {
1791        .name =         DRV_NAME,
1792        .probe =        sddr09_probe,
1793        .disconnect =   usb_stor_disconnect,
1794        .suspend =      usb_stor_suspend,
1795        .resume =       usb_stor_resume,
1796        .reset_resume = usb_stor_reset_resume,
1797        .pre_reset =    usb_stor_pre_reset,
1798        .post_reset =   usb_stor_post_reset,
1799        .id_table =     sddr09_usb_ids,
1800        .soft_unbind =  1,
1801        .no_dynamic_id = 1,
1802};
1803
1804module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
1805