linux/drivers/video/fbdev/sa1100fb.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/video/sa1100fb.c
   3 *
   4 *  Copyright (C) 1999 Eric A. Thomas
   5 *   Based on acornfb.c Copyright (C) Russell King.
   6 *
   7 * This file is subject to the terms and conditions of the GNU General Public
   8 * License.  See the file COPYING in the main directory of this archive for
   9 * more details.
  10 *
  11 *              StrongARM 1100 LCD Controller Frame Buffer Driver
  12 *
  13 * Please direct your questions and comments on this driver to the following
  14 * email address:
  15 *
  16 *      linux-arm-kernel@lists.arm.linux.org.uk
  17 *
  18 * Clean patches should be sent to the ARM Linux Patch System.  Please see the
  19 * following web page for more information:
  20 *
  21 *      http://www.arm.linux.org.uk/developer/patches/info.shtml
  22 *
  23 * Thank you.
  24 *
  25 * Known problems:
  26 *      - With the Neponset plugged into an Assabet, LCD powerdown
  27 *        doesn't work (LCD stays powered up).  Therefore we shouldn't
  28 *        blank the screen.
  29 *      - We don't limit the CPU clock rate nor the mode selection
  30 *        according to the available SDRAM bandwidth.
  31 *
  32 * Other notes:
  33 *      - Linear grayscale palettes and the kernel.
  34 *        Such code does not belong in the kernel.  The kernel frame buffer
  35 *        drivers do not expect a linear colourmap, but a colourmap based on
  36 *        the VT100 standard mapping.
  37 *
  38 *        If your _userspace_ requires a linear colourmap, then the setup of
  39 *        such a colourmap belongs _in userspace_, not in the kernel.  Code
  40 *        to set the colourmap correctly from user space has been sent to
  41 *        David Neuer.  It's around 8 lines of C code, plus another 4 to
  42 *        detect if we are using grayscale.
  43 *
  44 *      - The following must never be specified in a panel definition:
  45 *           LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
  46 *
  47 *      - The following should be specified:
  48 *           either LCCR0_Color or LCCR0_Mono
  49 *           either LCCR0_Sngl or LCCR0_Dual
  50 *           either LCCR0_Act or LCCR0_Pas
  51 *           either LCCR3_OutEnH or LCCD3_OutEnL
  52 *           either LCCR3_PixRsEdg or LCCR3_PixFlEdg
  53 *           either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
  54 *
  55 * Code Status:
  56 * 1999/04/01:
  57 *      - Driver appears to be working for Brutus 320x200x8bpp mode.  Other
  58 *        resolutions are working, but only the 8bpp mode is supported.
  59 *        Changes need to be made to the palette encode and decode routines
  60 *        to support 4 and 16 bpp modes.  
  61 *        Driver is not designed to be a module.  The FrameBuffer is statically
  62 *        allocated since dynamic allocation of a 300k buffer cannot be 
  63 *        guaranteed. 
  64 *
  65 * 1999/06/17:
  66 *      - FrameBuffer memory is now allocated at run-time when the
  67 *        driver is initialized.    
  68 *
  69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
  70 *      - Big cleanup for dynamic selection of machine type at run time.
  71 *
  72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
  73 *      - Support for Bitsy aka Compaq iPAQ H3600 added.
  74 *
  75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
  76 *             Jeff Sutherland <jsutherland@accelent.com>
  77 *      - Resolved an issue caused by a change made to the Assabet's PLD 
  78 *        earlier this year which broke the framebuffer driver for newer 
  79 *        Phase 4 Assabets.  Some other parameters were changed to optimize
  80 *        for the Sharp display.
  81 *
  82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
  83 *      - XP860 support added
  84 *
  85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
  86 *      - Allows standard options to be passed on the kernel command line
  87 *        for most common passive displays.
  88 *
  89 * 2000/08/29:
  90 *      - s/save_flags_cli/local_irq_save/
  91 *      - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
  92 *
  93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
  94 *      - Updated LART stuff. Fixed some minor bugs.
  95 *
  96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
  97 *      - Pangolin support added
  98 *
  99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
 100 *      - Huw Webpanel support added
 101 *
 102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
 103 *      - Freebird add
 104 *
 105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> 
 106 *             Cliff Brake <cbrake@accelent.com>
 107 *      - Added PM callback
 108 *
 109 * 2001/05/26: <rmk@arm.linux.org.uk>
 110 *      - Fix 16bpp so that (a) we use the right colours rather than some
 111 *        totally random colour depending on what was in page 0, and (b)
 112 *        we don't de-reference a NULL pointer.
 113 *      - remove duplicated implementation of consistent_alloc()
 114 *      - convert dma address types to dma_addr_t
 115 *      - remove unused 'montype' stuff
 116 *      - remove redundant zero inits of init_var after the initial
 117 *        memset.
 118 *      - remove allow_modeset (acornfb idea does not belong here)
 119 *
 120 * 2001/05/28: <rmk@arm.linux.org.uk>
 121 *      - massive cleanup - move machine dependent data into structures
 122 *      - I've left various #warnings in - if you see one, and know
 123 *        the hardware concerned, please get in contact with me.
 124 *
 125 * 2001/05/31: <rmk@arm.linux.org.uk>
 126 *      - Fix LCCR1 HSW value, fix all machine type specifications to
 127 *        keep values in line.  (Please check your machine type specs)
 128 *
 129 * 2001/06/10: <rmk@arm.linux.org.uk>
 130 *      - Fiddle with the LCD controller from task context only; mainly
 131 *        so that we can run with interrupts on, and sleep.
 132 *      - Convert #warnings into #errors.  No pain, no gain. ;)
 133 *
 134 * 2001/06/14: <rmk@arm.linux.org.uk>
 135 *      - Make the palette BPS value for 12bpp come out correctly.
 136 *      - Take notice of "greyscale" on any colour depth.
 137 *      - Make truecolor visuals use the RGB channel encoding information.
 138 *
 139 * 2001/07/02: <rmk@arm.linux.org.uk>
 140 *      - Fix colourmap problems.
 141 *
 142 * 2001/07/13: <abraham@2d3d.co.za>
 143 *      - Added support for the ICP LCD-Kit01 on LART. This LCD is
 144 *        manufactured by Prime View, model no V16C6448AB
 145 *
 146 * 2001/07/23: <rmk@arm.linux.org.uk>
 147 *      - Hand merge version from handhelds.org CVS tree.  See patch
 148 *        notes for 595/1 for more information.
 149 *      - Drop 12bpp (it's 16bpp with different colour register mappings).
 150 *      - This hardware can not do direct colour.  Therefore we don't
 151 *        support it.
 152 *
 153 * 2001/07/27: <rmk@arm.linux.org.uk>
 154 *      - Halve YRES on dual scan LCDs.
 155 *
 156 * 2001/08/22: <rmk@arm.linux.org.uk>
 157 *      - Add b/w iPAQ pixclock value.
 158 *
 159 * 2001/10/12: <rmk@arm.linux.org.uk>
 160 *      - Add patch 681/1 and clean up stork definitions.
 161 */
 162
 163#include <linux/module.h>
 164#include <linux/kernel.h>
 165#include <linux/sched.h>
 166#include <linux/errno.h>
 167#include <linux/string.h>
 168#include <linux/interrupt.h>
 169#include <linux/slab.h>
 170#include <linux/mm.h>
 171#include <linux/fb.h>
 172#include <linux/delay.h>
 173#include <linux/init.h>
 174#include <linux/ioport.h>
 175#include <linux/cpufreq.h>
 176#include <linux/gpio.h>
 177#include <linux/platform_device.h>
 178#include <linux/dma-mapping.h>
 179#include <linux/mutex.h>
 180#include <linux/io.h>
 181#include <linux/clk.h>
 182
 183#include <video/sa1100fb.h>
 184
 185#include <mach/hardware.h>
 186#include <asm/mach-types.h>
 187#include <mach/shannon.h>
 188
 189/*
 190 * Complain if VAR is out of range.
 191 */
 192#define DEBUG_VAR 1
 193
 194#include "sa1100fb.h"
 195
 196static const struct sa1100fb_rgb rgb_4 = {
 197        .red    = { .offset = 0,  .length = 4, },
 198        .green  = { .offset = 0,  .length = 4, },
 199        .blue   = { .offset = 0,  .length = 4, },
 200        .transp = { .offset = 0,  .length = 0, },
 201};
 202
 203static const struct sa1100fb_rgb rgb_8 = {
 204        .red    = { .offset = 0,  .length = 8, },
 205        .green  = { .offset = 0,  .length = 8, },
 206        .blue   = { .offset = 0,  .length = 8, },
 207        .transp = { .offset = 0,  .length = 0, },
 208};
 209
 210static const struct sa1100fb_rgb def_rgb_16 = {
 211        .red    = { .offset = 11, .length = 5, },
 212        .green  = { .offset = 5,  .length = 6, },
 213        .blue   = { .offset = 0,  .length = 5, },
 214        .transp = { .offset = 0,  .length = 0, },
 215};
 216
 217
 218
 219static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
 220static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
 221
 222static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
 223{
 224        unsigned long flags;
 225
 226        local_irq_save(flags);
 227        /*
 228         * We need to handle two requests being made at the same time.
 229         * There are two important cases:
 230         *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
 231         *     We must perform the unblanking, which will do our REENABLE for us.
 232         *  2. When we are blanking, but immediately unblank before we have
 233         *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
 234         */
 235        if (fbi->task_state == C_ENABLE && state == C_REENABLE)
 236                state = (u_int) -1;
 237        if (fbi->task_state == C_DISABLE && state == C_ENABLE)
 238                state = C_REENABLE;
 239
 240        if (state != (u_int)-1) {
 241                fbi->task_state = state;
 242                schedule_work(&fbi->task);
 243        }
 244        local_irq_restore(flags);
 245}
 246
 247static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
 248{
 249        chan &= 0xffff;
 250        chan >>= 16 - bf->length;
 251        return chan << bf->offset;
 252}
 253
 254/*
 255 * Convert bits-per-pixel to a hardware palette PBS value.
 256 */
 257static inline u_int palette_pbs(struct fb_var_screeninfo *var)
 258{
 259        int ret = 0;
 260        switch (var->bits_per_pixel) {
 261        case 4:  ret = 0 << 12; break;
 262        case 8:  ret = 1 << 12; break;
 263        case 16: ret = 2 << 12; break;
 264        }
 265        return ret;
 266}
 267
 268static int
 269sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
 270                       u_int trans, struct fb_info *info)
 271{
 272        struct sa1100fb_info *fbi =
 273                container_of(info, struct sa1100fb_info, fb);
 274        u_int val, ret = 1;
 275
 276        if (regno < fbi->palette_size) {
 277                val = ((red >> 4) & 0xf00);
 278                val |= ((green >> 8) & 0x0f0);
 279                val |= ((blue >> 12) & 0x00f);
 280
 281                if (regno == 0)
 282                        val |= palette_pbs(&fbi->fb.var);
 283
 284                fbi->palette_cpu[regno] = val;
 285                ret = 0;
 286        }
 287        return ret;
 288}
 289
 290static int
 291sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
 292                   u_int trans, struct fb_info *info)
 293{
 294        struct sa1100fb_info *fbi =
 295                container_of(info, struct sa1100fb_info, fb);
 296        unsigned int val;
 297        int ret = 1;
 298
 299        /*
 300         * If inverse mode was selected, invert all the colours
 301         * rather than the register number.  The register number
 302         * is what you poke into the framebuffer to produce the
 303         * colour you requested.
 304         */
 305        if (fbi->inf->cmap_inverse) {
 306                red   = 0xffff - red;
 307                green = 0xffff - green;
 308                blue  = 0xffff - blue;
 309        }
 310
 311        /*
 312         * If greyscale is true, then we convert the RGB value
 313         * to greyscale no mater what visual we are using.
 314         */
 315        if (fbi->fb.var.grayscale)
 316                red = green = blue = (19595 * red + 38470 * green +
 317                                        7471 * blue) >> 16;
 318
 319        switch (fbi->fb.fix.visual) {
 320        case FB_VISUAL_TRUECOLOR:
 321                /*
 322                 * 12 or 16-bit True Colour.  We encode the RGB value
 323                 * according to the RGB bitfield information.
 324                 */
 325                if (regno < 16) {
 326                        u32 *pal = fbi->fb.pseudo_palette;
 327
 328                        val  = chan_to_field(red, &fbi->fb.var.red);
 329                        val |= chan_to_field(green, &fbi->fb.var.green);
 330                        val |= chan_to_field(blue, &fbi->fb.var.blue);
 331
 332                        pal[regno] = val;
 333                        ret = 0;
 334                }
 335                break;
 336
 337        case FB_VISUAL_STATIC_PSEUDOCOLOR:
 338        case FB_VISUAL_PSEUDOCOLOR:
 339                ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
 340                break;
 341        }
 342
 343        return ret;
 344}
 345
 346#ifdef CONFIG_CPU_FREQ
 347/*
 348 *  sa1100fb_display_dma_period()
 349 *    Calculate the minimum period (in picoseconds) between two DMA
 350 *    requests for the LCD controller.  If we hit this, it means we're
 351 *    doing nothing but LCD DMA.
 352 */
 353static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
 354{
 355        /*
 356         * Period = pixclock * bits_per_byte * bytes_per_transfer
 357         *              / memory_bits_per_pixel;
 358         */
 359        return var->pixclock * 8 * 16 / var->bits_per_pixel;
 360}
 361#endif
 362
 363/*
 364 *  sa1100fb_check_var():
 365 *    Round up in the following order: bits_per_pixel, xres,
 366 *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
 367 *    bitfields, horizontal timing, vertical timing.
 368 */
 369static int
 370sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
 371{
 372        struct sa1100fb_info *fbi =
 373                container_of(info, struct sa1100fb_info, fb);
 374        int rgbidx;
 375
 376        if (var->xres < MIN_XRES)
 377                var->xres = MIN_XRES;
 378        if (var->yres < MIN_YRES)
 379                var->yres = MIN_YRES;
 380        if (var->xres > fbi->inf->xres)
 381                var->xres = fbi->inf->xres;
 382        if (var->yres > fbi->inf->yres)
 383                var->yres = fbi->inf->yres;
 384        var->xres_virtual = max(var->xres_virtual, var->xres);
 385        var->yres_virtual = max(var->yres_virtual, var->yres);
 386
 387        dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
 388        switch (var->bits_per_pixel) {
 389        case 4:
 390                rgbidx = RGB_4;
 391                break;
 392        case 8:
 393                rgbidx = RGB_8;
 394                break;
 395        case 16:
 396                rgbidx = RGB_16;
 397                break;
 398        default:
 399                return -EINVAL;
 400        }
 401
 402        /*
 403         * Copy the RGB parameters for this display
 404         * from the machine specific parameters.
 405         */
 406        var->red    = fbi->rgb[rgbidx]->red;
 407        var->green  = fbi->rgb[rgbidx]->green;
 408        var->blue   = fbi->rgb[rgbidx]->blue;
 409        var->transp = fbi->rgb[rgbidx]->transp;
 410
 411        dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
 412                var->red.length, var->green.length, var->blue.length,
 413                var->transp.length);
 414
 415        dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
 416                var->red.offset, var->green.offset, var->blue.offset,
 417                var->transp.offset);
 418
 419#ifdef CONFIG_CPU_FREQ
 420        dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
 421                sa1100fb_display_dma_period(var),
 422                clk_get_rate(fbi->clk) / 1000);
 423#endif
 424
 425        return 0;
 426}
 427
 428static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
 429{
 430        if (fbi->inf->set_visual)
 431                fbi->inf->set_visual(visual);
 432}
 433
 434/*
 435 * sa1100fb_set_par():
 436 *      Set the user defined part of the display for the specified console
 437 */
 438static int sa1100fb_set_par(struct fb_info *info)
 439{
 440        struct sa1100fb_info *fbi =
 441                container_of(info, struct sa1100fb_info, fb);
 442        struct fb_var_screeninfo *var = &info->var;
 443        unsigned long palette_mem_size;
 444
 445        dev_dbg(fbi->dev, "set_par\n");
 446
 447        if (var->bits_per_pixel == 16)
 448                fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
 449        else if (!fbi->inf->cmap_static)
 450                fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
 451        else {
 452                /*
 453                 * Some people have weird ideas about wanting static
 454                 * pseudocolor maps.  I suspect their user space
 455                 * applications are broken.
 456                 */
 457                fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
 458        }
 459
 460        fbi->fb.fix.line_length = var->xres_virtual *
 461                                  var->bits_per_pixel / 8;
 462        fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
 463
 464        palette_mem_size = fbi->palette_size * sizeof(u16);
 465
 466        dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
 467
 468        fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
 469        fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
 470
 471        /*
 472         * Set (any) board control register to handle new color depth
 473         */
 474        sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
 475        sa1100fb_activate_var(var, fbi);
 476
 477        return 0;
 478}
 479
 480#if 0
 481static int
 482sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
 483                  struct fb_info *info)
 484{
 485        struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
 486
 487        /*
 488         * Make sure the user isn't doing something stupid.
 489         */
 490        if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
 491                return -EINVAL;
 492
 493        return gen_set_cmap(cmap, kspc, con, info);
 494}
 495#endif
 496
 497/*
 498 * Formal definition of the VESA spec:
 499 *  On
 500 *      This refers to the state of the display when it is in full operation
 501 *  Stand-By
 502 *      This defines an optional operating state of minimal power reduction with
 503 *      the shortest recovery time
 504 *  Suspend
 505 *      This refers to a level of power management in which substantial power
 506 *      reduction is achieved by the display.  The display can have a longer 
 507 *      recovery time from this state than from the Stand-by state
 508 *  Off
 509 *      This indicates that the display is consuming the lowest level of power
 510 *      and is non-operational. Recovery from this state may optionally require
 511 *      the user to manually power on the monitor
 512 *
 513 *  Now, the fbdev driver adds an additional state, (blank), where they
 514 *  turn off the video (maybe by colormap tricks), but don't mess with the
 515 *  video itself: think of it semantically between on and Stand-By.
 516 *
 517 *  So here's what we should do in our fbdev blank routine:
 518 *
 519 *      VESA_NO_BLANKING (mode 0)       Video on,  front/back light on
 520 *      VESA_VSYNC_SUSPEND (mode 1)     Video on,  front/back light off
 521 *      VESA_HSYNC_SUSPEND (mode 2)     Video on,  front/back light off
 522 *      VESA_POWERDOWN (mode 3)         Video off, front/back light off
 523 *
 524 *  This will match the matrox implementation.
 525 */
 526/*
 527 * sa1100fb_blank():
 528 *      Blank the display by setting all palette values to zero.  Note, the 
 529 *      12 and 16 bpp modes don't really use the palette, so this will not
 530 *      blank the display in all modes.  
 531 */
 532static int sa1100fb_blank(int blank, struct fb_info *info)
 533{
 534        struct sa1100fb_info *fbi =
 535                container_of(info, struct sa1100fb_info, fb);
 536        int i;
 537
 538        dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
 539
 540        switch (blank) {
 541        case FB_BLANK_POWERDOWN:
 542        case FB_BLANK_VSYNC_SUSPEND:
 543        case FB_BLANK_HSYNC_SUSPEND:
 544        case FB_BLANK_NORMAL:
 545                if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
 546                    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
 547                        for (i = 0; i < fbi->palette_size; i++)
 548                                sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
 549                sa1100fb_schedule_work(fbi, C_DISABLE);
 550                break;
 551
 552        case FB_BLANK_UNBLANK:
 553                if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
 554                    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
 555                        fb_set_cmap(&fbi->fb.cmap, info);
 556                sa1100fb_schedule_work(fbi, C_ENABLE);
 557        }
 558        return 0;
 559}
 560
 561static int sa1100fb_mmap(struct fb_info *info,
 562                         struct vm_area_struct *vma)
 563{
 564        struct sa1100fb_info *fbi =
 565                container_of(info, struct sa1100fb_info, fb);
 566        unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
 567
 568        if (off < info->fix.smem_len) {
 569                vma->vm_pgoff += 1; /* skip over the palette */
 570                return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma,
 571                                   fbi->map_size);
 572        }
 573
 574        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 575
 576        return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
 577}
 578
 579static struct fb_ops sa1100fb_ops = {
 580        .owner          = THIS_MODULE,
 581        .fb_check_var   = sa1100fb_check_var,
 582        .fb_set_par     = sa1100fb_set_par,
 583//      .fb_set_cmap    = sa1100fb_set_cmap,
 584        .fb_setcolreg   = sa1100fb_setcolreg,
 585        .fb_fillrect    = cfb_fillrect,
 586        .fb_copyarea    = cfb_copyarea,
 587        .fb_imageblit   = cfb_imageblit,
 588        .fb_blank       = sa1100fb_blank,
 589        .fb_mmap        = sa1100fb_mmap,
 590};
 591
 592/*
 593 * Calculate the PCD value from the clock rate (in picoseconds).
 594 * We take account of the PPCR clock setting.
 595 */
 596static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
 597                unsigned int pixclock)
 598{
 599        unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
 600
 601        pcd *= pixclock;
 602        pcd /= 10000000;
 603
 604        return pcd + 1; /* make up for integer math truncations */
 605}
 606
 607/*
 608 * sa1100fb_activate_var():
 609 *      Configures LCD Controller based on entries in var parameter.  Settings are      
 610 *      only written to the controller if changes were made.  
 611 */
 612static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
 613{
 614        struct sa1100fb_lcd_reg new_regs;
 615        u_int half_screen_size, yres, pcd;
 616        u_long flags;
 617
 618        dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
 619
 620        dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
 621                var->xres, var->hsync_len,
 622                var->left_margin, var->right_margin);
 623        dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
 624                var->yres, var->vsync_len,
 625                var->upper_margin, var->lower_margin);
 626
 627#if DEBUG_VAR
 628        if (var->xres < 16        || var->xres > 1024)
 629                dev_err(fbi->dev, "%s: invalid xres %d\n",
 630                        fbi->fb.fix.id, var->xres);
 631        if (var->hsync_len < 1    || var->hsync_len > 64)
 632                dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
 633                        fbi->fb.fix.id, var->hsync_len);
 634        if (var->left_margin < 1  || var->left_margin > 255)
 635                dev_err(fbi->dev, "%s: invalid left_margin %d\n",
 636                        fbi->fb.fix.id, var->left_margin);
 637        if (var->right_margin < 1 || var->right_margin > 255)
 638                dev_err(fbi->dev, "%s: invalid right_margin %d\n",
 639                        fbi->fb.fix.id, var->right_margin);
 640        if (var->yres < 1         || var->yres > 1024)
 641                dev_err(fbi->dev, "%s: invalid yres %d\n",
 642                        fbi->fb.fix.id, var->yres);
 643        if (var->vsync_len < 1    || var->vsync_len > 64)
 644                dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
 645                        fbi->fb.fix.id, var->vsync_len);
 646        if (var->upper_margin < 0 || var->upper_margin > 255)
 647                dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
 648                        fbi->fb.fix.id, var->upper_margin);
 649        if (var->lower_margin < 0 || var->lower_margin > 255)
 650                dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
 651                        fbi->fb.fix.id, var->lower_margin);
 652#endif
 653
 654        new_regs.lccr0 = fbi->inf->lccr0 |
 655                LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
 656                LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
 657
 658        new_regs.lccr1 =
 659                LCCR1_DisWdth(var->xres) +
 660                LCCR1_HorSnchWdth(var->hsync_len) +
 661                LCCR1_BegLnDel(var->left_margin) +
 662                LCCR1_EndLnDel(var->right_margin);
 663
 664        /*
 665         * If we have a dual scan LCD, then we need to halve
 666         * the YRES parameter.
 667         */
 668        yres = var->yres;
 669        if (fbi->inf->lccr0 & LCCR0_Dual)
 670                yres /= 2;
 671
 672        new_regs.lccr2 =
 673                LCCR2_DisHght(yres) +
 674                LCCR2_VrtSnchWdth(var->vsync_len) +
 675                LCCR2_BegFrmDel(var->upper_margin) +
 676                LCCR2_EndFrmDel(var->lower_margin);
 677
 678        pcd = get_pcd(fbi, var->pixclock);
 679        new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
 680                (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
 681                (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
 682
 683        dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
 684        dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
 685        dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
 686        dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
 687
 688        half_screen_size = var->bits_per_pixel;
 689        half_screen_size = half_screen_size * var->xres * var->yres / 16;
 690
 691        /* Update shadow copy atomically */
 692        local_irq_save(flags);
 693        fbi->dbar1 = fbi->palette_dma;
 694        fbi->dbar2 = fbi->screen_dma + half_screen_size;
 695
 696        fbi->reg_lccr0 = new_regs.lccr0;
 697        fbi->reg_lccr1 = new_regs.lccr1;
 698        fbi->reg_lccr2 = new_regs.lccr2;
 699        fbi->reg_lccr3 = new_regs.lccr3;
 700        local_irq_restore(flags);
 701
 702        /*
 703         * Only update the registers if the controller is enabled
 704         * and something has changed.
 705         */
 706        if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
 707            readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
 708            readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
 709            readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
 710            readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
 711            readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
 712                sa1100fb_schedule_work(fbi, C_REENABLE);
 713
 714        return 0;
 715}
 716
 717/*
 718 * NOTE!  The following functions are purely helpers for set_ctrlr_state.
 719 * Do not call them directly; set_ctrlr_state does the correct serialisation
 720 * to ensure that things happen in the right way 100% of time time.
 721 *      -- rmk
 722 */
 723static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
 724{
 725        dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
 726
 727        if (fbi->inf->backlight_power)
 728                fbi->inf->backlight_power(on);
 729}
 730
 731static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
 732{
 733        dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
 734
 735        if (fbi->inf->lcd_power)
 736                fbi->inf->lcd_power(on);
 737}
 738
 739static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
 740{
 741        u_int mask = 0;
 742
 743        /*
 744         * Enable GPIO<9:2> for LCD use if:
 745         *  1. Active display, or
 746         *  2. Color Dual Passive display
 747         *
 748         * see table 11.8 on page 11-27 in the SA1100 manual
 749         *   -- Erik.
 750         *
 751         * SA1110 spec update nr. 25 says we can and should
 752         * clear LDD15 to 12 for 4 or 8bpp modes with active
 753         * panels.  
 754         */
 755        if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
 756            (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
 757                mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
 758
 759                if (fbi->fb.var.bits_per_pixel > 8 ||
 760                    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
 761                        mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
 762
 763        }
 764
 765        if (mask) {
 766                unsigned long flags;
 767
 768                /*
 769                 * SA-1100 requires the GPIO direction register set
 770                 * appropriately for the alternate function.  Hence
 771                 * we set it here via bitmask rather than excessive
 772                 * fiddling via the GPIO subsystem - and even then
 773                 * we'll still have to deal with GAFR.
 774                 */
 775                local_irq_save(flags);
 776                GPDR |= mask;
 777                GAFR |= mask;
 778                local_irq_restore(flags);
 779        }
 780}
 781
 782static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
 783{
 784        dev_dbg(fbi->dev, "Enabling LCD controller\n");
 785
 786        /*
 787         * Make sure the mode bits are present in the first palette entry
 788         */
 789        fbi->palette_cpu[0] &= 0xcfff;
 790        fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
 791
 792        /* enable LCD controller clock */
 793        clk_prepare_enable(fbi->clk);
 794
 795        /* Sequence from 11.7.10 */
 796        writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
 797        writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
 798        writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
 799        writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
 800        writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
 801        writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
 802        writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
 803
 804        if (machine_is_shannon())
 805                gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
 806
 807        dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
 808        dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
 809        dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
 810        dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
 811        dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
 812        dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
 813}
 814
 815static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
 816{
 817        DECLARE_WAITQUEUE(wait, current);
 818        u32 lccr0;
 819
 820        dev_dbg(fbi->dev, "Disabling LCD controller\n");
 821
 822        if (machine_is_shannon())
 823                gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
 824
 825        set_current_state(TASK_UNINTERRUPTIBLE);
 826        add_wait_queue(&fbi->ctrlr_wait, &wait);
 827
 828        /* Clear LCD Status Register */
 829        writel_relaxed(~0, fbi->base + LCSR);
 830
 831        lccr0 = readl_relaxed(fbi->base + LCCR0);
 832        lccr0 &= ~LCCR0_LDM;    /* Enable LCD Disable Done Interrupt */
 833        writel_relaxed(lccr0, fbi->base + LCCR0);
 834        lccr0 &= ~LCCR0_LEN;    /* Disable LCD Controller */
 835        writel_relaxed(lccr0, fbi->base + LCCR0);
 836
 837        schedule_timeout(20 * HZ / 1000);
 838        remove_wait_queue(&fbi->ctrlr_wait, &wait);
 839
 840        /* disable LCD controller clock */
 841        clk_disable_unprepare(fbi->clk);
 842}
 843
 844/*
 845 *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
 846 */
 847static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
 848{
 849        struct sa1100fb_info *fbi = dev_id;
 850        unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
 851
 852        if (lcsr & LCSR_LDD) {
 853                u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
 854                writel_relaxed(lccr0, fbi->base + LCCR0);
 855                wake_up(&fbi->ctrlr_wait);
 856        }
 857
 858        writel_relaxed(lcsr, fbi->base + LCSR);
 859        return IRQ_HANDLED;
 860}
 861
 862/*
 863 * This function must be called from task context only, since it will
 864 * sleep when disabling the LCD controller, or if we get two contending
 865 * processes trying to alter state.
 866 */
 867static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
 868{
 869        u_int old_state;
 870
 871        mutex_lock(&fbi->ctrlr_lock);
 872
 873        old_state = fbi->state;
 874
 875        /*
 876         * Hack around fbcon initialisation.
 877         */
 878        if (old_state == C_STARTUP && state == C_REENABLE)
 879                state = C_ENABLE;
 880
 881        switch (state) {
 882        case C_DISABLE_CLKCHANGE:
 883                /*
 884                 * Disable controller for clock change.  If the
 885                 * controller is already disabled, then do nothing.
 886                 */
 887                if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
 888                        fbi->state = state;
 889                        sa1100fb_disable_controller(fbi);
 890                }
 891                break;
 892
 893        case C_DISABLE_PM:
 894        case C_DISABLE:
 895                /*
 896                 * Disable controller
 897                 */
 898                if (old_state != C_DISABLE) {
 899                        fbi->state = state;
 900
 901                        __sa1100fb_backlight_power(fbi, 0);
 902                        if (old_state != C_DISABLE_CLKCHANGE)
 903                                sa1100fb_disable_controller(fbi);
 904                        __sa1100fb_lcd_power(fbi, 0);
 905                }
 906                break;
 907
 908        case C_ENABLE_CLKCHANGE:
 909                /*
 910                 * Enable the controller after clock change.  Only
 911                 * do this if we were disabled for the clock change.
 912                 */
 913                if (old_state == C_DISABLE_CLKCHANGE) {
 914                        fbi->state = C_ENABLE;
 915                        sa1100fb_enable_controller(fbi);
 916                }
 917                break;
 918
 919        case C_REENABLE:
 920                /*
 921                 * Re-enable the controller only if it was already
 922                 * enabled.  This is so we reprogram the control
 923                 * registers.
 924                 */
 925                if (old_state == C_ENABLE) {
 926                        sa1100fb_disable_controller(fbi);
 927                        sa1100fb_setup_gpio(fbi);
 928                        sa1100fb_enable_controller(fbi);
 929                }
 930                break;
 931
 932        case C_ENABLE_PM:
 933                /*
 934                 * Re-enable the controller after PM.  This is not
 935                 * perfect - think about the case where we were doing
 936                 * a clock change, and we suspended half-way through.
 937                 */
 938                if (old_state != C_DISABLE_PM)
 939                        break;
 940                /* fall through */
 941
 942        case C_ENABLE:
 943                /*
 944                 * Power up the LCD screen, enable controller, and
 945                 * turn on the backlight.
 946                 */
 947                if (old_state != C_ENABLE) {
 948                        fbi->state = C_ENABLE;
 949                        sa1100fb_setup_gpio(fbi);
 950                        __sa1100fb_lcd_power(fbi, 1);
 951                        sa1100fb_enable_controller(fbi);
 952                        __sa1100fb_backlight_power(fbi, 1);
 953                }
 954                break;
 955        }
 956        mutex_unlock(&fbi->ctrlr_lock);
 957}
 958
 959/*
 960 * Our LCD controller task (which is called when we blank or unblank)
 961 * via keventd.
 962 */
 963static void sa1100fb_task(struct work_struct *w)
 964{
 965        struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
 966        u_int state = xchg(&fbi->task_state, -1);
 967
 968        set_ctrlr_state(fbi, state);
 969}
 970
 971#ifdef CONFIG_CPU_FREQ
 972/*
 973 * Calculate the minimum DMA period over all displays that we own.
 974 * This, together with the SDRAM bandwidth defines the slowest CPU
 975 * frequency that can be selected.
 976 */
 977static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
 978{
 979#if 0
 980        unsigned int min_period = (unsigned int)-1;
 981        int i;
 982
 983        for (i = 0; i < MAX_NR_CONSOLES; i++) {
 984                struct display *disp = &fb_display[i];
 985                unsigned int period;
 986
 987                /*
 988                 * Do we own this display?
 989                 */
 990                if (disp->fb_info != &fbi->fb)
 991                        continue;
 992
 993                /*
 994                 * Ok, calculate its DMA period
 995                 */
 996                period = sa1100fb_display_dma_period(&disp->var);
 997                if (period < min_period)
 998                        min_period = period;
 999        }
1000
1001        return min_period;
1002#else
1003        /*
1004         * FIXME: we need to verify _all_ consoles.
1005         */
1006        return sa1100fb_display_dma_period(&fbi->fb.var);
1007#endif
1008}
1009
1010/*
1011 * CPU clock speed change handler.  We need to adjust the LCD timing
1012 * parameters when the CPU clock is adjusted by the power management
1013 * subsystem.
1014 */
1015static int
1016sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1017                         void *data)
1018{
1019        struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1020        u_int pcd;
1021
1022        switch (val) {
1023        case CPUFREQ_PRECHANGE:
1024                set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1025                break;
1026
1027        case CPUFREQ_POSTCHANGE:
1028                pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1029                fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1030                set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1031                break;
1032        }
1033        return 0;
1034}
1035
1036static int
1037sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1038                     void *data)
1039{
1040        struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1041        struct cpufreq_policy *policy = data;
1042
1043        switch (val) {
1044        case CPUFREQ_ADJUST:
1045                dev_dbg(fbi->dev, "min dma period: %d ps, "
1046                        "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1047                        policy->max);
1048                /* todo: fill in min/max values */
1049                break;
1050        case CPUFREQ_NOTIFY:
1051                do {} while(0);
1052                /* todo: panic if min/max values aren't fulfilled 
1053                 * [can't really happen unless there's a bug in the
1054                 * CPU policy verififcation process *
1055                 */
1056                break;
1057        }
1058        return 0;
1059}
1060#endif
1061
1062#ifdef CONFIG_PM
1063/*
1064 * Power management hooks.  Note that we won't be called from IRQ context,
1065 * unlike the blank functions above, so we may sleep.
1066 */
1067static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1068{
1069        struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1070
1071        set_ctrlr_state(fbi, C_DISABLE_PM);
1072        return 0;
1073}
1074
1075static int sa1100fb_resume(struct platform_device *dev)
1076{
1077        struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1078
1079        set_ctrlr_state(fbi, C_ENABLE_PM);
1080        return 0;
1081}
1082#else
1083#define sa1100fb_suspend        NULL
1084#define sa1100fb_resume         NULL
1085#endif
1086
1087/*
1088 * sa1100fb_map_video_memory():
1089 *      Allocates the DRAM memory for the frame buffer.  This buffer is  
1090 *      remapped into a non-cached, non-buffered, memory region to  
1091 *      allow palette and pixel writes to occur without flushing the 
1092 *      cache.  Once this area is remapped, all virtual memory
1093 *      access to the video memory should occur at the new region.
1094 */
1095static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1096{
1097        /*
1098         * We reserve one page for the palette, plus the size
1099         * of the framebuffer.
1100         */
1101        fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1102        fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma,
1103                                    GFP_KERNEL);
1104
1105        if (fbi->map_cpu) {
1106                fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1107                fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1108                /*
1109                 * FIXME: this is actually the wrong thing to place in
1110                 * smem_start.  But fbdev suffers from the problem that
1111                 * it needs an API which doesn't exist (in this case,
1112                 * dma_writecombine_mmap)
1113                 */
1114                fbi->fb.fix.smem_start = fbi->screen_dma;
1115        }
1116
1117        return fbi->map_cpu ? 0 : -ENOMEM;
1118}
1119
1120/* Fake monspecs to fill in fbinfo structure */
1121static struct fb_monspecs monspecs = {
1122        .hfmin  = 30000,
1123        .hfmax  = 70000,
1124        .vfmin  = 50,
1125        .vfmax  = 65,
1126};
1127
1128
1129static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1130{
1131        struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1132        struct sa1100fb_info *fbi;
1133        unsigned i;
1134
1135        fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1136                      GFP_KERNEL);
1137        if (!fbi)
1138                return NULL;
1139
1140        memset(fbi, 0, sizeof(struct sa1100fb_info));
1141        fbi->dev = dev;
1142
1143        strcpy(fbi->fb.fix.id, SA1100_NAME);
1144
1145        fbi->fb.fix.type        = FB_TYPE_PACKED_PIXELS;
1146        fbi->fb.fix.type_aux    = 0;
1147        fbi->fb.fix.xpanstep    = 0;
1148        fbi->fb.fix.ypanstep    = 0;
1149        fbi->fb.fix.ywrapstep   = 0;
1150        fbi->fb.fix.accel       = FB_ACCEL_NONE;
1151
1152        fbi->fb.var.nonstd      = 0;
1153        fbi->fb.var.activate    = FB_ACTIVATE_NOW;
1154        fbi->fb.var.height      = -1;
1155        fbi->fb.var.width       = -1;
1156        fbi->fb.var.accel_flags = 0;
1157        fbi->fb.var.vmode       = FB_VMODE_NONINTERLACED;
1158
1159        fbi->fb.fbops           = &sa1100fb_ops;
1160        fbi->fb.flags           = FBINFO_DEFAULT;
1161        fbi->fb.monspecs        = monspecs;
1162        fbi->fb.pseudo_palette  = (fbi + 1);
1163
1164        fbi->rgb[RGB_4]         = &rgb_4;
1165        fbi->rgb[RGB_8]         = &rgb_8;
1166        fbi->rgb[RGB_16]        = &def_rgb_16;
1167
1168        /*
1169         * People just don't seem to get this.  We don't support
1170         * anything but correct entries now, so panic if someone
1171         * does something stupid.
1172         */
1173        if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1174            inf->pixclock == 0)
1175                panic("sa1100fb error: invalid LCCR3 fields set or zero "
1176                        "pixclock.");
1177
1178        fbi->fb.var.xres                = inf->xres;
1179        fbi->fb.var.xres_virtual        = inf->xres;
1180        fbi->fb.var.yres                = inf->yres;
1181        fbi->fb.var.yres_virtual        = inf->yres;
1182        fbi->fb.var.bits_per_pixel      = inf->bpp;
1183        fbi->fb.var.pixclock            = inf->pixclock;
1184        fbi->fb.var.hsync_len           = inf->hsync_len;
1185        fbi->fb.var.left_margin         = inf->left_margin;
1186        fbi->fb.var.right_margin        = inf->right_margin;
1187        fbi->fb.var.vsync_len           = inf->vsync_len;
1188        fbi->fb.var.upper_margin        = inf->upper_margin;
1189        fbi->fb.var.lower_margin        = inf->lower_margin;
1190        fbi->fb.var.sync                = inf->sync;
1191        fbi->fb.var.grayscale           = inf->cmap_greyscale;
1192        fbi->state                      = C_STARTUP;
1193        fbi->task_state                 = (u_char)-1;
1194        fbi->fb.fix.smem_len            = inf->xres * inf->yres *
1195                                          inf->bpp / 8;
1196        fbi->inf                        = inf;
1197
1198        /* Copy the RGB bitfield overrides */
1199        for (i = 0; i < NR_RGB; i++)
1200                if (inf->rgb[i])
1201                        fbi->rgb[i] = inf->rgb[i];
1202
1203        init_waitqueue_head(&fbi->ctrlr_wait);
1204        INIT_WORK(&fbi->task, sa1100fb_task);
1205        mutex_init(&fbi->ctrlr_lock);
1206
1207        return fbi;
1208}
1209
1210static int sa1100fb_probe(struct platform_device *pdev)
1211{
1212        struct sa1100fb_info *fbi;
1213        struct resource *res;
1214        int ret, irq;
1215
1216        if (!dev_get_platdata(&pdev->dev)) {
1217                dev_err(&pdev->dev, "no platform LCD data\n");
1218                return -EINVAL;
1219        }
1220
1221        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1222        irq = platform_get_irq(pdev, 0);
1223        if (irq < 0 || !res)
1224                return -EINVAL;
1225
1226        if (!request_mem_region(res->start, resource_size(res), "LCD"))
1227                return -EBUSY;
1228
1229        fbi = sa1100fb_init_fbinfo(&pdev->dev);
1230        ret = -ENOMEM;
1231        if (!fbi)
1232                goto failed;
1233
1234        fbi->clk = clk_get(&pdev->dev, NULL);
1235        if (IS_ERR(fbi->clk)) {
1236                ret = PTR_ERR(fbi->clk);
1237                fbi->clk = NULL;
1238                goto failed;
1239        }
1240
1241        fbi->base = ioremap(res->start, resource_size(res));
1242        if (!fbi->base)
1243                goto failed;
1244
1245        /* Initialize video memory */
1246        ret = sa1100fb_map_video_memory(fbi);
1247        if (ret)
1248                goto failed;
1249
1250        ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1251        if (ret) {
1252                dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1253                goto failed;
1254        }
1255
1256        if (machine_is_shannon()) {
1257                ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
1258                        GPIOF_OUT_INIT_LOW, "display enable");
1259                if (ret)
1260                        goto err_free_irq;
1261        }
1262
1263        /*
1264         * This makes sure that our colour bitfield
1265         * descriptors are correctly initialised.
1266         */
1267        sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1268
1269        platform_set_drvdata(pdev, fbi);
1270
1271        ret = register_framebuffer(&fbi->fb);
1272        if (ret < 0)
1273                goto err_reg_fb;
1274
1275#ifdef CONFIG_CPU_FREQ
1276        fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1277        fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1278        cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1279        cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1280#endif
1281
1282        /* This driver cannot be unloaded at the moment */
1283        return 0;
1284
1285 err_reg_fb:
1286        if (machine_is_shannon())
1287                gpio_free(SHANNON_GPIO_DISP_EN);
1288 err_free_irq:
1289        free_irq(irq, fbi);
1290 failed:
1291        if (fbi)
1292                iounmap(fbi->base);
1293        if (fbi->clk)
1294                clk_put(fbi->clk);
1295        kfree(fbi);
1296        release_mem_region(res->start, resource_size(res));
1297        return ret;
1298}
1299
1300static struct platform_driver sa1100fb_driver = {
1301        .probe          = sa1100fb_probe,
1302        .suspend        = sa1100fb_suspend,
1303        .resume         = sa1100fb_resume,
1304        .driver         = {
1305                .name   = "sa11x0-fb",
1306        },
1307};
1308
1309int __init sa1100fb_init(void)
1310{
1311        if (fb_get_options("sa1100fb", NULL))
1312                return -ENODEV;
1313
1314        return platform_driver_register(&sa1100fb_driver);
1315}
1316
1317int __init sa1100fb_setup(char *options)
1318{
1319#if 0
1320        char *this_opt;
1321
1322        if (!options || !*options)
1323                return 0;
1324
1325        while ((this_opt = strsep(&options, ",")) != NULL) {
1326
1327                if (!strncmp(this_opt, "bpp:", 4))
1328                        current_par.max_bpp =
1329                            simple_strtoul(this_opt + 4, NULL, 0);
1330
1331                if (!strncmp(this_opt, "lccr0:", 6))
1332                        lcd_shadow.lccr0 =
1333                            simple_strtoul(this_opt + 6, NULL, 0);
1334                if (!strncmp(this_opt, "lccr1:", 6)) {
1335                        lcd_shadow.lccr1 =
1336                            simple_strtoul(this_opt + 6, NULL, 0);
1337                        current_par.max_xres =
1338                            (lcd_shadow.lccr1 & 0x3ff) + 16;
1339                }
1340                if (!strncmp(this_opt, "lccr2:", 6)) {
1341                        lcd_shadow.lccr2 =
1342                            simple_strtoul(this_opt + 6, NULL, 0);
1343                        current_par.max_yres =
1344                            (lcd_shadow.
1345                             lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1346                                                    lccr2 & 0x3ff) +
1347                                                   1) *
1348                            2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1349                }
1350                if (!strncmp(this_opt, "lccr3:", 6))
1351                        lcd_shadow.lccr3 =
1352                            simple_strtoul(this_opt + 6, NULL, 0);
1353        }
1354#endif
1355        return 0;
1356}
1357
1358module_init(sa1100fb_init);
1359MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1360MODULE_LICENSE("GPL");
1361