linux/fs/btrfs/compression.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "ordered-data.h"
  41#include "compression.h"
  42#include "extent_io.h"
  43#include "extent_map.h"
  44
  45struct compressed_bio {
  46        /* number of bios pending for this compressed extent */
  47        atomic_t pending_bios;
  48
  49        /* the pages with the compressed data on them */
  50        struct page **compressed_pages;
  51
  52        /* inode that owns this data */
  53        struct inode *inode;
  54
  55        /* starting offset in the inode for our pages */
  56        u64 start;
  57
  58        /* number of bytes in the inode we're working on */
  59        unsigned long len;
  60
  61        /* number of bytes on disk */
  62        unsigned long compressed_len;
  63
  64        /* the compression algorithm for this bio */
  65        int compress_type;
  66
  67        /* number of compressed pages in the array */
  68        unsigned long nr_pages;
  69
  70        /* IO errors */
  71        int errors;
  72        int mirror_num;
  73
  74        /* for reads, this is the bio we are copying the data into */
  75        struct bio *orig_bio;
  76
  77        /*
  78         * the start of a variable length array of checksums only
  79         * used by reads
  80         */
  81        u32 sums;
  82};
  83
  84static int btrfs_decompress_biovec(int type, struct page **pages_in,
  85                                   u64 disk_start, struct bio_vec *bvec,
  86                                   int vcnt, size_t srclen);
  87
  88static inline int compressed_bio_size(struct btrfs_root *root,
  89                                      unsigned long disk_size)
  90{
  91        u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  92
  93        return sizeof(struct compressed_bio) +
  94                (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
  95}
  96
  97static struct bio *compressed_bio_alloc(struct block_device *bdev,
  98                                        u64 first_byte, gfp_t gfp_flags)
  99{
 100        return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
 101}
 102
 103static int check_compressed_csum(struct inode *inode,
 104                                 struct compressed_bio *cb,
 105                                 u64 disk_start)
 106{
 107        int ret;
 108        struct page *page;
 109        unsigned long i;
 110        char *kaddr;
 111        u32 csum;
 112        u32 *cb_sum = &cb->sums;
 113
 114        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 115                return 0;
 116
 117        for (i = 0; i < cb->nr_pages; i++) {
 118                page = cb->compressed_pages[i];
 119                csum = ~(u32)0;
 120
 121                kaddr = kmap_atomic(page);
 122                csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
 123                btrfs_csum_final(csum, (char *)&csum);
 124                kunmap_atomic(kaddr);
 125
 126                if (csum != *cb_sum) {
 127                        btrfs_info(BTRFS_I(inode)->root->fs_info,
 128                           "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
 129                           btrfs_ino(inode), disk_start, csum, *cb_sum,
 130                           cb->mirror_num);
 131                        ret = -EIO;
 132                        goto fail;
 133                }
 134                cb_sum++;
 135
 136        }
 137        ret = 0;
 138fail:
 139        return ret;
 140}
 141
 142/* when we finish reading compressed pages from the disk, we
 143 * decompress them and then run the bio end_io routines on the
 144 * decompressed pages (in the inode address space).
 145 *
 146 * This allows the checksumming and other IO error handling routines
 147 * to work normally
 148 *
 149 * The compressed pages are freed here, and it must be run
 150 * in process context
 151 */
 152static void end_compressed_bio_read(struct bio *bio)
 153{
 154        struct compressed_bio *cb = bio->bi_private;
 155        struct inode *inode;
 156        struct page *page;
 157        unsigned long index;
 158        int ret;
 159
 160        if (bio->bi_error)
 161                cb->errors = 1;
 162
 163        /* if there are more bios still pending for this compressed
 164         * extent, just exit
 165         */
 166        if (!atomic_dec_and_test(&cb->pending_bios))
 167                goto out;
 168
 169        inode = cb->inode;
 170        ret = check_compressed_csum(inode, cb,
 171                                    (u64)bio->bi_iter.bi_sector << 9);
 172        if (ret)
 173                goto csum_failed;
 174
 175        /* ok, we're the last bio for this extent, lets start
 176         * the decompression.
 177         */
 178        ret = btrfs_decompress_biovec(cb->compress_type,
 179                                      cb->compressed_pages,
 180                                      cb->start,
 181                                      cb->orig_bio->bi_io_vec,
 182                                      cb->orig_bio->bi_vcnt,
 183                                      cb->compressed_len);
 184csum_failed:
 185        if (ret)
 186                cb->errors = 1;
 187
 188        /* release the compressed pages */
 189        index = 0;
 190        for (index = 0; index < cb->nr_pages; index++) {
 191                page = cb->compressed_pages[index];
 192                page->mapping = NULL;
 193                put_page(page);
 194        }
 195
 196        /* do io completion on the original bio */
 197        if (cb->errors) {
 198                bio_io_error(cb->orig_bio);
 199        } else {
 200                int i;
 201                struct bio_vec *bvec;
 202
 203                /*
 204                 * we have verified the checksum already, set page
 205                 * checked so the end_io handlers know about it
 206                 */
 207                bio_for_each_segment_all(bvec, cb->orig_bio, i)
 208                        SetPageChecked(bvec->bv_page);
 209
 210                bio_endio(cb->orig_bio);
 211        }
 212
 213        /* finally free the cb struct */
 214        kfree(cb->compressed_pages);
 215        kfree(cb);
 216out:
 217        bio_put(bio);
 218}
 219
 220/*
 221 * Clear the writeback bits on all of the file
 222 * pages for a compressed write
 223 */
 224static noinline void end_compressed_writeback(struct inode *inode,
 225                                              const struct compressed_bio *cb)
 226{
 227        unsigned long index = cb->start >> PAGE_SHIFT;
 228        unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 229        struct page *pages[16];
 230        unsigned long nr_pages = end_index - index + 1;
 231        int i;
 232        int ret;
 233
 234        if (cb->errors)
 235                mapping_set_error(inode->i_mapping, -EIO);
 236
 237        while (nr_pages > 0) {
 238                ret = find_get_pages_contig(inode->i_mapping, index,
 239                                     min_t(unsigned long,
 240                                     nr_pages, ARRAY_SIZE(pages)), pages);
 241                if (ret == 0) {
 242                        nr_pages -= 1;
 243                        index += 1;
 244                        continue;
 245                }
 246                for (i = 0; i < ret; i++) {
 247                        if (cb->errors)
 248                                SetPageError(pages[i]);
 249                        end_page_writeback(pages[i]);
 250                        put_page(pages[i]);
 251                }
 252                nr_pages -= ret;
 253                index += ret;
 254        }
 255        /* the inode may be gone now */
 256}
 257
 258/*
 259 * do the cleanup once all the compressed pages hit the disk.
 260 * This will clear writeback on the file pages and free the compressed
 261 * pages.
 262 *
 263 * This also calls the writeback end hooks for the file pages so that
 264 * metadata and checksums can be updated in the file.
 265 */
 266static void end_compressed_bio_write(struct bio *bio)
 267{
 268        struct extent_io_tree *tree;
 269        struct compressed_bio *cb = bio->bi_private;
 270        struct inode *inode;
 271        struct page *page;
 272        unsigned long index;
 273
 274        if (bio->bi_error)
 275                cb->errors = 1;
 276
 277        /* if there are more bios still pending for this compressed
 278         * extent, just exit
 279         */
 280        if (!atomic_dec_and_test(&cb->pending_bios))
 281                goto out;
 282
 283        /* ok, we're the last bio for this extent, step one is to
 284         * call back into the FS and do all the end_io operations
 285         */
 286        inode = cb->inode;
 287        tree = &BTRFS_I(inode)->io_tree;
 288        cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 289        tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 290                                         cb->start,
 291                                         cb->start + cb->len - 1,
 292                                         NULL,
 293                                         bio->bi_error ? 0 : 1);
 294        cb->compressed_pages[0]->mapping = NULL;
 295
 296        end_compressed_writeback(inode, cb);
 297        /* note, our inode could be gone now */
 298
 299        /*
 300         * release the compressed pages, these came from alloc_page and
 301         * are not attached to the inode at all
 302         */
 303        index = 0;
 304        for (index = 0; index < cb->nr_pages; index++) {
 305                page = cb->compressed_pages[index];
 306                page->mapping = NULL;
 307                put_page(page);
 308        }
 309
 310        /* finally free the cb struct */
 311        kfree(cb->compressed_pages);
 312        kfree(cb);
 313out:
 314        bio_put(bio);
 315}
 316
 317/*
 318 * worker function to build and submit bios for previously compressed pages.
 319 * The corresponding pages in the inode should be marked for writeback
 320 * and the compressed pages should have a reference on them for dropping
 321 * when the IO is complete.
 322 *
 323 * This also checksums the file bytes and gets things ready for
 324 * the end io hooks.
 325 */
 326int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 327                                 unsigned long len, u64 disk_start,
 328                                 unsigned long compressed_len,
 329                                 struct page **compressed_pages,
 330                                 unsigned long nr_pages)
 331{
 332        struct bio *bio = NULL;
 333        struct btrfs_root *root = BTRFS_I(inode)->root;
 334        struct compressed_bio *cb;
 335        unsigned long bytes_left;
 336        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 337        int pg_index = 0;
 338        struct page *page;
 339        u64 first_byte = disk_start;
 340        struct block_device *bdev;
 341        int ret;
 342        int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 343
 344        WARN_ON(start & ((u64)PAGE_SIZE - 1));
 345        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 346        if (!cb)
 347                return -ENOMEM;
 348        atomic_set(&cb->pending_bios, 0);
 349        cb->errors = 0;
 350        cb->inode = inode;
 351        cb->start = start;
 352        cb->len = len;
 353        cb->mirror_num = 0;
 354        cb->compressed_pages = compressed_pages;
 355        cb->compressed_len = compressed_len;
 356        cb->orig_bio = NULL;
 357        cb->nr_pages = nr_pages;
 358
 359        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 360
 361        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 362        if (!bio) {
 363                kfree(cb);
 364                return -ENOMEM;
 365        }
 366        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 367        bio->bi_private = cb;
 368        bio->bi_end_io = end_compressed_bio_write;
 369        atomic_inc(&cb->pending_bios);
 370
 371        /* create and submit bios for the compressed pages */
 372        bytes_left = compressed_len;
 373        for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 374                page = compressed_pages[pg_index];
 375                page->mapping = inode->i_mapping;
 376                if (bio->bi_iter.bi_size)
 377                        ret = io_tree->ops->merge_bio_hook(page, 0,
 378                                                           PAGE_SIZE,
 379                                                           bio, 0);
 380                else
 381                        ret = 0;
 382
 383                page->mapping = NULL;
 384                if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
 385                    PAGE_SIZE) {
 386                        bio_get(bio);
 387
 388                        /*
 389                         * inc the count before we submit the bio so
 390                         * we know the end IO handler won't happen before
 391                         * we inc the count.  Otherwise, the cb might get
 392                         * freed before we're done setting it up
 393                         */
 394                        atomic_inc(&cb->pending_bios);
 395                        ret = btrfs_bio_wq_end_io(root->fs_info, bio,
 396                                        BTRFS_WQ_ENDIO_DATA);
 397                        BUG_ON(ret); /* -ENOMEM */
 398
 399                        if (!skip_sum) {
 400                                ret = btrfs_csum_one_bio(root, inode, bio,
 401                                                         start, 1);
 402                                BUG_ON(ret); /* -ENOMEM */
 403                        }
 404
 405                        ret = btrfs_map_bio(root, bio, 0, 1);
 406                        if (ret) {
 407                                bio->bi_error = ret;
 408                                bio_endio(bio);
 409                        }
 410
 411                        bio_put(bio);
 412
 413                        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 414                        BUG_ON(!bio);
 415                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 416                        bio->bi_private = cb;
 417                        bio->bi_end_io = end_compressed_bio_write;
 418                        bio_add_page(bio, page, PAGE_SIZE, 0);
 419                }
 420                if (bytes_left < PAGE_SIZE) {
 421                        btrfs_info(BTRFS_I(inode)->root->fs_info,
 422                                        "bytes left %lu compress len %lu nr %lu",
 423                               bytes_left, cb->compressed_len, cb->nr_pages);
 424                }
 425                bytes_left -= PAGE_SIZE;
 426                first_byte += PAGE_SIZE;
 427                cond_resched();
 428        }
 429        bio_get(bio);
 430
 431        ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 432        BUG_ON(ret); /* -ENOMEM */
 433
 434        if (!skip_sum) {
 435                ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 436                BUG_ON(ret); /* -ENOMEM */
 437        }
 438
 439        ret = btrfs_map_bio(root, bio, 0, 1);
 440        if (ret) {
 441                bio->bi_error = ret;
 442                bio_endio(bio);
 443        }
 444
 445        bio_put(bio);
 446        return 0;
 447}
 448
 449static noinline int add_ra_bio_pages(struct inode *inode,
 450                                     u64 compressed_end,
 451                                     struct compressed_bio *cb)
 452{
 453        unsigned long end_index;
 454        unsigned long pg_index;
 455        u64 last_offset;
 456        u64 isize = i_size_read(inode);
 457        int ret;
 458        struct page *page;
 459        unsigned long nr_pages = 0;
 460        struct extent_map *em;
 461        struct address_space *mapping = inode->i_mapping;
 462        struct extent_map_tree *em_tree;
 463        struct extent_io_tree *tree;
 464        u64 end;
 465        int misses = 0;
 466
 467        page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 468        last_offset = (page_offset(page) + PAGE_SIZE);
 469        em_tree = &BTRFS_I(inode)->extent_tree;
 470        tree = &BTRFS_I(inode)->io_tree;
 471
 472        if (isize == 0)
 473                return 0;
 474
 475        end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 476
 477        while (last_offset < compressed_end) {
 478                pg_index = last_offset >> PAGE_SHIFT;
 479
 480                if (pg_index > end_index)
 481                        break;
 482
 483                rcu_read_lock();
 484                page = radix_tree_lookup(&mapping->page_tree, pg_index);
 485                rcu_read_unlock();
 486                if (page && !radix_tree_exceptional_entry(page)) {
 487                        misses++;
 488                        if (misses > 4)
 489                                break;
 490                        goto next;
 491                }
 492
 493                page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 494                                                                 ~__GFP_FS));
 495                if (!page)
 496                        break;
 497
 498                if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 499                        put_page(page);
 500                        goto next;
 501                }
 502
 503                end = last_offset + PAGE_SIZE - 1;
 504                /*
 505                 * at this point, we have a locked page in the page cache
 506                 * for these bytes in the file.  But, we have to make
 507                 * sure they map to this compressed extent on disk.
 508                 */
 509                set_page_extent_mapped(page);
 510                lock_extent(tree, last_offset, end);
 511                read_lock(&em_tree->lock);
 512                em = lookup_extent_mapping(em_tree, last_offset,
 513                                           PAGE_SIZE);
 514                read_unlock(&em_tree->lock);
 515
 516                if (!em || last_offset < em->start ||
 517                    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 518                    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 519                        free_extent_map(em);
 520                        unlock_extent(tree, last_offset, end);
 521                        unlock_page(page);
 522                        put_page(page);
 523                        break;
 524                }
 525                free_extent_map(em);
 526
 527                if (page->index == end_index) {
 528                        char *userpage;
 529                        size_t zero_offset = isize & (PAGE_SIZE - 1);
 530
 531                        if (zero_offset) {
 532                                int zeros;
 533                                zeros = PAGE_SIZE - zero_offset;
 534                                userpage = kmap_atomic(page);
 535                                memset(userpage + zero_offset, 0, zeros);
 536                                flush_dcache_page(page);
 537                                kunmap_atomic(userpage);
 538                        }
 539                }
 540
 541                ret = bio_add_page(cb->orig_bio, page,
 542                                   PAGE_SIZE, 0);
 543
 544                if (ret == PAGE_SIZE) {
 545                        nr_pages++;
 546                        put_page(page);
 547                } else {
 548                        unlock_extent(tree, last_offset, end);
 549                        unlock_page(page);
 550                        put_page(page);
 551                        break;
 552                }
 553next:
 554                last_offset += PAGE_SIZE;
 555        }
 556        return 0;
 557}
 558
 559/*
 560 * for a compressed read, the bio we get passed has all the inode pages
 561 * in it.  We don't actually do IO on those pages but allocate new ones
 562 * to hold the compressed pages on disk.
 563 *
 564 * bio->bi_iter.bi_sector points to the compressed extent on disk
 565 * bio->bi_io_vec points to all of the inode pages
 566 * bio->bi_vcnt is a count of pages
 567 *
 568 * After the compressed pages are read, we copy the bytes into the
 569 * bio we were passed and then call the bio end_io calls
 570 */
 571int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 572                                 int mirror_num, unsigned long bio_flags)
 573{
 574        struct extent_io_tree *tree;
 575        struct extent_map_tree *em_tree;
 576        struct compressed_bio *cb;
 577        struct btrfs_root *root = BTRFS_I(inode)->root;
 578        unsigned long uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
 579        unsigned long compressed_len;
 580        unsigned long nr_pages;
 581        unsigned long pg_index;
 582        struct page *page;
 583        struct block_device *bdev;
 584        struct bio *comp_bio;
 585        u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 586        u64 em_len;
 587        u64 em_start;
 588        struct extent_map *em;
 589        int ret = -ENOMEM;
 590        int faili = 0;
 591        u32 *sums;
 592
 593        tree = &BTRFS_I(inode)->io_tree;
 594        em_tree = &BTRFS_I(inode)->extent_tree;
 595
 596        /* we need the actual starting offset of this extent in the file */
 597        read_lock(&em_tree->lock);
 598        em = lookup_extent_mapping(em_tree,
 599                                   page_offset(bio->bi_io_vec->bv_page),
 600                                   PAGE_SIZE);
 601        read_unlock(&em_tree->lock);
 602        if (!em)
 603                return -EIO;
 604
 605        compressed_len = em->block_len;
 606        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 607        if (!cb)
 608                goto out;
 609
 610        atomic_set(&cb->pending_bios, 0);
 611        cb->errors = 0;
 612        cb->inode = inode;
 613        cb->mirror_num = mirror_num;
 614        sums = &cb->sums;
 615
 616        cb->start = em->orig_start;
 617        em_len = em->len;
 618        em_start = em->start;
 619
 620        free_extent_map(em);
 621        em = NULL;
 622
 623        cb->len = uncompressed_len;
 624        cb->compressed_len = compressed_len;
 625        cb->compress_type = extent_compress_type(bio_flags);
 626        cb->orig_bio = bio;
 627
 628        nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 629        cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 630                                       GFP_NOFS);
 631        if (!cb->compressed_pages)
 632                goto fail1;
 633
 634        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 635
 636        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 637                cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 638                                                              __GFP_HIGHMEM);
 639                if (!cb->compressed_pages[pg_index]) {
 640                        faili = pg_index - 1;
 641                        ret = -ENOMEM;
 642                        goto fail2;
 643                }
 644        }
 645        faili = nr_pages - 1;
 646        cb->nr_pages = nr_pages;
 647
 648        add_ra_bio_pages(inode, em_start + em_len, cb);
 649
 650        /* include any pages we added in add_ra-bio_pages */
 651        uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
 652        cb->len = uncompressed_len;
 653
 654        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 655        if (!comp_bio)
 656                goto fail2;
 657        bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
 658        comp_bio->bi_private = cb;
 659        comp_bio->bi_end_io = end_compressed_bio_read;
 660        atomic_inc(&cb->pending_bios);
 661
 662        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 663                page = cb->compressed_pages[pg_index];
 664                page->mapping = inode->i_mapping;
 665                page->index = em_start >> PAGE_SHIFT;
 666
 667                if (comp_bio->bi_iter.bi_size)
 668                        ret = tree->ops->merge_bio_hook(page, 0,
 669                                                        PAGE_SIZE,
 670                                                        comp_bio, 0);
 671                else
 672                        ret = 0;
 673
 674                page->mapping = NULL;
 675                if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 676                    PAGE_SIZE) {
 677                        bio_get(comp_bio);
 678
 679                        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
 680                                        BTRFS_WQ_ENDIO_DATA);
 681                        BUG_ON(ret); /* -ENOMEM */
 682
 683                        /*
 684                         * inc the count before we submit the bio so
 685                         * we know the end IO handler won't happen before
 686                         * we inc the count.  Otherwise, the cb might get
 687                         * freed before we're done setting it up
 688                         */
 689                        atomic_inc(&cb->pending_bios);
 690
 691                        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 692                                ret = btrfs_lookup_bio_sums(root, inode,
 693                                                        comp_bio, sums);
 694                                BUG_ON(ret); /* -ENOMEM */
 695                        }
 696                        sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 697                                             root->sectorsize);
 698
 699                        ret = btrfs_map_bio(root, comp_bio, mirror_num, 0);
 700                        if (ret) {
 701                                comp_bio->bi_error = ret;
 702                                bio_endio(comp_bio);
 703                        }
 704
 705                        bio_put(comp_bio);
 706
 707                        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 708                                                        GFP_NOFS);
 709                        BUG_ON(!comp_bio);
 710                        bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
 711                        comp_bio->bi_private = cb;
 712                        comp_bio->bi_end_io = end_compressed_bio_read;
 713
 714                        bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 715                }
 716                cur_disk_byte += PAGE_SIZE;
 717        }
 718        bio_get(comp_bio);
 719
 720        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
 721                        BTRFS_WQ_ENDIO_DATA);
 722        BUG_ON(ret); /* -ENOMEM */
 723
 724        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 725                ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 726                BUG_ON(ret); /* -ENOMEM */
 727        }
 728
 729        ret = btrfs_map_bio(root, comp_bio, mirror_num, 0);
 730        if (ret) {
 731                comp_bio->bi_error = ret;
 732                bio_endio(comp_bio);
 733        }
 734
 735        bio_put(comp_bio);
 736        return 0;
 737
 738fail2:
 739        while (faili >= 0) {
 740                __free_page(cb->compressed_pages[faili]);
 741                faili--;
 742        }
 743
 744        kfree(cb->compressed_pages);
 745fail1:
 746        kfree(cb);
 747out:
 748        free_extent_map(em);
 749        return ret;
 750}
 751
 752static struct {
 753        struct list_head idle_ws;
 754        spinlock_t ws_lock;
 755        /* Number of free workspaces */
 756        int free_ws;
 757        /* Total number of allocated workspaces */
 758        atomic_t total_ws;
 759        /* Waiters for a free workspace */
 760        wait_queue_head_t ws_wait;
 761} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
 762
 763static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 764        &btrfs_zlib_compress,
 765        &btrfs_lzo_compress,
 766};
 767
 768void __init btrfs_init_compress(void)
 769{
 770        int i;
 771
 772        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 773                struct list_head *workspace;
 774
 775                INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
 776                spin_lock_init(&btrfs_comp_ws[i].ws_lock);
 777                atomic_set(&btrfs_comp_ws[i].total_ws, 0);
 778                init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
 779
 780                /*
 781                 * Preallocate one workspace for each compression type so
 782                 * we can guarantee forward progress in the worst case
 783                 */
 784                workspace = btrfs_compress_op[i]->alloc_workspace();
 785                if (IS_ERR(workspace)) {
 786                        pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
 787                } else {
 788                        atomic_set(&btrfs_comp_ws[i].total_ws, 1);
 789                        btrfs_comp_ws[i].free_ws = 1;
 790                        list_add(workspace, &btrfs_comp_ws[i].idle_ws);
 791                }
 792        }
 793}
 794
 795/*
 796 * This finds an available workspace or allocates a new one.
 797 * If it's not possible to allocate a new one, waits until there's one.
 798 * Preallocation makes a forward progress guarantees and we do not return
 799 * errors.
 800 */
 801static struct list_head *find_workspace(int type)
 802{
 803        struct list_head *workspace;
 804        int cpus = num_online_cpus();
 805        int idx = type - 1;
 806
 807        struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
 808        spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
 809        atomic_t *total_ws              = &btrfs_comp_ws[idx].total_ws;
 810        wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
 811        int *free_ws                    = &btrfs_comp_ws[idx].free_ws;
 812again:
 813        spin_lock(ws_lock);
 814        if (!list_empty(idle_ws)) {
 815                workspace = idle_ws->next;
 816                list_del(workspace);
 817                (*free_ws)--;
 818                spin_unlock(ws_lock);
 819                return workspace;
 820
 821        }
 822        if (atomic_read(total_ws) > cpus) {
 823                DEFINE_WAIT(wait);
 824
 825                spin_unlock(ws_lock);
 826                prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 827                if (atomic_read(total_ws) > cpus && !*free_ws)
 828                        schedule();
 829                finish_wait(ws_wait, &wait);
 830                goto again;
 831        }
 832        atomic_inc(total_ws);
 833        spin_unlock(ws_lock);
 834
 835        workspace = btrfs_compress_op[idx]->alloc_workspace();
 836        if (IS_ERR(workspace)) {
 837                atomic_dec(total_ws);
 838                wake_up(ws_wait);
 839
 840                /*
 841                 * Do not return the error but go back to waiting. There's a
 842                 * workspace preallocated for each type and the compression
 843                 * time is bounded so we get to a workspace eventually. This
 844                 * makes our caller's life easier.
 845                 *
 846                 * To prevent silent and low-probability deadlocks (when the
 847                 * initial preallocation fails), check if there are any
 848                 * workspaces at all.
 849                 */
 850                if (atomic_read(total_ws) == 0) {
 851                        static DEFINE_RATELIMIT_STATE(_rs,
 852                                        /* once per minute */ 60 * HZ,
 853                                        /* no burst */ 1);
 854
 855                        if (__ratelimit(&_rs)) {
 856                                pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 857                        }
 858                }
 859                goto again;
 860        }
 861        return workspace;
 862}
 863
 864/*
 865 * put a workspace struct back on the list or free it if we have enough
 866 * idle ones sitting around
 867 */
 868static void free_workspace(int type, struct list_head *workspace)
 869{
 870        int idx = type - 1;
 871        struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
 872        spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
 873        atomic_t *total_ws              = &btrfs_comp_ws[idx].total_ws;
 874        wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
 875        int *free_ws                    = &btrfs_comp_ws[idx].free_ws;
 876
 877        spin_lock(ws_lock);
 878        if (*free_ws < num_online_cpus()) {
 879                list_add(workspace, idle_ws);
 880                (*free_ws)++;
 881                spin_unlock(ws_lock);
 882                goto wake;
 883        }
 884        spin_unlock(ws_lock);
 885
 886        btrfs_compress_op[idx]->free_workspace(workspace);
 887        atomic_dec(total_ws);
 888wake:
 889        /*
 890         * Make sure counter is updated before we wake up waiters.
 891         */
 892        smp_mb();
 893        if (waitqueue_active(ws_wait))
 894                wake_up(ws_wait);
 895}
 896
 897/*
 898 * cleanup function for module exit
 899 */
 900static void free_workspaces(void)
 901{
 902        struct list_head *workspace;
 903        int i;
 904
 905        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 906                while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
 907                        workspace = btrfs_comp_ws[i].idle_ws.next;
 908                        list_del(workspace);
 909                        btrfs_compress_op[i]->free_workspace(workspace);
 910                        atomic_dec(&btrfs_comp_ws[i].total_ws);
 911                }
 912        }
 913}
 914
 915/*
 916 * given an address space and start/len, compress the bytes.
 917 *
 918 * pages are allocated to hold the compressed result and stored
 919 * in 'pages'
 920 *
 921 * out_pages is used to return the number of pages allocated.  There
 922 * may be pages allocated even if we return an error
 923 *
 924 * total_in is used to return the number of bytes actually read.  It
 925 * may be smaller then len if we had to exit early because we
 926 * ran out of room in the pages array or because we cross the
 927 * max_out threshold.
 928 *
 929 * total_out is used to return the total number of compressed bytes
 930 *
 931 * max_out tells us the max number of bytes that we're allowed to
 932 * stuff into pages
 933 */
 934int btrfs_compress_pages(int type, struct address_space *mapping,
 935                         u64 start, unsigned long len,
 936                         struct page **pages,
 937                         unsigned long nr_dest_pages,
 938                         unsigned long *out_pages,
 939                         unsigned long *total_in,
 940                         unsigned long *total_out,
 941                         unsigned long max_out)
 942{
 943        struct list_head *workspace;
 944        int ret;
 945
 946        workspace = find_workspace(type);
 947
 948        ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 949                                                      start, len, pages,
 950                                                      nr_dest_pages, out_pages,
 951                                                      total_in, total_out,
 952                                                      max_out);
 953        free_workspace(type, workspace);
 954        return ret;
 955}
 956
 957/*
 958 * pages_in is an array of pages with compressed data.
 959 *
 960 * disk_start is the starting logical offset of this array in the file
 961 *
 962 * bvec is a bio_vec of pages from the file that we want to decompress into
 963 *
 964 * vcnt is the count of pages in the biovec
 965 *
 966 * srclen is the number of bytes in pages_in
 967 *
 968 * The basic idea is that we have a bio that was created by readpages.
 969 * The pages in the bio are for the uncompressed data, and they may not
 970 * be contiguous.  They all correspond to the range of bytes covered by
 971 * the compressed extent.
 972 */
 973static int btrfs_decompress_biovec(int type, struct page **pages_in,
 974                                   u64 disk_start, struct bio_vec *bvec,
 975                                   int vcnt, size_t srclen)
 976{
 977        struct list_head *workspace;
 978        int ret;
 979
 980        workspace = find_workspace(type);
 981
 982        ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 983                                                         disk_start,
 984                                                         bvec, vcnt, srclen);
 985        free_workspace(type, workspace);
 986        return ret;
 987}
 988
 989/*
 990 * a less complex decompression routine.  Our compressed data fits in a
 991 * single page, and we want to read a single page out of it.
 992 * start_byte tells us the offset into the compressed data we're interested in
 993 */
 994int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 995                     unsigned long start_byte, size_t srclen, size_t destlen)
 996{
 997        struct list_head *workspace;
 998        int ret;
 999
1000        workspace = find_workspace(type);
1001
1002        ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1003                                                  dest_page, start_byte,
1004                                                  srclen, destlen);
1005
1006        free_workspace(type, workspace);
1007        return ret;
1008}
1009
1010void btrfs_exit_compress(void)
1011{
1012        free_workspaces();
1013}
1014
1015/*
1016 * Copy uncompressed data from working buffer to pages.
1017 *
1018 * buf_start is the byte offset we're of the start of our workspace buffer.
1019 *
1020 * total_out is the last byte of the buffer
1021 */
1022int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
1023                              unsigned long total_out, u64 disk_start,
1024                              struct bio_vec *bvec, int vcnt,
1025                              unsigned long *pg_index,
1026                              unsigned long *pg_offset)
1027{
1028        unsigned long buf_offset;
1029        unsigned long current_buf_start;
1030        unsigned long start_byte;
1031        unsigned long working_bytes = total_out - buf_start;
1032        unsigned long bytes;
1033        char *kaddr;
1034        struct page *page_out = bvec[*pg_index].bv_page;
1035
1036        /*
1037         * start byte is the first byte of the page we're currently
1038         * copying into relative to the start of the compressed data.
1039         */
1040        start_byte = page_offset(page_out) - disk_start;
1041
1042        /* we haven't yet hit data corresponding to this page */
1043        if (total_out <= start_byte)
1044                return 1;
1045
1046        /*
1047         * the start of the data we care about is offset into
1048         * the middle of our working buffer
1049         */
1050        if (total_out > start_byte && buf_start < start_byte) {
1051                buf_offset = start_byte - buf_start;
1052                working_bytes -= buf_offset;
1053        } else {
1054                buf_offset = 0;
1055        }
1056        current_buf_start = buf_start;
1057
1058        /* copy bytes from the working buffer into the pages */
1059        while (working_bytes > 0) {
1060                bytes = min(PAGE_SIZE - *pg_offset,
1061                            PAGE_SIZE - buf_offset);
1062                bytes = min(bytes, working_bytes);
1063                kaddr = kmap_atomic(page_out);
1064                memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1065                kunmap_atomic(kaddr);
1066                flush_dcache_page(page_out);
1067
1068                *pg_offset += bytes;
1069                buf_offset += bytes;
1070                working_bytes -= bytes;
1071                current_buf_start += bytes;
1072
1073                /* check if we need to pick another page */
1074                if (*pg_offset == PAGE_SIZE) {
1075                        (*pg_index)++;
1076                        if (*pg_index >= vcnt)
1077                                return 0;
1078
1079                        page_out = bvec[*pg_index].bv_page;
1080                        *pg_offset = 0;
1081                        start_byte = page_offset(page_out) - disk_start;
1082
1083                        /*
1084                         * make sure our new page is covered by this
1085                         * working buffer
1086                         */
1087                        if (total_out <= start_byte)
1088                                return 1;
1089
1090                        /*
1091                         * the next page in the biovec might not be adjacent
1092                         * to the last page, but it might still be found
1093                         * inside this working buffer. bump our offset pointer
1094                         */
1095                        if (total_out > start_byte &&
1096                            current_buf_start < start_byte) {
1097                                buf_offset = start_byte - buf_start;
1098                                working_bytes = total_out - start_byte;
1099                                current_buf_start = buf_start + buf_offset;
1100                        }
1101                }
1102        }
1103
1104        return 1;
1105}
1106
1107/*
1108 * When uncompressing data, we need to make sure and zero any parts of
1109 * the biovec that were not filled in by the decompression code.  pg_index
1110 * and pg_offset indicate the last page and the last offset of that page
1111 * that have been filled in.  This will zero everything remaining in the
1112 * biovec.
1113 */
1114void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1115                                   unsigned long pg_index,
1116                                   unsigned long pg_offset)
1117{
1118        while (pg_index < vcnt) {
1119                struct page *page = bvec[pg_index].bv_page;
1120                unsigned long off = bvec[pg_index].bv_offset;
1121                unsigned long len = bvec[pg_index].bv_len;
1122
1123                if (pg_offset < off)
1124                        pg_offset = off;
1125                if (pg_offset < off + len) {
1126                        unsigned long bytes = off + len - pg_offset;
1127                        char *kaddr;
1128
1129                        kaddr = kmap_atomic(page);
1130                        memset(kaddr + pg_offset, 0, bytes);
1131                        kunmap_atomic(kaddr);
1132                }
1133                pg_index++;
1134                pg_offset = 0;
1135        }
1136}
1137