linux/fs/buffer.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/iomap.h>
  25#include <linux/mm.h>
  26#include <linux/percpu.h>
  27#include <linux/slab.h>
  28#include <linux/capability.h>
  29#include <linux/blkdev.h>
  30#include <linux/file.h>
  31#include <linux/quotaops.h>
  32#include <linux/highmem.h>
  33#include <linux/export.h>
  34#include <linux/backing-dev.h>
  35#include <linux/writeback.h>
  36#include <linux/hash.h>
  37#include <linux/suspend.h>
  38#include <linux/buffer_head.h>
  39#include <linux/task_io_accounting_ops.h>
  40#include <linux/bio.h>
  41#include <linux/notifier.h>
  42#include <linux/cpu.h>
  43#include <linux/bitops.h>
  44#include <linux/mpage.h>
  45#include <linux/bit_spinlock.h>
  46#include <trace/events/block.h>
  47
  48static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  49static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  50                         unsigned long bio_flags,
  51                         struct writeback_control *wbc);
  52
  53#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  54
  55void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  56{
  57        bh->b_end_io = handler;
  58        bh->b_private = private;
  59}
  60EXPORT_SYMBOL(init_buffer);
  61
  62inline void touch_buffer(struct buffer_head *bh)
  63{
  64        trace_block_touch_buffer(bh);
  65        mark_page_accessed(bh->b_page);
  66}
  67EXPORT_SYMBOL(touch_buffer);
  68
  69void __lock_buffer(struct buffer_head *bh)
  70{
  71        wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  72}
  73EXPORT_SYMBOL(__lock_buffer);
  74
  75void unlock_buffer(struct buffer_head *bh)
  76{
  77        clear_bit_unlock(BH_Lock, &bh->b_state);
  78        smp_mb__after_atomic();
  79        wake_up_bit(&bh->b_state, BH_Lock);
  80}
  81EXPORT_SYMBOL(unlock_buffer);
  82
  83/*
  84 * Returns if the page has dirty or writeback buffers. If all the buffers
  85 * are unlocked and clean then the PageDirty information is stale. If
  86 * any of the pages are locked, it is assumed they are locked for IO.
  87 */
  88void buffer_check_dirty_writeback(struct page *page,
  89                                     bool *dirty, bool *writeback)
  90{
  91        struct buffer_head *head, *bh;
  92        *dirty = false;
  93        *writeback = false;
  94
  95        BUG_ON(!PageLocked(page));
  96
  97        if (!page_has_buffers(page))
  98                return;
  99
 100        if (PageWriteback(page))
 101                *writeback = true;
 102
 103        head = page_buffers(page);
 104        bh = head;
 105        do {
 106                if (buffer_locked(bh))
 107                        *writeback = true;
 108
 109                if (buffer_dirty(bh))
 110                        *dirty = true;
 111
 112                bh = bh->b_this_page;
 113        } while (bh != head);
 114}
 115EXPORT_SYMBOL(buffer_check_dirty_writeback);
 116
 117/*
 118 * Block until a buffer comes unlocked.  This doesn't stop it
 119 * from becoming locked again - you have to lock it yourself
 120 * if you want to preserve its state.
 121 */
 122void __wait_on_buffer(struct buffer_head * bh)
 123{
 124        wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 125}
 126EXPORT_SYMBOL(__wait_on_buffer);
 127
 128static void
 129__clear_page_buffers(struct page *page)
 130{
 131        ClearPagePrivate(page);
 132        set_page_private(page, 0);
 133        put_page(page);
 134}
 135
 136static void buffer_io_error(struct buffer_head *bh, char *msg)
 137{
 138        if (!test_bit(BH_Quiet, &bh->b_state))
 139                printk_ratelimited(KERN_ERR
 140                        "Buffer I/O error on dev %pg, logical block %llu%s\n",
 141                        bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 142}
 143
 144/*
 145 * End-of-IO handler helper function which does not touch the bh after
 146 * unlocking it.
 147 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 148 * a race there is benign: unlock_buffer() only use the bh's address for
 149 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 150 * itself.
 151 */
 152static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 153{
 154        if (uptodate) {
 155                set_buffer_uptodate(bh);
 156        } else {
 157                /* This happens, due to failed read-ahead attempts. */
 158                clear_buffer_uptodate(bh);
 159        }
 160        unlock_buffer(bh);
 161}
 162
 163/*
 164 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 165 * unlock the buffer. This is what ll_rw_block uses too.
 166 */
 167void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 168{
 169        __end_buffer_read_notouch(bh, uptodate);
 170        put_bh(bh);
 171}
 172EXPORT_SYMBOL(end_buffer_read_sync);
 173
 174void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 175{
 176        if (uptodate) {
 177                set_buffer_uptodate(bh);
 178        } else {
 179                buffer_io_error(bh, ", lost sync page write");
 180                set_buffer_write_io_error(bh);
 181                clear_buffer_uptodate(bh);
 182        }
 183        unlock_buffer(bh);
 184        put_bh(bh);
 185}
 186EXPORT_SYMBOL(end_buffer_write_sync);
 187
 188/*
 189 * Various filesystems appear to want __find_get_block to be non-blocking.
 190 * But it's the page lock which protects the buffers.  To get around this,
 191 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 192 * private_lock.
 193 *
 194 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 195 * may be quite high.  This code could TryLock the page, and if that
 196 * succeeds, there is no need to take private_lock. (But if
 197 * private_lock is contended then so is mapping->tree_lock).
 198 */
 199static struct buffer_head *
 200__find_get_block_slow(struct block_device *bdev, sector_t block)
 201{
 202        struct inode *bd_inode = bdev->bd_inode;
 203        struct address_space *bd_mapping = bd_inode->i_mapping;
 204        struct buffer_head *ret = NULL;
 205        pgoff_t index;
 206        struct buffer_head *bh;
 207        struct buffer_head *head;
 208        struct page *page;
 209        int all_mapped = 1;
 210
 211        index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 212        page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 213        if (!page)
 214                goto out;
 215
 216        spin_lock(&bd_mapping->private_lock);
 217        if (!page_has_buffers(page))
 218                goto out_unlock;
 219        head = page_buffers(page);
 220        bh = head;
 221        do {
 222                if (!buffer_mapped(bh))
 223                        all_mapped = 0;
 224                else if (bh->b_blocknr == block) {
 225                        ret = bh;
 226                        get_bh(bh);
 227                        goto out_unlock;
 228                }
 229                bh = bh->b_this_page;
 230        } while (bh != head);
 231
 232        /* we might be here because some of the buffers on this page are
 233         * not mapped.  This is due to various races between
 234         * file io on the block device and getblk.  It gets dealt with
 235         * elsewhere, don't buffer_error if we had some unmapped buffers
 236         */
 237        if (all_mapped) {
 238                printk("__find_get_block_slow() failed. "
 239                        "block=%llu, b_blocknr=%llu\n",
 240                        (unsigned long long)block,
 241                        (unsigned long long)bh->b_blocknr);
 242                printk("b_state=0x%08lx, b_size=%zu\n",
 243                        bh->b_state, bh->b_size);
 244                printk("device %pg blocksize: %d\n", bdev,
 245                        1 << bd_inode->i_blkbits);
 246        }
 247out_unlock:
 248        spin_unlock(&bd_mapping->private_lock);
 249        put_page(page);
 250out:
 251        return ret;
 252}
 253
 254/*
 255 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 256 */
 257static void free_more_memory(void)
 258{
 259        struct zoneref *z;
 260        int nid;
 261
 262        wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 263        yield();
 264
 265        for_each_online_node(nid) {
 266
 267                z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 268                                                gfp_zone(GFP_NOFS), NULL);
 269                if (z->zone)
 270                        try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 271                                                GFP_NOFS, NULL);
 272        }
 273}
 274
 275/*
 276 * I/O completion handler for block_read_full_page() - pages
 277 * which come unlocked at the end of I/O.
 278 */
 279static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 280{
 281        unsigned long flags;
 282        struct buffer_head *first;
 283        struct buffer_head *tmp;
 284        struct page *page;
 285        int page_uptodate = 1;
 286
 287        BUG_ON(!buffer_async_read(bh));
 288
 289        page = bh->b_page;
 290        if (uptodate) {
 291                set_buffer_uptodate(bh);
 292        } else {
 293                clear_buffer_uptodate(bh);
 294                buffer_io_error(bh, ", async page read");
 295                SetPageError(page);
 296        }
 297
 298        /*
 299         * Be _very_ careful from here on. Bad things can happen if
 300         * two buffer heads end IO at almost the same time and both
 301         * decide that the page is now completely done.
 302         */
 303        first = page_buffers(page);
 304        local_irq_save(flags);
 305        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 306        clear_buffer_async_read(bh);
 307        unlock_buffer(bh);
 308        tmp = bh;
 309        do {
 310                if (!buffer_uptodate(tmp))
 311                        page_uptodate = 0;
 312                if (buffer_async_read(tmp)) {
 313                        BUG_ON(!buffer_locked(tmp));
 314                        goto still_busy;
 315                }
 316                tmp = tmp->b_this_page;
 317        } while (tmp != bh);
 318        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 319        local_irq_restore(flags);
 320
 321        /*
 322         * If none of the buffers had errors and they are all
 323         * uptodate then we can set the page uptodate.
 324         */
 325        if (page_uptodate && !PageError(page))
 326                SetPageUptodate(page);
 327        unlock_page(page);
 328        return;
 329
 330still_busy:
 331        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 332        local_irq_restore(flags);
 333        return;
 334}
 335
 336/*
 337 * Completion handler for block_write_full_page() - pages which are unlocked
 338 * during I/O, and which have PageWriteback cleared upon I/O completion.
 339 */
 340void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 341{
 342        unsigned long flags;
 343        struct buffer_head *first;
 344        struct buffer_head *tmp;
 345        struct page *page;
 346
 347        BUG_ON(!buffer_async_write(bh));
 348
 349        page = bh->b_page;
 350        if (uptodate) {
 351                set_buffer_uptodate(bh);
 352        } else {
 353                buffer_io_error(bh, ", lost async page write");
 354                mapping_set_error(page->mapping, -EIO);
 355                set_buffer_write_io_error(bh);
 356                clear_buffer_uptodate(bh);
 357                SetPageError(page);
 358        }
 359
 360        first = page_buffers(page);
 361        local_irq_save(flags);
 362        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 363
 364        clear_buffer_async_write(bh);
 365        unlock_buffer(bh);
 366        tmp = bh->b_this_page;
 367        while (tmp != bh) {
 368                if (buffer_async_write(tmp)) {
 369                        BUG_ON(!buffer_locked(tmp));
 370                        goto still_busy;
 371                }
 372                tmp = tmp->b_this_page;
 373        }
 374        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 375        local_irq_restore(flags);
 376        end_page_writeback(page);
 377        return;
 378
 379still_busy:
 380        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 381        local_irq_restore(flags);
 382        return;
 383}
 384EXPORT_SYMBOL(end_buffer_async_write);
 385
 386/*
 387 * If a page's buffers are under async readin (end_buffer_async_read
 388 * completion) then there is a possibility that another thread of
 389 * control could lock one of the buffers after it has completed
 390 * but while some of the other buffers have not completed.  This
 391 * locked buffer would confuse end_buffer_async_read() into not unlocking
 392 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 393 * that this buffer is not under async I/O.
 394 *
 395 * The page comes unlocked when it has no locked buffer_async buffers
 396 * left.
 397 *
 398 * PageLocked prevents anyone starting new async I/O reads any of
 399 * the buffers.
 400 *
 401 * PageWriteback is used to prevent simultaneous writeout of the same
 402 * page.
 403 *
 404 * PageLocked prevents anyone from starting writeback of a page which is
 405 * under read I/O (PageWriteback is only ever set against a locked page).
 406 */
 407static void mark_buffer_async_read(struct buffer_head *bh)
 408{
 409        bh->b_end_io = end_buffer_async_read;
 410        set_buffer_async_read(bh);
 411}
 412
 413static void mark_buffer_async_write_endio(struct buffer_head *bh,
 414                                          bh_end_io_t *handler)
 415{
 416        bh->b_end_io = handler;
 417        set_buffer_async_write(bh);
 418}
 419
 420void mark_buffer_async_write(struct buffer_head *bh)
 421{
 422        mark_buffer_async_write_endio(bh, end_buffer_async_write);
 423}
 424EXPORT_SYMBOL(mark_buffer_async_write);
 425
 426
 427/*
 428 * fs/buffer.c contains helper functions for buffer-backed address space's
 429 * fsync functions.  A common requirement for buffer-based filesystems is
 430 * that certain data from the backing blockdev needs to be written out for
 431 * a successful fsync().  For example, ext2 indirect blocks need to be
 432 * written back and waited upon before fsync() returns.
 433 *
 434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 436 * management of a list of dependent buffers at ->i_mapping->private_list.
 437 *
 438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 439 * from their controlling inode's queue when they are being freed.  But
 440 * try_to_free_buffers() will be operating against the *blockdev* mapping
 441 * at the time, not against the S_ISREG file which depends on those buffers.
 442 * So the locking for private_list is via the private_lock in the address_space
 443 * which backs the buffers.  Which is different from the address_space 
 444 * against which the buffers are listed.  So for a particular address_space,
 445 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 446 * mapping->private_list will always be protected by the backing blockdev's
 447 * ->private_lock.
 448 *
 449 * Which introduces a requirement: all buffers on an address_space's
 450 * ->private_list must be from the same address_space: the blockdev's.
 451 *
 452 * address_spaces which do not place buffers at ->private_list via these
 453 * utility functions are free to use private_lock and private_list for
 454 * whatever they want.  The only requirement is that list_empty(private_list)
 455 * be true at clear_inode() time.
 456 *
 457 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 458 * filesystems should do that.  invalidate_inode_buffers() should just go
 459 * BUG_ON(!list_empty).
 460 *
 461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 462 * take an address_space, not an inode.  And it should be called
 463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 464 * queued up.
 465 *
 466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 467 * list if it is already on a list.  Because if the buffer is on a list,
 468 * it *must* already be on the right one.  If not, the filesystem is being
 469 * silly.  This will save a ton of locking.  But first we have to ensure
 470 * that buffers are taken *off* the old inode's list when they are freed
 471 * (presumably in truncate).  That requires careful auditing of all
 472 * filesystems (do it inside bforget()).  It could also be done by bringing
 473 * b_inode back.
 474 */
 475
 476/*
 477 * The buffer's backing address_space's private_lock must be held
 478 */
 479static void __remove_assoc_queue(struct buffer_head *bh)
 480{
 481        list_del_init(&bh->b_assoc_buffers);
 482        WARN_ON(!bh->b_assoc_map);
 483        if (buffer_write_io_error(bh))
 484                set_bit(AS_EIO, &bh->b_assoc_map->flags);
 485        bh->b_assoc_map = NULL;
 486}
 487
 488int inode_has_buffers(struct inode *inode)
 489{
 490        return !list_empty(&inode->i_data.private_list);
 491}
 492
 493/*
 494 * osync is designed to support O_SYNC io.  It waits synchronously for
 495 * all already-submitted IO to complete, but does not queue any new
 496 * writes to the disk.
 497 *
 498 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 499 * you dirty the buffers, and then use osync_inode_buffers to wait for
 500 * completion.  Any other dirty buffers which are not yet queued for
 501 * write will not be flushed to disk by the osync.
 502 */
 503static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 504{
 505        struct buffer_head *bh;
 506        struct list_head *p;
 507        int err = 0;
 508
 509        spin_lock(lock);
 510repeat:
 511        list_for_each_prev(p, list) {
 512                bh = BH_ENTRY(p);
 513                if (buffer_locked(bh)) {
 514                        get_bh(bh);
 515                        spin_unlock(lock);
 516                        wait_on_buffer(bh);
 517                        if (!buffer_uptodate(bh))
 518                                err = -EIO;
 519                        brelse(bh);
 520                        spin_lock(lock);
 521                        goto repeat;
 522                }
 523        }
 524        spin_unlock(lock);
 525        return err;
 526}
 527
 528static void do_thaw_one(struct super_block *sb, void *unused)
 529{
 530        while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 531                printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 532}
 533
 534static void do_thaw_all(struct work_struct *work)
 535{
 536        iterate_supers(do_thaw_one, NULL);
 537        kfree(work);
 538        printk(KERN_WARNING "Emergency Thaw complete\n");
 539}
 540
 541/**
 542 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 543 *
 544 * Used for emergency unfreeze of all filesystems via SysRq
 545 */
 546void emergency_thaw_all(void)
 547{
 548        struct work_struct *work;
 549
 550        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 551        if (work) {
 552                INIT_WORK(work, do_thaw_all);
 553                schedule_work(work);
 554        }
 555}
 556
 557/**
 558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 559 * @mapping: the mapping which wants those buffers written
 560 *
 561 * Starts I/O against the buffers at mapping->private_list, and waits upon
 562 * that I/O.
 563 *
 564 * Basically, this is a convenience function for fsync().
 565 * @mapping is a file or directory which needs those buffers to be written for
 566 * a successful fsync().
 567 */
 568int sync_mapping_buffers(struct address_space *mapping)
 569{
 570        struct address_space *buffer_mapping = mapping->private_data;
 571
 572        if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 573                return 0;
 574
 575        return fsync_buffers_list(&buffer_mapping->private_lock,
 576                                        &mapping->private_list);
 577}
 578EXPORT_SYMBOL(sync_mapping_buffers);
 579
 580/*
 581 * Called when we've recently written block `bblock', and it is known that
 582 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 583 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 584 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 585 */
 586void write_boundary_block(struct block_device *bdev,
 587                        sector_t bblock, unsigned blocksize)
 588{
 589        struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 590        if (bh) {
 591                if (buffer_dirty(bh))
 592                        ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 593                put_bh(bh);
 594        }
 595}
 596
 597void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 598{
 599        struct address_space *mapping = inode->i_mapping;
 600        struct address_space *buffer_mapping = bh->b_page->mapping;
 601
 602        mark_buffer_dirty(bh);
 603        if (!mapping->private_data) {
 604                mapping->private_data = buffer_mapping;
 605        } else {
 606                BUG_ON(mapping->private_data != buffer_mapping);
 607        }
 608        if (!bh->b_assoc_map) {
 609                spin_lock(&buffer_mapping->private_lock);
 610                list_move_tail(&bh->b_assoc_buffers,
 611                                &mapping->private_list);
 612                bh->b_assoc_map = mapping;
 613                spin_unlock(&buffer_mapping->private_lock);
 614        }
 615}
 616EXPORT_SYMBOL(mark_buffer_dirty_inode);
 617
 618/*
 619 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 620 * dirty.
 621 *
 622 * If warn is true, then emit a warning if the page is not uptodate and has
 623 * not been truncated.
 624 *
 625 * The caller must hold lock_page_memcg().
 626 */
 627static void __set_page_dirty(struct page *page, struct address_space *mapping,
 628                             int warn)
 629{
 630        unsigned long flags;
 631
 632        spin_lock_irqsave(&mapping->tree_lock, flags);
 633        if (page->mapping) {    /* Race with truncate? */
 634                WARN_ON_ONCE(warn && !PageUptodate(page));
 635                account_page_dirtied(page, mapping);
 636                radix_tree_tag_set(&mapping->page_tree,
 637                                page_index(page), PAGECACHE_TAG_DIRTY);
 638        }
 639        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 640}
 641
 642/*
 643 * Add a page to the dirty page list.
 644 *
 645 * It is a sad fact of life that this function is called from several places
 646 * deeply under spinlocking.  It may not sleep.
 647 *
 648 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 649 * dirty-state coherency between the page and the buffers.  It the page does
 650 * not have buffers then when they are later attached they will all be set
 651 * dirty.
 652 *
 653 * The buffers are dirtied before the page is dirtied.  There's a small race
 654 * window in which a writepage caller may see the page cleanness but not the
 655 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 656 * before the buffers, a concurrent writepage caller could clear the page dirty
 657 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 658 * page on the dirty page list.
 659 *
 660 * We use private_lock to lock against try_to_free_buffers while using the
 661 * page's buffer list.  Also use this to protect against clean buffers being
 662 * added to the page after it was set dirty.
 663 *
 664 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 665 * address_space though.
 666 */
 667int __set_page_dirty_buffers(struct page *page)
 668{
 669        int newly_dirty;
 670        struct address_space *mapping = page_mapping(page);
 671
 672        if (unlikely(!mapping))
 673                return !TestSetPageDirty(page);
 674
 675        spin_lock(&mapping->private_lock);
 676        if (page_has_buffers(page)) {
 677                struct buffer_head *head = page_buffers(page);
 678                struct buffer_head *bh = head;
 679
 680                do {
 681                        set_buffer_dirty(bh);
 682                        bh = bh->b_this_page;
 683                } while (bh != head);
 684        }
 685        /*
 686         * Lock out page->mem_cgroup migration to keep PageDirty
 687         * synchronized with per-memcg dirty page counters.
 688         */
 689        lock_page_memcg(page);
 690        newly_dirty = !TestSetPageDirty(page);
 691        spin_unlock(&mapping->private_lock);
 692
 693        if (newly_dirty)
 694                __set_page_dirty(page, mapping, 1);
 695
 696        unlock_page_memcg(page);
 697
 698        if (newly_dirty)
 699                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 700
 701        return newly_dirty;
 702}
 703EXPORT_SYMBOL(__set_page_dirty_buffers);
 704
 705/*
 706 * Write out and wait upon a list of buffers.
 707 *
 708 * We have conflicting pressures: we want to make sure that all
 709 * initially dirty buffers get waited on, but that any subsequently
 710 * dirtied buffers don't.  After all, we don't want fsync to last
 711 * forever if somebody is actively writing to the file.
 712 *
 713 * Do this in two main stages: first we copy dirty buffers to a
 714 * temporary inode list, queueing the writes as we go.  Then we clean
 715 * up, waiting for those writes to complete.
 716 * 
 717 * During this second stage, any subsequent updates to the file may end
 718 * up refiling the buffer on the original inode's dirty list again, so
 719 * there is a chance we will end up with a buffer queued for write but
 720 * not yet completed on that list.  So, as a final cleanup we go through
 721 * the osync code to catch these locked, dirty buffers without requeuing
 722 * any newly dirty buffers for write.
 723 */
 724static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 725{
 726        struct buffer_head *bh;
 727        struct list_head tmp;
 728        struct address_space *mapping;
 729        int err = 0, err2;
 730        struct blk_plug plug;
 731
 732        INIT_LIST_HEAD(&tmp);
 733        blk_start_plug(&plug);
 734
 735        spin_lock(lock);
 736        while (!list_empty(list)) {
 737                bh = BH_ENTRY(list->next);
 738                mapping = bh->b_assoc_map;
 739                __remove_assoc_queue(bh);
 740                /* Avoid race with mark_buffer_dirty_inode() which does
 741                 * a lockless check and we rely on seeing the dirty bit */
 742                smp_mb();
 743                if (buffer_dirty(bh) || buffer_locked(bh)) {
 744                        list_add(&bh->b_assoc_buffers, &tmp);
 745                        bh->b_assoc_map = mapping;
 746                        if (buffer_dirty(bh)) {
 747                                get_bh(bh);
 748                                spin_unlock(lock);
 749                                /*
 750                                 * Ensure any pending I/O completes so that
 751                                 * write_dirty_buffer() actually writes the
 752                                 * current contents - it is a noop if I/O is
 753                                 * still in flight on potentially older
 754                                 * contents.
 755                                 */
 756                                write_dirty_buffer(bh, WRITE_SYNC);
 757
 758                                /*
 759                                 * Kick off IO for the previous mapping. Note
 760                                 * that we will not run the very last mapping,
 761                                 * wait_on_buffer() will do that for us
 762                                 * through sync_buffer().
 763                                 */
 764                                brelse(bh);
 765                                spin_lock(lock);
 766                        }
 767                }
 768        }
 769
 770        spin_unlock(lock);
 771        blk_finish_plug(&plug);
 772        spin_lock(lock);
 773
 774        while (!list_empty(&tmp)) {
 775                bh = BH_ENTRY(tmp.prev);
 776                get_bh(bh);
 777                mapping = bh->b_assoc_map;
 778                __remove_assoc_queue(bh);
 779                /* Avoid race with mark_buffer_dirty_inode() which does
 780                 * a lockless check and we rely on seeing the dirty bit */
 781                smp_mb();
 782                if (buffer_dirty(bh)) {
 783                        list_add(&bh->b_assoc_buffers,
 784                                 &mapping->private_list);
 785                        bh->b_assoc_map = mapping;
 786                }
 787                spin_unlock(lock);
 788                wait_on_buffer(bh);
 789                if (!buffer_uptodate(bh))
 790                        err = -EIO;
 791                brelse(bh);
 792                spin_lock(lock);
 793        }
 794        
 795        spin_unlock(lock);
 796        err2 = osync_buffers_list(lock, list);
 797        if (err)
 798                return err;
 799        else
 800                return err2;
 801}
 802
 803/*
 804 * Invalidate any and all dirty buffers on a given inode.  We are
 805 * probably unmounting the fs, but that doesn't mean we have already
 806 * done a sync().  Just drop the buffers from the inode list.
 807 *
 808 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 809 * assumes that all the buffers are against the blockdev.  Not true
 810 * for reiserfs.
 811 */
 812void invalidate_inode_buffers(struct inode *inode)
 813{
 814        if (inode_has_buffers(inode)) {
 815                struct address_space *mapping = &inode->i_data;
 816                struct list_head *list = &mapping->private_list;
 817                struct address_space *buffer_mapping = mapping->private_data;
 818
 819                spin_lock(&buffer_mapping->private_lock);
 820                while (!list_empty(list))
 821                        __remove_assoc_queue(BH_ENTRY(list->next));
 822                spin_unlock(&buffer_mapping->private_lock);
 823        }
 824}
 825EXPORT_SYMBOL(invalidate_inode_buffers);
 826
 827/*
 828 * Remove any clean buffers from the inode's buffer list.  This is called
 829 * when we're trying to free the inode itself.  Those buffers can pin it.
 830 *
 831 * Returns true if all buffers were removed.
 832 */
 833int remove_inode_buffers(struct inode *inode)
 834{
 835        int ret = 1;
 836
 837        if (inode_has_buffers(inode)) {
 838                struct address_space *mapping = &inode->i_data;
 839                struct list_head *list = &mapping->private_list;
 840                struct address_space *buffer_mapping = mapping->private_data;
 841
 842                spin_lock(&buffer_mapping->private_lock);
 843                while (!list_empty(list)) {
 844                        struct buffer_head *bh = BH_ENTRY(list->next);
 845                        if (buffer_dirty(bh)) {
 846                                ret = 0;
 847                                break;
 848                        }
 849                        __remove_assoc_queue(bh);
 850                }
 851                spin_unlock(&buffer_mapping->private_lock);
 852        }
 853        return ret;
 854}
 855
 856/*
 857 * Create the appropriate buffers when given a page for data area and
 858 * the size of each buffer.. Use the bh->b_this_page linked list to
 859 * follow the buffers created.  Return NULL if unable to create more
 860 * buffers.
 861 *
 862 * The retry flag is used to differentiate async IO (paging, swapping)
 863 * which may not fail from ordinary buffer allocations.
 864 */
 865struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 866                int retry)
 867{
 868        struct buffer_head *bh, *head;
 869        long offset;
 870
 871try_again:
 872        head = NULL;
 873        offset = PAGE_SIZE;
 874        while ((offset -= size) >= 0) {
 875                bh = alloc_buffer_head(GFP_NOFS);
 876                if (!bh)
 877                        goto no_grow;
 878
 879                bh->b_this_page = head;
 880                bh->b_blocknr = -1;
 881                head = bh;
 882
 883                bh->b_size = size;
 884
 885                /* Link the buffer to its page */
 886                set_bh_page(bh, page, offset);
 887        }
 888        return head;
 889/*
 890 * In case anything failed, we just free everything we got.
 891 */
 892no_grow:
 893        if (head) {
 894                do {
 895                        bh = head;
 896                        head = head->b_this_page;
 897                        free_buffer_head(bh);
 898                } while (head);
 899        }
 900
 901        /*
 902         * Return failure for non-async IO requests.  Async IO requests
 903         * are not allowed to fail, so we have to wait until buffer heads
 904         * become available.  But we don't want tasks sleeping with 
 905         * partially complete buffers, so all were released above.
 906         */
 907        if (!retry)
 908                return NULL;
 909
 910        /* We're _really_ low on memory. Now we just
 911         * wait for old buffer heads to become free due to
 912         * finishing IO.  Since this is an async request and
 913         * the reserve list is empty, we're sure there are 
 914         * async buffer heads in use.
 915         */
 916        free_more_memory();
 917        goto try_again;
 918}
 919EXPORT_SYMBOL_GPL(alloc_page_buffers);
 920
 921static inline void
 922link_dev_buffers(struct page *page, struct buffer_head *head)
 923{
 924        struct buffer_head *bh, *tail;
 925
 926        bh = head;
 927        do {
 928                tail = bh;
 929                bh = bh->b_this_page;
 930        } while (bh);
 931        tail->b_this_page = head;
 932        attach_page_buffers(page, head);
 933}
 934
 935static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 936{
 937        sector_t retval = ~((sector_t)0);
 938        loff_t sz = i_size_read(bdev->bd_inode);
 939
 940        if (sz) {
 941                unsigned int sizebits = blksize_bits(size);
 942                retval = (sz >> sizebits);
 943        }
 944        return retval;
 945}
 946
 947/*
 948 * Initialise the state of a blockdev page's buffers.
 949 */ 
 950static sector_t
 951init_page_buffers(struct page *page, struct block_device *bdev,
 952                        sector_t block, int size)
 953{
 954        struct buffer_head *head = page_buffers(page);
 955        struct buffer_head *bh = head;
 956        int uptodate = PageUptodate(page);
 957        sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 958
 959        do {
 960                if (!buffer_mapped(bh)) {
 961                        init_buffer(bh, NULL, NULL);
 962                        bh->b_bdev = bdev;
 963                        bh->b_blocknr = block;
 964                        if (uptodate)
 965                                set_buffer_uptodate(bh);
 966                        if (block < end_block)
 967                                set_buffer_mapped(bh);
 968                }
 969                block++;
 970                bh = bh->b_this_page;
 971        } while (bh != head);
 972
 973        /*
 974         * Caller needs to validate requested block against end of device.
 975         */
 976        return end_block;
 977}
 978
 979/*
 980 * Create the page-cache page that contains the requested block.
 981 *
 982 * This is used purely for blockdev mappings.
 983 */
 984static int
 985grow_dev_page(struct block_device *bdev, sector_t block,
 986              pgoff_t index, int size, int sizebits, gfp_t gfp)
 987{
 988        struct inode *inode = bdev->bd_inode;
 989        struct page *page;
 990        struct buffer_head *bh;
 991        sector_t end_block;
 992        int ret = 0;            /* Will call free_more_memory() */
 993        gfp_t gfp_mask;
 994
 995        gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 996
 997        /*
 998         * XXX: __getblk_slow() can not really deal with failure and
 999         * will endlessly loop on improvised global reclaim.  Prefer
1000         * looping in the allocator rather than here, at least that
1001         * code knows what it's doing.
1002         */
1003        gfp_mask |= __GFP_NOFAIL;
1004
1005        page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1006        if (!page)
1007                return ret;
1008
1009        BUG_ON(!PageLocked(page));
1010
1011        if (page_has_buffers(page)) {
1012                bh = page_buffers(page);
1013                if (bh->b_size == size) {
1014                        end_block = init_page_buffers(page, bdev,
1015                                                (sector_t)index << sizebits,
1016                                                size);
1017                        goto done;
1018                }
1019                if (!try_to_free_buffers(page))
1020                        goto failed;
1021        }
1022
1023        /*
1024         * Allocate some buffers for this page
1025         */
1026        bh = alloc_page_buffers(page, size, 0);
1027        if (!bh)
1028                goto failed;
1029
1030        /*
1031         * Link the page to the buffers and initialise them.  Take the
1032         * lock to be atomic wrt __find_get_block(), which does not
1033         * run under the page lock.
1034         */
1035        spin_lock(&inode->i_mapping->private_lock);
1036        link_dev_buffers(page, bh);
1037        end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1038                        size);
1039        spin_unlock(&inode->i_mapping->private_lock);
1040done:
1041        ret = (block < end_block) ? 1 : -ENXIO;
1042failed:
1043        unlock_page(page);
1044        put_page(page);
1045        return ret;
1046}
1047
1048/*
1049 * Create buffers for the specified block device block's page.  If
1050 * that page was dirty, the buffers are set dirty also.
1051 */
1052static int
1053grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1054{
1055        pgoff_t index;
1056        int sizebits;
1057
1058        sizebits = -1;
1059        do {
1060                sizebits++;
1061        } while ((size << sizebits) < PAGE_SIZE);
1062
1063        index = block >> sizebits;
1064
1065        /*
1066         * Check for a block which wants to lie outside our maximum possible
1067         * pagecache index.  (this comparison is done using sector_t types).
1068         */
1069        if (unlikely(index != block >> sizebits)) {
1070                printk(KERN_ERR "%s: requested out-of-range block %llu for "
1071                        "device %pg\n",
1072                        __func__, (unsigned long long)block,
1073                        bdev);
1074                return -EIO;
1075        }
1076
1077        /* Create a page with the proper size buffers.. */
1078        return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1079}
1080
1081static struct buffer_head *
1082__getblk_slow(struct block_device *bdev, sector_t block,
1083             unsigned size, gfp_t gfp)
1084{
1085        /* Size must be multiple of hard sectorsize */
1086        if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1087                        (size < 512 || size > PAGE_SIZE))) {
1088                printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1089                                        size);
1090                printk(KERN_ERR "logical block size: %d\n",
1091                                        bdev_logical_block_size(bdev));
1092
1093                dump_stack();
1094                return NULL;
1095        }
1096
1097        for (;;) {
1098                struct buffer_head *bh;
1099                int ret;
1100
1101                bh = __find_get_block(bdev, block, size);
1102                if (bh)
1103                        return bh;
1104
1105                ret = grow_buffers(bdev, block, size, gfp);
1106                if (ret < 0)
1107                        return NULL;
1108                if (ret == 0)
1109                        free_more_memory();
1110        }
1111}
1112
1113/*
1114 * The relationship between dirty buffers and dirty pages:
1115 *
1116 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117 * the page is tagged dirty in its radix tree.
1118 *
1119 * At all times, the dirtiness of the buffers represents the dirtiness of
1120 * subsections of the page.  If the page has buffers, the page dirty bit is
1121 * merely a hint about the true dirty state.
1122 *
1123 * When a page is set dirty in its entirety, all its buffers are marked dirty
1124 * (if the page has buffers).
1125 *
1126 * When a buffer is marked dirty, its page is dirtied, but the page's other
1127 * buffers are not.
1128 *
1129 * Also.  When blockdev buffers are explicitly read with bread(), they
1130 * individually become uptodate.  But their backing page remains not
1131 * uptodate - even if all of its buffers are uptodate.  A subsequent
1132 * block_read_full_page() against that page will discover all the uptodate
1133 * buffers, will set the page uptodate and will perform no I/O.
1134 */
1135
1136/**
1137 * mark_buffer_dirty - mark a buffer_head as needing writeout
1138 * @bh: the buffer_head to mark dirty
1139 *
1140 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141 * backing page dirty, then tag the page as dirty in its address_space's radix
1142 * tree and then attach the address_space's inode to its superblock's dirty
1143 * inode list.
1144 *
1145 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1146 * mapping->tree_lock and mapping->host->i_lock.
1147 */
1148void mark_buffer_dirty(struct buffer_head *bh)
1149{
1150        WARN_ON_ONCE(!buffer_uptodate(bh));
1151
1152        trace_block_dirty_buffer(bh);
1153
1154        /*
1155         * Very *carefully* optimize the it-is-already-dirty case.
1156         *
1157         * Don't let the final "is it dirty" escape to before we
1158         * perhaps modified the buffer.
1159         */
1160        if (buffer_dirty(bh)) {
1161                smp_mb();
1162                if (buffer_dirty(bh))
1163                        return;
1164        }
1165
1166        if (!test_set_buffer_dirty(bh)) {
1167                struct page *page = bh->b_page;
1168                struct address_space *mapping = NULL;
1169
1170                lock_page_memcg(page);
1171                if (!TestSetPageDirty(page)) {
1172                        mapping = page_mapping(page);
1173                        if (mapping)
1174                                __set_page_dirty(page, mapping, 0);
1175                }
1176                unlock_page_memcg(page);
1177                if (mapping)
1178                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1179        }
1180}
1181EXPORT_SYMBOL(mark_buffer_dirty);
1182
1183/*
1184 * Decrement a buffer_head's reference count.  If all buffers against a page
1185 * have zero reference count, are clean and unlocked, and if the page is clean
1186 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1187 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1188 * a page but it ends up not being freed, and buffers may later be reattached).
1189 */
1190void __brelse(struct buffer_head * buf)
1191{
1192        if (atomic_read(&buf->b_count)) {
1193                put_bh(buf);
1194                return;
1195        }
1196        WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1197}
1198EXPORT_SYMBOL(__brelse);
1199
1200/*
1201 * bforget() is like brelse(), except it discards any
1202 * potentially dirty data.
1203 */
1204void __bforget(struct buffer_head *bh)
1205{
1206        clear_buffer_dirty(bh);
1207        if (bh->b_assoc_map) {
1208                struct address_space *buffer_mapping = bh->b_page->mapping;
1209
1210                spin_lock(&buffer_mapping->private_lock);
1211                list_del_init(&bh->b_assoc_buffers);
1212                bh->b_assoc_map = NULL;
1213                spin_unlock(&buffer_mapping->private_lock);
1214        }
1215        __brelse(bh);
1216}
1217EXPORT_SYMBOL(__bforget);
1218
1219static struct buffer_head *__bread_slow(struct buffer_head *bh)
1220{
1221        lock_buffer(bh);
1222        if (buffer_uptodate(bh)) {
1223                unlock_buffer(bh);
1224                return bh;
1225        } else {
1226                get_bh(bh);
1227                bh->b_end_io = end_buffer_read_sync;
1228                submit_bh(REQ_OP_READ, 0, bh);
1229                wait_on_buffer(bh);
1230                if (buffer_uptodate(bh))
1231                        return bh;
1232        }
1233        brelse(bh);
1234        return NULL;
1235}
1236
1237/*
1238 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1239 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1240 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1241 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1242 * CPU's LRUs at the same time.
1243 *
1244 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1245 * sb_find_get_block().
1246 *
1247 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1248 * a local interrupt disable for that.
1249 */
1250
1251#define BH_LRU_SIZE     16
1252
1253struct bh_lru {
1254        struct buffer_head *bhs[BH_LRU_SIZE];
1255};
1256
1257static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1258
1259#ifdef CONFIG_SMP
1260#define bh_lru_lock()   local_irq_disable()
1261#define bh_lru_unlock() local_irq_enable()
1262#else
1263#define bh_lru_lock()   preempt_disable()
1264#define bh_lru_unlock() preempt_enable()
1265#endif
1266
1267static inline void check_irqs_on(void)
1268{
1269#ifdef irqs_disabled
1270        BUG_ON(irqs_disabled());
1271#endif
1272}
1273
1274/*
1275 * The LRU management algorithm is dopey-but-simple.  Sorry.
1276 */
1277static void bh_lru_install(struct buffer_head *bh)
1278{
1279        struct buffer_head *evictee = NULL;
1280
1281        check_irqs_on();
1282        bh_lru_lock();
1283        if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1284                struct buffer_head *bhs[BH_LRU_SIZE];
1285                int in;
1286                int out = 0;
1287
1288                get_bh(bh);
1289                bhs[out++] = bh;
1290                for (in = 0; in < BH_LRU_SIZE; in++) {
1291                        struct buffer_head *bh2 =
1292                                __this_cpu_read(bh_lrus.bhs[in]);
1293
1294                        if (bh2 == bh) {
1295                                __brelse(bh2);
1296                        } else {
1297                                if (out >= BH_LRU_SIZE) {
1298                                        BUG_ON(evictee != NULL);
1299                                        evictee = bh2;
1300                                } else {
1301                                        bhs[out++] = bh2;
1302                                }
1303                        }
1304                }
1305                while (out < BH_LRU_SIZE)
1306                        bhs[out++] = NULL;
1307                memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1308        }
1309        bh_lru_unlock();
1310
1311        if (evictee)
1312                __brelse(evictee);
1313}
1314
1315/*
1316 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1317 */
1318static struct buffer_head *
1319lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1320{
1321        struct buffer_head *ret = NULL;
1322        unsigned int i;
1323
1324        check_irqs_on();
1325        bh_lru_lock();
1326        for (i = 0; i < BH_LRU_SIZE; i++) {
1327                struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1328
1329                if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1330                    bh->b_size == size) {
1331                        if (i) {
1332                                while (i) {
1333                                        __this_cpu_write(bh_lrus.bhs[i],
1334                                                __this_cpu_read(bh_lrus.bhs[i - 1]));
1335                                        i--;
1336                                }
1337                                __this_cpu_write(bh_lrus.bhs[0], bh);
1338                        }
1339                        get_bh(bh);
1340                        ret = bh;
1341                        break;
1342                }
1343        }
1344        bh_lru_unlock();
1345        return ret;
1346}
1347
1348/*
1349 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1350 * it in the LRU and mark it as accessed.  If it is not present then return
1351 * NULL
1352 */
1353struct buffer_head *
1354__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1355{
1356        struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1357
1358        if (bh == NULL) {
1359                /* __find_get_block_slow will mark the page accessed */
1360                bh = __find_get_block_slow(bdev, block);
1361                if (bh)
1362                        bh_lru_install(bh);
1363        } else
1364                touch_buffer(bh);
1365
1366        return bh;
1367}
1368EXPORT_SYMBOL(__find_get_block);
1369
1370/*
1371 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1372 * which corresponds to the passed block_device, block and size. The
1373 * returned buffer has its reference count incremented.
1374 *
1375 * __getblk_gfp() will lock up the machine if grow_dev_page's
1376 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1377 */
1378struct buffer_head *
1379__getblk_gfp(struct block_device *bdev, sector_t block,
1380             unsigned size, gfp_t gfp)
1381{
1382        struct buffer_head *bh = __find_get_block(bdev, block, size);
1383
1384        might_sleep();
1385        if (bh == NULL)
1386                bh = __getblk_slow(bdev, block, size, gfp);
1387        return bh;
1388}
1389EXPORT_SYMBOL(__getblk_gfp);
1390
1391/*
1392 * Do async read-ahead on a buffer..
1393 */
1394void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1395{
1396        struct buffer_head *bh = __getblk(bdev, block, size);
1397        if (likely(bh)) {
1398                ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1399                brelse(bh);
1400        }
1401}
1402EXPORT_SYMBOL(__breadahead);
1403
1404/**
1405 *  __bread_gfp() - reads a specified block and returns the bh
1406 *  @bdev: the block_device to read from
1407 *  @block: number of block
1408 *  @size: size (in bytes) to read
1409 *  @gfp: page allocation flag
1410 *
1411 *  Reads a specified block, and returns buffer head that contains it.
1412 *  The page cache can be allocated from non-movable area
1413 *  not to prevent page migration if you set gfp to zero.
1414 *  It returns NULL if the block was unreadable.
1415 */
1416struct buffer_head *
1417__bread_gfp(struct block_device *bdev, sector_t block,
1418                   unsigned size, gfp_t gfp)
1419{
1420        struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1421
1422        if (likely(bh) && !buffer_uptodate(bh))
1423                bh = __bread_slow(bh);
1424        return bh;
1425}
1426EXPORT_SYMBOL(__bread_gfp);
1427
1428/*
1429 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430 * This doesn't race because it runs in each cpu either in irq
1431 * or with preempt disabled.
1432 */
1433static void invalidate_bh_lru(void *arg)
1434{
1435        struct bh_lru *b = &get_cpu_var(bh_lrus);
1436        int i;
1437
1438        for (i = 0; i < BH_LRU_SIZE; i++) {
1439                brelse(b->bhs[i]);
1440                b->bhs[i] = NULL;
1441        }
1442        put_cpu_var(bh_lrus);
1443}
1444
1445static bool has_bh_in_lru(int cpu, void *dummy)
1446{
1447        struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448        int i;
1449        
1450        for (i = 0; i < BH_LRU_SIZE; i++) {
1451                if (b->bhs[i])
1452                        return 1;
1453        }
1454
1455        return 0;
1456}
1457
1458void invalidate_bh_lrus(void)
1459{
1460        on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1461}
1462EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463
1464void set_bh_page(struct buffer_head *bh,
1465                struct page *page, unsigned long offset)
1466{
1467        bh->b_page = page;
1468        BUG_ON(offset >= PAGE_SIZE);
1469        if (PageHighMem(page))
1470                /*
1471                 * This catches illegal uses and preserves the offset:
1472                 */
1473                bh->b_data = (char *)(0 + offset);
1474        else
1475                bh->b_data = page_address(page) + offset;
1476}
1477EXPORT_SYMBOL(set_bh_page);
1478
1479/*
1480 * Called when truncating a buffer on a page completely.
1481 */
1482
1483/* Bits that are cleared during an invalidate */
1484#define BUFFER_FLAGS_DISCARD \
1485        (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486         1 << BH_Delay | 1 << BH_Unwritten)
1487
1488static void discard_buffer(struct buffer_head * bh)
1489{
1490        unsigned long b_state, b_state_old;
1491
1492        lock_buffer(bh);
1493        clear_buffer_dirty(bh);
1494        bh->b_bdev = NULL;
1495        b_state = bh->b_state;
1496        for (;;) {
1497                b_state_old = cmpxchg(&bh->b_state, b_state,
1498                                      (b_state & ~BUFFER_FLAGS_DISCARD));
1499                if (b_state_old == b_state)
1500                        break;
1501                b_state = b_state_old;
1502        }
1503        unlock_buffer(bh);
1504}
1505
1506/**
1507 * block_invalidatepage - invalidate part or all of a buffer-backed page
1508 *
1509 * @page: the page which is affected
1510 * @offset: start of the range to invalidate
1511 * @length: length of the range to invalidate
1512 *
1513 * block_invalidatepage() is called when all or part of the page has become
1514 * invalidated by a truncate operation.
1515 *
1516 * block_invalidatepage() does not have to release all buffers, but it must
1517 * ensure that no dirty buffer is left outside @offset and that no I/O
1518 * is underway against any of the blocks which are outside the truncation
1519 * point.  Because the caller is about to free (and possibly reuse) those
1520 * blocks on-disk.
1521 */
1522void block_invalidatepage(struct page *page, unsigned int offset,
1523                          unsigned int length)
1524{
1525        struct buffer_head *head, *bh, *next;
1526        unsigned int curr_off = 0;
1527        unsigned int stop = length + offset;
1528
1529        BUG_ON(!PageLocked(page));
1530        if (!page_has_buffers(page))
1531                goto out;
1532
1533        /*
1534         * Check for overflow
1535         */
1536        BUG_ON(stop > PAGE_SIZE || stop < length);
1537
1538        head = page_buffers(page);
1539        bh = head;
1540        do {
1541                unsigned int next_off = curr_off + bh->b_size;
1542                next = bh->b_this_page;
1543
1544                /*
1545                 * Are we still fully in range ?
1546                 */
1547                if (next_off > stop)
1548                        goto out;
1549
1550                /*
1551                 * is this block fully invalidated?
1552                 */
1553                if (offset <= curr_off)
1554                        discard_buffer(bh);
1555                curr_off = next_off;
1556                bh = next;
1557        } while (bh != head);
1558
1559        /*
1560         * We release buffers only if the entire page is being invalidated.
1561         * The get_block cached value has been unconditionally invalidated,
1562         * so real IO is not possible anymore.
1563         */
1564        if (offset == 0)
1565                try_to_release_page(page, 0);
1566out:
1567        return;
1568}
1569EXPORT_SYMBOL(block_invalidatepage);
1570
1571
1572/*
1573 * We attach and possibly dirty the buffers atomically wrt
1574 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1575 * is already excluded via the page lock.
1576 */
1577void create_empty_buffers(struct page *page,
1578                        unsigned long blocksize, unsigned long b_state)
1579{
1580        struct buffer_head *bh, *head, *tail;
1581
1582        head = alloc_page_buffers(page, blocksize, 1);
1583        bh = head;
1584        do {
1585                bh->b_state |= b_state;
1586                tail = bh;
1587                bh = bh->b_this_page;
1588        } while (bh);
1589        tail->b_this_page = head;
1590
1591        spin_lock(&page->mapping->private_lock);
1592        if (PageUptodate(page) || PageDirty(page)) {
1593                bh = head;
1594                do {
1595                        if (PageDirty(page))
1596                                set_buffer_dirty(bh);
1597                        if (PageUptodate(page))
1598                                set_buffer_uptodate(bh);
1599                        bh = bh->b_this_page;
1600                } while (bh != head);
1601        }
1602        attach_page_buffers(page, head);
1603        spin_unlock(&page->mapping->private_lock);
1604}
1605EXPORT_SYMBOL(create_empty_buffers);
1606
1607/*
1608 * We are taking a block for data and we don't want any output from any
1609 * buffer-cache aliases starting from return from that function and
1610 * until the moment when something will explicitly mark the buffer
1611 * dirty (hopefully that will not happen until we will free that block ;-)
1612 * We don't even need to mark it not-uptodate - nobody can expect
1613 * anything from a newly allocated buffer anyway. We used to used
1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615 * don't want to mark the alias unmapped, for example - it would confuse
1616 * anyone who might pick it with bread() afterwards...
1617 *
1618 * Also..  Note that bforget() doesn't lock the buffer.  So there can
1619 * be writeout I/O going on against recently-freed buffers.  We don't
1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621 * only if we really need to.  That happens here.
1622 */
1623void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1624{
1625        struct buffer_head *old_bh;
1626
1627        might_sleep();
1628
1629        old_bh = __find_get_block_slow(bdev, block);
1630        if (old_bh) {
1631                clear_buffer_dirty(old_bh);
1632                wait_on_buffer(old_bh);
1633                clear_buffer_req(old_bh);
1634                __brelse(old_bh);
1635        }
1636}
1637EXPORT_SYMBOL(unmap_underlying_metadata);
1638
1639/*
1640 * Size is a power-of-two in the range 512..PAGE_SIZE,
1641 * and the case we care about most is PAGE_SIZE.
1642 *
1643 * So this *could* possibly be written with those
1644 * constraints in mind (relevant mostly if some
1645 * architecture has a slow bit-scan instruction)
1646 */
1647static inline int block_size_bits(unsigned int blocksize)
1648{
1649        return ilog2(blocksize);
1650}
1651
1652static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1653{
1654        BUG_ON(!PageLocked(page));
1655
1656        if (!page_has_buffers(page))
1657                create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658        return page_buffers(page);
1659}
1660
1661/*
1662 * NOTE! All mapped/uptodate combinations are valid:
1663 *
1664 *      Mapped  Uptodate        Meaning
1665 *
1666 *      No      No              "unknown" - must do get_block()
1667 *      No      Yes             "hole" - zero-filled
1668 *      Yes     No              "allocated" - allocated on disk, not read in
1669 *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1670 *
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1672 */
1673
1674/*
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time.  We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1679 *
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer.   This only can happen if someone has written the buffer
1683 * directly, with submit_bh().  At the address_space level PageWriteback
1684 * prevents this contention from occurring.
1685 *
1686 * If block_write_full_page() is called with wbc->sync_mode ==
1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1689 */
1690int __block_write_full_page(struct inode *inode, struct page *page,
1691                        get_block_t *get_block, struct writeback_control *wbc,
1692                        bh_end_io_t *handler)
1693{
1694        int err;
1695        sector_t block;
1696        sector_t last_block;
1697        struct buffer_head *bh, *head;
1698        unsigned int blocksize, bbits;
1699        int nr_underway = 0;
1700        int write_flags = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : 0);
1701
1702        head = create_page_buffers(page, inode,
1703                                        (1 << BH_Dirty)|(1 << BH_Uptodate));
1704
1705        /*
1706         * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1707         * here, and the (potentially unmapped) buffers may become dirty at
1708         * any time.  If a buffer becomes dirty here after we've inspected it
1709         * then we just miss that fact, and the page stays dirty.
1710         *
1711         * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1712         * handle that here by just cleaning them.
1713         */
1714
1715        bh = head;
1716        blocksize = bh->b_size;
1717        bbits = block_size_bits(blocksize);
1718
1719        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1720        last_block = (i_size_read(inode) - 1) >> bbits;
1721
1722        /*
1723         * Get all the dirty buffers mapped to disk addresses and
1724         * handle any aliases from the underlying blockdev's mapping.
1725         */
1726        do {
1727                if (block > last_block) {
1728                        /*
1729                         * mapped buffers outside i_size will occur, because
1730                         * this page can be outside i_size when there is a
1731                         * truncate in progress.
1732                         */
1733                        /*
1734                         * The buffer was zeroed by block_write_full_page()
1735                         */
1736                        clear_buffer_dirty(bh);
1737                        set_buffer_uptodate(bh);
1738                } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1739                           buffer_dirty(bh)) {
1740                        WARN_ON(bh->b_size != blocksize);
1741                        err = get_block(inode, block, bh, 1);
1742                        if (err)
1743                                goto recover;
1744                        clear_buffer_delay(bh);
1745                        if (buffer_new(bh)) {
1746                                /* blockdev mappings never come here */
1747                                clear_buffer_new(bh);
1748                                unmap_underlying_metadata(bh->b_bdev,
1749                                                        bh->b_blocknr);
1750                        }
1751                }
1752                bh = bh->b_this_page;
1753                block++;
1754        } while (bh != head);
1755
1756        do {
1757                if (!buffer_mapped(bh))
1758                        continue;
1759                /*
1760                 * If it's a fully non-blocking write attempt and we cannot
1761                 * lock the buffer then redirty the page.  Note that this can
1762                 * potentially cause a busy-wait loop from writeback threads
1763                 * and kswapd activity, but those code paths have their own
1764                 * higher-level throttling.
1765                 */
1766                if (wbc->sync_mode != WB_SYNC_NONE) {
1767                        lock_buffer(bh);
1768                } else if (!trylock_buffer(bh)) {
1769                        redirty_page_for_writepage(wbc, page);
1770                        continue;
1771                }
1772                if (test_clear_buffer_dirty(bh)) {
1773                        mark_buffer_async_write_endio(bh, handler);
1774                } else {
1775                        unlock_buffer(bh);
1776                }
1777        } while ((bh = bh->b_this_page) != head);
1778
1779        /*
1780         * The page and its buffers are protected by PageWriteback(), so we can
1781         * drop the bh refcounts early.
1782         */
1783        BUG_ON(PageWriteback(page));
1784        set_page_writeback(page);
1785
1786        do {
1787                struct buffer_head *next = bh->b_this_page;
1788                if (buffer_async_write(bh)) {
1789                        submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1790                        nr_underway++;
1791                }
1792                bh = next;
1793        } while (bh != head);
1794        unlock_page(page);
1795
1796        err = 0;
1797done:
1798        if (nr_underway == 0) {
1799                /*
1800                 * The page was marked dirty, but the buffers were
1801                 * clean.  Someone wrote them back by hand with
1802                 * ll_rw_block/submit_bh.  A rare case.
1803                 */
1804                end_page_writeback(page);
1805
1806                /*
1807                 * The page and buffer_heads can be released at any time from
1808                 * here on.
1809                 */
1810        }
1811        return err;
1812
1813recover:
1814        /*
1815         * ENOSPC, or some other error.  We may already have added some
1816         * blocks to the file, so we need to write these out to avoid
1817         * exposing stale data.
1818         * The page is currently locked and not marked for writeback
1819         */
1820        bh = head;
1821        /* Recovery: lock and submit the mapped buffers */
1822        do {
1823                if (buffer_mapped(bh) && buffer_dirty(bh) &&
1824                    !buffer_delay(bh)) {
1825                        lock_buffer(bh);
1826                        mark_buffer_async_write_endio(bh, handler);
1827                } else {
1828                        /*
1829                         * The buffer may have been set dirty during
1830                         * attachment to a dirty page.
1831                         */
1832                        clear_buffer_dirty(bh);
1833                }
1834        } while ((bh = bh->b_this_page) != head);
1835        SetPageError(page);
1836        BUG_ON(PageWriteback(page));
1837        mapping_set_error(page->mapping, err);
1838        set_page_writeback(page);
1839        do {
1840                struct buffer_head *next = bh->b_this_page;
1841                if (buffer_async_write(bh)) {
1842                        clear_buffer_dirty(bh);
1843                        submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1844                        nr_underway++;
1845                }
1846                bh = next;
1847        } while (bh != head);
1848        unlock_page(page);
1849        goto done;
1850}
1851EXPORT_SYMBOL(__block_write_full_page);
1852
1853/*
1854 * If a page has any new buffers, zero them out here, and mark them uptodate
1855 * and dirty so they'll be written out (in order to prevent uninitialised
1856 * block data from leaking). And clear the new bit.
1857 */
1858void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859{
1860        unsigned int block_start, block_end;
1861        struct buffer_head *head, *bh;
1862
1863        BUG_ON(!PageLocked(page));
1864        if (!page_has_buffers(page))
1865                return;
1866
1867        bh = head = page_buffers(page);
1868        block_start = 0;
1869        do {
1870                block_end = block_start + bh->b_size;
1871
1872                if (buffer_new(bh)) {
1873                        if (block_end > from && block_start < to) {
1874                                if (!PageUptodate(page)) {
1875                                        unsigned start, size;
1876
1877                                        start = max(from, block_start);
1878                                        size = min(to, block_end) - start;
1879
1880                                        zero_user(page, start, size);
1881                                        set_buffer_uptodate(bh);
1882                                }
1883
1884                                clear_buffer_new(bh);
1885                                mark_buffer_dirty(bh);
1886                        }
1887                }
1888
1889                block_start = block_end;
1890                bh = bh->b_this_page;
1891        } while (bh != head);
1892}
1893EXPORT_SYMBOL(page_zero_new_buffers);
1894
1895static void
1896iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1897                struct iomap *iomap)
1898{
1899        loff_t offset = block << inode->i_blkbits;
1900
1901        bh->b_bdev = iomap->bdev;
1902
1903        /*
1904         * Block points to offset in file we need to map, iomap contains
1905         * the offset at which the map starts. If the map ends before the
1906         * current block, then do not map the buffer and let the caller
1907         * handle it.
1908         */
1909        BUG_ON(offset >= iomap->offset + iomap->length);
1910
1911        switch (iomap->type) {
1912        case IOMAP_HOLE:
1913                /*
1914                 * If the buffer is not up to date or beyond the current EOF,
1915                 * we need to mark it as new to ensure sub-block zeroing is
1916                 * executed if necessary.
1917                 */
1918                if (!buffer_uptodate(bh) ||
1919                    (offset >= i_size_read(inode)))
1920                        set_buffer_new(bh);
1921                break;
1922        case IOMAP_DELALLOC:
1923                if (!buffer_uptodate(bh) ||
1924                    (offset >= i_size_read(inode)))
1925                        set_buffer_new(bh);
1926                set_buffer_uptodate(bh);
1927                set_buffer_mapped(bh);
1928                set_buffer_delay(bh);
1929                break;
1930        case IOMAP_UNWRITTEN:
1931                /*
1932                 * For unwritten regions, we always need to ensure that
1933                 * sub-block writes cause the regions in the block we are not
1934                 * writing to are zeroed. Set the buffer as new to ensure this.
1935                 */
1936                set_buffer_new(bh);
1937                set_buffer_unwritten(bh);
1938                /* FALLTHRU */
1939        case IOMAP_MAPPED:
1940                if (offset >= i_size_read(inode))
1941                        set_buffer_new(bh);
1942                bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1943                                ((offset - iomap->offset) >> inode->i_blkbits);
1944                set_buffer_mapped(bh);
1945                break;
1946        }
1947}
1948
1949int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1950                get_block_t *get_block, struct iomap *iomap)
1951{
1952        unsigned from = pos & (PAGE_SIZE - 1);
1953        unsigned to = from + len;
1954        struct inode *inode = page->mapping->host;
1955        unsigned block_start, block_end;
1956        sector_t block;
1957        int err = 0;
1958        unsigned blocksize, bbits;
1959        struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1960
1961        BUG_ON(!PageLocked(page));
1962        BUG_ON(from > PAGE_SIZE);
1963        BUG_ON(to > PAGE_SIZE);
1964        BUG_ON(from > to);
1965
1966        head = create_page_buffers(page, inode, 0);
1967        blocksize = head->b_size;
1968        bbits = block_size_bits(blocksize);
1969
1970        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1971
1972        for(bh = head, block_start = 0; bh != head || !block_start;
1973            block++, block_start=block_end, bh = bh->b_this_page) {
1974                block_end = block_start + blocksize;
1975                if (block_end <= from || block_start >= to) {
1976                        if (PageUptodate(page)) {
1977                                if (!buffer_uptodate(bh))
1978                                        set_buffer_uptodate(bh);
1979                        }
1980                        continue;
1981                }
1982                if (buffer_new(bh))
1983                        clear_buffer_new(bh);
1984                if (!buffer_mapped(bh)) {
1985                        WARN_ON(bh->b_size != blocksize);
1986                        if (get_block) {
1987                                err = get_block(inode, block, bh, 1);
1988                                if (err)
1989                                        break;
1990                        } else {
1991                                iomap_to_bh(inode, block, bh, iomap);
1992                        }
1993
1994                        if (buffer_new(bh)) {
1995                                unmap_underlying_metadata(bh->b_bdev,
1996                                                        bh->b_blocknr);
1997                                if (PageUptodate(page)) {
1998                                        clear_buffer_new(bh);
1999                                        set_buffer_uptodate(bh);
2000                                        mark_buffer_dirty(bh);
2001                                        continue;
2002                                }
2003                                if (block_end > to || block_start < from)
2004                                        zero_user_segments(page,
2005                                                to, block_end,
2006                                                block_start, from);
2007                                continue;
2008                        }
2009                }
2010                if (PageUptodate(page)) {
2011                        if (!buffer_uptodate(bh))
2012                                set_buffer_uptodate(bh);
2013                        continue; 
2014                }
2015                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2016                    !buffer_unwritten(bh) &&
2017                     (block_start < from || block_end > to)) {
2018                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2019                        *wait_bh++=bh;
2020                }
2021        }
2022        /*
2023         * If we issued read requests - let them complete.
2024         */
2025        while(wait_bh > wait) {
2026                wait_on_buffer(*--wait_bh);
2027                if (!buffer_uptodate(*wait_bh))
2028                        err = -EIO;
2029        }
2030        if (unlikely(err))
2031                page_zero_new_buffers(page, from, to);
2032        return err;
2033}
2034
2035int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2036                get_block_t *get_block)
2037{
2038        return __block_write_begin_int(page, pos, len, get_block, NULL);
2039}
2040EXPORT_SYMBOL(__block_write_begin);
2041
2042static int __block_commit_write(struct inode *inode, struct page *page,
2043                unsigned from, unsigned to)
2044{
2045        unsigned block_start, block_end;
2046        int partial = 0;
2047        unsigned blocksize;
2048        struct buffer_head *bh, *head;
2049
2050        bh = head = page_buffers(page);
2051        blocksize = bh->b_size;
2052
2053        block_start = 0;
2054        do {
2055                block_end = block_start + blocksize;
2056                if (block_end <= from || block_start >= to) {
2057                        if (!buffer_uptodate(bh))
2058                                partial = 1;
2059                } else {
2060                        set_buffer_uptodate(bh);
2061                        mark_buffer_dirty(bh);
2062                }
2063                clear_buffer_new(bh);
2064
2065                block_start = block_end;
2066                bh = bh->b_this_page;
2067        } while (bh != head);
2068
2069        /*
2070         * If this is a partial write which happened to make all buffers
2071         * uptodate then we can optimize away a bogus readpage() for
2072         * the next read(). Here we 'discover' whether the page went
2073         * uptodate as a result of this (potentially partial) write.
2074         */
2075        if (!partial)
2076                SetPageUptodate(page);
2077        return 0;
2078}
2079
2080/*
2081 * block_write_begin takes care of the basic task of block allocation and
2082 * bringing partial write blocks uptodate first.
2083 *
2084 * The filesystem needs to handle block truncation upon failure.
2085 */
2086int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2087                unsigned flags, struct page **pagep, get_block_t *get_block)
2088{
2089        pgoff_t index = pos >> PAGE_SHIFT;
2090        struct page *page;
2091        int status;
2092
2093        page = grab_cache_page_write_begin(mapping, index, flags);
2094        if (!page)
2095                return -ENOMEM;
2096
2097        status = __block_write_begin(page, pos, len, get_block);
2098        if (unlikely(status)) {
2099                unlock_page(page);
2100                put_page(page);
2101                page = NULL;
2102        }
2103
2104        *pagep = page;
2105        return status;
2106}
2107EXPORT_SYMBOL(block_write_begin);
2108
2109int block_write_end(struct file *file, struct address_space *mapping,
2110                        loff_t pos, unsigned len, unsigned copied,
2111                        struct page *page, void *fsdata)
2112{
2113        struct inode *inode = mapping->host;
2114        unsigned start;
2115
2116        start = pos & (PAGE_SIZE - 1);
2117
2118        if (unlikely(copied < len)) {
2119                /*
2120                 * The buffers that were written will now be uptodate, so we
2121                 * don't have to worry about a readpage reading them and
2122                 * overwriting a partial write. However if we have encountered
2123                 * a short write and only partially written into a buffer, it
2124                 * will not be marked uptodate, so a readpage might come in and
2125                 * destroy our partial write.
2126                 *
2127                 * Do the simplest thing, and just treat any short write to a
2128                 * non uptodate page as a zero-length write, and force the
2129                 * caller to redo the whole thing.
2130                 */
2131                if (!PageUptodate(page))
2132                        copied = 0;
2133
2134                page_zero_new_buffers(page, start+copied, start+len);
2135        }
2136        flush_dcache_page(page);
2137
2138        /* This could be a short (even 0-length) commit */
2139        __block_commit_write(inode, page, start, start+copied);
2140
2141        return copied;
2142}
2143EXPORT_SYMBOL(block_write_end);
2144
2145int generic_write_end(struct file *file, struct address_space *mapping,
2146                        loff_t pos, unsigned len, unsigned copied,
2147                        struct page *page, void *fsdata)
2148{
2149        struct inode *inode = mapping->host;
2150        loff_t old_size = inode->i_size;
2151        int i_size_changed = 0;
2152
2153        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2154
2155        /*
2156         * No need to use i_size_read() here, the i_size
2157         * cannot change under us because we hold i_mutex.
2158         *
2159         * But it's important to update i_size while still holding page lock:
2160         * page writeout could otherwise come in and zero beyond i_size.
2161         */
2162        if (pos+copied > inode->i_size) {
2163                i_size_write(inode, pos+copied);
2164                i_size_changed = 1;
2165        }
2166
2167        unlock_page(page);
2168        put_page(page);
2169
2170        if (old_size < pos)
2171                pagecache_isize_extended(inode, old_size, pos);
2172        /*
2173         * Don't mark the inode dirty under page lock. First, it unnecessarily
2174         * makes the holding time of page lock longer. Second, it forces lock
2175         * ordering of page lock and transaction start for journaling
2176         * filesystems.
2177         */
2178        if (i_size_changed)
2179                mark_inode_dirty(inode);
2180
2181        return copied;
2182}
2183EXPORT_SYMBOL(generic_write_end);
2184
2185/*
2186 * block_is_partially_uptodate checks whether buffers within a page are
2187 * uptodate or not.
2188 *
2189 * Returns true if all buffers which correspond to a file portion
2190 * we want to read are uptodate.
2191 */
2192int block_is_partially_uptodate(struct page *page, unsigned long from,
2193                                        unsigned long count)
2194{
2195        unsigned block_start, block_end, blocksize;
2196        unsigned to;
2197        struct buffer_head *bh, *head;
2198        int ret = 1;
2199
2200        if (!page_has_buffers(page))
2201                return 0;
2202
2203        head = page_buffers(page);
2204        blocksize = head->b_size;
2205        to = min_t(unsigned, PAGE_SIZE - from, count);
2206        to = from + to;
2207        if (from < blocksize && to > PAGE_SIZE - blocksize)
2208                return 0;
2209
2210        bh = head;
2211        block_start = 0;
2212        do {
2213                block_end = block_start + blocksize;
2214                if (block_end > from && block_start < to) {
2215                        if (!buffer_uptodate(bh)) {
2216                                ret = 0;
2217                                break;
2218                        }
2219                        if (block_end >= to)
2220                                break;
2221                }
2222                block_start = block_end;
2223                bh = bh->b_this_page;
2224        } while (bh != head);
2225
2226        return ret;
2227}
2228EXPORT_SYMBOL(block_is_partially_uptodate);
2229
2230/*
2231 * Generic "read page" function for block devices that have the normal
2232 * get_block functionality. This is most of the block device filesystems.
2233 * Reads the page asynchronously --- the unlock_buffer() and
2234 * set/clear_buffer_uptodate() functions propagate buffer state into the
2235 * page struct once IO has completed.
2236 */
2237int block_read_full_page(struct page *page, get_block_t *get_block)
2238{
2239        struct inode *inode = page->mapping->host;
2240        sector_t iblock, lblock;
2241        struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2242        unsigned int blocksize, bbits;
2243        int nr, i;
2244        int fully_mapped = 1;
2245
2246        head = create_page_buffers(page, inode, 0);
2247        blocksize = head->b_size;
2248        bbits = block_size_bits(blocksize);
2249
2250        iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2251        lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2252        bh = head;
2253        nr = 0;
2254        i = 0;
2255
2256        do {
2257                if (buffer_uptodate(bh))
2258                        continue;
2259
2260                if (!buffer_mapped(bh)) {
2261                        int err = 0;
2262
2263                        fully_mapped = 0;
2264                        if (iblock < lblock) {
2265                                WARN_ON(bh->b_size != blocksize);
2266                                err = get_block(inode, iblock, bh, 0);
2267                                if (err)
2268                                        SetPageError(page);
2269                        }
2270                        if (!buffer_mapped(bh)) {
2271                                zero_user(page, i * blocksize, blocksize);
2272                                if (!err)
2273                                        set_buffer_uptodate(bh);
2274                                continue;
2275                        }
2276                        /*
2277                         * get_block() might have updated the buffer
2278                         * synchronously
2279                         */
2280                        if (buffer_uptodate(bh))
2281                                continue;
2282                }
2283                arr[nr++] = bh;
2284        } while (i++, iblock++, (bh = bh->b_this_page) != head);
2285
2286        if (fully_mapped)
2287                SetPageMappedToDisk(page);
2288
2289        if (!nr) {
2290                /*
2291                 * All buffers are uptodate - we can set the page uptodate
2292                 * as well. But not if get_block() returned an error.
2293                 */
2294                if (!PageError(page))
2295                        SetPageUptodate(page);
2296                unlock_page(page);
2297                return 0;
2298        }
2299
2300        /* Stage two: lock the buffers */
2301        for (i = 0; i < nr; i++) {
2302                bh = arr[i];
2303                lock_buffer(bh);
2304                mark_buffer_async_read(bh);
2305        }
2306
2307        /*
2308         * Stage 3: start the IO.  Check for uptodateness
2309         * inside the buffer lock in case another process reading
2310         * the underlying blockdev brought it uptodate (the sct fix).
2311         */
2312        for (i = 0; i < nr; i++) {
2313                bh = arr[i];
2314                if (buffer_uptodate(bh))
2315                        end_buffer_async_read(bh, 1);
2316                else
2317                        submit_bh(REQ_OP_READ, 0, bh);
2318        }
2319        return 0;
2320}
2321EXPORT_SYMBOL(block_read_full_page);
2322
2323/* utility function for filesystems that need to do work on expanding
2324 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2325 * deal with the hole.  
2326 */
2327int generic_cont_expand_simple(struct inode *inode, loff_t size)
2328{
2329        struct address_space *mapping = inode->i_mapping;
2330        struct page *page;
2331        void *fsdata;
2332        int err;
2333
2334        err = inode_newsize_ok(inode, size);
2335        if (err)
2336                goto out;
2337
2338        err = pagecache_write_begin(NULL, mapping, size, 0,
2339                                AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2340                                &page, &fsdata);
2341        if (err)
2342                goto out;
2343
2344        err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2345        BUG_ON(err > 0);
2346
2347out:
2348        return err;
2349}
2350EXPORT_SYMBOL(generic_cont_expand_simple);
2351
2352static int cont_expand_zero(struct file *file, struct address_space *mapping,
2353                            loff_t pos, loff_t *bytes)
2354{
2355        struct inode *inode = mapping->host;
2356        unsigned blocksize = 1 << inode->i_blkbits;
2357        struct page *page;
2358        void *fsdata;
2359        pgoff_t index, curidx;
2360        loff_t curpos;
2361        unsigned zerofrom, offset, len;
2362        int err = 0;
2363
2364        index = pos >> PAGE_SHIFT;
2365        offset = pos & ~PAGE_MASK;
2366
2367        while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2368                zerofrom = curpos & ~PAGE_MASK;
2369                if (zerofrom & (blocksize-1)) {
2370                        *bytes |= (blocksize-1);
2371                        (*bytes)++;
2372                }
2373                len = PAGE_SIZE - zerofrom;
2374
2375                err = pagecache_write_begin(file, mapping, curpos, len,
2376                                                AOP_FLAG_UNINTERRUPTIBLE,
2377                                                &page, &fsdata);
2378                if (err)
2379                        goto out;
2380                zero_user(page, zerofrom, len);
2381                err = pagecache_write_end(file, mapping, curpos, len, len,
2382                                                page, fsdata);
2383                if (err < 0)
2384                        goto out;
2385                BUG_ON(err != len);
2386                err = 0;
2387
2388                balance_dirty_pages_ratelimited(mapping);
2389
2390                if (unlikely(fatal_signal_pending(current))) {
2391                        err = -EINTR;
2392                        goto out;
2393                }
2394        }
2395
2396        /* page covers the boundary, find the boundary offset */
2397        if (index == curidx) {
2398                zerofrom = curpos & ~PAGE_MASK;
2399                /* if we will expand the thing last block will be filled */
2400                if (offset <= zerofrom) {
2401                        goto out;
2402                }
2403                if (zerofrom & (blocksize-1)) {
2404                        *bytes |= (blocksize-1);
2405                        (*bytes)++;
2406                }
2407                len = offset - zerofrom;
2408
2409                err = pagecache_write_begin(file, mapping, curpos, len,
2410                                                AOP_FLAG_UNINTERRUPTIBLE,
2411                                                &page, &fsdata);
2412                if (err)
2413                        goto out;
2414                zero_user(page, zerofrom, len);
2415                err = pagecache_write_end(file, mapping, curpos, len, len,
2416                                                page, fsdata);
2417                if (err < 0)
2418                        goto out;
2419                BUG_ON(err != len);
2420                err = 0;
2421        }
2422out:
2423        return err;
2424}
2425
2426/*
2427 * For moronic filesystems that do not allow holes in file.
2428 * We may have to extend the file.
2429 */
2430int cont_write_begin(struct file *file, struct address_space *mapping,
2431                        loff_t pos, unsigned len, unsigned flags,
2432                        struct page **pagep, void **fsdata,
2433                        get_block_t *get_block, loff_t *bytes)
2434{
2435        struct inode *inode = mapping->host;
2436        unsigned blocksize = 1 << inode->i_blkbits;
2437        unsigned zerofrom;
2438        int err;
2439
2440        err = cont_expand_zero(file, mapping, pos, bytes);
2441        if (err)
2442                return err;
2443
2444        zerofrom = *bytes & ~PAGE_MASK;
2445        if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2446                *bytes |= (blocksize-1);
2447                (*bytes)++;
2448        }
2449
2450        return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2451}
2452EXPORT_SYMBOL(cont_write_begin);
2453
2454int block_commit_write(struct page *page, unsigned from, unsigned to)
2455{
2456        struct inode *inode = page->mapping->host;
2457        __block_commit_write(inode,page,from,to);
2458        return 0;
2459}
2460EXPORT_SYMBOL(block_commit_write);
2461
2462/*
2463 * block_page_mkwrite() is not allowed to change the file size as it gets
2464 * called from a page fault handler when a page is first dirtied. Hence we must
2465 * be careful to check for EOF conditions here. We set the page up correctly
2466 * for a written page which means we get ENOSPC checking when writing into
2467 * holes and correct delalloc and unwritten extent mapping on filesystems that
2468 * support these features.
2469 *
2470 * We are not allowed to take the i_mutex here so we have to play games to
2471 * protect against truncate races as the page could now be beyond EOF.  Because
2472 * truncate writes the inode size before removing pages, once we have the
2473 * page lock we can determine safely if the page is beyond EOF. If it is not
2474 * beyond EOF, then the page is guaranteed safe against truncation until we
2475 * unlock the page.
2476 *
2477 * Direct callers of this function should protect against filesystem freezing
2478 * using sb_start_pagefault() - sb_end_pagefault() functions.
2479 */
2480int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2481                         get_block_t get_block)
2482{
2483        struct page *page = vmf->page;
2484        struct inode *inode = file_inode(vma->vm_file);
2485        unsigned long end;
2486        loff_t size;
2487        int ret;
2488
2489        lock_page(page);
2490        size = i_size_read(inode);
2491        if ((page->mapping != inode->i_mapping) ||
2492            (page_offset(page) > size)) {
2493                /* We overload EFAULT to mean page got truncated */
2494                ret = -EFAULT;
2495                goto out_unlock;
2496        }
2497
2498        /* page is wholly or partially inside EOF */
2499        if (((page->index + 1) << PAGE_SHIFT) > size)
2500                end = size & ~PAGE_MASK;
2501        else
2502                end = PAGE_SIZE;
2503
2504        ret = __block_write_begin(page, 0, end, get_block);
2505        if (!ret)
2506                ret = block_commit_write(page, 0, end);
2507
2508        if (unlikely(ret < 0))
2509                goto out_unlock;
2510        set_page_dirty(page);
2511        wait_for_stable_page(page);
2512        return 0;
2513out_unlock:
2514        unlock_page(page);
2515        return ret;
2516}
2517EXPORT_SYMBOL(block_page_mkwrite);
2518
2519/*
2520 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2521 * immediately, while under the page lock.  So it needs a special end_io
2522 * handler which does not touch the bh after unlocking it.
2523 */
2524static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2525{
2526        __end_buffer_read_notouch(bh, uptodate);
2527}
2528
2529/*
2530 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2531 * the page (converting it to circular linked list and taking care of page
2532 * dirty races).
2533 */
2534static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2535{
2536        struct buffer_head *bh;
2537
2538        BUG_ON(!PageLocked(page));
2539
2540        spin_lock(&page->mapping->private_lock);
2541        bh = head;
2542        do {
2543                if (PageDirty(page))
2544                        set_buffer_dirty(bh);
2545                if (!bh->b_this_page)
2546                        bh->b_this_page = head;
2547                bh = bh->b_this_page;
2548        } while (bh != head);
2549        attach_page_buffers(page, head);
2550        spin_unlock(&page->mapping->private_lock);
2551}
2552
2553/*
2554 * On entry, the page is fully not uptodate.
2555 * On exit the page is fully uptodate in the areas outside (from,to)
2556 * The filesystem needs to handle block truncation upon failure.
2557 */
2558int nobh_write_begin(struct address_space *mapping,
2559                        loff_t pos, unsigned len, unsigned flags,
2560                        struct page **pagep, void **fsdata,
2561                        get_block_t *get_block)
2562{
2563        struct inode *inode = mapping->host;
2564        const unsigned blkbits = inode->i_blkbits;
2565        const unsigned blocksize = 1 << blkbits;
2566        struct buffer_head *head, *bh;
2567        struct page *page;
2568        pgoff_t index;
2569        unsigned from, to;
2570        unsigned block_in_page;
2571        unsigned block_start, block_end;
2572        sector_t block_in_file;
2573        int nr_reads = 0;
2574        int ret = 0;
2575        int is_mapped_to_disk = 1;
2576
2577        index = pos >> PAGE_SHIFT;
2578        from = pos & (PAGE_SIZE - 1);
2579        to = from + len;
2580
2581        page = grab_cache_page_write_begin(mapping, index, flags);
2582        if (!page)
2583                return -ENOMEM;
2584        *pagep = page;
2585        *fsdata = NULL;
2586
2587        if (page_has_buffers(page)) {
2588                ret = __block_write_begin(page, pos, len, get_block);
2589                if (unlikely(ret))
2590                        goto out_release;
2591                return ret;
2592        }
2593
2594        if (PageMappedToDisk(page))
2595                return 0;
2596
2597        /*
2598         * Allocate buffers so that we can keep track of state, and potentially
2599         * attach them to the page if an error occurs. In the common case of
2600         * no error, they will just be freed again without ever being attached
2601         * to the page (which is all OK, because we're under the page lock).
2602         *
2603         * Be careful: the buffer linked list is a NULL terminated one, rather
2604         * than the circular one we're used to.
2605         */
2606        head = alloc_page_buffers(page, blocksize, 0);
2607        if (!head) {
2608                ret = -ENOMEM;
2609                goto out_release;
2610        }
2611
2612        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2613
2614        /*
2615         * We loop across all blocks in the page, whether or not they are
2616         * part of the affected region.  This is so we can discover if the
2617         * page is fully mapped-to-disk.
2618         */
2619        for (block_start = 0, block_in_page = 0, bh = head;
2620                  block_start < PAGE_SIZE;
2621                  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2622                int create;
2623
2624                block_end = block_start + blocksize;
2625                bh->b_state = 0;
2626                create = 1;
2627                if (block_start >= to)
2628                        create = 0;
2629                ret = get_block(inode, block_in_file + block_in_page,
2630                                        bh, create);
2631                if (ret)
2632                        goto failed;
2633                if (!buffer_mapped(bh))
2634                        is_mapped_to_disk = 0;
2635                if (buffer_new(bh))
2636                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2637                if (PageUptodate(page)) {
2638                        set_buffer_uptodate(bh);
2639                        continue;
2640                }
2641                if (buffer_new(bh) || !buffer_mapped(bh)) {
2642                        zero_user_segments(page, block_start, from,
2643                                                        to, block_end);
2644                        continue;
2645                }
2646                if (buffer_uptodate(bh))
2647                        continue;       /* reiserfs does this */
2648                if (block_start < from || block_end > to) {
2649                        lock_buffer(bh);
2650                        bh->b_end_io = end_buffer_read_nobh;
2651                        submit_bh(REQ_OP_READ, 0, bh);
2652                        nr_reads++;
2653                }
2654        }
2655
2656        if (nr_reads) {
2657                /*
2658                 * The page is locked, so these buffers are protected from
2659                 * any VM or truncate activity.  Hence we don't need to care
2660                 * for the buffer_head refcounts.
2661                 */
2662                for (bh = head; bh; bh = bh->b_this_page) {
2663                        wait_on_buffer(bh);
2664                        if (!buffer_uptodate(bh))
2665                                ret = -EIO;
2666                }
2667                if (ret)
2668                        goto failed;
2669        }
2670
2671        if (is_mapped_to_disk)
2672                SetPageMappedToDisk(page);
2673
2674        *fsdata = head; /* to be released by nobh_write_end */
2675
2676        return 0;
2677
2678failed:
2679        BUG_ON(!ret);
2680        /*
2681         * Error recovery is a bit difficult. We need to zero out blocks that
2682         * were newly allocated, and dirty them to ensure they get written out.
2683         * Buffers need to be attached to the page at this point, otherwise
2684         * the handling of potential IO errors during writeout would be hard
2685         * (could try doing synchronous writeout, but what if that fails too?)
2686         */
2687        attach_nobh_buffers(page, head);
2688        page_zero_new_buffers(page, from, to);
2689
2690out_release:
2691        unlock_page(page);
2692        put_page(page);
2693        *pagep = NULL;
2694
2695        return ret;
2696}
2697EXPORT_SYMBOL(nobh_write_begin);
2698
2699int nobh_write_end(struct file *file, struct address_space *mapping,
2700                        loff_t pos, unsigned len, unsigned copied,
2701                        struct page *page, void *fsdata)
2702{
2703        struct inode *inode = page->mapping->host;
2704        struct buffer_head *head = fsdata;
2705        struct buffer_head *bh;
2706        BUG_ON(fsdata != NULL && page_has_buffers(page));
2707
2708        if (unlikely(copied < len) && head)
2709                attach_nobh_buffers(page, head);
2710        if (page_has_buffers(page))
2711                return generic_write_end(file, mapping, pos, len,
2712                                        copied, page, fsdata);
2713
2714        SetPageUptodate(page);
2715        set_page_dirty(page);
2716        if (pos+copied > inode->i_size) {
2717                i_size_write(inode, pos+copied);
2718                mark_inode_dirty(inode);
2719        }
2720
2721        unlock_page(page);
2722        put_page(page);
2723
2724        while (head) {
2725                bh = head;
2726                head = head->b_this_page;
2727                free_buffer_head(bh);
2728        }
2729
2730        return copied;
2731}
2732EXPORT_SYMBOL(nobh_write_end);
2733
2734/*
2735 * nobh_writepage() - based on block_full_write_page() except
2736 * that it tries to operate without attaching bufferheads to
2737 * the page.
2738 */
2739int nobh_writepage(struct page *page, get_block_t *get_block,
2740                        struct writeback_control *wbc)
2741{
2742        struct inode * const inode = page->mapping->host;
2743        loff_t i_size = i_size_read(inode);
2744        const pgoff_t end_index = i_size >> PAGE_SHIFT;
2745        unsigned offset;
2746        int ret;
2747
2748        /* Is the page fully inside i_size? */
2749        if (page->index < end_index)
2750                goto out;
2751
2752        /* Is the page fully outside i_size? (truncate in progress) */
2753        offset = i_size & (PAGE_SIZE-1);
2754        if (page->index >= end_index+1 || !offset) {
2755                /*
2756                 * The page may have dirty, unmapped buffers.  For example,
2757                 * they may have been added in ext3_writepage().  Make them
2758                 * freeable here, so the page does not leak.
2759                 */
2760#if 0
2761                /* Not really sure about this  - do we need this ? */
2762                if (page->mapping->a_ops->invalidatepage)
2763                        page->mapping->a_ops->invalidatepage(page, offset);
2764#endif
2765                unlock_page(page);
2766                return 0; /* don't care */
2767        }
2768
2769        /*
2770         * The page straddles i_size.  It must be zeroed out on each and every
2771         * writepage invocation because it may be mmapped.  "A file is mapped
2772         * in multiples of the page size.  For a file that is not a multiple of
2773         * the  page size, the remaining memory is zeroed when mapped, and
2774         * writes to that region are not written out to the file."
2775         */
2776        zero_user_segment(page, offset, PAGE_SIZE);
2777out:
2778        ret = mpage_writepage(page, get_block, wbc);
2779        if (ret == -EAGAIN)
2780                ret = __block_write_full_page(inode, page, get_block, wbc,
2781                                              end_buffer_async_write);
2782        return ret;
2783}
2784EXPORT_SYMBOL(nobh_writepage);
2785
2786int nobh_truncate_page(struct address_space *mapping,
2787                        loff_t from, get_block_t *get_block)
2788{
2789        pgoff_t index = from >> PAGE_SHIFT;
2790        unsigned offset = from & (PAGE_SIZE-1);
2791        unsigned blocksize;
2792        sector_t iblock;
2793        unsigned length, pos;
2794        struct inode *inode = mapping->host;
2795        struct page *page;
2796        struct buffer_head map_bh;
2797        int err;
2798
2799        blocksize = 1 << inode->i_blkbits;
2800        length = offset & (blocksize - 1);
2801
2802        /* Block boundary? Nothing to do */
2803        if (!length)
2804                return 0;
2805
2806        length = blocksize - length;
2807        iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2808
2809        page = grab_cache_page(mapping, index);
2810        err = -ENOMEM;
2811        if (!page)
2812                goto out;
2813
2814        if (page_has_buffers(page)) {
2815has_buffers:
2816                unlock_page(page);
2817                put_page(page);
2818                return block_truncate_page(mapping, from, get_block);
2819        }
2820
2821        /* Find the buffer that contains "offset" */
2822        pos = blocksize;
2823        while (offset >= pos) {
2824                iblock++;
2825                pos += blocksize;
2826        }
2827
2828        map_bh.b_size = blocksize;
2829        map_bh.b_state = 0;
2830        err = get_block(inode, iblock, &map_bh, 0);
2831        if (err)
2832                goto unlock;
2833        /* unmapped? It's a hole - nothing to do */
2834        if (!buffer_mapped(&map_bh))
2835                goto unlock;
2836
2837        /* Ok, it's mapped. Make sure it's up-to-date */
2838        if (!PageUptodate(page)) {
2839                err = mapping->a_ops->readpage(NULL, page);
2840                if (err) {
2841                        put_page(page);
2842                        goto out;
2843                }
2844                lock_page(page);
2845                if (!PageUptodate(page)) {
2846                        err = -EIO;
2847                        goto unlock;
2848                }
2849                if (page_has_buffers(page))
2850                        goto has_buffers;
2851        }
2852        zero_user(page, offset, length);
2853        set_page_dirty(page);
2854        err = 0;
2855
2856unlock:
2857        unlock_page(page);
2858        put_page(page);
2859out:
2860        return err;
2861}
2862EXPORT_SYMBOL(nobh_truncate_page);
2863
2864int block_truncate_page(struct address_space *mapping,
2865                        loff_t from, get_block_t *get_block)
2866{
2867        pgoff_t index = from >> PAGE_SHIFT;
2868        unsigned offset = from & (PAGE_SIZE-1);
2869        unsigned blocksize;
2870        sector_t iblock;
2871        unsigned length, pos;
2872        struct inode *inode = mapping->host;
2873        struct page *page;
2874        struct buffer_head *bh;
2875        int err;
2876
2877        blocksize = 1 << inode->i_blkbits;
2878        length = offset & (blocksize - 1);
2879
2880        /* Block boundary? Nothing to do */
2881        if (!length)
2882                return 0;
2883
2884        length = blocksize - length;
2885        iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2886        
2887        page = grab_cache_page(mapping, index);
2888        err = -ENOMEM;
2889        if (!page)
2890                goto out;
2891
2892        if (!page_has_buffers(page))
2893                create_empty_buffers(page, blocksize, 0);
2894
2895        /* Find the buffer that contains "offset" */
2896        bh = page_buffers(page);
2897        pos = blocksize;
2898        while (offset >= pos) {
2899                bh = bh->b_this_page;
2900                iblock++;
2901                pos += blocksize;
2902        }
2903
2904        err = 0;
2905        if (!buffer_mapped(bh)) {
2906                WARN_ON(bh->b_size != blocksize);
2907                err = get_block(inode, iblock, bh, 0);
2908                if (err)
2909                        goto unlock;
2910                /* unmapped? It's a hole - nothing to do */
2911                if (!buffer_mapped(bh))
2912                        goto unlock;
2913        }
2914
2915        /* Ok, it's mapped. Make sure it's up-to-date */
2916        if (PageUptodate(page))
2917                set_buffer_uptodate(bh);
2918
2919        if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2920                err = -EIO;
2921                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2922                wait_on_buffer(bh);
2923                /* Uhhuh. Read error. Complain and punt. */
2924                if (!buffer_uptodate(bh))
2925                        goto unlock;
2926        }
2927
2928        zero_user(page, offset, length);
2929        mark_buffer_dirty(bh);
2930        err = 0;
2931
2932unlock:
2933        unlock_page(page);
2934        put_page(page);
2935out:
2936        return err;
2937}
2938EXPORT_SYMBOL(block_truncate_page);
2939
2940/*
2941 * The generic ->writepage function for buffer-backed address_spaces
2942 */
2943int block_write_full_page(struct page *page, get_block_t *get_block,
2944                        struct writeback_control *wbc)
2945{
2946        struct inode * const inode = page->mapping->host;
2947        loff_t i_size = i_size_read(inode);
2948        const pgoff_t end_index = i_size >> PAGE_SHIFT;
2949        unsigned offset;
2950
2951        /* Is the page fully inside i_size? */
2952        if (page->index < end_index)
2953                return __block_write_full_page(inode, page, get_block, wbc,
2954                                               end_buffer_async_write);
2955
2956        /* Is the page fully outside i_size? (truncate in progress) */
2957        offset = i_size & (PAGE_SIZE-1);
2958        if (page->index >= end_index+1 || !offset) {
2959                /*
2960                 * The page may have dirty, unmapped buffers.  For example,
2961                 * they may have been added in ext3_writepage().  Make them
2962                 * freeable here, so the page does not leak.
2963                 */
2964                do_invalidatepage(page, 0, PAGE_SIZE);
2965                unlock_page(page);
2966                return 0; /* don't care */
2967        }
2968
2969        /*
2970         * The page straddles i_size.  It must be zeroed out on each and every
2971         * writepage invocation because it may be mmapped.  "A file is mapped
2972         * in multiples of the page size.  For a file that is not a multiple of
2973         * the  page size, the remaining memory is zeroed when mapped, and
2974         * writes to that region are not written out to the file."
2975         */
2976        zero_user_segment(page, offset, PAGE_SIZE);
2977        return __block_write_full_page(inode, page, get_block, wbc,
2978                                                        end_buffer_async_write);
2979}
2980EXPORT_SYMBOL(block_write_full_page);
2981
2982sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2983                            get_block_t *get_block)
2984{
2985        struct buffer_head tmp;
2986        struct inode *inode = mapping->host;
2987        tmp.b_state = 0;
2988        tmp.b_blocknr = 0;
2989        tmp.b_size = 1 << inode->i_blkbits;
2990        get_block(inode, block, &tmp, 0);
2991        return tmp.b_blocknr;
2992}
2993EXPORT_SYMBOL(generic_block_bmap);
2994
2995static void end_bio_bh_io_sync(struct bio *bio)
2996{
2997        struct buffer_head *bh = bio->bi_private;
2998
2999        if (unlikely(bio_flagged(bio, BIO_QUIET)))
3000                set_bit(BH_Quiet, &bh->b_state);
3001
3002        bh->b_end_io(bh, !bio->bi_error);
3003        bio_put(bio);
3004}
3005
3006/*
3007 * This allows us to do IO even on the odd last sectors
3008 * of a device, even if the block size is some multiple
3009 * of the physical sector size.
3010 *
3011 * We'll just truncate the bio to the size of the device,
3012 * and clear the end of the buffer head manually.
3013 *
3014 * Truly out-of-range accesses will turn into actual IO
3015 * errors, this only handles the "we need to be able to
3016 * do IO at the final sector" case.
3017 */
3018void guard_bio_eod(int op, struct bio *bio)
3019{
3020        sector_t maxsector;
3021        struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3022        unsigned truncated_bytes;
3023
3024        maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3025        if (!maxsector)
3026                return;
3027
3028        /*
3029         * If the *whole* IO is past the end of the device,
3030         * let it through, and the IO layer will turn it into
3031         * an EIO.
3032         */
3033        if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3034                return;
3035
3036        maxsector -= bio->bi_iter.bi_sector;
3037        if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3038                return;
3039
3040        /* Uhhuh. We've got a bio that straddles the device size! */
3041        truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3042
3043        /* Truncate the bio.. */
3044        bio->bi_iter.bi_size -= truncated_bytes;
3045        bvec->bv_len -= truncated_bytes;
3046
3047        /* ..and clear the end of the buffer for reads */
3048        if (op == REQ_OP_READ) {
3049                zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3050                                truncated_bytes);
3051        }
3052}
3053
3054static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3055                         unsigned long bio_flags, struct writeback_control *wbc)
3056{
3057        struct bio *bio;
3058
3059        BUG_ON(!buffer_locked(bh));
3060        BUG_ON(!buffer_mapped(bh));
3061        BUG_ON(!bh->b_end_io);
3062        BUG_ON(buffer_delay(bh));
3063        BUG_ON(buffer_unwritten(bh));
3064
3065        /*
3066         * Only clear out a write error when rewriting
3067         */
3068        if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3069                clear_buffer_write_io_error(bh);
3070
3071        /*
3072         * from here on down, it's all bio -- do the initial mapping,
3073         * submit_bio -> generic_make_request may further map this bio around
3074         */
3075        bio = bio_alloc(GFP_NOIO, 1);
3076
3077        if (wbc) {
3078                wbc_init_bio(wbc, bio);
3079                wbc_account_io(wbc, bh->b_page, bh->b_size);
3080        }
3081
3082        bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3083        bio->bi_bdev = bh->b_bdev;
3084
3085        bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3086        BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3087
3088        bio->bi_end_io = end_bio_bh_io_sync;
3089        bio->bi_private = bh;
3090        bio->bi_flags |= bio_flags;
3091
3092        /* Take care of bh's that straddle the end of the device */
3093        guard_bio_eod(op, bio);
3094
3095        if (buffer_meta(bh))
3096                op_flags |= REQ_META;
3097        if (buffer_prio(bh))
3098                op_flags |= REQ_PRIO;
3099        bio_set_op_attrs(bio, op, op_flags);
3100
3101        submit_bio(bio);
3102        return 0;
3103}
3104
3105int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3106               unsigned long bio_flags)
3107{
3108        return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3109}
3110EXPORT_SYMBOL_GPL(_submit_bh);
3111
3112int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3113{
3114        return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3115}
3116EXPORT_SYMBOL(submit_bh);
3117
3118/**
3119 * ll_rw_block: low-level access to block devices (DEPRECATED)
3120 * @op: whether to %READ or %WRITE
3121 * @op_flags: rq_flag_bits
3122 * @nr: number of &struct buffer_heads in the array
3123 * @bhs: array of pointers to &struct buffer_head
3124 *
3125 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3126 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3127 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3128 * %REQ_RAHEAD.
3129 *
3130 * This function drops any buffer that it cannot get a lock on (with the
3131 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3132 * request, and any buffer that appears to be up-to-date when doing read
3133 * request.  Further it marks as clean buffers that are processed for
3134 * writing (the buffer cache won't assume that they are actually clean
3135 * until the buffer gets unlocked).
3136 *
3137 * ll_rw_block sets b_end_io to simple completion handler that marks
3138 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3139 * any waiters. 
3140 *
3141 * All of the buffers must be for the same device, and must also be a
3142 * multiple of the current approved size for the device.
3143 */
3144void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3145{
3146        int i;
3147
3148        for (i = 0; i < nr; i++) {
3149                struct buffer_head *bh = bhs[i];
3150
3151                if (!trylock_buffer(bh))
3152                        continue;
3153                if (op == WRITE) {
3154                        if (test_clear_buffer_dirty(bh)) {
3155                                bh->b_end_io = end_buffer_write_sync;
3156                                get_bh(bh);
3157                                submit_bh(op, op_flags, bh);
3158                                continue;
3159                        }
3160                } else {
3161                        if (!buffer_uptodate(bh)) {
3162                                bh->b_end_io = end_buffer_read_sync;
3163                                get_bh(bh);
3164                                submit_bh(op, op_flags, bh);
3165                                continue;
3166                        }
3167                }
3168                unlock_buffer(bh);
3169        }
3170}
3171EXPORT_SYMBOL(ll_rw_block);
3172
3173void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3174{
3175        lock_buffer(bh);
3176        if (!test_clear_buffer_dirty(bh)) {
3177                unlock_buffer(bh);
3178                return;
3179        }
3180        bh->b_end_io = end_buffer_write_sync;
3181        get_bh(bh);
3182        submit_bh(REQ_OP_WRITE, op_flags, bh);
3183}
3184EXPORT_SYMBOL(write_dirty_buffer);
3185
3186/*
3187 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3188 * and then start new I/O and then wait upon it.  The caller must have a ref on
3189 * the buffer_head.
3190 */
3191int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3192{
3193        int ret = 0;
3194
3195        WARN_ON(atomic_read(&bh->b_count) < 1);
3196        lock_buffer(bh);
3197        if (test_clear_buffer_dirty(bh)) {
3198                get_bh(bh);
3199                bh->b_end_io = end_buffer_write_sync;
3200                ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3201                wait_on_buffer(bh);
3202                if (!ret && !buffer_uptodate(bh))
3203                        ret = -EIO;
3204        } else {
3205                unlock_buffer(bh);
3206        }
3207        return ret;
3208}
3209EXPORT_SYMBOL(__sync_dirty_buffer);
3210
3211int sync_dirty_buffer(struct buffer_head *bh)
3212{
3213        return __sync_dirty_buffer(bh, WRITE_SYNC);
3214}
3215EXPORT_SYMBOL(sync_dirty_buffer);
3216
3217/*
3218 * try_to_free_buffers() checks if all the buffers on this particular page
3219 * are unused, and releases them if so.
3220 *
3221 * Exclusion against try_to_free_buffers may be obtained by either
3222 * locking the page or by holding its mapping's private_lock.
3223 *
3224 * If the page is dirty but all the buffers are clean then we need to
3225 * be sure to mark the page clean as well.  This is because the page
3226 * may be against a block device, and a later reattachment of buffers
3227 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3228 * filesystem data on the same device.
3229 *
3230 * The same applies to regular filesystem pages: if all the buffers are
3231 * clean then we set the page clean and proceed.  To do that, we require
3232 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3233 * private_lock.
3234 *
3235 * try_to_free_buffers() is non-blocking.
3236 */
3237static inline int buffer_busy(struct buffer_head *bh)
3238{
3239        return atomic_read(&bh->b_count) |
3240                (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3241}
3242
3243static int
3244drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3245{
3246        struct buffer_head *head = page_buffers(page);
3247        struct buffer_head *bh;
3248
3249        bh = head;
3250        do {
3251                if (buffer_write_io_error(bh) && page->mapping)
3252                        mapping_set_error(page->mapping, -EIO);
3253                if (buffer_busy(bh))
3254                        goto failed;
3255                bh = bh->b_this_page;
3256        } while (bh != head);
3257
3258        do {
3259                struct buffer_head *next = bh->b_this_page;
3260
3261                if (bh->b_assoc_map)
3262                        __remove_assoc_queue(bh);
3263                bh = next;
3264        } while (bh != head);
3265        *buffers_to_free = head;
3266        __clear_page_buffers(page);
3267        return 1;
3268failed:
3269        return 0;
3270}
3271
3272int try_to_free_buffers(struct page *page)
3273{
3274        struct address_space * const mapping = page->mapping;
3275        struct buffer_head *buffers_to_free = NULL;
3276        int ret = 0;
3277
3278        BUG_ON(!PageLocked(page));
3279        if (PageWriteback(page))
3280                return 0;
3281
3282        if (mapping == NULL) {          /* can this still happen? */
3283                ret = drop_buffers(page, &buffers_to_free);
3284                goto out;
3285        }
3286
3287        spin_lock(&mapping->private_lock);
3288        ret = drop_buffers(page, &buffers_to_free);
3289
3290        /*
3291         * If the filesystem writes its buffers by hand (eg ext3)
3292         * then we can have clean buffers against a dirty page.  We
3293         * clean the page here; otherwise the VM will never notice
3294         * that the filesystem did any IO at all.
3295         *
3296         * Also, during truncate, discard_buffer will have marked all
3297         * the page's buffers clean.  We discover that here and clean
3298         * the page also.
3299         *
3300         * private_lock must be held over this entire operation in order
3301         * to synchronise against __set_page_dirty_buffers and prevent the
3302         * dirty bit from being lost.
3303         */
3304        if (ret)
3305                cancel_dirty_page(page);
3306        spin_unlock(&mapping->private_lock);
3307out:
3308        if (buffers_to_free) {
3309                struct buffer_head *bh = buffers_to_free;
3310
3311                do {
3312                        struct buffer_head *next = bh->b_this_page;
3313                        free_buffer_head(bh);
3314                        bh = next;
3315                } while (bh != buffers_to_free);
3316        }
3317        return ret;
3318}
3319EXPORT_SYMBOL(try_to_free_buffers);
3320
3321/*
3322 * There are no bdflush tunables left.  But distributions are
3323 * still running obsolete flush daemons, so we terminate them here.
3324 *
3325 * Use of bdflush() is deprecated and will be removed in a future kernel.
3326 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3327 */
3328SYSCALL_DEFINE2(bdflush, int, func, long, data)
3329{
3330        static int msg_count;
3331
3332        if (!capable(CAP_SYS_ADMIN))
3333                return -EPERM;
3334
3335        if (msg_count < 5) {
3336                msg_count++;
3337                printk(KERN_INFO
3338                        "warning: process `%s' used the obsolete bdflush"
3339                        " system call\n", current->comm);
3340                printk(KERN_INFO "Fix your initscripts?\n");
3341        }
3342
3343        if (func == 1)
3344                do_exit(0);
3345        return 0;
3346}
3347
3348/*
3349 * Buffer-head allocation
3350 */
3351static struct kmem_cache *bh_cachep __read_mostly;
3352
3353/*
3354 * Once the number of bh's in the machine exceeds this level, we start
3355 * stripping them in writeback.
3356 */
3357static unsigned long max_buffer_heads;
3358
3359int buffer_heads_over_limit;
3360
3361struct bh_accounting {
3362        int nr;                 /* Number of live bh's */
3363        int ratelimit;          /* Limit cacheline bouncing */
3364};
3365
3366static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3367
3368static void recalc_bh_state(void)
3369{
3370        int i;
3371        int tot = 0;
3372
3373        if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3374                return;
3375        __this_cpu_write(bh_accounting.ratelimit, 0);
3376        for_each_online_cpu(i)
3377                tot += per_cpu(bh_accounting, i).nr;
3378        buffer_heads_over_limit = (tot > max_buffer_heads);
3379}
3380
3381struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3382{
3383        struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3384        if (ret) {
3385                INIT_LIST_HEAD(&ret->b_assoc_buffers);
3386                preempt_disable();
3387                __this_cpu_inc(bh_accounting.nr);
3388                recalc_bh_state();
3389                preempt_enable();
3390        }
3391        return ret;
3392}
3393EXPORT_SYMBOL(alloc_buffer_head);
3394
3395void free_buffer_head(struct buffer_head *bh)
3396{
3397        BUG_ON(!list_empty(&bh->b_assoc_buffers));
3398        kmem_cache_free(bh_cachep, bh);
3399        preempt_disable();
3400        __this_cpu_dec(bh_accounting.nr);
3401        recalc_bh_state();
3402        preempt_enable();
3403}
3404EXPORT_SYMBOL(free_buffer_head);
3405
3406static void buffer_exit_cpu(int cpu)
3407{
3408        int i;
3409        struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3410
3411        for (i = 0; i < BH_LRU_SIZE; i++) {
3412                brelse(b->bhs[i]);
3413                b->bhs[i] = NULL;
3414        }
3415        this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3416        per_cpu(bh_accounting, cpu).nr = 0;
3417}
3418
3419static int buffer_cpu_notify(struct notifier_block *self,
3420                              unsigned long action, void *hcpu)
3421{
3422        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3423                buffer_exit_cpu((unsigned long)hcpu);
3424        return NOTIFY_OK;
3425}
3426
3427/**
3428 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3429 * @bh: struct buffer_head
3430 *
3431 * Return true if the buffer is up-to-date and false,
3432 * with the buffer locked, if not.
3433 */
3434int bh_uptodate_or_lock(struct buffer_head *bh)
3435{
3436        if (!buffer_uptodate(bh)) {
3437                lock_buffer(bh);
3438                if (!buffer_uptodate(bh))
3439                        return 0;
3440                unlock_buffer(bh);
3441        }
3442        return 1;
3443}
3444EXPORT_SYMBOL(bh_uptodate_or_lock);
3445
3446/**
3447 * bh_submit_read - Submit a locked buffer for reading
3448 * @bh: struct buffer_head
3449 *
3450 * Returns zero on success and -EIO on error.
3451 */
3452int bh_submit_read(struct buffer_head *bh)
3453{
3454        BUG_ON(!buffer_locked(bh));
3455
3456        if (buffer_uptodate(bh)) {
3457                unlock_buffer(bh);
3458                return 0;
3459        }
3460
3461        get_bh(bh);
3462        bh->b_end_io = end_buffer_read_sync;
3463        submit_bh(REQ_OP_READ, 0, bh);
3464        wait_on_buffer(bh);
3465        if (buffer_uptodate(bh))
3466                return 0;
3467        return -EIO;
3468}
3469EXPORT_SYMBOL(bh_submit_read);
3470
3471void __init buffer_init(void)
3472{
3473        unsigned long nrpages;
3474
3475        bh_cachep = kmem_cache_create("buffer_head",
3476                        sizeof(struct buffer_head), 0,
3477                                (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3478                                SLAB_MEM_SPREAD),
3479                                NULL);
3480
3481        /*
3482         * Limit the bh occupancy to 10% of ZONE_NORMAL
3483         */
3484        nrpages = (nr_free_buffer_pages() * 10) / 100;
3485        max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3486        hotcpu_notifier(buffer_cpu_notify, 0);
3487}
3488