linux/fs/gfs2/lock_dlm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright 2004-2011 Red Hat, Inc.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/fs.h>
  13#include <linux/dlm.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/delay.h>
  17#include <linux/gfs2_ondisk.h>
  18
  19#include "incore.h"
  20#include "glock.h"
  21#include "util.h"
  22#include "sys.h"
  23#include "trace_gfs2.h"
  24
  25extern struct workqueue_struct *gfs2_control_wq;
  26
  27/**
  28 * gfs2_update_stats - Update time based stats
  29 * @mv: Pointer to mean/variance structure to update
  30 * @sample: New data to include
  31 *
  32 * @delta is the difference between the current rtt sample and the
  33 * running average srtt. We add 1/8 of that to the srtt in order to
  34 * update the current srtt estimate. The variance estimate is a bit
  35 * more complicated. We subtract the abs value of the @delta from
  36 * the current variance estimate and add 1/4 of that to the running
  37 * total.
  38 *
  39 * Note that the index points at the array entry containing the smoothed
  40 * mean value, and the variance is always in the following entry
  41 *
  42 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
  43 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
  44 * they are not scaled fixed point.
  45 */
  46
  47static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
  48                                     s64 sample)
  49{
  50        s64 delta = sample - s->stats[index];
  51        s->stats[index] += (delta >> 3);
  52        index++;
  53        s->stats[index] += ((abs(delta) - s->stats[index]) >> 2);
  54}
  55
  56/**
  57 * gfs2_update_reply_times - Update locking statistics
  58 * @gl: The glock to update
  59 *
  60 * This assumes that gl->gl_dstamp has been set earlier.
  61 *
  62 * The rtt (lock round trip time) is an estimate of the time
  63 * taken to perform a dlm lock request. We update it on each
  64 * reply from the dlm.
  65 *
  66 * The blocking flag is set on the glock for all dlm requests
  67 * which may potentially block due to lock requests from other nodes.
  68 * DLM requests where the current lock state is exclusive, the
  69 * requested state is null (or unlocked) or where the TRY or
  70 * TRY_1CB flags are set are classified as non-blocking. All
  71 * other DLM requests are counted as (potentially) blocking.
  72 */
  73static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
  74{
  75        struct gfs2_pcpu_lkstats *lks;
  76        const unsigned gltype = gl->gl_name.ln_type;
  77        unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
  78                         GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
  79        s64 rtt;
  80
  81        preempt_disable();
  82        rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
  83        lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
  84        gfs2_update_stats(&gl->gl_stats, index, rtt);           /* Local */
  85        gfs2_update_stats(&lks->lkstats[gltype], index, rtt);   /* Global */
  86        preempt_enable();
  87
  88        trace_gfs2_glock_lock_time(gl, rtt);
  89}
  90
  91/**
  92 * gfs2_update_request_times - Update locking statistics
  93 * @gl: The glock to update
  94 *
  95 * The irt (lock inter-request times) measures the average time
  96 * between requests to the dlm. It is updated immediately before
  97 * each dlm call.
  98 */
  99
 100static inline void gfs2_update_request_times(struct gfs2_glock *gl)
 101{
 102        struct gfs2_pcpu_lkstats *lks;
 103        const unsigned gltype = gl->gl_name.ln_type;
 104        ktime_t dstamp;
 105        s64 irt;
 106
 107        preempt_disable();
 108        dstamp = gl->gl_dstamp;
 109        gl->gl_dstamp = ktime_get_real();
 110        irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
 111        lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
 112        gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);           /* Local */
 113        gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);   /* Global */
 114        preempt_enable();
 115}
 116 
 117static void gdlm_ast(void *arg)
 118{
 119        struct gfs2_glock *gl = arg;
 120        unsigned ret = gl->gl_state;
 121
 122        gfs2_update_reply_times(gl);
 123        BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
 124
 125        if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
 126                memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
 127
 128        switch (gl->gl_lksb.sb_status) {
 129        case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
 130                gfs2_glock_free(gl);
 131                return;
 132        case -DLM_ECANCEL: /* Cancel while getting lock */
 133                ret |= LM_OUT_CANCELED;
 134                goto out;
 135        case -EAGAIN: /* Try lock fails */
 136        case -EDEADLK: /* Deadlock detected */
 137                goto out;
 138        case -ETIMEDOUT: /* Canceled due to timeout */
 139                ret |= LM_OUT_ERROR;
 140                goto out;
 141        case 0: /* Success */
 142                break;
 143        default: /* Something unexpected */
 144                BUG();
 145        }
 146
 147        ret = gl->gl_req;
 148        if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
 149                if (gl->gl_req == LM_ST_SHARED)
 150                        ret = LM_ST_DEFERRED;
 151                else if (gl->gl_req == LM_ST_DEFERRED)
 152                        ret = LM_ST_SHARED;
 153                else
 154                        BUG();
 155        }
 156
 157        set_bit(GLF_INITIAL, &gl->gl_flags);
 158        gfs2_glock_complete(gl, ret);
 159        return;
 160out:
 161        if (!test_bit(GLF_INITIAL, &gl->gl_flags))
 162                gl->gl_lksb.sb_lkid = 0;
 163        gfs2_glock_complete(gl, ret);
 164}
 165
 166static void gdlm_bast(void *arg, int mode)
 167{
 168        struct gfs2_glock *gl = arg;
 169
 170        switch (mode) {
 171        case DLM_LOCK_EX:
 172                gfs2_glock_cb(gl, LM_ST_UNLOCKED);
 173                break;
 174        case DLM_LOCK_CW:
 175                gfs2_glock_cb(gl, LM_ST_DEFERRED);
 176                break;
 177        case DLM_LOCK_PR:
 178                gfs2_glock_cb(gl, LM_ST_SHARED);
 179                break;
 180        default:
 181                pr_err("unknown bast mode %d\n", mode);
 182                BUG();
 183        }
 184}
 185
 186/* convert gfs lock-state to dlm lock-mode */
 187
 188static int make_mode(const unsigned int lmstate)
 189{
 190        switch (lmstate) {
 191        case LM_ST_UNLOCKED:
 192                return DLM_LOCK_NL;
 193        case LM_ST_EXCLUSIVE:
 194                return DLM_LOCK_EX;
 195        case LM_ST_DEFERRED:
 196                return DLM_LOCK_CW;
 197        case LM_ST_SHARED:
 198                return DLM_LOCK_PR;
 199        }
 200        pr_err("unknown LM state %d\n", lmstate);
 201        BUG();
 202        return -1;
 203}
 204
 205static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
 206                      const int req)
 207{
 208        u32 lkf = 0;
 209
 210        if (gl->gl_lksb.sb_lvbptr)
 211                lkf |= DLM_LKF_VALBLK;
 212
 213        if (gfs_flags & LM_FLAG_TRY)
 214                lkf |= DLM_LKF_NOQUEUE;
 215
 216        if (gfs_flags & LM_FLAG_TRY_1CB) {
 217                lkf |= DLM_LKF_NOQUEUE;
 218                lkf |= DLM_LKF_NOQUEUEBAST;
 219        }
 220
 221        if (gfs_flags & LM_FLAG_PRIORITY) {
 222                lkf |= DLM_LKF_NOORDER;
 223                lkf |= DLM_LKF_HEADQUE;
 224        }
 225
 226        if (gfs_flags & LM_FLAG_ANY) {
 227                if (req == DLM_LOCK_PR)
 228                        lkf |= DLM_LKF_ALTCW;
 229                else if (req == DLM_LOCK_CW)
 230                        lkf |= DLM_LKF_ALTPR;
 231                else
 232                        BUG();
 233        }
 234
 235        if (gl->gl_lksb.sb_lkid != 0) {
 236                lkf |= DLM_LKF_CONVERT;
 237                if (test_bit(GLF_BLOCKING, &gl->gl_flags))
 238                        lkf |= DLM_LKF_QUECVT;
 239        }
 240
 241        return lkf;
 242}
 243
 244static void gfs2_reverse_hex(char *c, u64 value)
 245{
 246        *c = '0';
 247        while (value) {
 248                *c-- = hex_asc[value & 0x0f];
 249                value >>= 4;
 250        }
 251}
 252
 253static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
 254                     unsigned int flags)
 255{
 256        struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
 257        int req;
 258        u32 lkf;
 259        char strname[GDLM_STRNAME_BYTES] = "";
 260
 261        req = make_mode(req_state);
 262        lkf = make_flags(gl, flags, req);
 263        gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
 264        gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
 265        if (gl->gl_lksb.sb_lkid) {
 266                gfs2_update_request_times(gl);
 267        } else {
 268                memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
 269                strname[GDLM_STRNAME_BYTES - 1] = '\0';
 270                gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
 271                gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
 272                gl->gl_dstamp = ktime_get_real();
 273        }
 274        /*
 275         * Submit the actual lock request.
 276         */
 277
 278        return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
 279                        GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
 280}
 281
 282static void gdlm_put_lock(struct gfs2_glock *gl)
 283{
 284        struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
 285        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 286        int lvb_needs_unlock = 0;
 287        int error;
 288
 289        if (gl->gl_lksb.sb_lkid == 0) {
 290                gfs2_glock_free(gl);
 291                return;
 292        }
 293
 294        clear_bit(GLF_BLOCKING, &gl->gl_flags);
 295        gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
 296        gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
 297        gfs2_update_request_times(gl);
 298
 299        /* don't want to skip dlm_unlock writing the lvb when lock is ex */
 300
 301        if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
 302                lvb_needs_unlock = 1;
 303
 304        if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
 305            !lvb_needs_unlock) {
 306                gfs2_glock_free(gl);
 307                return;
 308        }
 309
 310        error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
 311                           NULL, gl);
 312        if (error) {
 313                pr_err("gdlm_unlock %x,%llx err=%d\n",
 314                       gl->gl_name.ln_type,
 315                       (unsigned long long)gl->gl_name.ln_number, error);
 316                return;
 317        }
 318}
 319
 320static void gdlm_cancel(struct gfs2_glock *gl)
 321{
 322        struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
 323        dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
 324}
 325
 326/*
 327 * dlm/gfs2 recovery coordination using dlm_recover callbacks
 328 *
 329 *  1. dlm_controld sees lockspace members change
 330 *  2. dlm_controld blocks dlm-kernel locking activity
 331 *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
 332 *  4. dlm_controld starts and finishes its own user level recovery
 333 *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
 334 *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
 335 *  7. dlm_recoverd does its own lock recovery
 336 *  8. dlm_recoverd unblocks dlm-kernel locking activity
 337 *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
 338 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
 339 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
 340 * 12. gfs2_recover dequeues and recovers journals of failed nodes
 341 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
 342 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
 343 * 15. gfs2_control unblocks normal locking when all journals are recovered
 344 *
 345 * - failures during recovery
 346 *
 347 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
 348 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
 349 * recovering for a prior failure.  gfs2_control needs a way to detect
 350 * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
 351 * the recover_block and recover_start values.
 352 *
 353 * recover_done() provides a new lockspace generation number each time it
 354 * is called (step 9).  This generation number is saved as recover_start.
 355 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
 356 * recover_block = recover_start.  So, while recover_block is equal to
 357 * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
 358 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
 359 *
 360 * - more specific gfs2 steps in sequence above
 361 *
 362 *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
 363 *  6. recover_slot records any failed jids (maybe none)
 364 *  9. recover_done sets recover_start = new generation number
 365 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
 366 * 12. gfs2_recover does journal recoveries for failed jids identified above
 367 * 14. gfs2_control clears control_lock lvb bits for recovered jids
 368 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
 369 *     again) then do nothing, otherwise if recover_start > recover_block
 370 *     then clear BLOCK_LOCKS.
 371 *
 372 * - parallel recovery steps across all nodes
 373 *
 374 * All nodes attempt to update the control_lock lvb with the new generation
 375 * number and jid bits, but only the first to get the control_lock EX will
 376 * do so; others will see that it's already done (lvb already contains new
 377 * generation number.)
 378 *
 379 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
 380 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
 381 * . One node gets control_lock first and writes the lvb, others see it's done
 382 * . All nodes attempt to recover jids for which they see control_lock bits set
 383 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
 384 * . All nodes will eventually see all lvb bits clear and unblock locks
 385 *
 386 * - is there a problem with clearing an lvb bit that should be set
 387 *   and missing a journal recovery?
 388 *
 389 * 1. jid fails
 390 * 2. lvb bit set for step 1
 391 * 3. jid recovered for step 1
 392 * 4. jid taken again (new mount)
 393 * 5. jid fails (for step 4)
 394 * 6. lvb bit set for step 5 (will already be set)
 395 * 7. lvb bit cleared for step 3
 396 *
 397 * This is not a problem because the failure in step 5 does not
 398 * require recovery, because the mount in step 4 could not have
 399 * progressed far enough to unblock locks and access the fs.  The
 400 * control_mount() function waits for all recoveries to be complete
 401 * for the latest lockspace generation before ever unblocking locks
 402 * and returning.  The mount in step 4 waits until the recovery in
 403 * step 1 is done.
 404 *
 405 * - special case of first mounter: first node to mount the fs
 406 *
 407 * The first node to mount a gfs2 fs needs to check all the journals
 408 * and recover any that need recovery before other nodes are allowed
 409 * to mount the fs.  (Others may begin mounting, but they must wait
 410 * for the first mounter to be done before taking locks on the fs
 411 * or accessing the fs.)  This has two parts:
 412 *
 413 * 1. The mounted_lock tells a node it's the first to mount the fs.
 414 * Each node holds the mounted_lock in PR while it's mounted.
 415 * Each node tries to acquire the mounted_lock in EX when it mounts.
 416 * If a node is granted the mounted_lock EX it means there are no
 417 * other mounted nodes (no PR locks exist), and it is the first mounter.
 418 * The mounted_lock is demoted to PR when first recovery is done, so
 419 * others will fail to get an EX lock, but will get a PR lock.
 420 *
 421 * 2. The control_lock blocks others in control_mount() while the first
 422 * mounter is doing first mount recovery of all journals.
 423 * A mounting node needs to acquire control_lock in EX mode before
 424 * it can proceed.  The first mounter holds control_lock in EX while doing
 425 * the first mount recovery, blocking mounts from other nodes, then demotes
 426 * control_lock to NL when it's done (others_may_mount/first_done),
 427 * allowing other nodes to continue mounting.
 428 *
 429 * first mounter:
 430 * control_lock EX/NOQUEUE success
 431 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
 432 * set first=1
 433 * do first mounter recovery
 434 * mounted_lock EX->PR
 435 * control_lock EX->NL, write lvb generation
 436 *
 437 * other mounter:
 438 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
 439 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
 440 * mounted_lock PR/NOQUEUE success
 441 * read lvb generation
 442 * control_lock EX->NL
 443 * set first=0
 444 *
 445 * - mount during recovery
 446 *
 447 * If a node mounts while others are doing recovery (not first mounter),
 448 * the mounting node will get its initial recover_done() callback without
 449 * having seen any previous failures/callbacks.
 450 *
 451 * It must wait for all recoveries preceding its mount to be finished
 452 * before it unblocks locks.  It does this by repeating the "other mounter"
 453 * steps above until the lvb generation number is >= its mount generation
 454 * number (from initial recover_done) and all lvb bits are clear.
 455 *
 456 * - control_lock lvb format
 457 *
 458 * 4 bytes generation number: the latest dlm lockspace generation number
 459 * from recover_done callback.  Indicates the jid bitmap has been updated
 460 * to reflect all slot failures through that generation.
 461 * 4 bytes unused.
 462 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
 463 * that jid N needs recovery.
 464 */
 465
 466#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
 467
 468static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
 469                             char *lvb_bits)
 470{
 471        __le32 gen;
 472        memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
 473        memcpy(&gen, lvb_bits, sizeof(__le32));
 474        *lvb_gen = le32_to_cpu(gen);
 475}
 476
 477static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
 478                              char *lvb_bits)
 479{
 480        __le32 gen;
 481        memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
 482        gen = cpu_to_le32(lvb_gen);
 483        memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
 484}
 485
 486static int all_jid_bits_clear(char *lvb)
 487{
 488        return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
 489                        GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
 490}
 491
 492static void sync_wait_cb(void *arg)
 493{
 494        struct lm_lockstruct *ls = arg;
 495        complete(&ls->ls_sync_wait);
 496}
 497
 498static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
 499{
 500        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 501        int error;
 502
 503        error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
 504        if (error) {
 505                fs_err(sdp, "%s lkid %x error %d\n",
 506                       name, lksb->sb_lkid, error);
 507                return error;
 508        }
 509
 510        wait_for_completion(&ls->ls_sync_wait);
 511
 512        if (lksb->sb_status != -DLM_EUNLOCK) {
 513                fs_err(sdp, "%s lkid %x status %d\n",
 514                       name, lksb->sb_lkid, lksb->sb_status);
 515                return -1;
 516        }
 517        return 0;
 518}
 519
 520static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
 521                     unsigned int num, struct dlm_lksb *lksb, char *name)
 522{
 523        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 524        char strname[GDLM_STRNAME_BYTES];
 525        int error, status;
 526
 527        memset(strname, 0, GDLM_STRNAME_BYTES);
 528        snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
 529
 530        error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
 531                         strname, GDLM_STRNAME_BYTES - 1,
 532                         0, sync_wait_cb, ls, NULL);
 533        if (error) {
 534                fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
 535                       name, lksb->sb_lkid, flags, mode, error);
 536                return error;
 537        }
 538
 539        wait_for_completion(&ls->ls_sync_wait);
 540
 541        status = lksb->sb_status;
 542
 543        if (status && status != -EAGAIN) {
 544                fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
 545                       name, lksb->sb_lkid, flags, mode, status);
 546        }
 547
 548        return status;
 549}
 550
 551static int mounted_unlock(struct gfs2_sbd *sdp)
 552{
 553        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 554        return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
 555}
 556
 557static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
 558{
 559        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 560        return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
 561                         &ls->ls_mounted_lksb, "mounted_lock");
 562}
 563
 564static int control_unlock(struct gfs2_sbd *sdp)
 565{
 566        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 567        return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
 568}
 569
 570static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
 571{
 572        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 573        return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
 574                         &ls->ls_control_lksb, "control_lock");
 575}
 576
 577static void gfs2_control_func(struct work_struct *work)
 578{
 579        struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
 580        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 581        uint32_t block_gen, start_gen, lvb_gen, flags;
 582        int recover_set = 0;
 583        int write_lvb = 0;
 584        int recover_size;
 585        int i, error;
 586
 587        spin_lock(&ls->ls_recover_spin);
 588        /*
 589         * No MOUNT_DONE means we're still mounting; control_mount()
 590         * will set this flag, after which this thread will take over
 591         * all further clearing of BLOCK_LOCKS.
 592         *
 593         * FIRST_MOUNT means this node is doing first mounter recovery,
 594         * for which recovery control is handled by
 595         * control_mount()/control_first_done(), not this thread.
 596         */
 597        if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
 598             test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
 599                spin_unlock(&ls->ls_recover_spin);
 600                return;
 601        }
 602        block_gen = ls->ls_recover_block;
 603        start_gen = ls->ls_recover_start;
 604        spin_unlock(&ls->ls_recover_spin);
 605
 606        /*
 607         * Equal block_gen and start_gen implies we are between
 608         * recover_prep and recover_done callbacks, which means
 609         * dlm recovery is in progress and dlm locking is blocked.
 610         * There's no point trying to do any work until recover_done.
 611         */
 612
 613        if (block_gen == start_gen)
 614                return;
 615
 616        /*
 617         * Propagate recover_submit[] and recover_result[] to lvb:
 618         * dlm_recoverd adds to recover_submit[] jids needing recovery
 619         * gfs2_recover adds to recover_result[] journal recovery results
 620         *
 621         * set lvb bit for jids in recover_submit[] if the lvb has not
 622         * yet been updated for the generation of the failure
 623         *
 624         * clear lvb bit for jids in recover_result[] if the result of
 625         * the journal recovery is SUCCESS
 626         */
 627
 628        error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
 629        if (error) {
 630                fs_err(sdp, "control lock EX error %d\n", error);
 631                return;
 632        }
 633
 634        control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
 635
 636        spin_lock(&ls->ls_recover_spin);
 637        if (block_gen != ls->ls_recover_block ||
 638            start_gen != ls->ls_recover_start) {
 639                fs_info(sdp, "recover generation %u block1 %u %u\n",
 640                        start_gen, block_gen, ls->ls_recover_block);
 641                spin_unlock(&ls->ls_recover_spin);
 642                control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
 643                return;
 644        }
 645
 646        recover_size = ls->ls_recover_size;
 647
 648        if (lvb_gen <= start_gen) {
 649                /*
 650                 * Clear lvb bits for jids we've successfully recovered.
 651                 * Because all nodes attempt to recover failed journals,
 652                 * a journal can be recovered multiple times successfully
 653                 * in succession.  Only the first will really do recovery,
 654                 * the others find it clean, but still report a successful
 655                 * recovery.  So, another node may have already recovered
 656                 * the jid and cleared the lvb bit for it.
 657                 */
 658                for (i = 0; i < recover_size; i++) {
 659                        if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
 660                                continue;
 661
 662                        ls->ls_recover_result[i] = 0;
 663
 664                        if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
 665                                continue;
 666
 667                        __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
 668                        write_lvb = 1;
 669                }
 670        }
 671
 672        if (lvb_gen == start_gen) {
 673                /*
 674                 * Failed slots before start_gen are already set in lvb.
 675                 */
 676                for (i = 0; i < recover_size; i++) {
 677                        if (!ls->ls_recover_submit[i])
 678                                continue;
 679                        if (ls->ls_recover_submit[i] < lvb_gen)
 680                                ls->ls_recover_submit[i] = 0;
 681                }
 682        } else if (lvb_gen < start_gen) {
 683                /*
 684                 * Failed slots before start_gen are not yet set in lvb.
 685                 */
 686                for (i = 0; i < recover_size; i++) {
 687                        if (!ls->ls_recover_submit[i])
 688                                continue;
 689                        if (ls->ls_recover_submit[i] < start_gen) {
 690                                ls->ls_recover_submit[i] = 0;
 691                                __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
 692                        }
 693                }
 694                /* even if there are no bits to set, we need to write the
 695                   latest generation to the lvb */
 696                write_lvb = 1;
 697        } else {
 698                /*
 699                 * we should be getting a recover_done() for lvb_gen soon
 700                 */
 701        }
 702        spin_unlock(&ls->ls_recover_spin);
 703
 704        if (write_lvb) {
 705                control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
 706                flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
 707        } else {
 708                flags = DLM_LKF_CONVERT;
 709        }
 710
 711        error = control_lock(sdp, DLM_LOCK_NL, flags);
 712        if (error) {
 713                fs_err(sdp, "control lock NL error %d\n", error);
 714                return;
 715        }
 716
 717        /*
 718         * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
 719         * and clear a jid bit in the lvb if the recovery is a success.
 720         * Eventually all journals will be recovered, all jid bits will
 721         * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
 722         */
 723
 724        for (i = 0; i < recover_size; i++) {
 725                if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
 726                        fs_info(sdp, "recover generation %u jid %d\n",
 727                                start_gen, i);
 728                        gfs2_recover_set(sdp, i);
 729                        recover_set++;
 730                }
 731        }
 732        if (recover_set)
 733                return;
 734
 735        /*
 736         * No more jid bits set in lvb, all recovery is done, unblock locks
 737         * (unless a new recover_prep callback has occured blocking locks
 738         * again while working above)
 739         */
 740
 741        spin_lock(&ls->ls_recover_spin);
 742        if (ls->ls_recover_block == block_gen &&
 743            ls->ls_recover_start == start_gen) {
 744                clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
 745                spin_unlock(&ls->ls_recover_spin);
 746                fs_info(sdp, "recover generation %u done\n", start_gen);
 747                gfs2_glock_thaw(sdp);
 748        } else {
 749                fs_info(sdp, "recover generation %u block2 %u %u\n",
 750                        start_gen, block_gen, ls->ls_recover_block);
 751                spin_unlock(&ls->ls_recover_spin);
 752        }
 753}
 754
 755static int control_mount(struct gfs2_sbd *sdp)
 756{
 757        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 758        uint32_t start_gen, block_gen, mount_gen, lvb_gen;
 759        int mounted_mode;
 760        int retries = 0;
 761        int error;
 762
 763        memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
 764        memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
 765        memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
 766        ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
 767        init_completion(&ls->ls_sync_wait);
 768
 769        set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
 770
 771        error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
 772        if (error) {
 773                fs_err(sdp, "control_mount control_lock NL error %d\n", error);
 774                return error;
 775        }
 776
 777        error = mounted_lock(sdp, DLM_LOCK_NL, 0);
 778        if (error) {
 779                fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
 780                control_unlock(sdp);
 781                return error;
 782        }
 783        mounted_mode = DLM_LOCK_NL;
 784
 785restart:
 786        if (retries++ && signal_pending(current)) {
 787                error = -EINTR;
 788                goto fail;
 789        }
 790
 791        /*
 792         * We always start with both locks in NL. control_lock is
 793         * demoted to NL below so we don't need to do it here.
 794         */
 795
 796        if (mounted_mode != DLM_LOCK_NL) {
 797                error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
 798                if (error)
 799                        goto fail;
 800                mounted_mode = DLM_LOCK_NL;
 801        }
 802
 803        /*
 804         * Other nodes need to do some work in dlm recovery and gfs2_control
 805         * before the recover_done and control_lock will be ready for us below.
 806         * A delay here is not required but often avoids having to retry.
 807         */
 808
 809        msleep_interruptible(500);
 810
 811        /*
 812         * Acquire control_lock in EX and mounted_lock in either EX or PR.
 813         * control_lock lvb keeps track of any pending journal recoveries.
 814         * mounted_lock indicates if any other nodes have the fs mounted.
 815         */
 816
 817        error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
 818        if (error == -EAGAIN) {
 819                goto restart;
 820        } else if (error) {
 821                fs_err(sdp, "control_mount control_lock EX error %d\n", error);
 822                goto fail;
 823        }
 824
 825        error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
 826        if (!error) {
 827                mounted_mode = DLM_LOCK_EX;
 828                goto locks_done;
 829        } else if (error != -EAGAIN) {
 830                fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
 831                goto fail;
 832        }
 833
 834        error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
 835        if (!error) {
 836                mounted_mode = DLM_LOCK_PR;
 837                goto locks_done;
 838        } else {
 839                /* not even -EAGAIN should happen here */
 840                fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
 841                goto fail;
 842        }
 843
 844locks_done:
 845        /*
 846         * If we got both locks above in EX, then we're the first mounter.
 847         * If not, then we need to wait for the control_lock lvb to be
 848         * updated by other mounted nodes to reflect our mount generation.
 849         *
 850         * In simple first mounter cases, first mounter will see zero lvb_gen,
 851         * but in cases where all existing nodes leave/fail before mounting
 852         * nodes finish control_mount, then all nodes will be mounting and
 853         * lvb_gen will be non-zero.
 854         */
 855
 856        control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
 857
 858        if (lvb_gen == 0xFFFFFFFF) {
 859                /* special value to force mount attempts to fail */
 860                fs_err(sdp, "control_mount control_lock disabled\n");
 861                error = -EINVAL;
 862                goto fail;
 863        }
 864
 865        if (mounted_mode == DLM_LOCK_EX) {
 866                /* first mounter, keep both EX while doing first recovery */
 867                spin_lock(&ls->ls_recover_spin);
 868                clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
 869                set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
 870                set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
 871                spin_unlock(&ls->ls_recover_spin);
 872                fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
 873                return 0;
 874        }
 875
 876        error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
 877        if (error)
 878                goto fail;
 879
 880        /*
 881         * We are not first mounter, now we need to wait for the control_lock
 882         * lvb generation to be >= the generation from our first recover_done
 883         * and all lvb bits to be clear (no pending journal recoveries.)
 884         */
 885
 886        if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
 887                /* journals need recovery, wait until all are clear */
 888                fs_info(sdp, "control_mount wait for journal recovery\n");
 889                goto restart;
 890        }
 891
 892        spin_lock(&ls->ls_recover_spin);
 893        block_gen = ls->ls_recover_block;
 894        start_gen = ls->ls_recover_start;
 895        mount_gen = ls->ls_recover_mount;
 896
 897        if (lvb_gen < mount_gen) {
 898                /* wait for mounted nodes to update control_lock lvb to our
 899                   generation, which might include new recovery bits set */
 900                fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
 901                        "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
 902                        lvb_gen, ls->ls_recover_flags);
 903                spin_unlock(&ls->ls_recover_spin);
 904                goto restart;
 905        }
 906
 907        if (lvb_gen != start_gen) {
 908                /* wait for mounted nodes to update control_lock lvb to the
 909                   latest recovery generation */
 910                fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
 911                        "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
 912                        lvb_gen, ls->ls_recover_flags);
 913                spin_unlock(&ls->ls_recover_spin);
 914                goto restart;
 915        }
 916
 917        if (block_gen == start_gen) {
 918                /* dlm recovery in progress, wait for it to finish */
 919                fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
 920                        "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
 921                        lvb_gen, ls->ls_recover_flags);
 922                spin_unlock(&ls->ls_recover_spin);
 923                goto restart;
 924        }
 925
 926        clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
 927        set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
 928        memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
 929        memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
 930        spin_unlock(&ls->ls_recover_spin);
 931        return 0;
 932
 933fail:
 934        mounted_unlock(sdp);
 935        control_unlock(sdp);
 936        return error;
 937}
 938
 939static int control_first_done(struct gfs2_sbd *sdp)
 940{
 941        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 942        uint32_t start_gen, block_gen;
 943        int error;
 944
 945restart:
 946        spin_lock(&ls->ls_recover_spin);
 947        start_gen = ls->ls_recover_start;
 948        block_gen = ls->ls_recover_block;
 949
 950        if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
 951            !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
 952            !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
 953                /* sanity check, should not happen */
 954                fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
 955                       start_gen, block_gen, ls->ls_recover_flags);
 956                spin_unlock(&ls->ls_recover_spin);
 957                control_unlock(sdp);
 958                return -1;
 959        }
 960
 961        if (start_gen == block_gen) {
 962                /*
 963                 * Wait for the end of a dlm recovery cycle to switch from
 964                 * first mounter recovery.  We can ignore any recover_slot
 965                 * callbacks between the recover_prep and next recover_done
 966                 * because we are still the first mounter and any failed nodes
 967                 * have not fully mounted, so they don't need recovery.
 968                 */
 969                spin_unlock(&ls->ls_recover_spin);
 970                fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
 971
 972                wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
 973                            TASK_UNINTERRUPTIBLE);
 974                goto restart;
 975        }
 976
 977        clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
 978        set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
 979        memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
 980        memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
 981        spin_unlock(&ls->ls_recover_spin);
 982
 983        memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
 984        control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
 985
 986        error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
 987        if (error)
 988                fs_err(sdp, "control_first_done mounted PR error %d\n", error);
 989
 990        error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
 991        if (error)
 992                fs_err(sdp, "control_first_done control NL error %d\n", error);
 993
 994        return error;
 995}
 996
 997/*
 998 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
 999 * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1000 * gfs2 jids start at 0, so jid = slot - 1)
1001 */
1002
1003#define RECOVER_SIZE_INC 16
1004
1005static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1006                            int num_slots)
1007{
1008        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1009        uint32_t *submit = NULL;
1010        uint32_t *result = NULL;
1011        uint32_t old_size, new_size;
1012        int i, max_jid;
1013
1014        if (!ls->ls_lvb_bits) {
1015                ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1016                if (!ls->ls_lvb_bits)
1017                        return -ENOMEM;
1018        }
1019
1020        max_jid = 0;
1021        for (i = 0; i < num_slots; i++) {
1022                if (max_jid < slots[i].slot - 1)
1023                        max_jid = slots[i].slot - 1;
1024        }
1025
1026        old_size = ls->ls_recover_size;
1027
1028        if (old_size >= max_jid + 1)
1029                return 0;
1030
1031        new_size = old_size + RECOVER_SIZE_INC;
1032
1033        submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1034        result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1035        if (!submit || !result) {
1036                kfree(submit);
1037                kfree(result);
1038                return -ENOMEM;
1039        }
1040
1041        spin_lock(&ls->ls_recover_spin);
1042        memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1043        memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1044        kfree(ls->ls_recover_submit);
1045        kfree(ls->ls_recover_result);
1046        ls->ls_recover_submit = submit;
1047        ls->ls_recover_result = result;
1048        ls->ls_recover_size = new_size;
1049        spin_unlock(&ls->ls_recover_spin);
1050        return 0;
1051}
1052
1053static void free_recover_size(struct lm_lockstruct *ls)
1054{
1055        kfree(ls->ls_lvb_bits);
1056        kfree(ls->ls_recover_submit);
1057        kfree(ls->ls_recover_result);
1058        ls->ls_recover_submit = NULL;
1059        ls->ls_recover_result = NULL;
1060        ls->ls_recover_size = 0;
1061}
1062
1063/* dlm calls before it does lock recovery */
1064
1065static void gdlm_recover_prep(void *arg)
1066{
1067        struct gfs2_sbd *sdp = arg;
1068        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1069
1070        spin_lock(&ls->ls_recover_spin);
1071        ls->ls_recover_block = ls->ls_recover_start;
1072        set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1073
1074        if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1075             test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1076                spin_unlock(&ls->ls_recover_spin);
1077                return;
1078        }
1079        set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1080        spin_unlock(&ls->ls_recover_spin);
1081}
1082
1083/* dlm calls after recover_prep has been completed on all lockspace members;
1084   identifies slot/jid of failed member */
1085
1086static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1087{
1088        struct gfs2_sbd *sdp = arg;
1089        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1090        int jid = slot->slot - 1;
1091
1092        spin_lock(&ls->ls_recover_spin);
1093        if (ls->ls_recover_size < jid + 1) {
1094                fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1095                       jid, ls->ls_recover_block, ls->ls_recover_size);
1096                spin_unlock(&ls->ls_recover_spin);
1097                return;
1098        }
1099
1100        if (ls->ls_recover_submit[jid]) {
1101                fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1102                        jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1103        }
1104        ls->ls_recover_submit[jid] = ls->ls_recover_block;
1105        spin_unlock(&ls->ls_recover_spin);
1106}
1107
1108/* dlm calls after recover_slot and after it completes lock recovery */
1109
1110static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1111                              int our_slot, uint32_t generation)
1112{
1113        struct gfs2_sbd *sdp = arg;
1114        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1115
1116        /* ensure the ls jid arrays are large enough */
1117        set_recover_size(sdp, slots, num_slots);
1118
1119        spin_lock(&ls->ls_recover_spin);
1120        ls->ls_recover_start = generation;
1121
1122        if (!ls->ls_recover_mount) {
1123                ls->ls_recover_mount = generation;
1124                ls->ls_jid = our_slot - 1;
1125        }
1126
1127        if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1128                queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1129
1130        clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1131        smp_mb__after_atomic();
1132        wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1133        spin_unlock(&ls->ls_recover_spin);
1134}
1135
1136/* gfs2_recover thread has a journal recovery result */
1137
1138static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1139                                 unsigned int result)
1140{
1141        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1142
1143        if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1144                return;
1145
1146        /* don't care about the recovery of own journal during mount */
1147        if (jid == ls->ls_jid)
1148                return;
1149
1150        spin_lock(&ls->ls_recover_spin);
1151        if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1152                spin_unlock(&ls->ls_recover_spin);
1153                return;
1154        }
1155        if (ls->ls_recover_size < jid + 1) {
1156                fs_err(sdp, "recovery_result jid %d short size %d",
1157                       jid, ls->ls_recover_size);
1158                spin_unlock(&ls->ls_recover_spin);
1159                return;
1160        }
1161
1162        fs_info(sdp, "recover jid %d result %s\n", jid,
1163                result == LM_RD_GAVEUP ? "busy" : "success");
1164
1165        ls->ls_recover_result[jid] = result;
1166
1167        /* GAVEUP means another node is recovering the journal; delay our
1168           next attempt to recover it, to give the other node a chance to
1169           finish before trying again */
1170
1171        if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1172                queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1173                                   result == LM_RD_GAVEUP ? HZ : 0);
1174        spin_unlock(&ls->ls_recover_spin);
1175}
1176
1177const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1178        .recover_prep = gdlm_recover_prep,
1179        .recover_slot = gdlm_recover_slot,
1180        .recover_done = gdlm_recover_done,
1181};
1182
1183static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1184{
1185        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1186        char cluster[GFS2_LOCKNAME_LEN];
1187        const char *fsname;
1188        uint32_t flags;
1189        int error, ops_result;
1190
1191        /*
1192         * initialize everything
1193         */
1194
1195        INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1196        spin_lock_init(&ls->ls_recover_spin);
1197        ls->ls_recover_flags = 0;
1198        ls->ls_recover_mount = 0;
1199        ls->ls_recover_start = 0;
1200        ls->ls_recover_block = 0;
1201        ls->ls_recover_size = 0;
1202        ls->ls_recover_submit = NULL;
1203        ls->ls_recover_result = NULL;
1204        ls->ls_lvb_bits = NULL;
1205
1206        error = set_recover_size(sdp, NULL, 0);
1207        if (error)
1208                goto fail;
1209
1210        /*
1211         * prepare dlm_new_lockspace args
1212         */
1213
1214        fsname = strchr(table, ':');
1215        if (!fsname) {
1216                fs_info(sdp, "no fsname found\n");
1217                error = -EINVAL;
1218                goto fail_free;
1219        }
1220        memset(cluster, 0, sizeof(cluster));
1221        memcpy(cluster, table, strlen(table) - strlen(fsname));
1222        fsname++;
1223
1224        flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1225
1226        /*
1227         * create/join lockspace
1228         */
1229
1230        error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1231                                  &gdlm_lockspace_ops, sdp, &ops_result,
1232                                  &ls->ls_dlm);
1233        if (error) {
1234                fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1235                goto fail_free;
1236        }
1237
1238        if (ops_result < 0) {
1239                /*
1240                 * dlm does not support ops callbacks,
1241                 * old dlm_controld/gfs_controld are used, try without ops.
1242                 */
1243                fs_info(sdp, "dlm lockspace ops not used\n");
1244                free_recover_size(ls);
1245                set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1246                return 0;
1247        }
1248
1249        if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1250                fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1251                error = -EINVAL;
1252                goto fail_release;
1253        }
1254
1255        /*
1256         * control_mount() uses control_lock to determine first mounter,
1257         * and for later mounts, waits for any recoveries to be cleared.
1258         */
1259
1260        error = control_mount(sdp);
1261        if (error) {
1262                fs_err(sdp, "mount control error %d\n", error);
1263                goto fail_release;
1264        }
1265
1266        ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1267        clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1268        smp_mb__after_atomic();
1269        wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1270        return 0;
1271
1272fail_release:
1273        dlm_release_lockspace(ls->ls_dlm, 2);
1274fail_free:
1275        free_recover_size(ls);
1276fail:
1277        return error;
1278}
1279
1280static void gdlm_first_done(struct gfs2_sbd *sdp)
1281{
1282        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1283        int error;
1284
1285        if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1286                return;
1287
1288        error = control_first_done(sdp);
1289        if (error)
1290                fs_err(sdp, "mount first_done error %d\n", error);
1291}
1292
1293static void gdlm_unmount(struct gfs2_sbd *sdp)
1294{
1295        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1296
1297        if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1298                goto release;
1299
1300        /* wait for gfs2_control_wq to be done with this mount */
1301
1302        spin_lock(&ls->ls_recover_spin);
1303        set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1304        spin_unlock(&ls->ls_recover_spin);
1305        flush_delayed_work(&sdp->sd_control_work);
1306
1307        /* mounted_lock and control_lock will be purged in dlm recovery */
1308release:
1309        if (ls->ls_dlm) {
1310                dlm_release_lockspace(ls->ls_dlm, 2);
1311                ls->ls_dlm = NULL;
1312        }
1313
1314        free_recover_size(ls);
1315}
1316
1317static const match_table_t dlm_tokens = {
1318        { Opt_jid, "jid=%d"},
1319        { Opt_id, "id=%d"},
1320        { Opt_first, "first=%d"},
1321        { Opt_nodir, "nodir=%d"},
1322        { Opt_err, NULL },
1323};
1324
1325const struct lm_lockops gfs2_dlm_ops = {
1326        .lm_proto_name = "lock_dlm",
1327        .lm_mount = gdlm_mount,
1328        .lm_first_done = gdlm_first_done,
1329        .lm_recovery_result = gdlm_recovery_result,
1330        .lm_unmount = gdlm_unmount,
1331        .lm_put_lock = gdlm_put_lock,
1332        .lm_lock = gdlm_lock,
1333        .lm_cancel = gdlm_cancel,
1334        .lm_tokens = &dlm_tokens,
1335};
1336
1337