linux/fs/xfs/xfs_log.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_mount.h"
  25#include "xfs_error.h"
  26#include "xfs_trans.h"
  27#include "xfs_trans_priv.h"
  28#include "xfs_log.h"
  29#include "xfs_log_priv.h"
  30#include "xfs_log_recover.h"
  31#include "xfs_inode.h"
  32#include "xfs_trace.h"
  33#include "xfs_fsops.h"
  34#include "xfs_cksum.h"
  35#include "xfs_sysfs.h"
  36#include "xfs_sb.h"
  37
  38kmem_zone_t     *xfs_log_ticket_zone;
  39
  40/* Local miscellaneous function prototypes */
  41STATIC int
  42xlog_commit_record(
  43        struct xlog             *log,
  44        struct xlog_ticket      *ticket,
  45        struct xlog_in_core     **iclog,
  46        xfs_lsn_t               *commitlsnp);
  47
  48STATIC struct xlog *
  49xlog_alloc_log(
  50        struct xfs_mount        *mp,
  51        struct xfs_buftarg      *log_target,
  52        xfs_daddr_t             blk_offset,
  53        int                     num_bblks);
  54STATIC int
  55xlog_space_left(
  56        struct xlog             *log,
  57        atomic64_t              *head);
  58STATIC int
  59xlog_sync(
  60        struct xlog             *log,
  61        struct xlog_in_core     *iclog);
  62STATIC void
  63xlog_dealloc_log(
  64        struct xlog             *log);
  65
  66/* local state machine functions */
  67STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  68STATIC void
  69xlog_state_do_callback(
  70        struct xlog             *log,
  71        int                     aborted,
  72        struct xlog_in_core     *iclog);
  73STATIC int
  74xlog_state_get_iclog_space(
  75        struct xlog             *log,
  76        int                     len,
  77        struct xlog_in_core     **iclog,
  78        struct xlog_ticket      *ticket,
  79        int                     *continued_write,
  80        int                     *logoffsetp);
  81STATIC int
  82xlog_state_release_iclog(
  83        struct xlog             *log,
  84        struct xlog_in_core     *iclog);
  85STATIC void
  86xlog_state_switch_iclogs(
  87        struct xlog             *log,
  88        struct xlog_in_core     *iclog,
  89        int                     eventual_size);
  90STATIC void
  91xlog_state_want_sync(
  92        struct xlog             *log,
  93        struct xlog_in_core     *iclog);
  94
  95STATIC void
  96xlog_grant_push_ail(
  97        struct xlog             *log,
  98        int                     need_bytes);
  99STATIC void
 100xlog_regrant_reserve_log_space(
 101        struct xlog             *log,
 102        struct xlog_ticket      *ticket);
 103STATIC void
 104xlog_ungrant_log_space(
 105        struct xlog             *log,
 106        struct xlog_ticket      *ticket);
 107
 108#if defined(DEBUG)
 109STATIC void
 110xlog_verify_dest_ptr(
 111        struct xlog             *log,
 112        void                    *ptr);
 113STATIC void
 114xlog_verify_grant_tail(
 115        struct xlog *log);
 116STATIC void
 117xlog_verify_iclog(
 118        struct xlog             *log,
 119        struct xlog_in_core     *iclog,
 120        int                     count,
 121        bool                    syncing);
 122STATIC void
 123xlog_verify_tail_lsn(
 124        struct xlog             *log,
 125        struct xlog_in_core     *iclog,
 126        xfs_lsn_t               tail_lsn);
 127#else
 128#define xlog_verify_dest_ptr(a,b)
 129#define xlog_verify_grant_tail(a)
 130#define xlog_verify_iclog(a,b,c,d)
 131#define xlog_verify_tail_lsn(a,b,c)
 132#endif
 133
 134STATIC int
 135xlog_iclogs_empty(
 136        struct xlog             *log);
 137
 138static void
 139xlog_grant_sub_space(
 140        struct xlog             *log,
 141        atomic64_t              *head,
 142        int                     bytes)
 143{
 144        int64_t head_val = atomic64_read(head);
 145        int64_t new, old;
 146
 147        do {
 148                int     cycle, space;
 149
 150                xlog_crack_grant_head_val(head_val, &cycle, &space);
 151
 152                space -= bytes;
 153                if (space < 0) {
 154                        space += log->l_logsize;
 155                        cycle--;
 156                }
 157
 158                old = head_val;
 159                new = xlog_assign_grant_head_val(cycle, space);
 160                head_val = atomic64_cmpxchg(head, old, new);
 161        } while (head_val != old);
 162}
 163
 164static void
 165xlog_grant_add_space(
 166        struct xlog             *log,
 167        atomic64_t              *head,
 168        int                     bytes)
 169{
 170        int64_t head_val = atomic64_read(head);
 171        int64_t new, old;
 172
 173        do {
 174                int             tmp;
 175                int             cycle, space;
 176
 177                xlog_crack_grant_head_val(head_val, &cycle, &space);
 178
 179                tmp = log->l_logsize - space;
 180                if (tmp > bytes)
 181                        space += bytes;
 182                else {
 183                        space = bytes - tmp;
 184                        cycle++;
 185                }
 186
 187                old = head_val;
 188                new = xlog_assign_grant_head_val(cycle, space);
 189                head_val = atomic64_cmpxchg(head, old, new);
 190        } while (head_val != old);
 191}
 192
 193STATIC void
 194xlog_grant_head_init(
 195        struct xlog_grant_head  *head)
 196{
 197        xlog_assign_grant_head(&head->grant, 1, 0);
 198        INIT_LIST_HEAD(&head->waiters);
 199        spin_lock_init(&head->lock);
 200}
 201
 202STATIC void
 203xlog_grant_head_wake_all(
 204        struct xlog_grant_head  *head)
 205{
 206        struct xlog_ticket      *tic;
 207
 208        spin_lock(&head->lock);
 209        list_for_each_entry(tic, &head->waiters, t_queue)
 210                wake_up_process(tic->t_task);
 211        spin_unlock(&head->lock);
 212}
 213
 214static inline int
 215xlog_ticket_reservation(
 216        struct xlog             *log,
 217        struct xlog_grant_head  *head,
 218        struct xlog_ticket      *tic)
 219{
 220        if (head == &log->l_write_head) {
 221                ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 222                return tic->t_unit_res;
 223        } else {
 224                if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 225                        return tic->t_unit_res * tic->t_cnt;
 226                else
 227                        return tic->t_unit_res;
 228        }
 229}
 230
 231STATIC bool
 232xlog_grant_head_wake(
 233        struct xlog             *log,
 234        struct xlog_grant_head  *head,
 235        int                     *free_bytes)
 236{
 237        struct xlog_ticket      *tic;
 238        int                     need_bytes;
 239
 240        list_for_each_entry(tic, &head->waiters, t_queue) {
 241                need_bytes = xlog_ticket_reservation(log, head, tic);
 242                if (*free_bytes < need_bytes)
 243                        return false;
 244
 245                *free_bytes -= need_bytes;
 246                trace_xfs_log_grant_wake_up(log, tic);
 247                wake_up_process(tic->t_task);
 248        }
 249
 250        return true;
 251}
 252
 253STATIC int
 254xlog_grant_head_wait(
 255        struct xlog             *log,
 256        struct xlog_grant_head  *head,
 257        struct xlog_ticket      *tic,
 258        int                     need_bytes) __releases(&head->lock)
 259                                            __acquires(&head->lock)
 260{
 261        list_add_tail(&tic->t_queue, &head->waiters);
 262
 263        do {
 264                if (XLOG_FORCED_SHUTDOWN(log))
 265                        goto shutdown;
 266                xlog_grant_push_ail(log, need_bytes);
 267
 268                __set_current_state(TASK_UNINTERRUPTIBLE);
 269                spin_unlock(&head->lock);
 270
 271                XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 272
 273                trace_xfs_log_grant_sleep(log, tic);
 274                schedule();
 275                trace_xfs_log_grant_wake(log, tic);
 276
 277                spin_lock(&head->lock);
 278                if (XLOG_FORCED_SHUTDOWN(log))
 279                        goto shutdown;
 280        } while (xlog_space_left(log, &head->grant) < need_bytes);
 281
 282        list_del_init(&tic->t_queue);
 283        return 0;
 284shutdown:
 285        list_del_init(&tic->t_queue);
 286        return -EIO;
 287}
 288
 289/*
 290 * Atomically get the log space required for a log ticket.
 291 *
 292 * Once a ticket gets put onto head->waiters, it will only return after the
 293 * needed reservation is satisfied.
 294 *
 295 * This function is structured so that it has a lock free fast path. This is
 296 * necessary because every new transaction reservation will come through this
 297 * path. Hence any lock will be globally hot if we take it unconditionally on
 298 * every pass.
 299 *
 300 * As tickets are only ever moved on and off head->waiters under head->lock, we
 301 * only need to take that lock if we are going to add the ticket to the queue
 302 * and sleep. We can avoid taking the lock if the ticket was never added to
 303 * head->waiters because the t_queue list head will be empty and we hold the
 304 * only reference to it so it can safely be checked unlocked.
 305 */
 306STATIC int
 307xlog_grant_head_check(
 308        struct xlog             *log,
 309        struct xlog_grant_head  *head,
 310        struct xlog_ticket      *tic,
 311        int                     *need_bytes)
 312{
 313        int                     free_bytes;
 314        int                     error = 0;
 315
 316        ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 317
 318        /*
 319         * If there are other waiters on the queue then give them a chance at
 320         * logspace before us.  Wake up the first waiters, if we do not wake
 321         * up all the waiters then go to sleep waiting for more free space,
 322         * otherwise try to get some space for this transaction.
 323         */
 324        *need_bytes = xlog_ticket_reservation(log, head, tic);
 325        free_bytes = xlog_space_left(log, &head->grant);
 326        if (!list_empty_careful(&head->waiters)) {
 327                spin_lock(&head->lock);
 328                if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 329                    free_bytes < *need_bytes) {
 330                        error = xlog_grant_head_wait(log, head, tic,
 331                                                     *need_bytes);
 332                }
 333                spin_unlock(&head->lock);
 334        } else if (free_bytes < *need_bytes) {
 335                spin_lock(&head->lock);
 336                error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 337                spin_unlock(&head->lock);
 338        }
 339
 340        return error;
 341}
 342
 343static void
 344xlog_tic_reset_res(xlog_ticket_t *tic)
 345{
 346        tic->t_res_num = 0;
 347        tic->t_res_arr_sum = 0;
 348        tic->t_res_num_ophdrs = 0;
 349}
 350
 351static void
 352xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 353{
 354        if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 355                /* add to overflow and start again */
 356                tic->t_res_o_flow += tic->t_res_arr_sum;
 357                tic->t_res_num = 0;
 358                tic->t_res_arr_sum = 0;
 359        }
 360
 361        tic->t_res_arr[tic->t_res_num].r_len = len;
 362        tic->t_res_arr[tic->t_res_num].r_type = type;
 363        tic->t_res_arr_sum += len;
 364        tic->t_res_num++;
 365}
 366
 367/*
 368 * Replenish the byte reservation required by moving the grant write head.
 369 */
 370int
 371xfs_log_regrant(
 372        struct xfs_mount        *mp,
 373        struct xlog_ticket      *tic)
 374{
 375        struct xlog             *log = mp->m_log;
 376        int                     need_bytes;
 377        int                     error = 0;
 378
 379        if (XLOG_FORCED_SHUTDOWN(log))
 380                return -EIO;
 381
 382        XFS_STATS_INC(mp, xs_try_logspace);
 383
 384        /*
 385         * This is a new transaction on the ticket, so we need to change the
 386         * transaction ID so that the next transaction has a different TID in
 387         * the log. Just add one to the existing tid so that we can see chains
 388         * of rolling transactions in the log easily.
 389         */
 390        tic->t_tid++;
 391
 392        xlog_grant_push_ail(log, tic->t_unit_res);
 393
 394        tic->t_curr_res = tic->t_unit_res;
 395        xlog_tic_reset_res(tic);
 396
 397        if (tic->t_cnt > 0)
 398                return 0;
 399
 400        trace_xfs_log_regrant(log, tic);
 401
 402        error = xlog_grant_head_check(log, &log->l_write_head, tic,
 403                                      &need_bytes);
 404        if (error)
 405                goto out_error;
 406
 407        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 408        trace_xfs_log_regrant_exit(log, tic);
 409        xlog_verify_grant_tail(log);
 410        return 0;
 411
 412out_error:
 413        /*
 414         * If we are failing, make sure the ticket doesn't have any current
 415         * reservations.  We don't want to add this back when the ticket/
 416         * transaction gets cancelled.
 417         */
 418        tic->t_curr_res = 0;
 419        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 420        return error;
 421}
 422
 423/*
 424 * Reserve log space and return a ticket corresponding the reservation.
 425 *
 426 * Each reservation is going to reserve extra space for a log record header.
 427 * When writes happen to the on-disk log, we don't subtract the length of the
 428 * log record header from any reservation.  By wasting space in each
 429 * reservation, we prevent over allocation problems.
 430 */
 431int
 432xfs_log_reserve(
 433        struct xfs_mount        *mp,
 434        int                     unit_bytes,
 435        int                     cnt,
 436        struct xlog_ticket      **ticp,
 437        __uint8_t               client,
 438        bool                    permanent)
 439{
 440        struct xlog             *log = mp->m_log;
 441        struct xlog_ticket      *tic;
 442        int                     need_bytes;
 443        int                     error = 0;
 444
 445        ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 446
 447        if (XLOG_FORCED_SHUTDOWN(log))
 448                return -EIO;
 449
 450        XFS_STATS_INC(mp, xs_try_logspace);
 451
 452        ASSERT(*ticp == NULL);
 453        tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 454                                KM_SLEEP | KM_MAYFAIL);
 455        if (!tic)
 456                return -ENOMEM;
 457
 458        *ticp = tic;
 459
 460        xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 461                                            : tic->t_unit_res);
 462
 463        trace_xfs_log_reserve(log, tic);
 464
 465        error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 466                                      &need_bytes);
 467        if (error)
 468                goto out_error;
 469
 470        xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 471        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 472        trace_xfs_log_reserve_exit(log, tic);
 473        xlog_verify_grant_tail(log);
 474        return 0;
 475
 476out_error:
 477        /*
 478         * If we are failing, make sure the ticket doesn't have any current
 479         * reservations.  We don't want to add this back when the ticket/
 480         * transaction gets cancelled.
 481         */
 482        tic->t_curr_res = 0;
 483        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 484        return error;
 485}
 486
 487
 488/*
 489 * NOTES:
 490 *
 491 *      1. currblock field gets updated at startup and after in-core logs
 492 *              marked as with WANT_SYNC.
 493 */
 494
 495/*
 496 * This routine is called when a user of a log manager ticket is done with
 497 * the reservation.  If the ticket was ever used, then a commit record for
 498 * the associated transaction is written out as a log operation header with
 499 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 500 * a given ticket.  If the ticket was one with a permanent reservation, then
 501 * a few operations are done differently.  Permanent reservation tickets by
 502 * default don't release the reservation.  They just commit the current
 503 * transaction with the belief that the reservation is still needed.  A flag
 504 * must be passed in before permanent reservations are actually released.
 505 * When these type of tickets are not released, they need to be set into
 506 * the inited state again.  By doing this, a start record will be written
 507 * out when the next write occurs.
 508 */
 509xfs_lsn_t
 510xfs_log_done(
 511        struct xfs_mount        *mp,
 512        struct xlog_ticket      *ticket,
 513        struct xlog_in_core     **iclog,
 514        bool                    regrant)
 515{
 516        struct xlog             *log = mp->m_log;
 517        xfs_lsn_t               lsn = 0;
 518
 519        if (XLOG_FORCED_SHUTDOWN(log) ||
 520            /*
 521             * If nothing was ever written, don't write out commit record.
 522             * If we get an error, just continue and give back the log ticket.
 523             */
 524            (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 525             (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 526                lsn = (xfs_lsn_t) -1;
 527                regrant = false;
 528        }
 529
 530
 531        if (!regrant) {
 532                trace_xfs_log_done_nonperm(log, ticket);
 533
 534                /*
 535                 * Release ticket if not permanent reservation or a specific
 536                 * request has been made to release a permanent reservation.
 537                 */
 538                xlog_ungrant_log_space(log, ticket);
 539        } else {
 540                trace_xfs_log_done_perm(log, ticket);
 541
 542                xlog_regrant_reserve_log_space(log, ticket);
 543                /* If this ticket was a permanent reservation and we aren't
 544                 * trying to release it, reset the inited flags; so next time
 545                 * we write, a start record will be written out.
 546                 */
 547                ticket->t_flags |= XLOG_TIC_INITED;
 548        }
 549
 550        xfs_log_ticket_put(ticket);
 551        return lsn;
 552}
 553
 554/*
 555 * Attaches a new iclog I/O completion callback routine during
 556 * transaction commit.  If the log is in error state, a non-zero
 557 * return code is handed back and the caller is responsible for
 558 * executing the callback at an appropriate time.
 559 */
 560int
 561xfs_log_notify(
 562        struct xfs_mount        *mp,
 563        struct xlog_in_core     *iclog,
 564        xfs_log_callback_t      *cb)
 565{
 566        int     abortflg;
 567
 568        spin_lock(&iclog->ic_callback_lock);
 569        abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 570        if (!abortflg) {
 571                ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 572                              (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 573                cb->cb_next = NULL;
 574                *(iclog->ic_callback_tail) = cb;
 575                iclog->ic_callback_tail = &(cb->cb_next);
 576        }
 577        spin_unlock(&iclog->ic_callback_lock);
 578        return abortflg;
 579}
 580
 581int
 582xfs_log_release_iclog(
 583        struct xfs_mount        *mp,
 584        struct xlog_in_core     *iclog)
 585{
 586        if (xlog_state_release_iclog(mp->m_log, iclog)) {
 587                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 588                return -EIO;
 589        }
 590
 591        return 0;
 592}
 593
 594/*
 595 * Mount a log filesystem
 596 *
 597 * mp           - ubiquitous xfs mount point structure
 598 * log_target   - buftarg of on-disk log device
 599 * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 600 * num_bblocks  - Number of BBSIZE blocks in on-disk log
 601 *
 602 * Return error or zero.
 603 */
 604int
 605xfs_log_mount(
 606        xfs_mount_t     *mp,
 607        xfs_buftarg_t   *log_target,
 608        xfs_daddr_t     blk_offset,
 609        int             num_bblks)
 610{
 611        int             error = 0;
 612        int             min_logfsbs;
 613
 614        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 615                xfs_notice(mp, "Mounting V%d Filesystem",
 616                           XFS_SB_VERSION_NUM(&mp->m_sb));
 617        } else {
 618                xfs_notice(mp,
 619"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 620                           XFS_SB_VERSION_NUM(&mp->m_sb));
 621                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 622        }
 623
 624        mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 625        if (IS_ERR(mp->m_log)) {
 626                error = PTR_ERR(mp->m_log);
 627                goto out;
 628        }
 629
 630        /*
 631         * Validate the given log space and drop a critical message via syslog
 632         * if the log size is too small that would lead to some unexpected
 633         * situations in transaction log space reservation stage.
 634         *
 635         * Note: we can't just reject the mount if the validation fails.  This
 636         * would mean that people would have to downgrade their kernel just to
 637         * remedy the situation as there is no way to grow the log (short of
 638         * black magic surgery with xfs_db).
 639         *
 640         * We can, however, reject mounts for CRC format filesystems, as the
 641         * mkfs binary being used to make the filesystem should never create a
 642         * filesystem with a log that is too small.
 643         */
 644        min_logfsbs = xfs_log_calc_minimum_size(mp);
 645
 646        if (mp->m_sb.sb_logblocks < min_logfsbs) {
 647                xfs_warn(mp,
 648                "Log size %d blocks too small, minimum size is %d blocks",
 649                         mp->m_sb.sb_logblocks, min_logfsbs);
 650                error = -EINVAL;
 651        } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 652                xfs_warn(mp,
 653                "Log size %d blocks too large, maximum size is %lld blocks",
 654                         mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 655                error = -EINVAL;
 656        } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 657                xfs_warn(mp,
 658                "log size %lld bytes too large, maximum size is %lld bytes",
 659                         XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 660                         XFS_MAX_LOG_BYTES);
 661                error = -EINVAL;
 662        }
 663        if (error) {
 664                if (xfs_sb_version_hascrc(&mp->m_sb)) {
 665                        xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 666                        ASSERT(0);
 667                        goto out_free_log;
 668                }
 669                xfs_crit(mp, "Log size out of supported range.");
 670                xfs_crit(mp,
 671"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 672        }
 673
 674        /*
 675         * Initialize the AIL now we have a log.
 676         */
 677        error = xfs_trans_ail_init(mp);
 678        if (error) {
 679                xfs_warn(mp, "AIL initialisation failed: error %d", error);
 680                goto out_free_log;
 681        }
 682        mp->m_log->l_ailp = mp->m_ail;
 683
 684        /*
 685         * skip log recovery on a norecovery mount.  pretend it all
 686         * just worked.
 687         */
 688        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 689                int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 690
 691                if (readonly)
 692                        mp->m_flags &= ~XFS_MOUNT_RDONLY;
 693
 694                error = xlog_recover(mp->m_log);
 695
 696                if (readonly)
 697                        mp->m_flags |= XFS_MOUNT_RDONLY;
 698                if (error) {
 699                        xfs_warn(mp, "log mount/recovery failed: error %d",
 700                                error);
 701                        xlog_recover_cancel(mp->m_log);
 702                        goto out_destroy_ail;
 703                }
 704        }
 705
 706        error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 707                               "log");
 708        if (error)
 709                goto out_destroy_ail;
 710
 711        /* Normal transactions can now occur */
 712        mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 713
 714        /*
 715         * Now the log has been fully initialised and we know were our
 716         * space grant counters are, we can initialise the permanent ticket
 717         * needed for delayed logging to work.
 718         */
 719        xlog_cil_init_post_recovery(mp->m_log);
 720
 721        return 0;
 722
 723out_destroy_ail:
 724        xfs_trans_ail_destroy(mp);
 725out_free_log:
 726        xlog_dealloc_log(mp->m_log);
 727out:
 728        return error;
 729}
 730
 731/*
 732 * Finish the recovery of the file system.  This is separate from the
 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 735 * here.
 736 *
 737 * If we finish recovery successfully, start the background log work. If we are
 738 * not doing recovery, then we have a RO filesystem and we don't need to start
 739 * it.
 740 */
 741int
 742xfs_log_mount_finish(
 743        struct xfs_mount        *mp)
 744{
 745        int     error = 0;
 746
 747        if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 748                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 749                return 0;
 750        }
 751
 752        error = xlog_recover_finish(mp->m_log);
 753        if (!error)
 754                xfs_log_work_queue(mp);
 755
 756        return error;
 757}
 758
 759/*
 760 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 761 * the log.
 762 */
 763int
 764xfs_log_mount_cancel(
 765        struct xfs_mount        *mp)
 766{
 767        int                     error;
 768
 769        error = xlog_recover_cancel(mp->m_log);
 770        xfs_log_unmount(mp);
 771
 772        return error;
 773}
 774
 775/*
 776 * Final log writes as part of unmount.
 777 *
 778 * Mark the filesystem clean as unmount happens.  Note that during relocation
 779 * this routine needs to be executed as part of source-bag while the
 780 * deallocation must not be done until source-end.
 781 */
 782
 783/*
 784 * Unmount record used to have a string "Unmount filesystem--" in the
 785 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 786 * We just write the magic number now since that particular field isn't
 787 * currently architecture converted and "Unmount" is a bit foo.
 788 * As far as I know, there weren't any dependencies on the old behaviour.
 789 */
 790
 791static int
 792xfs_log_unmount_write(xfs_mount_t *mp)
 793{
 794        struct xlog      *log = mp->m_log;
 795        xlog_in_core_t   *iclog;
 796#ifdef DEBUG
 797        xlog_in_core_t   *first_iclog;
 798#endif
 799        xlog_ticket_t   *tic = NULL;
 800        xfs_lsn_t        lsn;
 801        int              error;
 802
 803        /*
 804         * Don't write out unmount record on read-only mounts.
 805         * Or, if we are doing a forced umount (typically because of IO errors).
 806         */
 807        if (mp->m_flags & XFS_MOUNT_RDONLY)
 808                return 0;
 809
 810        error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 811        ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 812
 813#ifdef DEBUG
 814        first_iclog = iclog = log->l_iclog;
 815        do {
 816                if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 817                        ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 818                        ASSERT(iclog->ic_offset == 0);
 819                }
 820                iclog = iclog->ic_next;
 821        } while (iclog != first_iclog);
 822#endif
 823        if (! (XLOG_FORCED_SHUTDOWN(log))) {
 824                error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 825                if (!error) {
 826                        /* the data section must be 32 bit size aligned */
 827                        struct {
 828                            __uint16_t magic;
 829                            __uint16_t pad1;
 830                            __uint32_t pad2; /* may as well make it 64 bits */
 831                        } magic = {
 832                                .magic = XLOG_UNMOUNT_TYPE,
 833                        };
 834                        struct xfs_log_iovec reg = {
 835                                .i_addr = &magic,
 836                                .i_len = sizeof(magic),
 837                                .i_type = XLOG_REG_TYPE_UNMOUNT,
 838                        };
 839                        struct xfs_log_vec vec = {
 840                                .lv_niovecs = 1,
 841                                .lv_iovecp = &reg,
 842                        };
 843
 844                        /* remove inited flag, and account for space used */
 845                        tic->t_flags = 0;
 846                        tic->t_curr_res -= sizeof(magic);
 847                        error = xlog_write(log, &vec, tic, &lsn,
 848                                           NULL, XLOG_UNMOUNT_TRANS);
 849                        /*
 850                         * At this point, we're umounting anyway,
 851                         * so there's no point in transitioning log state
 852                         * to IOERROR. Just continue...
 853                         */
 854                }
 855
 856                if (error)
 857                        xfs_alert(mp, "%s: unmount record failed", __func__);
 858
 859
 860                spin_lock(&log->l_icloglock);
 861                iclog = log->l_iclog;
 862                atomic_inc(&iclog->ic_refcnt);
 863                xlog_state_want_sync(log, iclog);
 864                spin_unlock(&log->l_icloglock);
 865                error = xlog_state_release_iclog(log, iclog);
 866
 867                spin_lock(&log->l_icloglock);
 868                if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 869                      iclog->ic_state == XLOG_STATE_DIRTY)) {
 870                        if (!XLOG_FORCED_SHUTDOWN(log)) {
 871                                xlog_wait(&iclog->ic_force_wait,
 872                                                        &log->l_icloglock);
 873                        } else {
 874                                spin_unlock(&log->l_icloglock);
 875                        }
 876                } else {
 877                        spin_unlock(&log->l_icloglock);
 878                }
 879                if (tic) {
 880                        trace_xfs_log_umount_write(log, tic);
 881                        xlog_ungrant_log_space(log, tic);
 882                        xfs_log_ticket_put(tic);
 883                }
 884        } else {
 885                /*
 886                 * We're already in forced_shutdown mode, couldn't
 887                 * even attempt to write out the unmount transaction.
 888                 *
 889                 * Go through the motions of sync'ing and releasing
 890                 * the iclog, even though no I/O will actually happen,
 891                 * we need to wait for other log I/Os that may already
 892                 * be in progress.  Do this as a separate section of
 893                 * code so we'll know if we ever get stuck here that
 894                 * we're in this odd situation of trying to unmount
 895                 * a file system that went into forced_shutdown as
 896                 * the result of an unmount..
 897                 */
 898                spin_lock(&log->l_icloglock);
 899                iclog = log->l_iclog;
 900                atomic_inc(&iclog->ic_refcnt);
 901
 902                xlog_state_want_sync(log, iclog);
 903                spin_unlock(&log->l_icloglock);
 904                error =  xlog_state_release_iclog(log, iclog);
 905
 906                spin_lock(&log->l_icloglock);
 907
 908                if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 909                        || iclog->ic_state == XLOG_STATE_DIRTY
 910                        || iclog->ic_state == XLOG_STATE_IOERROR) ) {
 911
 912                                xlog_wait(&iclog->ic_force_wait,
 913                                                        &log->l_icloglock);
 914                } else {
 915                        spin_unlock(&log->l_icloglock);
 916                }
 917        }
 918
 919        return error;
 920}       /* xfs_log_unmount_write */
 921
 922/*
 923 * Empty the log for unmount/freeze.
 924 *
 925 * To do this, we first need to shut down the background log work so it is not
 926 * trying to cover the log as we clean up. We then need to unpin all objects in
 927 * the log so we can then flush them out. Once they have completed their IO and
 928 * run the callbacks removing themselves from the AIL, we can write the unmount
 929 * record.
 930 */
 931void
 932xfs_log_quiesce(
 933        struct xfs_mount        *mp)
 934{
 935        cancel_delayed_work_sync(&mp->m_log->l_work);
 936        xfs_log_force(mp, XFS_LOG_SYNC);
 937
 938        /*
 939         * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 940         * will push it, xfs_wait_buftarg() will not wait for it. Further,
 941         * xfs_buf_iowait() cannot be used because it was pushed with the
 942         * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 943         * the IO to complete.
 944         */
 945        xfs_ail_push_all_sync(mp->m_ail);
 946        xfs_wait_buftarg(mp->m_ddev_targp);
 947        xfs_buf_lock(mp->m_sb_bp);
 948        xfs_buf_unlock(mp->m_sb_bp);
 949
 950        xfs_log_unmount_write(mp);
 951}
 952
 953/*
 954 * Shut down and release the AIL and Log.
 955 *
 956 * During unmount, we need to ensure we flush all the dirty metadata objects
 957 * from the AIL so that the log is empty before we write the unmount record to
 958 * the log. Once this is done, we can tear down the AIL and the log.
 959 */
 960void
 961xfs_log_unmount(
 962        struct xfs_mount        *mp)
 963{
 964        xfs_log_quiesce(mp);
 965
 966        xfs_trans_ail_destroy(mp);
 967
 968        xfs_sysfs_del(&mp->m_log->l_kobj);
 969
 970        xlog_dealloc_log(mp->m_log);
 971}
 972
 973void
 974xfs_log_item_init(
 975        struct xfs_mount        *mp,
 976        struct xfs_log_item     *item,
 977        int                     type,
 978        const struct xfs_item_ops *ops)
 979{
 980        item->li_mountp = mp;
 981        item->li_ailp = mp->m_ail;
 982        item->li_type = type;
 983        item->li_ops = ops;
 984        item->li_lv = NULL;
 985
 986        INIT_LIST_HEAD(&item->li_ail);
 987        INIT_LIST_HEAD(&item->li_cil);
 988}
 989
 990/*
 991 * Wake up processes waiting for log space after we have moved the log tail.
 992 */
 993void
 994xfs_log_space_wake(
 995        struct xfs_mount        *mp)
 996{
 997        struct xlog             *log = mp->m_log;
 998        int                     free_bytes;
 999
1000        if (XLOG_FORCED_SHUTDOWN(log))
1001                return;
1002
1003        if (!list_empty_careful(&log->l_write_head.waiters)) {
1004                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1005
1006                spin_lock(&log->l_write_head.lock);
1007                free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1008                xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1009                spin_unlock(&log->l_write_head.lock);
1010        }
1011
1012        if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1013                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1014
1015                spin_lock(&log->l_reserve_head.lock);
1016                free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1017                xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1018                spin_unlock(&log->l_reserve_head.lock);
1019        }
1020}
1021
1022/*
1023 * Determine if we have a transaction that has gone to disk that needs to be
1024 * covered. To begin the transition to the idle state firstly the log needs to
1025 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1026 * we start attempting to cover the log.
1027 *
1028 * Only if we are then in a state where covering is needed, the caller is
1029 * informed that dummy transactions are required to move the log into the idle
1030 * state.
1031 *
1032 * If there are any items in the AIl or CIL, then we do not want to attempt to
1033 * cover the log as we may be in a situation where there isn't log space
1034 * available to run a dummy transaction and this can lead to deadlocks when the
1035 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1036 * there's no point in running a dummy transaction at this point because we
1037 * can't start trying to idle the log until both the CIL and AIL are empty.
1038 */
1039static int
1040xfs_log_need_covered(xfs_mount_t *mp)
1041{
1042        struct xlog     *log = mp->m_log;
1043        int             needed = 0;
1044
1045        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1046                return 0;
1047
1048        if (!xlog_cil_empty(log))
1049                return 0;
1050
1051        spin_lock(&log->l_icloglock);
1052        switch (log->l_covered_state) {
1053        case XLOG_STATE_COVER_DONE:
1054        case XLOG_STATE_COVER_DONE2:
1055        case XLOG_STATE_COVER_IDLE:
1056                break;
1057        case XLOG_STATE_COVER_NEED:
1058        case XLOG_STATE_COVER_NEED2:
1059                if (xfs_ail_min_lsn(log->l_ailp))
1060                        break;
1061                if (!xlog_iclogs_empty(log))
1062                        break;
1063
1064                needed = 1;
1065                if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1066                        log->l_covered_state = XLOG_STATE_COVER_DONE;
1067                else
1068                        log->l_covered_state = XLOG_STATE_COVER_DONE2;
1069                break;
1070        default:
1071                needed = 1;
1072                break;
1073        }
1074        spin_unlock(&log->l_icloglock);
1075        return needed;
1076}
1077
1078/*
1079 * We may be holding the log iclog lock upon entering this routine.
1080 */
1081xfs_lsn_t
1082xlog_assign_tail_lsn_locked(
1083        struct xfs_mount        *mp)
1084{
1085        struct xlog             *log = mp->m_log;
1086        struct xfs_log_item     *lip;
1087        xfs_lsn_t               tail_lsn;
1088
1089        assert_spin_locked(&mp->m_ail->xa_lock);
1090
1091        /*
1092         * To make sure we always have a valid LSN for the log tail we keep
1093         * track of the last LSN which was committed in log->l_last_sync_lsn,
1094         * and use that when the AIL was empty.
1095         */
1096        lip = xfs_ail_min(mp->m_ail);
1097        if (lip)
1098                tail_lsn = lip->li_lsn;
1099        else
1100                tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1101        trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1102        atomic64_set(&log->l_tail_lsn, tail_lsn);
1103        return tail_lsn;
1104}
1105
1106xfs_lsn_t
1107xlog_assign_tail_lsn(
1108        struct xfs_mount        *mp)
1109{
1110        xfs_lsn_t               tail_lsn;
1111
1112        spin_lock(&mp->m_ail->xa_lock);
1113        tail_lsn = xlog_assign_tail_lsn_locked(mp);
1114        spin_unlock(&mp->m_ail->xa_lock);
1115
1116        return tail_lsn;
1117}
1118
1119/*
1120 * Return the space in the log between the tail and the head.  The head
1121 * is passed in the cycle/bytes formal parms.  In the special case where
1122 * the reserve head has wrapped passed the tail, this calculation is no
1123 * longer valid.  In this case, just return 0 which means there is no space
1124 * in the log.  This works for all places where this function is called
1125 * with the reserve head.  Of course, if the write head were to ever
1126 * wrap the tail, we should blow up.  Rather than catch this case here,
1127 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1128 *
1129 * This code also handles the case where the reservation head is behind
1130 * the tail.  The details of this case are described below, but the end
1131 * result is that we return the size of the log as the amount of space left.
1132 */
1133STATIC int
1134xlog_space_left(
1135        struct xlog     *log,
1136        atomic64_t      *head)
1137{
1138        int             free_bytes;
1139        int             tail_bytes;
1140        int             tail_cycle;
1141        int             head_cycle;
1142        int             head_bytes;
1143
1144        xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1145        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1146        tail_bytes = BBTOB(tail_bytes);
1147        if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1148                free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1149        else if (tail_cycle + 1 < head_cycle)
1150                return 0;
1151        else if (tail_cycle < head_cycle) {
1152                ASSERT(tail_cycle == (head_cycle - 1));
1153                free_bytes = tail_bytes - head_bytes;
1154        } else {
1155                /*
1156                 * The reservation head is behind the tail.
1157                 * In this case we just want to return the size of the
1158                 * log as the amount of space left.
1159                 */
1160                xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1161                xfs_alert(log->l_mp,
1162                          "  tail_cycle = %d, tail_bytes = %d",
1163                          tail_cycle, tail_bytes);
1164                xfs_alert(log->l_mp,
1165                          "  GH   cycle = %d, GH   bytes = %d",
1166                          head_cycle, head_bytes);
1167                ASSERT(0);
1168                free_bytes = log->l_logsize;
1169        }
1170        return free_bytes;
1171}
1172
1173
1174/*
1175 * Log function which is called when an io completes.
1176 *
1177 * The log manager needs its own routine, in order to control what
1178 * happens with the buffer after the write completes.
1179 */
1180static void
1181xlog_iodone(xfs_buf_t *bp)
1182{
1183        struct xlog_in_core     *iclog = bp->b_fspriv;
1184        struct xlog             *l = iclog->ic_log;
1185        int                     aborted = 0;
1186
1187        /*
1188         * Race to shutdown the filesystem if we see an error or the iclog is in
1189         * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1190         * CRC errors into log recovery.
1191         */
1192        if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1193                           XFS_RANDOM_IODONE_IOERR) ||
1194            iclog->ic_state & XLOG_STATE_IOABORT) {
1195                if (iclog->ic_state & XLOG_STATE_IOABORT)
1196                        iclog->ic_state &= ~XLOG_STATE_IOABORT;
1197
1198                xfs_buf_ioerror_alert(bp, __func__);
1199                xfs_buf_stale(bp);
1200                xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1201                /*
1202                 * This flag will be propagated to the trans-committed
1203                 * callback routines to let them know that the log-commit
1204                 * didn't succeed.
1205                 */
1206                aborted = XFS_LI_ABORTED;
1207        } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1208                aborted = XFS_LI_ABORTED;
1209        }
1210
1211        /* log I/O is always issued ASYNC */
1212        ASSERT(bp->b_flags & XBF_ASYNC);
1213        xlog_state_done_syncing(iclog, aborted);
1214
1215        /*
1216         * drop the buffer lock now that we are done. Nothing references
1217         * the buffer after this, so an unmount waiting on this lock can now
1218         * tear it down safely. As such, it is unsafe to reference the buffer
1219         * (bp) after the unlock as we could race with it being freed.
1220         */
1221        xfs_buf_unlock(bp);
1222}
1223
1224/*
1225 * Return size of each in-core log record buffer.
1226 *
1227 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1228 *
1229 * If the filesystem blocksize is too large, we may need to choose a
1230 * larger size since the directory code currently logs entire blocks.
1231 */
1232
1233STATIC void
1234xlog_get_iclog_buffer_size(
1235        struct xfs_mount        *mp,
1236        struct xlog             *log)
1237{
1238        int size;
1239        int xhdrs;
1240
1241        if (mp->m_logbufs <= 0)
1242                log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1243        else
1244                log->l_iclog_bufs = mp->m_logbufs;
1245
1246        /*
1247         * Buffer size passed in from mount system call.
1248         */
1249        if (mp->m_logbsize > 0) {
1250                size = log->l_iclog_size = mp->m_logbsize;
1251                log->l_iclog_size_log = 0;
1252                while (size != 1) {
1253                        log->l_iclog_size_log++;
1254                        size >>= 1;
1255                }
1256
1257                if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1258                        /* # headers = size / 32k
1259                         * one header holds cycles from 32k of data
1260                         */
1261
1262                        xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1263                        if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1264                                xhdrs++;
1265                        log->l_iclog_hsize = xhdrs << BBSHIFT;
1266                        log->l_iclog_heads = xhdrs;
1267                } else {
1268                        ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1269                        log->l_iclog_hsize = BBSIZE;
1270                        log->l_iclog_heads = 1;
1271                }
1272                goto done;
1273        }
1274
1275        /* All machines use 32kB buffers by default. */
1276        log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1277        log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1278
1279        /* the default log size is 16k or 32k which is one header sector */
1280        log->l_iclog_hsize = BBSIZE;
1281        log->l_iclog_heads = 1;
1282
1283done:
1284        /* are we being asked to make the sizes selected above visible? */
1285        if (mp->m_logbufs == 0)
1286                mp->m_logbufs = log->l_iclog_bufs;
1287        if (mp->m_logbsize == 0)
1288                mp->m_logbsize = log->l_iclog_size;
1289}       /* xlog_get_iclog_buffer_size */
1290
1291
1292void
1293xfs_log_work_queue(
1294        struct xfs_mount        *mp)
1295{
1296        queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1297                                msecs_to_jiffies(xfs_syncd_centisecs * 10));
1298}
1299
1300/*
1301 * Every sync period we need to unpin all items in the AIL and push them to
1302 * disk. If there is nothing dirty, then we might need to cover the log to
1303 * indicate that the filesystem is idle.
1304 */
1305static void
1306xfs_log_worker(
1307        struct work_struct      *work)
1308{
1309        struct xlog             *log = container_of(to_delayed_work(work),
1310                                                struct xlog, l_work);
1311        struct xfs_mount        *mp = log->l_mp;
1312
1313        /* dgc: errors ignored - not fatal and nowhere to report them */
1314        if (xfs_log_need_covered(mp)) {
1315                /*
1316                 * Dump a transaction into the log that contains no real change.
1317                 * This is needed to stamp the current tail LSN into the log
1318                 * during the covering operation.
1319                 *
1320                 * We cannot use an inode here for this - that will push dirty
1321                 * state back up into the VFS and then periodic inode flushing
1322                 * will prevent log covering from making progress. Hence we
1323                 * synchronously log the superblock instead to ensure the
1324                 * superblock is immediately unpinned and can be written back.
1325                 */
1326                xfs_sync_sb(mp, true);
1327        } else
1328                xfs_log_force(mp, 0);
1329
1330        /* start pushing all the metadata that is currently dirty */
1331        xfs_ail_push_all(mp->m_ail);
1332
1333        /* queue us up again */
1334        xfs_log_work_queue(mp);
1335}
1336
1337/*
1338 * This routine initializes some of the log structure for a given mount point.
1339 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1340 * some other stuff may be filled in too.
1341 */
1342STATIC struct xlog *
1343xlog_alloc_log(
1344        struct xfs_mount        *mp,
1345        struct xfs_buftarg      *log_target,
1346        xfs_daddr_t             blk_offset,
1347        int                     num_bblks)
1348{
1349        struct xlog             *log;
1350        xlog_rec_header_t       *head;
1351        xlog_in_core_t          **iclogp;
1352        xlog_in_core_t          *iclog, *prev_iclog=NULL;
1353        xfs_buf_t               *bp;
1354        int                     i;
1355        int                     error = -ENOMEM;
1356        uint                    log2_size = 0;
1357
1358        log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1359        if (!log) {
1360                xfs_warn(mp, "Log allocation failed: No memory!");
1361                goto out;
1362        }
1363
1364        log->l_mp          = mp;
1365        log->l_targ        = log_target;
1366        log->l_logsize     = BBTOB(num_bblks);
1367        log->l_logBBstart  = blk_offset;
1368        log->l_logBBsize   = num_bblks;
1369        log->l_covered_state = XLOG_STATE_COVER_IDLE;
1370        log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1371        INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1372
1373        log->l_prev_block  = -1;
1374        /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1375        xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1376        xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1377        log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1378
1379        xlog_grant_head_init(&log->l_reserve_head);
1380        xlog_grant_head_init(&log->l_write_head);
1381
1382        error = -EFSCORRUPTED;
1383        if (xfs_sb_version_hassector(&mp->m_sb)) {
1384                log2_size = mp->m_sb.sb_logsectlog;
1385                if (log2_size < BBSHIFT) {
1386                        xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1387                                log2_size, BBSHIFT);
1388                        goto out_free_log;
1389                }
1390
1391                log2_size -= BBSHIFT;
1392                if (log2_size > mp->m_sectbb_log) {
1393                        xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1394                                log2_size, mp->m_sectbb_log);
1395                        goto out_free_log;
1396                }
1397
1398                /* for larger sector sizes, must have v2 or external log */
1399                if (log2_size && log->l_logBBstart > 0 &&
1400                            !xfs_sb_version_haslogv2(&mp->m_sb)) {
1401                        xfs_warn(mp,
1402                "log sector size (0x%x) invalid for configuration.",
1403                                log2_size);
1404                        goto out_free_log;
1405                }
1406        }
1407        log->l_sectBBsize = 1 << log2_size;
1408
1409        xlog_get_iclog_buffer_size(mp, log);
1410
1411        /*
1412         * Use a NULL block for the extra log buffer used during splits so that
1413         * it will trigger errors if we ever try to do IO on it without first
1414         * having set it up properly.
1415         */
1416        error = -ENOMEM;
1417        bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1418                           BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1419        if (!bp)
1420                goto out_free_log;
1421
1422        /*
1423         * The iclogbuf buffer locks are held over IO but we are not going to do
1424         * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1425         * when appropriately.
1426         */
1427        ASSERT(xfs_buf_islocked(bp));
1428        xfs_buf_unlock(bp);
1429
1430        /* use high priority wq for log I/O completion */
1431        bp->b_ioend_wq = mp->m_log_workqueue;
1432        bp->b_iodone = xlog_iodone;
1433        log->l_xbuf = bp;
1434
1435        spin_lock_init(&log->l_icloglock);
1436        init_waitqueue_head(&log->l_flush_wait);
1437
1438        iclogp = &log->l_iclog;
1439        /*
1440         * The amount of memory to allocate for the iclog structure is
1441         * rather funky due to the way the structure is defined.  It is
1442         * done this way so that we can use different sizes for machines
1443         * with different amounts of memory.  See the definition of
1444         * xlog_in_core_t in xfs_log_priv.h for details.
1445         */
1446        ASSERT(log->l_iclog_size >= 4096);
1447        for (i=0; i < log->l_iclog_bufs; i++) {
1448                *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1449                if (!*iclogp)
1450                        goto out_free_iclog;
1451
1452                iclog = *iclogp;
1453                iclog->ic_prev = prev_iclog;
1454                prev_iclog = iclog;
1455
1456                bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1457                                          BTOBB(log->l_iclog_size),
1458                                          XBF_NO_IOACCT);
1459                if (!bp)
1460                        goto out_free_iclog;
1461
1462                ASSERT(xfs_buf_islocked(bp));
1463                xfs_buf_unlock(bp);
1464
1465                /* use high priority wq for log I/O completion */
1466                bp->b_ioend_wq = mp->m_log_workqueue;
1467                bp->b_iodone = xlog_iodone;
1468                iclog->ic_bp = bp;
1469                iclog->ic_data = bp->b_addr;
1470#ifdef DEBUG
1471                log->l_iclog_bak[i] = &iclog->ic_header;
1472#endif
1473                head = &iclog->ic_header;
1474                memset(head, 0, sizeof(xlog_rec_header_t));
1475                head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1476                head->h_version = cpu_to_be32(
1477                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1478                head->h_size = cpu_to_be32(log->l_iclog_size);
1479                /* new fields */
1480                head->h_fmt = cpu_to_be32(XLOG_FMT);
1481                memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1482
1483                iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1484                iclog->ic_state = XLOG_STATE_ACTIVE;
1485                iclog->ic_log = log;
1486                atomic_set(&iclog->ic_refcnt, 0);
1487                spin_lock_init(&iclog->ic_callback_lock);
1488                iclog->ic_callback_tail = &(iclog->ic_callback);
1489                iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1490
1491                init_waitqueue_head(&iclog->ic_force_wait);
1492                init_waitqueue_head(&iclog->ic_write_wait);
1493
1494                iclogp = &iclog->ic_next;
1495        }
1496        *iclogp = log->l_iclog;                 /* complete ring */
1497        log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1498
1499        error = xlog_cil_init(log);
1500        if (error)
1501                goto out_free_iclog;
1502        return log;
1503
1504out_free_iclog:
1505        for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506                prev_iclog = iclog->ic_next;
1507                if (iclog->ic_bp)
1508                        xfs_buf_free(iclog->ic_bp);
1509                kmem_free(iclog);
1510        }
1511        spinlock_destroy(&log->l_icloglock);
1512        xfs_buf_free(log->l_xbuf);
1513out_free_log:
1514        kmem_free(log);
1515out:
1516        return ERR_PTR(error);
1517}       /* xlog_alloc_log */
1518
1519
1520/*
1521 * Write out the commit record of a transaction associated with the given
1522 * ticket.  Return the lsn of the commit record.
1523 */
1524STATIC int
1525xlog_commit_record(
1526        struct xlog             *log,
1527        struct xlog_ticket      *ticket,
1528        struct xlog_in_core     **iclog,
1529        xfs_lsn_t               *commitlsnp)
1530{
1531        struct xfs_mount *mp = log->l_mp;
1532        int     error;
1533        struct xfs_log_iovec reg = {
1534                .i_addr = NULL,
1535                .i_len = 0,
1536                .i_type = XLOG_REG_TYPE_COMMIT,
1537        };
1538        struct xfs_log_vec vec = {
1539                .lv_niovecs = 1,
1540                .lv_iovecp = &reg,
1541        };
1542
1543        ASSERT_ALWAYS(iclog);
1544        error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1545                                        XLOG_COMMIT_TRANS);
1546        if (error)
1547                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1548        return error;
1549}
1550
1551/*
1552 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1553 * log space.  This code pushes on the lsn which would supposedly free up
1554 * the 25% which we want to leave free.  We may need to adopt a policy which
1555 * pushes on an lsn which is further along in the log once we reach the high
1556 * water mark.  In this manner, we would be creating a low water mark.
1557 */
1558STATIC void
1559xlog_grant_push_ail(
1560        struct xlog     *log,
1561        int             need_bytes)
1562{
1563        xfs_lsn_t       threshold_lsn = 0;
1564        xfs_lsn_t       last_sync_lsn;
1565        int             free_blocks;
1566        int             free_bytes;
1567        int             threshold_block;
1568        int             threshold_cycle;
1569        int             free_threshold;
1570
1571        ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1572
1573        free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1574        free_blocks = BTOBBT(free_bytes);
1575
1576        /*
1577         * Set the threshold for the minimum number of free blocks in the
1578         * log to the maximum of what the caller needs, one quarter of the
1579         * log, and 256 blocks.
1580         */
1581        free_threshold = BTOBB(need_bytes);
1582        free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1583        free_threshold = MAX(free_threshold, 256);
1584        if (free_blocks >= free_threshold)
1585                return;
1586
1587        xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1588                                                &threshold_block);
1589        threshold_block += free_threshold;
1590        if (threshold_block >= log->l_logBBsize) {
1591                threshold_block -= log->l_logBBsize;
1592                threshold_cycle += 1;
1593        }
1594        threshold_lsn = xlog_assign_lsn(threshold_cycle,
1595                                        threshold_block);
1596        /*
1597         * Don't pass in an lsn greater than the lsn of the last
1598         * log record known to be on disk. Use a snapshot of the last sync lsn
1599         * so that it doesn't change between the compare and the set.
1600         */
1601        last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1602        if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1603                threshold_lsn = last_sync_lsn;
1604
1605        /*
1606         * Get the transaction layer to kick the dirty buffers out to
1607         * disk asynchronously. No point in trying to do this if
1608         * the filesystem is shutting down.
1609         */
1610        if (!XLOG_FORCED_SHUTDOWN(log))
1611                xfs_ail_push(log->l_ailp, threshold_lsn);
1612}
1613
1614/*
1615 * Stamp cycle number in every block
1616 */
1617STATIC void
1618xlog_pack_data(
1619        struct xlog             *log,
1620        struct xlog_in_core     *iclog,
1621        int                     roundoff)
1622{
1623        int                     i, j, k;
1624        int                     size = iclog->ic_offset + roundoff;
1625        __be32                  cycle_lsn;
1626        char                    *dp;
1627
1628        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1629
1630        dp = iclog->ic_datap;
1631        for (i = 0; i < BTOBB(size); i++) {
1632                if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1633                        break;
1634                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1635                *(__be32 *)dp = cycle_lsn;
1636                dp += BBSIZE;
1637        }
1638
1639        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1640                xlog_in_core_2_t *xhdr = iclog->ic_data;
1641
1642                for ( ; i < BTOBB(size); i++) {
1643                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1644                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1645                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1646                        *(__be32 *)dp = cycle_lsn;
1647                        dp += BBSIZE;
1648                }
1649
1650                for (i = 1; i < log->l_iclog_heads; i++)
1651                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1652        }
1653}
1654
1655/*
1656 * Calculate the checksum for a log buffer.
1657 *
1658 * This is a little more complicated than it should be because the various
1659 * headers and the actual data are non-contiguous.
1660 */
1661__le32
1662xlog_cksum(
1663        struct xlog             *log,
1664        struct xlog_rec_header  *rhead,
1665        char                    *dp,
1666        int                     size)
1667{
1668        __uint32_t              crc;
1669
1670        /* first generate the crc for the record header ... */
1671        crc = xfs_start_cksum((char *)rhead,
1672                              sizeof(struct xlog_rec_header),
1673                              offsetof(struct xlog_rec_header, h_crc));
1674
1675        /* ... then for additional cycle data for v2 logs ... */
1676        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1677                union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1678                int             i;
1679                int             xheads;
1680
1681                xheads = size / XLOG_HEADER_CYCLE_SIZE;
1682                if (size % XLOG_HEADER_CYCLE_SIZE)
1683                        xheads++;
1684
1685                for (i = 1; i < xheads; i++) {
1686                        crc = crc32c(crc, &xhdr[i].hic_xheader,
1687                                     sizeof(struct xlog_rec_ext_header));
1688                }
1689        }
1690
1691        /* ... and finally for the payload */
1692        crc = crc32c(crc, dp, size);
1693
1694        return xfs_end_cksum(crc);
1695}
1696
1697/*
1698 * The bdstrat callback function for log bufs. This gives us a central
1699 * place to trap bufs in case we get hit by a log I/O error and need to
1700 * shutdown. Actually, in practice, even when we didn't get a log error,
1701 * we transition the iclogs to IOERROR state *after* flushing all existing
1702 * iclogs to disk. This is because we don't want anymore new transactions to be
1703 * started or completed afterwards.
1704 *
1705 * We lock the iclogbufs here so that we can serialise against IO completion
1706 * during unmount. We might be processing a shutdown triggered during unmount,
1707 * and that can occur asynchronously to the unmount thread, and hence we need to
1708 * ensure that completes before tearing down the iclogbufs. Hence we need to
1709 * hold the buffer lock across the log IO to acheive that.
1710 */
1711STATIC int
1712xlog_bdstrat(
1713        struct xfs_buf          *bp)
1714{
1715        struct xlog_in_core     *iclog = bp->b_fspriv;
1716
1717        xfs_buf_lock(bp);
1718        if (iclog->ic_state & XLOG_STATE_IOERROR) {
1719                xfs_buf_ioerror(bp, -EIO);
1720                xfs_buf_stale(bp);
1721                xfs_buf_ioend(bp);
1722                /*
1723                 * It would seem logical to return EIO here, but we rely on
1724                 * the log state machine to propagate I/O errors instead of
1725                 * doing it here. Similarly, IO completion will unlock the
1726                 * buffer, so we don't do it here.
1727                 */
1728                return 0;
1729        }
1730
1731        xfs_buf_submit(bp);
1732        return 0;
1733}
1734
1735/*
1736 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1737 * fashion.  Previously, we should have moved the current iclog
1738 * ptr in the log to point to the next available iclog.  This allows further
1739 * write to continue while this code syncs out an iclog ready to go.
1740 * Before an in-core log can be written out, the data section must be scanned
1741 * to save away the 1st word of each BBSIZE block into the header.  We replace
1742 * it with the current cycle count.  Each BBSIZE block is tagged with the
1743 * cycle count because there in an implicit assumption that drives will
1744 * guarantee that entire 512 byte blocks get written at once.  In other words,
1745 * we can't have part of a 512 byte block written and part not written.  By
1746 * tagging each block, we will know which blocks are valid when recovering
1747 * after an unclean shutdown.
1748 *
1749 * This routine is single threaded on the iclog.  No other thread can be in
1750 * this routine with the same iclog.  Changing contents of iclog can there-
1751 * fore be done without grabbing the state machine lock.  Updating the global
1752 * log will require grabbing the lock though.
1753 *
1754 * The entire log manager uses a logical block numbering scheme.  Only
1755 * log_sync (and then only bwrite()) know about the fact that the log may
1756 * not start with block zero on a given device.  The log block start offset
1757 * is added immediately before calling bwrite().
1758 */
1759
1760STATIC int
1761xlog_sync(
1762        struct xlog             *log,
1763        struct xlog_in_core     *iclog)
1764{
1765        xfs_buf_t       *bp;
1766        int             i;
1767        uint            count;          /* byte count of bwrite */
1768        uint            count_init;     /* initial count before roundup */
1769        int             roundoff;       /* roundoff to BB or stripe */
1770        int             split = 0;      /* split write into two regions */
1771        int             error;
1772        int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1773        int             size;
1774
1775        XFS_STATS_INC(log->l_mp, xs_log_writes);
1776        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1777
1778        /* Add for LR header */
1779        count_init = log->l_iclog_hsize + iclog->ic_offset;
1780
1781        /* Round out the log write size */
1782        if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1783                /* we have a v2 stripe unit to use */
1784                count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1785        } else {
1786                count = BBTOB(BTOBB(count_init));
1787        }
1788        roundoff = count - count_init;
1789        ASSERT(roundoff >= 0);
1790        ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1791                roundoff < log->l_mp->m_sb.sb_logsunit)
1792                || 
1793                (log->l_mp->m_sb.sb_logsunit <= 1 && 
1794                 roundoff < BBTOB(1)));
1795
1796        /* move grant heads by roundoff in sync */
1797        xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1798        xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1799
1800        /* put cycle number in every block */
1801        xlog_pack_data(log, iclog, roundoff); 
1802
1803        /* real byte length */
1804        size = iclog->ic_offset;
1805        if (v2)
1806                size += roundoff;
1807        iclog->ic_header.h_len = cpu_to_be32(size);
1808
1809        bp = iclog->ic_bp;
1810        XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1811
1812        XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1813
1814        /* Do we need to split this write into 2 parts? */
1815        if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1816                char            *dptr;
1817
1818                split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1819                count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1820                iclog->ic_bwritecnt = 2;
1821
1822                /*
1823                 * Bump the cycle numbers at the start of each block in the
1824                 * part of the iclog that ends up in the buffer that gets
1825                 * written to the start of the log.
1826                 *
1827                 * Watch out for the header magic number case, though.
1828                 */
1829                dptr = (char *)&iclog->ic_header + count;
1830                for (i = 0; i < split; i += BBSIZE) {
1831                        __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1832                        if (++cycle == XLOG_HEADER_MAGIC_NUM)
1833                                cycle++;
1834                        *(__be32 *)dptr = cpu_to_be32(cycle);
1835
1836                        dptr += BBSIZE;
1837                }
1838        } else {
1839                iclog->ic_bwritecnt = 1;
1840        }
1841
1842        /* calculcate the checksum */
1843        iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1844                                            iclog->ic_datap, size);
1845#ifdef DEBUG
1846        /*
1847         * Intentionally corrupt the log record CRC based on the error injection
1848         * frequency, if defined. This facilitates testing log recovery in the
1849         * event of torn writes. Hence, set the IOABORT state to abort the log
1850         * write on I/O completion and shutdown the fs. The subsequent mount
1851         * detects the bad CRC and attempts to recover.
1852         */
1853        if (log->l_badcrc_factor &&
1854            (prandom_u32() % log->l_badcrc_factor == 0)) {
1855                iclog->ic_header.h_crc &= 0xAAAAAAAA;
1856                iclog->ic_state |= XLOG_STATE_IOABORT;
1857                xfs_warn(log->l_mp,
1858        "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1859                         be64_to_cpu(iclog->ic_header.h_lsn));
1860        }
1861#endif
1862
1863        bp->b_io_length = BTOBB(count);
1864        bp->b_fspriv = iclog;
1865        bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1866        bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1867
1868        if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1869                bp->b_flags |= XBF_FUA;
1870
1871                /*
1872                 * Flush the data device before flushing the log to make
1873                 * sure all meta data written back from the AIL actually made
1874                 * it to disk before stamping the new log tail LSN into the
1875                 * log buffer.  For an external log we need to issue the
1876                 * flush explicitly, and unfortunately synchronously here;
1877                 * for an internal log we can simply use the block layer
1878                 * state machine for preflushes.
1879                 */
1880                if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1881                        xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1882                else
1883                        bp->b_flags |= XBF_FLUSH;
1884        }
1885
1886        ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1887        ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1888
1889        xlog_verify_iclog(log, iclog, count, true);
1890
1891        /* account for log which doesn't start at block #0 */
1892        XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1893
1894        /*
1895         * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1896         * is shutting down.
1897         */
1898        error = xlog_bdstrat(bp);
1899        if (error) {
1900                xfs_buf_ioerror_alert(bp, "xlog_sync");
1901                return error;
1902        }
1903        if (split) {
1904                bp = iclog->ic_log->l_xbuf;
1905                XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1906                xfs_buf_associate_memory(bp,
1907                                (char *)&iclog->ic_header + count, split);
1908                bp->b_fspriv = iclog;
1909                bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1910                bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1911                if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1912                        bp->b_flags |= XBF_FUA;
1913
1914                ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1915                ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1916
1917                /* account for internal log which doesn't start at block #0 */
1918                XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1919                error = xlog_bdstrat(bp);
1920                if (error) {
1921                        xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1922                        return error;
1923                }
1924        }
1925        return 0;
1926}       /* xlog_sync */
1927
1928/*
1929 * Deallocate a log structure
1930 */
1931STATIC void
1932xlog_dealloc_log(
1933        struct xlog     *log)
1934{
1935        xlog_in_core_t  *iclog, *next_iclog;
1936        int             i;
1937
1938        xlog_cil_destroy(log);
1939
1940        /*
1941         * Cycle all the iclogbuf locks to make sure all log IO completion
1942         * is done before we tear down these buffers.
1943         */
1944        iclog = log->l_iclog;
1945        for (i = 0; i < log->l_iclog_bufs; i++) {
1946                xfs_buf_lock(iclog->ic_bp);
1947                xfs_buf_unlock(iclog->ic_bp);
1948                iclog = iclog->ic_next;
1949        }
1950
1951        /*
1952         * Always need to ensure that the extra buffer does not point to memory
1953         * owned by another log buffer before we free it. Also, cycle the lock
1954         * first to ensure we've completed IO on it.
1955         */
1956        xfs_buf_lock(log->l_xbuf);
1957        xfs_buf_unlock(log->l_xbuf);
1958        xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1959        xfs_buf_free(log->l_xbuf);
1960
1961        iclog = log->l_iclog;
1962        for (i = 0; i < log->l_iclog_bufs; i++) {
1963                xfs_buf_free(iclog->ic_bp);
1964                next_iclog = iclog->ic_next;
1965                kmem_free(iclog);
1966                iclog = next_iclog;
1967        }
1968        spinlock_destroy(&log->l_icloglock);
1969
1970        log->l_mp->m_log = NULL;
1971        kmem_free(log);
1972}       /* xlog_dealloc_log */
1973
1974/*
1975 * Update counters atomically now that memcpy is done.
1976 */
1977/* ARGSUSED */
1978static inline void
1979xlog_state_finish_copy(
1980        struct xlog             *log,
1981        struct xlog_in_core     *iclog,
1982        int                     record_cnt,
1983        int                     copy_bytes)
1984{
1985        spin_lock(&log->l_icloglock);
1986
1987        be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1988        iclog->ic_offset += copy_bytes;
1989
1990        spin_unlock(&log->l_icloglock);
1991}       /* xlog_state_finish_copy */
1992
1993
1994
1995
1996/*
1997 * print out info relating to regions written which consume
1998 * the reservation
1999 */
2000void
2001xlog_print_tic_res(
2002        struct xfs_mount        *mp,
2003        struct xlog_ticket      *ticket)
2004{
2005        uint i;
2006        uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2007
2008        /* match with XLOG_REG_TYPE_* in xfs_log.h */
2009#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2010        static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2011            REG_TYPE_STR(BFORMAT, "bformat"),
2012            REG_TYPE_STR(BCHUNK, "bchunk"),
2013            REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2014            REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2015            REG_TYPE_STR(IFORMAT, "iformat"),
2016            REG_TYPE_STR(ICORE, "icore"),
2017            REG_TYPE_STR(IEXT, "iext"),
2018            REG_TYPE_STR(IBROOT, "ibroot"),
2019            REG_TYPE_STR(ILOCAL, "ilocal"),
2020            REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2021            REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2022            REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2023            REG_TYPE_STR(QFORMAT, "qformat"),
2024            REG_TYPE_STR(DQUOT, "dquot"),
2025            REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2026            REG_TYPE_STR(LRHEADER, "LR header"),
2027            REG_TYPE_STR(UNMOUNT, "unmount"),
2028            REG_TYPE_STR(COMMIT, "commit"),
2029            REG_TYPE_STR(TRANSHDR, "trans header"),
2030            REG_TYPE_STR(ICREATE, "inode create")
2031        };
2032#undef REG_TYPE_STR
2033
2034        xfs_warn(mp, "xlog_write: reservation summary:");
2035        xfs_warn(mp, "  unit res    = %d bytes",
2036                 ticket->t_unit_res);
2037        xfs_warn(mp, "  current res = %d bytes",
2038                 ticket->t_curr_res);
2039        xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2040                 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2041        xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2042                 ticket->t_res_num_ophdrs, ophdr_spc);
2043        xfs_warn(mp, "  ophdr + reg = %u bytes",
2044                 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2045        xfs_warn(mp, "  num regions = %u",
2046                 ticket->t_res_num);
2047
2048        for (i = 0; i < ticket->t_res_num; i++) {
2049                uint r_type = ticket->t_res_arr[i].r_type;
2050                xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2051                            ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2052                            "bad-rtype" : res_type_str[r_type]),
2053                            ticket->t_res_arr[i].r_len);
2054        }
2055
2056        xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2057                "xlog_write: reservation ran out. Need to up reservation");
2058        xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2059}
2060
2061/*
2062 * Calculate the potential space needed by the log vector.  Each region gets
2063 * its own xlog_op_header_t and may need to be double word aligned.
2064 */
2065static int
2066xlog_write_calc_vec_length(
2067        struct xlog_ticket      *ticket,
2068        struct xfs_log_vec      *log_vector)
2069{
2070        struct xfs_log_vec      *lv;
2071        int                     headers = 0;
2072        int                     len = 0;
2073        int                     i;
2074
2075        /* acct for start rec of xact */
2076        if (ticket->t_flags & XLOG_TIC_INITED)
2077                headers++;
2078
2079        for (lv = log_vector; lv; lv = lv->lv_next) {
2080                /* we don't write ordered log vectors */
2081                if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2082                        continue;
2083
2084                headers += lv->lv_niovecs;
2085
2086                for (i = 0; i < lv->lv_niovecs; i++) {
2087                        struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2088
2089                        len += vecp->i_len;
2090                        xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2091                }
2092        }
2093
2094        ticket->t_res_num_ophdrs += headers;
2095        len += headers * sizeof(struct xlog_op_header);
2096
2097        return len;
2098}
2099
2100/*
2101 * If first write for transaction, insert start record  We can't be trying to
2102 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2103 */
2104static int
2105xlog_write_start_rec(
2106        struct xlog_op_header   *ophdr,
2107        struct xlog_ticket      *ticket)
2108{
2109        if (!(ticket->t_flags & XLOG_TIC_INITED))
2110                return 0;
2111
2112        ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2113        ophdr->oh_clientid = ticket->t_clientid;
2114        ophdr->oh_len = 0;
2115        ophdr->oh_flags = XLOG_START_TRANS;
2116        ophdr->oh_res2 = 0;
2117
2118        ticket->t_flags &= ~XLOG_TIC_INITED;
2119
2120        return sizeof(struct xlog_op_header);
2121}
2122
2123static xlog_op_header_t *
2124xlog_write_setup_ophdr(
2125        struct xlog             *log,
2126        struct xlog_op_header   *ophdr,
2127        struct xlog_ticket      *ticket,
2128        uint                    flags)
2129{
2130        ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2131        ophdr->oh_clientid = ticket->t_clientid;
2132        ophdr->oh_res2 = 0;
2133
2134        /* are we copying a commit or unmount record? */
2135        ophdr->oh_flags = flags;
2136
2137        /*
2138         * We've seen logs corrupted with bad transaction client ids.  This
2139         * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2140         * and shut down the filesystem.
2141         */
2142        switch (ophdr->oh_clientid)  {
2143        case XFS_TRANSACTION:
2144        case XFS_VOLUME:
2145        case XFS_LOG:
2146                break;
2147        default:
2148                xfs_warn(log->l_mp,
2149                        "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2150                        ophdr->oh_clientid, ticket);
2151                return NULL;
2152        }
2153
2154        return ophdr;
2155}
2156
2157/*
2158 * Set up the parameters of the region copy into the log. This has
2159 * to handle region write split across multiple log buffers - this
2160 * state is kept external to this function so that this code can
2161 * be written in an obvious, self documenting manner.
2162 */
2163static int
2164xlog_write_setup_copy(
2165        struct xlog_ticket      *ticket,
2166        struct xlog_op_header   *ophdr,
2167        int                     space_available,
2168        int                     space_required,
2169        int                     *copy_off,
2170        int                     *copy_len,
2171        int                     *last_was_partial_copy,
2172        int                     *bytes_consumed)
2173{
2174        int                     still_to_copy;
2175
2176        still_to_copy = space_required - *bytes_consumed;
2177        *copy_off = *bytes_consumed;
2178
2179        if (still_to_copy <= space_available) {
2180                /* write of region completes here */
2181                *copy_len = still_to_copy;
2182                ophdr->oh_len = cpu_to_be32(*copy_len);
2183                if (*last_was_partial_copy)
2184                        ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2185                *last_was_partial_copy = 0;
2186                *bytes_consumed = 0;
2187                return 0;
2188        }
2189
2190        /* partial write of region, needs extra log op header reservation */
2191        *copy_len = space_available;
2192        ophdr->oh_len = cpu_to_be32(*copy_len);
2193        ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2194        if (*last_was_partial_copy)
2195                ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2196        *bytes_consumed += *copy_len;
2197        (*last_was_partial_copy)++;
2198
2199        /* account for new log op header */
2200        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2201        ticket->t_res_num_ophdrs++;
2202
2203        return sizeof(struct xlog_op_header);
2204}
2205
2206static int
2207xlog_write_copy_finish(
2208        struct xlog             *log,
2209        struct xlog_in_core     *iclog,
2210        uint                    flags,
2211        int                     *record_cnt,
2212        int                     *data_cnt,
2213        int                     *partial_copy,
2214        int                     *partial_copy_len,
2215        int                     log_offset,
2216        struct xlog_in_core     **commit_iclog)
2217{
2218        if (*partial_copy) {
2219                /*
2220                 * This iclog has already been marked WANT_SYNC by
2221                 * xlog_state_get_iclog_space.
2222                 */
2223                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2224                *record_cnt = 0;
2225                *data_cnt = 0;
2226                return xlog_state_release_iclog(log, iclog);
2227        }
2228
2229        *partial_copy = 0;
2230        *partial_copy_len = 0;
2231
2232        if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2233                /* no more space in this iclog - push it. */
2234                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2235                *record_cnt = 0;
2236                *data_cnt = 0;
2237
2238                spin_lock(&log->l_icloglock);
2239                xlog_state_want_sync(log, iclog);
2240                spin_unlock(&log->l_icloglock);
2241
2242                if (!commit_iclog)
2243                        return xlog_state_release_iclog(log, iclog);
2244                ASSERT(flags & XLOG_COMMIT_TRANS);
2245                *commit_iclog = iclog;
2246        }
2247
2248        return 0;
2249}
2250
2251/*
2252 * Write some region out to in-core log
2253 *
2254 * This will be called when writing externally provided regions or when
2255 * writing out a commit record for a given transaction.
2256 *
2257 * General algorithm:
2258 *      1. Find total length of this write.  This may include adding to the
2259 *              lengths passed in.
2260 *      2. Check whether we violate the tickets reservation.
2261 *      3. While writing to this iclog
2262 *          A. Reserve as much space in this iclog as can get
2263 *          B. If this is first write, save away start lsn
2264 *          C. While writing this region:
2265 *              1. If first write of transaction, write start record
2266 *              2. Write log operation header (header per region)
2267 *              3. Find out if we can fit entire region into this iclog
2268 *              4. Potentially, verify destination memcpy ptr
2269 *              5. Memcpy (partial) region
2270 *              6. If partial copy, release iclog; otherwise, continue
2271 *                      copying more regions into current iclog
2272 *      4. Mark want sync bit (in simulation mode)
2273 *      5. Release iclog for potential flush to on-disk log.
2274 *
2275 * ERRORS:
2276 * 1.   Panic if reservation is overrun.  This should never happen since
2277 *      reservation amounts are generated internal to the filesystem.
2278 * NOTES:
2279 * 1. Tickets are single threaded data structures.
2280 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2281 *      syncing routine.  When a single log_write region needs to span
2282 *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2283 *      on all log operation writes which don't contain the end of the
2284 *      region.  The XLOG_END_TRANS bit is used for the in-core log
2285 *      operation which contains the end of the continued log_write region.
2286 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2287 *      we don't really know exactly how much space will be used.  As a result,
2288 *      we don't update ic_offset until the end when we know exactly how many
2289 *      bytes have been written out.
2290 */
2291int
2292xlog_write(
2293        struct xlog             *log,
2294        struct xfs_log_vec      *log_vector,
2295        struct xlog_ticket      *ticket,
2296        xfs_lsn_t               *start_lsn,
2297        struct xlog_in_core     **commit_iclog,
2298        uint                    flags)
2299{
2300        struct xlog_in_core     *iclog = NULL;
2301        struct xfs_log_iovec    *vecp;
2302        struct xfs_log_vec      *lv;
2303        int                     len;
2304        int                     index;
2305        int                     partial_copy = 0;
2306        int                     partial_copy_len = 0;
2307        int                     contwr = 0;
2308        int                     record_cnt = 0;
2309        int                     data_cnt = 0;
2310        int                     error;
2311
2312        *start_lsn = 0;
2313
2314        len = xlog_write_calc_vec_length(ticket, log_vector);
2315
2316        /*
2317         * Region headers and bytes are already accounted for.
2318         * We only need to take into account start records and
2319         * split regions in this function.
2320         */
2321        if (ticket->t_flags & XLOG_TIC_INITED)
2322                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2323
2324        /*
2325         * Commit record headers need to be accounted for. These
2326         * come in as separate writes so are easy to detect.
2327         */
2328        if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2329                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2330
2331        if (ticket->t_curr_res < 0)
2332                xlog_print_tic_res(log->l_mp, ticket);
2333
2334        index = 0;
2335        lv = log_vector;
2336        vecp = lv->lv_iovecp;
2337        while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2338                void            *ptr;
2339                int             log_offset;
2340
2341                error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2342                                                   &contwr, &log_offset);
2343                if (error)
2344                        return error;
2345
2346                ASSERT(log_offset <= iclog->ic_size - 1);
2347                ptr = iclog->ic_datap + log_offset;
2348
2349                /* start_lsn is the first lsn written to. That's all we need. */
2350                if (!*start_lsn)
2351                        *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2352
2353                /*
2354                 * This loop writes out as many regions as can fit in the amount
2355                 * of space which was allocated by xlog_state_get_iclog_space().
2356                 */
2357                while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2358                        struct xfs_log_iovec    *reg;
2359                        struct xlog_op_header   *ophdr;
2360                        int                     start_rec_copy;
2361                        int                     copy_len;
2362                        int                     copy_off;
2363                        bool                    ordered = false;
2364
2365                        /* ordered log vectors have no regions to write */
2366                        if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2367                                ASSERT(lv->lv_niovecs == 0);
2368                                ordered = true;
2369                                goto next_lv;
2370                        }
2371
2372                        reg = &vecp[index];
2373                        ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2374                        ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2375
2376                        start_rec_copy = xlog_write_start_rec(ptr, ticket);
2377                        if (start_rec_copy) {
2378                                record_cnt++;
2379                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2380                                                   start_rec_copy);
2381                        }
2382
2383                        ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2384                        if (!ophdr)
2385                                return -EIO;
2386
2387                        xlog_write_adv_cnt(&ptr, &len, &log_offset,
2388                                           sizeof(struct xlog_op_header));
2389
2390                        len += xlog_write_setup_copy(ticket, ophdr,
2391                                                     iclog->ic_size-log_offset,
2392                                                     reg->i_len,
2393                                                     &copy_off, &copy_len,
2394                                                     &partial_copy,
2395                                                     &partial_copy_len);
2396                        xlog_verify_dest_ptr(log, ptr);
2397
2398                        /*
2399                         * Copy region.
2400                         *
2401                         * Unmount records just log an opheader, so can have
2402                         * empty payloads with no data region to copy. Hence we
2403                         * only copy the payload if the vector says it has data
2404                         * to copy.
2405                         */
2406                        ASSERT(copy_len >= 0);
2407                        if (copy_len > 0) {
2408                                memcpy(ptr, reg->i_addr + copy_off, copy_len);
2409                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2410                                                   copy_len);
2411                        }
2412                        copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2413                        record_cnt++;
2414                        data_cnt += contwr ? copy_len : 0;
2415
2416                        error = xlog_write_copy_finish(log, iclog, flags,
2417                                                       &record_cnt, &data_cnt,
2418                                                       &partial_copy,
2419                                                       &partial_copy_len,
2420                                                       log_offset,
2421                                                       commit_iclog);
2422                        if (error)
2423                                return error;
2424
2425                        /*
2426                         * if we had a partial copy, we need to get more iclog
2427                         * space but we don't want to increment the region
2428                         * index because there is still more is this region to
2429                         * write.
2430                         *
2431                         * If we completed writing this region, and we flushed
2432                         * the iclog (indicated by resetting of the record
2433                         * count), then we also need to get more log space. If
2434                         * this was the last record, though, we are done and
2435                         * can just return.
2436                         */
2437                        if (partial_copy)
2438                                break;
2439
2440                        if (++index == lv->lv_niovecs) {
2441next_lv:
2442                                lv = lv->lv_next;
2443                                index = 0;
2444                                if (lv)
2445                                        vecp = lv->lv_iovecp;
2446                        }
2447                        if (record_cnt == 0 && ordered == false) {
2448                                if (!lv)
2449                                        return 0;
2450                                break;
2451                        }
2452                }
2453        }
2454
2455        ASSERT(len == 0);
2456
2457        xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2458        if (!commit_iclog)
2459                return xlog_state_release_iclog(log, iclog);
2460
2461        ASSERT(flags & XLOG_COMMIT_TRANS);
2462        *commit_iclog = iclog;
2463        return 0;
2464}
2465
2466
2467/*****************************************************************************
2468 *
2469 *              State Machine functions
2470 *
2471 *****************************************************************************
2472 */
2473
2474/* Clean iclogs starting from the head.  This ordering must be
2475 * maintained, so an iclog doesn't become ACTIVE beyond one that
2476 * is SYNCING.  This is also required to maintain the notion that we use
2477 * a ordered wait queue to hold off would be writers to the log when every
2478 * iclog is trying to sync to disk.
2479 *
2480 * State Change: DIRTY -> ACTIVE
2481 */
2482STATIC void
2483xlog_state_clean_log(
2484        struct xlog *log)
2485{
2486        xlog_in_core_t  *iclog;
2487        int changed = 0;
2488
2489        iclog = log->l_iclog;
2490        do {
2491                if (iclog->ic_state == XLOG_STATE_DIRTY) {
2492                        iclog->ic_state = XLOG_STATE_ACTIVE;
2493                        iclog->ic_offset       = 0;
2494                        ASSERT(iclog->ic_callback == NULL);
2495                        /*
2496                         * If the number of ops in this iclog indicate it just
2497                         * contains the dummy transaction, we can
2498                         * change state into IDLE (the second time around).
2499                         * Otherwise we should change the state into
2500                         * NEED a dummy.
2501                         * We don't need to cover the dummy.
2502                         */
2503                        if (!changed &&
2504                           (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2505                                        XLOG_COVER_OPS)) {
2506                                changed = 1;
2507                        } else {
2508                                /*
2509                                 * We have two dirty iclogs so start over
2510                                 * This could also be num of ops indicates
2511                                 * this is not the dummy going out.
2512                                 */
2513                                changed = 2;
2514                        }
2515                        iclog->ic_header.h_num_logops = 0;
2516                        memset(iclog->ic_header.h_cycle_data, 0,
2517                              sizeof(iclog->ic_header.h_cycle_data));
2518                        iclog->ic_header.h_lsn = 0;
2519                } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2520                        /* do nothing */;
2521                else
2522                        break;  /* stop cleaning */
2523                iclog = iclog->ic_next;
2524        } while (iclog != log->l_iclog);
2525
2526        /* log is locked when we are called */
2527        /*
2528         * Change state for the dummy log recording.
2529         * We usually go to NEED. But we go to NEED2 if the changed indicates
2530         * we are done writing the dummy record.
2531         * If we are done with the second dummy recored (DONE2), then
2532         * we go to IDLE.
2533         */
2534        if (changed) {
2535                switch (log->l_covered_state) {
2536                case XLOG_STATE_COVER_IDLE:
2537                case XLOG_STATE_COVER_NEED:
2538                case XLOG_STATE_COVER_NEED2:
2539                        log->l_covered_state = XLOG_STATE_COVER_NEED;
2540                        break;
2541
2542                case XLOG_STATE_COVER_DONE:
2543                        if (changed == 1)
2544                                log->l_covered_state = XLOG_STATE_COVER_NEED2;
2545                        else
2546                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2547                        break;
2548
2549                case XLOG_STATE_COVER_DONE2:
2550                        if (changed == 1)
2551                                log->l_covered_state = XLOG_STATE_COVER_IDLE;
2552                        else
2553                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2554                        break;
2555
2556                default:
2557                        ASSERT(0);
2558                }
2559        }
2560}       /* xlog_state_clean_log */
2561
2562STATIC xfs_lsn_t
2563xlog_get_lowest_lsn(
2564        struct xlog     *log)
2565{
2566        xlog_in_core_t  *lsn_log;
2567        xfs_lsn_t       lowest_lsn, lsn;
2568
2569        lsn_log = log->l_iclog;
2570        lowest_lsn = 0;
2571        do {
2572            if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2573                lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2574                if ((lsn && !lowest_lsn) ||
2575                    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2576                        lowest_lsn = lsn;
2577                }
2578            }
2579            lsn_log = lsn_log->ic_next;
2580        } while (lsn_log != log->l_iclog);
2581        return lowest_lsn;
2582}
2583
2584
2585STATIC void
2586xlog_state_do_callback(
2587        struct xlog             *log,
2588        int                     aborted,
2589        struct xlog_in_core     *ciclog)
2590{
2591        xlog_in_core_t     *iclog;
2592        xlog_in_core_t     *first_iclog;        /* used to know when we've
2593                                                 * processed all iclogs once */
2594        xfs_log_callback_t *cb, *cb_next;
2595        int                flushcnt = 0;
2596        xfs_lsn_t          lowest_lsn;
2597        int                ioerrors;    /* counter: iclogs with errors */
2598        int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2599        int                funcdidcallbacks; /* flag: function did callbacks */
2600        int                repeats;     /* for issuing console warnings if
2601                                         * looping too many times */
2602        int                wake = 0;
2603
2604        spin_lock(&log->l_icloglock);
2605        first_iclog = iclog = log->l_iclog;
2606        ioerrors = 0;
2607        funcdidcallbacks = 0;
2608        repeats = 0;
2609
2610        do {
2611                /*
2612                 * Scan all iclogs starting with the one pointed to by the
2613                 * log.  Reset this starting point each time the log is
2614                 * unlocked (during callbacks).
2615                 *
2616                 * Keep looping through iclogs until one full pass is made
2617                 * without running any callbacks.
2618                 */
2619                first_iclog = log->l_iclog;
2620                iclog = log->l_iclog;
2621                loopdidcallbacks = 0;
2622                repeats++;
2623
2624                do {
2625
2626                        /* skip all iclogs in the ACTIVE & DIRTY states */
2627                        if (iclog->ic_state &
2628                            (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2629                                iclog = iclog->ic_next;
2630                                continue;
2631                        }
2632
2633                        /*
2634                         * Between marking a filesystem SHUTDOWN and stopping
2635                         * the log, we do flush all iclogs to disk (if there
2636                         * wasn't a log I/O error). So, we do want things to
2637                         * go smoothly in case of just a SHUTDOWN  w/o a
2638                         * LOG_IO_ERROR.
2639                         */
2640                        if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2641                                /*
2642                                 * Can only perform callbacks in order.  Since
2643                                 * this iclog is not in the DONE_SYNC/
2644                                 * DO_CALLBACK state, we skip the rest and
2645                                 * just try to clean up.  If we set our iclog
2646                                 * to DO_CALLBACK, we will not process it when
2647                                 * we retry since a previous iclog is in the
2648                                 * CALLBACK and the state cannot change since
2649                                 * we are holding the l_icloglock.
2650                                 */
2651                                if (!(iclog->ic_state &
2652                                        (XLOG_STATE_DONE_SYNC |
2653                                                 XLOG_STATE_DO_CALLBACK))) {
2654                                        if (ciclog && (ciclog->ic_state ==
2655                                                        XLOG_STATE_DONE_SYNC)) {
2656                                                ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2657                                        }
2658                                        break;
2659                                }
2660                                /*
2661                                 * We now have an iclog that is in either the
2662                                 * DO_CALLBACK or DONE_SYNC states. The other
2663                                 * states (WANT_SYNC, SYNCING, or CALLBACK were
2664                                 * caught by the above if and are going to
2665                                 * clean (i.e. we aren't doing their callbacks)
2666                                 * see the above if.
2667                                 */
2668
2669                                /*
2670                                 * We will do one more check here to see if we
2671                                 * have chased our tail around.
2672                                 */
2673
2674                                lowest_lsn = xlog_get_lowest_lsn(log);
2675                                if (lowest_lsn &&
2676                                    XFS_LSN_CMP(lowest_lsn,
2677                                                be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2678                                        iclog = iclog->ic_next;
2679                                        continue; /* Leave this iclog for
2680                                                   * another thread */
2681                                }
2682
2683                                iclog->ic_state = XLOG_STATE_CALLBACK;
2684
2685
2686                                /*
2687                                 * Completion of a iclog IO does not imply that
2688                                 * a transaction has completed, as transactions
2689                                 * can be large enough to span many iclogs. We
2690                                 * cannot change the tail of the log half way
2691                                 * through a transaction as this may be the only
2692                                 * transaction in the log and moving th etail to
2693                                 * point to the middle of it will prevent
2694                                 * recovery from finding the start of the
2695                                 * transaction. Hence we should only update the
2696                                 * last_sync_lsn if this iclog contains
2697                                 * transaction completion callbacks on it.
2698                                 *
2699                                 * We have to do this before we drop the
2700                                 * icloglock to ensure we are the only one that
2701                                 * can update it.
2702                                 */
2703                                ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2704                                        be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2705                                if (iclog->ic_callback)
2706                                        atomic64_set(&log->l_last_sync_lsn,
2707                                                be64_to_cpu(iclog->ic_header.h_lsn));
2708
2709                        } else
2710                                ioerrors++;
2711
2712                        spin_unlock(&log->l_icloglock);
2713
2714                        /*
2715                         * Keep processing entries in the callback list until
2716                         * we come around and it is empty.  We need to
2717                         * atomically see that the list is empty and change the
2718                         * state to DIRTY so that we don't miss any more
2719                         * callbacks being added.
2720                         */
2721                        spin_lock(&iclog->ic_callback_lock);
2722                        cb = iclog->ic_callback;
2723                        while (cb) {
2724                                iclog->ic_callback_tail = &(iclog->ic_callback);
2725                                iclog->ic_callback = NULL;
2726                                spin_unlock(&iclog->ic_callback_lock);
2727
2728                                /* perform callbacks in the order given */
2729                                for (; cb; cb = cb_next) {
2730                                        cb_next = cb->cb_next;
2731                                        cb->cb_func(cb->cb_arg, aborted);
2732                                }
2733                                spin_lock(&iclog->ic_callback_lock);
2734                                cb = iclog->ic_callback;
2735                        }
2736
2737                        loopdidcallbacks++;
2738                        funcdidcallbacks++;
2739
2740                        spin_lock(&log->l_icloglock);
2741                        ASSERT(iclog->ic_callback == NULL);
2742                        spin_unlock(&iclog->ic_callback_lock);
2743                        if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2744                                iclog->ic_state = XLOG_STATE_DIRTY;
2745
2746                        /*
2747                         * Transition from DIRTY to ACTIVE if applicable.
2748                         * NOP if STATE_IOERROR.
2749                         */
2750                        xlog_state_clean_log(log);
2751
2752                        /* wake up threads waiting in xfs_log_force() */
2753                        wake_up_all(&iclog->ic_force_wait);
2754
2755                        iclog = iclog->ic_next;
2756                } while (first_iclog != iclog);
2757
2758                if (repeats > 5000) {
2759                        flushcnt += repeats;
2760                        repeats = 0;
2761                        xfs_warn(log->l_mp,
2762                                "%s: possible infinite loop (%d iterations)",
2763                                __func__, flushcnt);
2764                }
2765        } while (!ioerrors && loopdidcallbacks);
2766
2767#ifdef DEBUG
2768        /*
2769         * Make one last gasp attempt to see if iclogs are being left in limbo.
2770         * If the above loop finds an iclog earlier than the current iclog and
2771         * in one of the syncing states, the current iclog is put into
2772         * DO_CALLBACK and the callbacks are deferred to the completion of the
2773         * earlier iclog. Walk the iclogs in order and make sure that no iclog
2774         * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2775         * states.
2776         *
2777         * Note that SYNCING|IOABORT is a valid state so we cannot just check
2778         * for ic_state == SYNCING.
2779         */
2780        if (funcdidcallbacks) {
2781                first_iclog = iclog = log->l_iclog;
2782                do {
2783                        ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2784                        /*
2785                         * Terminate the loop if iclogs are found in states
2786                         * which will cause other threads to clean up iclogs.
2787                         *
2788                         * SYNCING - i/o completion will go through logs
2789                         * DONE_SYNC - interrupt thread should be waiting for
2790                         *              l_icloglock
2791                         * IOERROR - give up hope all ye who enter here
2792                         */
2793                        if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2794                            iclog->ic_state & XLOG_STATE_SYNCING ||
2795                            iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2796                            iclog->ic_state == XLOG_STATE_IOERROR )
2797                                break;
2798                        iclog = iclog->ic_next;
2799                } while (first_iclog != iclog);
2800        }
2801#endif
2802
2803        if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2804                wake = 1;
2805        spin_unlock(&log->l_icloglock);
2806
2807        if (wake)
2808                wake_up_all(&log->l_flush_wait);
2809}
2810
2811
2812/*
2813 * Finish transitioning this iclog to the dirty state.
2814 *
2815 * Make sure that we completely execute this routine only when this is
2816 * the last call to the iclog.  There is a good chance that iclog flushes,
2817 * when we reach the end of the physical log, get turned into 2 separate
2818 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2819 * routine.  By using the reference count bwritecnt, we guarantee that only
2820 * the second completion goes through.
2821 *
2822 * Callbacks could take time, so they are done outside the scope of the
2823 * global state machine log lock.
2824 */
2825STATIC void
2826xlog_state_done_syncing(
2827        xlog_in_core_t  *iclog,
2828        int             aborted)
2829{
2830        struct xlog        *log = iclog->ic_log;
2831
2832        spin_lock(&log->l_icloglock);
2833
2834        ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2835               iclog->ic_state == XLOG_STATE_IOERROR);
2836        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2837        ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2838
2839
2840        /*
2841         * If we got an error, either on the first buffer, or in the case of
2842         * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2843         * and none should ever be attempted to be written to disk
2844         * again.
2845         */
2846        if (iclog->ic_state != XLOG_STATE_IOERROR) {
2847                if (--iclog->ic_bwritecnt == 1) {
2848                        spin_unlock(&log->l_icloglock);
2849                        return;
2850                }
2851                iclog->ic_state = XLOG_STATE_DONE_SYNC;
2852        }
2853
2854        /*
2855         * Someone could be sleeping prior to writing out the next
2856         * iclog buffer, we wake them all, one will get to do the
2857         * I/O, the others get to wait for the result.
2858         */
2859        wake_up_all(&iclog->ic_write_wait);
2860        spin_unlock(&log->l_icloglock);
2861        xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2862}       /* xlog_state_done_syncing */
2863
2864
2865/*
2866 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2867 * sleep.  We wait on the flush queue on the head iclog as that should be
2868 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2869 * we will wait here and all new writes will sleep until a sync completes.
2870 *
2871 * The in-core logs are used in a circular fashion. They are not used
2872 * out-of-order even when an iclog past the head is free.
2873 *
2874 * return:
2875 *      * log_offset where xlog_write() can start writing into the in-core
2876 *              log's data space.
2877 *      * in-core log pointer to which xlog_write() should write.
2878 *      * boolean indicating this is a continued write to an in-core log.
2879 *              If this is the last write, then the in-core log's offset field
2880 *              needs to be incremented, depending on the amount of data which
2881 *              is copied.
2882 */
2883STATIC int
2884xlog_state_get_iclog_space(
2885        struct xlog             *log,
2886        int                     len,
2887        struct xlog_in_core     **iclogp,
2888        struct xlog_ticket      *ticket,
2889        int                     *continued_write,
2890        int                     *logoffsetp)
2891{
2892        int               log_offset;
2893        xlog_rec_header_t *head;
2894        xlog_in_core_t    *iclog;
2895        int               error;
2896
2897restart:
2898        spin_lock(&log->l_icloglock);
2899        if (XLOG_FORCED_SHUTDOWN(log)) {
2900                spin_unlock(&log->l_icloglock);
2901                return -EIO;
2902        }
2903
2904        iclog = log->l_iclog;
2905        if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2906                XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2907
2908                /* Wait for log writes to have flushed */
2909                xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2910                goto restart;
2911        }
2912
2913        head = &iclog->ic_header;
2914
2915        atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2916        log_offset = iclog->ic_offset;
2917
2918        /* On the 1st write to an iclog, figure out lsn.  This works
2919         * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2920         * committing to.  If the offset is set, that's how many blocks
2921         * must be written.
2922         */
2923        if (log_offset == 0) {
2924                ticket->t_curr_res -= log->l_iclog_hsize;
2925                xlog_tic_add_region(ticket,
2926                                    log->l_iclog_hsize,
2927                                    XLOG_REG_TYPE_LRHEADER);
2928                head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2929                head->h_lsn = cpu_to_be64(
2930                        xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2931                ASSERT(log->l_curr_block >= 0);
2932        }
2933
2934        /* If there is enough room to write everything, then do it.  Otherwise,
2935         * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2936         * bit is on, so this will get flushed out.  Don't update ic_offset
2937         * until you know exactly how many bytes get copied.  Therefore, wait
2938         * until later to update ic_offset.
2939         *
2940         * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2941         * can fit into remaining data section.
2942         */
2943        if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2944                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2945
2946                /*
2947                 * If I'm the only one writing to this iclog, sync it to disk.
2948                 * We need to do an atomic compare and decrement here to avoid
2949                 * racing with concurrent atomic_dec_and_lock() calls in
2950                 * xlog_state_release_iclog() when there is more than one
2951                 * reference to the iclog.
2952                 */
2953                if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2954                        /* we are the only one */
2955                        spin_unlock(&log->l_icloglock);
2956                        error = xlog_state_release_iclog(log, iclog);
2957                        if (error)
2958                                return error;
2959                } else {
2960                        spin_unlock(&log->l_icloglock);
2961                }
2962                goto restart;
2963        }
2964
2965        /* Do we have enough room to write the full amount in the remainder
2966         * of this iclog?  Or must we continue a write on the next iclog and
2967         * mark this iclog as completely taken?  In the case where we switch
2968         * iclogs (to mark it taken), this particular iclog will release/sync
2969         * to disk in xlog_write().
2970         */
2971        if (len <= iclog->ic_size - iclog->ic_offset) {
2972                *continued_write = 0;
2973                iclog->ic_offset += len;
2974        } else {
2975                *continued_write = 1;
2976                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2977        }
2978        *iclogp = iclog;
2979
2980        ASSERT(iclog->ic_offset <= iclog->ic_size);
2981        spin_unlock(&log->l_icloglock);
2982
2983        *logoffsetp = log_offset;
2984        return 0;
2985}       /* xlog_state_get_iclog_space */
2986
2987/* The first cnt-1 times through here we don't need to
2988 * move the grant write head because the permanent
2989 * reservation has reserved cnt times the unit amount.
2990 * Release part of current permanent unit reservation and
2991 * reset current reservation to be one units worth.  Also
2992 * move grant reservation head forward.
2993 */
2994STATIC void
2995xlog_regrant_reserve_log_space(
2996        struct xlog             *log,
2997        struct xlog_ticket      *ticket)
2998{
2999        trace_xfs_log_regrant_reserve_enter(log, ticket);
3000
3001        if (ticket->t_cnt > 0)
3002                ticket->t_cnt--;
3003
3004        xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3005                                        ticket->t_curr_res);
3006        xlog_grant_sub_space(log, &log->l_write_head.grant,
3007                                        ticket->t_curr_res);
3008        ticket->t_curr_res = ticket->t_unit_res;
3009        xlog_tic_reset_res(ticket);
3010
3011        trace_xfs_log_regrant_reserve_sub(log, ticket);
3012
3013        /* just return if we still have some of the pre-reserved space */
3014        if (ticket->t_cnt > 0)
3015                return;
3016
3017        xlog_grant_add_space(log, &log->l_reserve_head.grant,
3018                                        ticket->t_unit_res);
3019
3020        trace_xfs_log_regrant_reserve_exit(log, ticket);
3021
3022        ticket->t_curr_res = ticket->t_unit_res;
3023        xlog_tic_reset_res(ticket);
3024}       /* xlog_regrant_reserve_log_space */
3025
3026
3027/*
3028 * Give back the space left from a reservation.
3029 *
3030 * All the information we need to make a correct determination of space left
3031 * is present.  For non-permanent reservations, things are quite easy.  The
3032 * count should have been decremented to zero.  We only need to deal with the
3033 * space remaining in the current reservation part of the ticket.  If the
3034 * ticket contains a permanent reservation, there may be left over space which
3035 * needs to be released.  A count of N means that N-1 refills of the current
3036 * reservation can be done before we need to ask for more space.  The first
3037 * one goes to fill up the first current reservation.  Once we run out of
3038 * space, the count will stay at zero and the only space remaining will be
3039 * in the current reservation field.
3040 */
3041STATIC void
3042xlog_ungrant_log_space(
3043        struct xlog             *log,
3044        struct xlog_ticket      *ticket)
3045{
3046        int     bytes;
3047
3048        if (ticket->t_cnt > 0)
3049                ticket->t_cnt--;
3050
3051        trace_xfs_log_ungrant_enter(log, ticket);
3052        trace_xfs_log_ungrant_sub(log, ticket);
3053
3054        /*
3055         * If this is a permanent reservation ticket, we may be able to free
3056         * up more space based on the remaining count.
3057         */
3058        bytes = ticket->t_curr_res;
3059        if (ticket->t_cnt > 0) {
3060                ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3061                bytes += ticket->t_unit_res*ticket->t_cnt;
3062        }
3063
3064        xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3065        xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3066
3067        trace_xfs_log_ungrant_exit(log, ticket);
3068
3069        xfs_log_space_wake(log->l_mp);
3070}
3071
3072/*
3073 * Flush iclog to disk if this is the last reference to the given iclog and
3074 * the WANT_SYNC bit is set.
3075 *
3076 * When this function is entered, the iclog is not necessarily in the
3077 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3078 *
3079 *
3080 */
3081STATIC int
3082xlog_state_release_iclog(
3083        struct xlog             *log,
3084        struct xlog_in_core     *iclog)
3085{
3086        int             sync = 0;       /* do we sync? */
3087
3088        if (iclog->ic_state & XLOG_STATE_IOERROR)
3089                return -EIO;
3090
3091        ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3092        if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3093                return 0;
3094
3095        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3096                spin_unlock(&log->l_icloglock);
3097                return -EIO;
3098        }
3099        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3100               iclog->ic_state == XLOG_STATE_WANT_SYNC);
3101
3102        if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3103                /* update tail before writing to iclog */
3104                xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3105                sync++;
3106                iclog->ic_state = XLOG_STATE_SYNCING;
3107                iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3108                xlog_verify_tail_lsn(log, iclog, tail_lsn);
3109                /* cycle incremented when incrementing curr_block */
3110        }
3111        spin_unlock(&log->l_icloglock);
3112
3113        /*
3114         * We let the log lock go, so it's possible that we hit a log I/O
3115         * error or some other SHUTDOWN condition that marks the iclog
3116         * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3117         * this iclog has consistent data, so we ignore IOERROR
3118         * flags after this point.
3119         */
3120        if (sync)
3121                return xlog_sync(log, iclog);
3122        return 0;
3123}       /* xlog_state_release_iclog */
3124
3125
3126/*
3127 * This routine will mark the current iclog in the ring as WANT_SYNC
3128 * and move the current iclog pointer to the next iclog in the ring.
3129 * When this routine is called from xlog_state_get_iclog_space(), the
3130 * exact size of the iclog has not yet been determined.  All we know is
3131 * that every data block.  We have run out of space in this log record.
3132 */
3133STATIC void
3134xlog_state_switch_iclogs(
3135        struct xlog             *log,
3136        struct xlog_in_core     *iclog,
3137        int                     eventual_size)
3138{
3139        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3140        if (!eventual_size)
3141                eventual_size = iclog->ic_offset;
3142        iclog->ic_state = XLOG_STATE_WANT_SYNC;
3143        iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3144        log->l_prev_block = log->l_curr_block;
3145        log->l_prev_cycle = log->l_curr_cycle;
3146
3147        /* roll log?: ic_offset changed later */
3148        log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3149
3150        /* Round up to next log-sunit */
3151        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3152            log->l_mp->m_sb.sb_logsunit > 1) {
3153                __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3154                log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3155        }
3156
3157        if (log->l_curr_block >= log->l_logBBsize) {
3158                /*
3159                 * Rewind the current block before the cycle is bumped to make
3160                 * sure that the combined LSN never transiently moves forward
3161                 * when the log wraps to the next cycle. This is to support the
3162                 * unlocked sample of these fields from xlog_valid_lsn(). Most
3163                 * other cases should acquire l_icloglock.
3164                 */
3165                log->l_curr_block -= log->l_logBBsize;
3166                ASSERT(log->l_curr_block >= 0);
3167                smp_wmb();
3168                log->l_curr_cycle++;
3169                if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3170                        log->l_curr_cycle++;
3171        }
3172        ASSERT(iclog == log->l_iclog);
3173        log->l_iclog = iclog->ic_next;
3174}       /* xlog_state_switch_iclogs */
3175
3176/*
3177 * Write out all data in the in-core log as of this exact moment in time.
3178 *
3179 * Data may be written to the in-core log during this call.  However,
3180 * we don't guarantee this data will be written out.  A change from past
3181 * implementation means this routine will *not* write out zero length LRs.
3182 *
3183 * Basically, we try and perform an intelligent scan of the in-core logs.
3184 * If we determine there is no flushable data, we just return.  There is no
3185 * flushable data if:
3186 *
3187 *      1. the current iclog is active and has no data; the previous iclog
3188 *              is in the active or dirty state.
3189 *      2. the current iclog is drity, and the previous iclog is in the
3190 *              active or dirty state.
3191 *
3192 * We may sleep if:
3193 *
3194 *      1. the current iclog is not in the active nor dirty state.
3195 *      2. the current iclog dirty, and the previous iclog is not in the
3196 *              active nor dirty state.
3197 *      3. the current iclog is active, and there is another thread writing
3198 *              to this particular iclog.
3199 *      4. a) the current iclog is active and has no other writers
3200 *         b) when we return from flushing out this iclog, it is still
3201 *              not in the active nor dirty state.
3202 */
3203int
3204_xfs_log_force(
3205        struct xfs_mount        *mp,
3206        uint                    flags,
3207        int                     *log_flushed)
3208{
3209        struct xlog             *log = mp->m_log;
3210        struct xlog_in_core     *iclog;
3211        xfs_lsn_t               lsn;
3212
3213        XFS_STATS_INC(mp, xs_log_force);
3214
3215        xlog_cil_force(log);
3216
3217        spin_lock(&log->l_icloglock);
3218
3219        iclog = log->l_iclog;
3220        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3221                spin_unlock(&log->l_icloglock);
3222                return -EIO;
3223        }
3224
3225        /* If the head iclog is not active nor dirty, we just attach
3226         * ourselves to the head and go to sleep.
3227         */
3228        if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3229            iclog->ic_state == XLOG_STATE_DIRTY) {
3230                /*
3231                 * If the head is dirty or (active and empty), then
3232                 * we need to look at the previous iclog.  If the previous
3233                 * iclog is active or dirty we are done.  There is nothing
3234                 * to sync out.  Otherwise, we attach ourselves to the
3235                 * previous iclog and go to sleep.
3236                 */
3237                if (iclog->ic_state == XLOG_STATE_DIRTY ||
3238                    (atomic_read(&iclog->ic_refcnt) == 0
3239                     && iclog->ic_offset == 0)) {
3240                        iclog = iclog->ic_prev;
3241                        if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3242                            iclog->ic_state == XLOG_STATE_DIRTY)
3243                                goto no_sleep;
3244                        else
3245                                goto maybe_sleep;
3246                } else {
3247                        if (atomic_read(&iclog->ic_refcnt) == 0) {
3248                                /* We are the only one with access to this
3249                                 * iclog.  Flush it out now.  There should
3250                                 * be a roundoff of zero to show that someone
3251                                 * has already taken care of the roundoff from
3252                                 * the previous sync.
3253                                 */
3254                                atomic_inc(&iclog->ic_refcnt);
3255                                lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3256                                xlog_state_switch_iclogs(log, iclog, 0);
3257                                spin_unlock(&log->l_icloglock);
3258
3259                                if (xlog_state_release_iclog(log, iclog))
3260                                        return -EIO;
3261
3262                                if (log_flushed)
3263                                        *log_flushed = 1;
3264                                spin_lock(&log->l_icloglock);
3265                                if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3266                                    iclog->ic_state != XLOG_STATE_DIRTY)
3267                                        goto maybe_sleep;
3268                                else
3269                                        goto no_sleep;
3270                        } else {
3271                                /* Someone else is writing to this iclog.
3272                                 * Use its call to flush out the data.  However,
3273                                 * the other thread may not force out this LR,
3274                                 * so we mark it WANT_SYNC.
3275                                 */
3276                                xlog_state_switch_iclogs(log, iclog, 0);
3277                                goto maybe_sleep;
3278                        }
3279                }
3280        }
3281
3282        /* By the time we come around again, the iclog could've been filled
3283         * which would give it another lsn.  If we have a new lsn, just
3284         * return because the relevant data has been flushed.
3285         */
3286maybe_sleep:
3287        if (flags & XFS_LOG_SYNC) {
3288                /*
3289                 * We must check if we're shutting down here, before
3290                 * we wait, while we're holding the l_icloglock.
3291                 * Then we check again after waking up, in case our
3292                 * sleep was disturbed by a bad news.
3293                 */
3294                if (iclog->ic_state & XLOG_STATE_IOERROR) {
3295                        spin_unlock(&log->l_icloglock);
3296                        return -EIO;
3297                }
3298                XFS_STATS_INC(mp, xs_log_force_sleep);
3299                xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3300                /*
3301                 * No need to grab the log lock here since we're
3302                 * only deciding whether or not to return EIO
3303                 * and the memory read should be atomic.
3304                 */
3305                if (iclog->ic_state & XLOG_STATE_IOERROR)
3306                        return -EIO;
3307                if (log_flushed)
3308                        *log_flushed = 1;
3309        } else {
3310
3311no_sleep:
3312                spin_unlock(&log->l_icloglock);
3313        }
3314        return 0;
3315}
3316
3317/*
3318 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3319 * about errors or whether the log was flushed or not. This is the normal
3320 * interface to use when trying to unpin items or move the log forward.
3321 */
3322void
3323xfs_log_force(
3324        xfs_mount_t     *mp,
3325        uint            flags)
3326{
3327        int     error;
3328
3329        trace_xfs_log_force(mp, 0, _RET_IP_);
3330        error = _xfs_log_force(mp, flags, NULL);
3331        if (error)
3332                xfs_warn(mp, "%s: error %d returned.", __func__, error);
3333}
3334
3335/*
3336 * Force the in-core log to disk for a specific LSN.
3337 *
3338 * Find in-core log with lsn.
3339 *      If it is in the DIRTY state, just return.
3340 *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3341 *              state and go to sleep or return.
3342 *      If it is in any other state, go to sleep or return.
3343 *
3344 * Synchronous forces are implemented with a signal variable. All callers
3345 * to force a given lsn to disk will wait on a the sv attached to the
3346 * specific in-core log.  When given in-core log finally completes its
3347 * write to disk, that thread will wake up all threads waiting on the
3348 * sv.
3349 */
3350int
3351_xfs_log_force_lsn(
3352        struct xfs_mount        *mp,
3353        xfs_lsn_t               lsn,
3354        uint                    flags,
3355        int                     *log_flushed)
3356{
3357        struct xlog             *log = mp->m_log;
3358        struct xlog_in_core     *iclog;
3359        int                     already_slept = 0;
3360
3361        ASSERT(lsn != 0);
3362
3363        XFS_STATS_INC(mp, xs_log_force);
3364
3365        lsn = xlog_cil_force_lsn(log, lsn);
3366        if (lsn == NULLCOMMITLSN)
3367                return 0;
3368
3369try_again:
3370        spin_lock(&log->l_icloglock);
3371        iclog = log->l_iclog;
3372        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3373                spin_unlock(&log->l_icloglock);
3374                return -EIO;
3375        }
3376
3377        do {
3378                if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3379                        iclog = iclog->ic_next;
3380                        continue;
3381                }
3382
3383                if (iclog->ic_state == XLOG_STATE_DIRTY) {
3384                        spin_unlock(&log->l_icloglock);
3385                        return 0;
3386                }
3387
3388                if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3389                        /*
3390                         * We sleep here if we haven't already slept (e.g.
3391                         * this is the first time we've looked at the correct
3392                         * iclog buf) and the buffer before us is going to
3393                         * be sync'ed. The reason for this is that if we
3394                         * are doing sync transactions here, by waiting for
3395                         * the previous I/O to complete, we can allow a few
3396                         * more transactions into this iclog before we close
3397                         * it down.
3398                         *
3399                         * Otherwise, we mark the buffer WANT_SYNC, and bump
3400                         * up the refcnt so we can release the log (which
3401                         * drops the ref count).  The state switch keeps new
3402                         * transaction commits from using this buffer.  When
3403                         * the current commits finish writing into the buffer,
3404                         * the refcount will drop to zero and the buffer will
3405                         * go out then.
3406                         */
3407                        if (!already_slept &&
3408                            (iclog->ic_prev->ic_state &
3409                             (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3410                                ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3411
3412                                XFS_STATS_INC(mp, xs_log_force_sleep);
3413
3414                                xlog_wait(&iclog->ic_prev->ic_write_wait,
3415                                                        &log->l_icloglock);
3416                                if (log_flushed)
3417                                        *log_flushed = 1;
3418                                already_slept = 1;
3419                                goto try_again;
3420                        }
3421                        atomic_inc(&iclog->ic_refcnt);
3422                        xlog_state_switch_iclogs(log, iclog, 0);
3423                        spin_unlock(&log->l_icloglock);
3424                        if (xlog_state_release_iclog(log, iclog))
3425                                return -EIO;
3426                        if (log_flushed)
3427                                *log_flushed = 1;
3428                        spin_lock(&log->l_icloglock);
3429                }
3430
3431                if ((flags & XFS_LOG_SYNC) && /* sleep */
3432                    !(iclog->ic_state &
3433                      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3434                        /*
3435                         * Don't wait on completion if we know that we've
3436                         * gotten a log write error.
3437                         */
3438                        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3439                                spin_unlock(&log->l_icloglock);
3440                                return -EIO;
3441                        }
3442                        XFS_STATS_INC(mp, xs_log_force_sleep);
3443                        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3444                        /*
3445                         * No need to grab the log lock here since we're
3446                         * only deciding whether or not to return EIO
3447                         * and the memory read should be atomic.
3448                         */
3449                        if (iclog->ic_state & XLOG_STATE_IOERROR)
3450                                return -EIO;
3451
3452                        if (log_flushed)
3453                                *log_flushed = 1;
3454                } else {                /* just return */
3455                        spin_unlock(&log->l_icloglock);
3456                }
3457
3458                return 0;
3459        } while (iclog != log->l_iclog);
3460
3461        spin_unlock(&log->l_icloglock);
3462        return 0;
3463}
3464
3465/*
3466 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3467 * about errors or whether the log was flushed or not. This is the normal
3468 * interface to use when trying to unpin items or move the log forward.
3469 */
3470void
3471xfs_log_force_lsn(
3472        xfs_mount_t     *mp,
3473        xfs_lsn_t       lsn,
3474        uint            flags)
3475{
3476        int     error;
3477
3478        trace_xfs_log_force(mp, lsn, _RET_IP_);
3479        error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3480        if (error)
3481                xfs_warn(mp, "%s: error %d returned.", __func__, error);
3482}
3483
3484/*
3485 * Called when we want to mark the current iclog as being ready to sync to
3486 * disk.
3487 */
3488STATIC void
3489xlog_state_want_sync(
3490        struct xlog             *log,
3491        struct xlog_in_core     *iclog)
3492{
3493        assert_spin_locked(&log->l_icloglock);
3494
3495        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3496                xlog_state_switch_iclogs(log, iclog, 0);
3497        } else {
3498                ASSERT(iclog->ic_state &
3499                        (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3500        }
3501}
3502
3503
3504/*****************************************************************************
3505 *
3506 *              TICKET functions
3507 *
3508 *****************************************************************************
3509 */
3510
3511/*
3512 * Free a used ticket when its refcount falls to zero.
3513 */
3514void
3515xfs_log_ticket_put(
3516        xlog_ticket_t   *ticket)
3517{
3518        ASSERT(atomic_read(&ticket->t_ref) > 0);
3519        if (atomic_dec_and_test(&ticket->t_ref))
3520                kmem_zone_free(xfs_log_ticket_zone, ticket);
3521}
3522
3523xlog_ticket_t *
3524xfs_log_ticket_get(
3525        xlog_ticket_t   *ticket)
3526{
3527        ASSERT(atomic_read(&ticket->t_ref) > 0);
3528        atomic_inc(&ticket->t_ref);
3529        return ticket;
3530}
3531
3532/*
3533 * Figure out the total log space unit (in bytes) that would be
3534 * required for a log ticket.
3535 */
3536int
3537xfs_log_calc_unit_res(
3538        struct xfs_mount        *mp,
3539        int                     unit_bytes)
3540{
3541        struct xlog             *log = mp->m_log;
3542        int                     iclog_space;
3543        uint                    num_headers;
3544
3545        /*
3546         * Permanent reservations have up to 'cnt'-1 active log operations
3547         * in the log.  A unit in this case is the amount of space for one
3548         * of these log operations.  Normal reservations have a cnt of 1
3549         * and their unit amount is the total amount of space required.
3550         *
3551         * The following lines of code account for non-transaction data
3552         * which occupy space in the on-disk log.
3553         *
3554         * Normal form of a transaction is:
3555         * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3556         * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3557         *
3558         * We need to account for all the leadup data and trailer data
3559         * around the transaction data.
3560         * And then we need to account for the worst case in terms of using
3561         * more space.
3562         * The worst case will happen if:
3563         * - the placement of the transaction happens to be such that the
3564         *   roundoff is at its maximum
3565         * - the transaction data is synced before the commit record is synced
3566         *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3567         *   Therefore the commit record is in its own Log Record.
3568         *   This can happen as the commit record is called with its
3569         *   own region to xlog_write().
3570         *   This then means that in the worst case, roundoff can happen for
3571         *   the commit-rec as well.
3572         *   The commit-rec is smaller than padding in this scenario and so it is
3573         *   not added separately.
3574         */
3575
3576        /* for trans header */
3577        unit_bytes += sizeof(xlog_op_header_t);
3578        unit_bytes += sizeof(xfs_trans_header_t);
3579
3580        /* for start-rec */
3581        unit_bytes += sizeof(xlog_op_header_t);
3582
3583        /*
3584         * for LR headers - the space for data in an iclog is the size minus
3585         * the space used for the headers. If we use the iclog size, then we
3586         * undercalculate the number of headers required.
3587         *
3588         * Furthermore - the addition of op headers for split-recs might
3589         * increase the space required enough to require more log and op
3590         * headers, so take that into account too.
3591         *
3592         * IMPORTANT: This reservation makes the assumption that if this
3593         * transaction is the first in an iclog and hence has the LR headers
3594         * accounted to it, then the remaining space in the iclog is
3595         * exclusively for this transaction.  i.e. if the transaction is larger
3596         * than the iclog, it will be the only thing in that iclog.
3597         * Fundamentally, this means we must pass the entire log vector to
3598         * xlog_write to guarantee this.
3599         */
3600        iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3601        num_headers = howmany(unit_bytes, iclog_space);
3602
3603        /* for split-recs - ophdrs added when data split over LRs */
3604        unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3605
3606        /* add extra header reservations if we overrun */
3607        while (!num_headers ||
3608               howmany(unit_bytes, iclog_space) > num_headers) {
3609                unit_bytes += sizeof(xlog_op_header_t);
3610                num_headers++;
3611        }
3612        unit_bytes += log->l_iclog_hsize * num_headers;
3613
3614        /* for commit-rec LR header - note: padding will subsume the ophdr */
3615        unit_bytes += log->l_iclog_hsize;
3616
3617        /* for roundoff padding for transaction data and one for commit record */
3618        if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3619                /* log su roundoff */
3620                unit_bytes += 2 * mp->m_sb.sb_logsunit;
3621        } else {
3622                /* BB roundoff */
3623                unit_bytes += 2 * BBSIZE;
3624        }
3625
3626        return unit_bytes;
3627}
3628
3629/*
3630 * Allocate and initialise a new log ticket.
3631 */
3632struct xlog_ticket *
3633xlog_ticket_alloc(
3634        struct xlog             *log,
3635        int                     unit_bytes,
3636        int                     cnt,
3637        char                    client,
3638        bool                    permanent,
3639        xfs_km_flags_t          alloc_flags)
3640{
3641        struct xlog_ticket      *tic;
3642        int                     unit_res;
3643
3644        tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3645        if (!tic)
3646                return NULL;
3647
3648        unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3649
3650        atomic_set(&tic->t_ref, 1);
3651        tic->t_task             = current;
3652        INIT_LIST_HEAD(&tic->t_queue);
3653        tic->t_unit_res         = unit_res;
3654        tic->t_curr_res         = unit_res;
3655        tic->t_cnt              = cnt;
3656        tic->t_ocnt             = cnt;
3657        tic->t_tid              = prandom_u32();
3658        tic->t_clientid         = client;
3659        tic->t_flags            = XLOG_TIC_INITED;
3660        if (permanent)
3661                tic->t_flags |= XLOG_TIC_PERM_RESERV;
3662
3663        xlog_tic_reset_res(tic);
3664
3665        return tic;
3666}
3667
3668
3669/******************************************************************************
3670 *
3671 *              Log debug routines
3672 *
3673 ******************************************************************************
3674 */
3675#if defined(DEBUG)
3676/*
3677 * Make sure that the destination ptr is within the valid data region of
3678 * one of the iclogs.  This uses backup pointers stored in a different
3679 * part of the log in case we trash the log structure.
3680 */
3681void
3682xlog_verify_dest_ptr(
3683        struct xlog     *log,
3684        void            *ptr)
3685{
3686        int i;
3687        int good_ptr = 0;
3688
3689        for (i = 0; i < log->l_iclog_bufs; i++) {
3690                if (ptr >= log->l_iclog_bak[i] &&
3691                    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3692                        good_ptr++;
3693        }
3694
3695        if (!good_ptr)
3696                xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3697}
3698
3699/*
3700 * Check to make sure the grant write head didn't just over lap the tail.  If
3701 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3702 * the cycles differ by exactly one and check the byte count.
3703 *
3704 * This check is run unlocked, so can give false positives. Rather than assert
3705 * on failures, use a warn-once flag and a panic tag to allow the admin to
3706 * determine if they want to panic the machine when such an error occurs. For
3707 * debug kernels this will have the same effect as using an assert but, unlinke
3708 * an assert, it can be turned off at runtime.
3709 */
3710STATIC void
3711xlog_verify_grant_tail(
3712        struct xlog     *log)
3713{
3714        int             tail_cycle, tail_blocks;
3715        int             cycle, space;
3716
3717        xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3718        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3719        if (tail_cycle != cycle) {
3720                if (cycle - 1 != tail_cycle &&
3721                    !(log->l_flags & XLOG_TAIL_WARN)) {
3722                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3723                                "%s: cycle - 1 != tail_cycle", __func__);
3724                        log->l_flags |= XLOG_TAIL_WARN;
3725                }
3726
3727                if (space > BBTOB(tail_blocks) &&
3728                    !(log->l_flags & XLOG_TAIL_WARN)) {
3729                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3730                                "%s: space > BBTOB(tail_blocks)", __func__);
3731                        log->l_flags |= XLOG_TAIL_WARN;
3732                }
3733        }
3734}
3735
3736/* check if it will fit */
3737STATIC void
3738xlog_verify_tail_lsn(
3739        struct xlog             *log,
3740        struct xlog_in_core     *iclog,
3741        xfs_lsn_t               tail_lsn)
3742{
3743    int blocks;
3744
3745    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3746        blocks =
3747            log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3748        if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3749                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3750    } else {
3751        ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3752
3753        if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3754                xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3755
3756        blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3757        if (blocks < BTOBB(iclog->ic_offset) + 1)
3758                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3759    }
3760}       /* xlog_verify_tail_lsn */
3761
3762/*
3763 * Perform a number of checks on the iclog before writing to disk.
3764 *
3765 * 1. Make sure the iclogs are still circular
3766 * 2. Make sure we have a good magic number
3767 * 3. Make sure we don't have magic numbers in the data
3768 * 4. Check fields of each log operation header for:
3769 *      A. Valid client identifier
3770 *      B. tid ptr value falls in valid ptr space (user space code)
3771 *      C. Length in log record header is correct according to the
3772 *              individual operation headers within record.
3773 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3774 *      log, check the preceding blocks of the physical log to make sure all
3775 *      the cycle numbers agree with the current cycle number.
3776 */
3777STATIC void
3778xlog_verify_iclog(
3779        struct xlog             *log,
3780        struct xlog_in_core     *iclog,
3781        int                     count,
3782        bool                    syncing)
3783{
3784        xlog_op_header_t        *ophead;
3785        xlog_in_core_t          *icptr;
3786        xlog_in_core_2_t        *xhdr;
3787        void                    *base_ptr, *ptr, *p;
3788        ptrdiff_t               field_offset;
3789        __uint8_t               clientid;
3790        int                     len, i, j, k, op_len;
3791        int                     idx;
3792
3793        /* check validity of iclog pointers */
3794        spin_lock(&log->l_icloglock);
3795        icptr = log->l_iclog;
3796        for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3797                ASSERT(icptr);
3798
3799        if (icptr != log->l_iclog)
3800                xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3801        spin_unlock(&log->l_icloglock);
3802
3803        /* check log magic numbers */
3804        if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3805                xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3806
3807        base_ptr = ptr = &iclog->ic_header;
3808        p = &iclog->ic_header;
3809        for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3810                if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3811                        xfs_emerg(log->l_mp, "%s: unexpected magic num",
3812                                __func__);
3813        }
3814
3815        /* check fields */
3816        len = be32_to_cpu(iclog->ic_header.h_num_logops);
3817        base_ptr = ptr = iclog->ic_datap;
3818        ophead = ptr;
3819        xhdr = iclog->ic_data;
3820        for (i = 0; i < len; i++) {
3821                ophead = ptr;
3822
3823                /* clientid is only 1 byte */
3824                p = &ophead->oh_clientid;
3825                field_offset = p - base_ptr;
3826                if (!syncing || (field_offset & 0x1ff)) {
3827                        clientid = ophead->oh_clientid;
3828                } else {
3829                        idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3830                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3831                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3832                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3833                                clientid = xlog_get_client_id(
3834                                        xhdr[j].hic_xheader.xh_cycle_data[k]);
3835                        } else {
3836                                clientid = xlog_get_client_id(
3837                                        iclog->ic_header.h_cycle_data[idx]);
3838                        }
3839                }
3840                if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3841                        xfs_warn(log->l_mp,
3842                                "%s: invalid clientid %d op 0x%p offset 0x%lx",
3843                                __func__, clientid, ophead,
3844                                (unsigned long)field_offset);
3845
3846                /* check length */
3847                p = &ophead->oh_len;
3848                field_offset = p - base_ptr;
3849                if (!syncing || (field_offset & 0x1ff)) {
3850                        op_len = be32_to_cpu(ophead->oh_len);
3851                } else {
3852                        idx = BTOBBT((uintptr_t)&ophead->oh_len -
3853                                    (uintptr_t)iclog->ic_datap);
3854                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3855                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3856                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3857                                op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3858                        } else {
3859                                op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3860                        }
3861                }
3862                ptr += sizeof(xlog_op_header_t) + op_len;
3863        }
3864}       /* xlog_verify_iclog */
3865#endif
3866
3867/*
3868 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3869 */
3870STATIC int
3871xlog_state_ioerror(
3872        struct xlog     *log)
3873{
3874        xlog_in_core_t  *iclog, *ic;
3875
3876        iclog = log->l_iclog;
3877        if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3878                /*
3879                 * Mark all the incore logs IOERROR.
3880                 * From now on, no log flushes will result.
3881                 */
3882                ic = iclog;
3883                do {
3884                        ic->ic_state = XLOG_STATE_IOERROR;
3885                        ic = ic->ic_next;
3886                } while (ic != iclog);
3887                return 0;
3888        }
3889        /*
3890         * Return non-zero, if state transition has already happened.
3891         */
3892        return 1;
3893}
3894
3895/*
3896 * This is called from xfs_force_shutdown, when we're forcibly
3897 * shutting down the filesystem, typically because of an IO error.
3898 * Our main objectives here are to make sure that:
3899 *      a. if !logerror, flush the logs to disk. Anything modified
3900 *         after this is ignored.
3901 *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3902 *         parties to find out, 'atomically'.
3903 *      c. those who're sleeping on log reservations, pinned objects and
3904 *          other resources get woken up, and be told the bad news.
3905 *      d. nothing new gets queued up after (b) and (c) are done.
3906 *
3907 * Note: for the !logerror case we need to flush the regions held in memory out
3908 * to disk first. This needs to be done before the log is marked as shutdown,
3909 * otherwise the iclog writes will fail.
3910 */
3911int
3912xfs_log_force_umount(
3913        struct xfs_mount        *mp,
3914        int                     logerror)
3915{
3916        struct xlog     *log;
3917        int             retval;
3918
3919        log = mp->m_log;
3920
3921        /*
3922         * If this happens during log recovery, don't worry about
3923         * locking; the log isn't open for business yet.
3924         */
3925        if (!log ||
3926            log->l_flags & XLOG_ACTIVE_RECOVERY) {
3927                mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3928                if (mp->m_sb_bp)
3929                        mp->m_sb_bp->b_flags |= XBF_DONE;
3930                return 0;
3931        }
3932
3933        /*
3934         * Somebody could've already done the hard work for us.
3935         * No need to get locks for this.
3936         */
3937        if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3938                ASSERT(XLOG_FORCED_SHUTDOWN(log));
3939                return 1;
3940        }
3941
3942        /*
3943         * Flush all the completed transactions to disk before marking the log
3944         * being shut down. We need to do it in this order to ensure that
3945         * completed operations are safely on disk before we shut down, and that
3946         * we don't have to issue any buffer IO after the shutdown flags are set
3947         * to guarantee this.
3948         */
3949        if (!logerror)
3950                _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3951
3952        /*
3953         * mark the filesystem and the as in a shutdown state and wake
3954         * everybody up to tell them the bad news.
3955         */
3956        spin_lock(&log->l_icloglock);
3957        mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3958        if (mp->m_sb_bp)
3959                mp->m_sb_bp->b_flags |= XBF_DONE;
3960
3961        /*
3962         * Mark the log and the iclogs with IO error flags to prevent any
3963         * further log IO from being issued or completed.
3964         */
3965        log->l_flags |= XLOG_IO_ERROR;
3966        retval = xlog_state_ioerror(log);
3967        spin_unlock(&log->l_icloglock);
3968
3969        /*
3970         * We don't want anybody waiting for log reservations after this. That
3971         * means we have to wake up everybody queued up on reserveq as well as
3972         * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3973         * we don't enqueue anything once the SHUTDOWN flag is set, and this
3974         * action is protected by the grant locks.
3975         */
3976        xlog_grant_head_wake_all(&log->l_reserve_head);
3977        xlog_grant_head_wake_all(&log->l_write_head);
3978
3979        /*
3980         * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3981         * as if the log writes were completed. The abort handling in the log
3982         * item committed callback functions will do this again under lock to
3983         * avoid races.
3984         */
3985        wake_up_all(&log->l_cilp->xc_commit_wait);
3986        xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3987
3988#ifdef XFSERRORDEBUG
3989        {
3990                xlog_in_core_t  *iclog;
3991
3992                spin_lock(&log->l_icloglock);
3993                iclog = log->l_iclog;
3994                do {
3995                        ASSERT(iclog->ic_callback == 0);
3996                        iclog = iclog->ic_next;
3997                } while (iclog != log->l_iclog);
3998                spin_unlock(&log->l_icloglock);
3999        }
4000#endif
4001        /* return non-zero if log IOERROR transition had already happened */
4002        return retval;
4003}
4004
4005STATIC int
4006xlog_iclogs_empty(
4007        struct xlog     *log)
4008{
4009        xlog_in_core_t  *iclog;
4010
4011        iclog = log->l_iclog;
4012        do {
4013                /* endianness does not matter here, zero is zero in
4014                 * any language.
4015                 */
4016                if (iclog->ic_header.h_num_logops)
4017                        return 0;
4018                iclog = iclog->ic_next;
4019        } while (iclog != log->l_iclog);
4020        return 1;
4021}
4022
4023/*
4024 * Verify that an LSN stamped into a piece of metadata is valid. This is
4025 * intended for use in read verifiers on v5 superblocks.
4026 */
4027bool
4028xfs_log_check_lsn(
4029        struct xfs_mount        *mp,
4030        xfs_lsn_t               lsn)
4031{
4032        struct xlog             *log = mp->m_log;
4033        bool                    valid;
4034
4035        /*
4036         * norecovery mode skips mount-time log processing and unconditionally
4037         * resets the in-core LSN. We can't validate in this mode, but
4038         * modifications are not allowed anyways so just return true.
4039         */
4040        if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4041                return true;
4042
4043        /*
4044         * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4045         * handled by recovery and thus safe to ignore here.
4046         */
4047        if (lsn == NULLCOMMITLSN)
4048                return true;
4049
4050        valid = xlog_valid_lsn(mp->m_log, lsn);
4051
4052        /* warn the user about what's gone wrong before verifier failure */
4053        if (!valid) {
4054                spin_lock(&log->l_icloglock);
4055                xfs_warn(mp,
4056"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4057"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4058                         CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4059                         log->l_curr_cycle, log->l_curr_block);
4060                spin_unlock(&log->l_icloglock);
4061        }
4062
4063        return valid;
4064}
4065