linux/kernel/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/tick.h>
  22#include <linux/sysfs.h>
  23#include <linux/dcache.h>
  24#include <linux/percpu.h>
  25#include <linux/ptrace.h>
  26#include <linux/reboot.h>
  27#include <linux/vmstat.h>
  28#include <linux/device.h>
  29#include <linux/export.h>
  30#include <linux/vmalloc.h>
  31#include <linux/hardirq.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/cgroup.h>
  38#include <linux/perf_event.h>
  39#include <linux/trace_events.h>
  40#include <linux/hw_breakpoint.h>
  41#include <linux/mm_types.h>
  42#include <linux/module.h>
  43#include <linux/mman.h>
  44#include <linux/compat.h>
  45#include <linux/bpf.h>
  46#include <linux/filter.h>
  47#include <linux/namei.h>
  48#include <linux/parser.h>
  49
  50#include "internal.h"
  51
  52#include <asm/irq_regs.h>
  53
  54typedef int (*remote_function_f)(void *);
  55
  56struct remote_function_call {
  57        struct task_struct      *p;
  58        remote_function_f       func;
  59        void                    *info;
  60        int                     ret;
  61};
  62
  63static void remote_function(void *data)
  64{
  65        struct remote_function_call *tfc = data;
  66        struct task_struct *p = tfc->p;
  67
  68        if (p) {
  69                /* -EAGAIN */
  70                if (task_cpu(p) != smp_processor_id())
  71                        return;
  72
  73                /*
  74                 * Now that we're on right CPU with IRQs disabled, we can test
  75                 * if we hit the right task without races.
  76                 */
  77
  78                tfc->ret = -ESRCH; /* No such (running) process */
  79                if (p != current)
  80                        return;
  81        }
  82
  83        tfc->ret = tfc->func(tfc->info);
  84}
  85
  86/**
  87 * task_function_call - call a function on the cpu on which a task runs
  88 * @p:          the task to evaluate
  89 * @func:       the function to be called
  90 * @info:       the function call argument
  91 *
  92 * Calls the function @func when the task is currently running. This might
  93 * be on the current CPU, which just calls the function directly
  94 *
  95 * returns: @func return value, or
  96 *          -ESRCH  - when the process isn't running
  97 *          -EAGAIN - when the process moved away
  98 */
  99static int
 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
 101{
 102        struct remote_function_call data = {
 103                .p      = p,
 104                .func   = func,
 105                .info   = info,
 106                .ret    = -EAGAIN,
 107        };
 108        int ret;
 109
 110        do {
 111                ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
 112                if (!ret)
 113                        ret = data.ret;
 114        } while (ret == -EAGAIN);
 115
 116        return ret;
 117}
 118
 119/**
 120 * cpu_function_call - call a function on the cpu
 121 * @func:       the function to be called
 122 * @info:       the function call argument
 123 *
 124 * Calls the function @func on the remote cpu.
 125 *
 126 * returns: @func return value or -ENXIO when the cpu is offline
 127 */
 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
 129{
 130        struct remote_function_call data = {
 131                .p      = NULL,
 132                .func   = func,
 133                .info   = info,
 134                .ret    = -ENXIO, /* No such CPU */
 135        };
 136
 137        smp_call_function_single(cpu, remote_function, &data, 1);
 138
 139        return data.ret;
 140}
 141
 142static inline struct perf_cpu_context *
 143__get_cpu_context(struct perf_event_context *ctx)
 144{
 145        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 146}
 147
 148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 149                          struct perf_event_context *ctx)
 150{
 151        raw_spin_lock(&cpuctx->ctx.lock);
 152        if (ctx)
 153                raw_spin_lock(&ctx->lock);
 154}
 155
 156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 157                            struct perf_event_context *ctx)
 158{
 159        if (ctx)
 160                raw_spin_unlock(&ctx->lock);
 161        raw_spin_unlock(&cpuctx->ctx.lock);
 162}
 163
 164#define TASK_TOMBSTONE ((void *)-1L)
 165
 166static bool is_kernel_event(struct perf_event *event)
 167{
 168        return READ_ONCE(event->owner) == TASK_TOMBSTONE;
 169}
 170
 171/*
 172 * On task ctx scheduling...
 173 *
 174 * When !ctx->nr_events a task context will not be scheduled. This means
 175 * we can disable the scheduler hooks (for performance) without leaving
 176 * pending task ctx state.
 177 *
 178 * This however results in two special cases:
 179 *
 180 *  - removing the last event from a task ctx; this is relatively straight
 181 *    forward and is done in __perf_remove_from_context.
 182 *
 183 *  - adding the first event to a task ctx; this is tricky because we cannot
 184 *    rely on ctx->is_active and therefore cannot use event_function_call().
 185 *    See perf_install_in_context().
 186 *
 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 188 */
 189
 190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
 191                        struct perf_event_context *, void *);
 192
 193struct event_function_struct {
 194        struct perf_event *event;
 195        event_f func;
 196        void *data;
 197};
 198
 199static int event_function(void *info)
 200{
 201        struct event_function_struct *efs = info;
 202        struct perf_event *event = efs->event;
 203        struct perf_event_context *ctx = event->ctx;
 204        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 205        struct perf_event_context *task_ctx = cpuctx->task_ctx;
 206        int ret = 0;
 207
 208        WARN_ON_ONCE(!irqs_disabled());
 209
 210        perf_ctx_lock(cpuctx, task_ctx);
 211        /*
 212         * Since we do the IPI call without holding ctx->lock things can have
 213         * changed, double check we hit the task we set out to hit.
 214         */
 215        if (ctx->task) {
 216                if (ctx->task != current) {
 217                        ret = -ESRCH;
 218                        goto unlock;
 219                }
 220
 221                /*
 222                 * We only use event_function_call() on established contexts,
 223                 * and event_function() is only ever called when active (or
 224                 * rather, we'll have bailed in task_function_call() or the
 225                 * above ctx->task != current test), therefore we must have
 226                 * ctx->is_active here.
 227                 */
 228                WARN_ON_ONCE(!ctx->is_active);
 229                /*
 230                 * And since we have ctx->is_active, cpuctx->task_ctx must
 231                 * match.
 232                 */
 233                WARN_ON_ONCE(task_ctx != ctx);
 234        } else {
 235                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 236        }
 237
 238        efs->func(event, cpuctx, ctx, efs->data);
 239unlock:
 240        perf_ctx_unlock(cpuctx, task_ctx);
 241
 242        return ret;
 243}
 244
 245static void event_function_call(struct perf_event *event, event_f func, void *data)
 246{
 247        struct perf_event_context *ctx = event->ctx;
 248        struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
 249        struct event_function_struct efs = {
 250                .event = event,
 251                .func = func,
 252                .data = data,
 253        };
 254
 255        if (!event->parent) {
 256                /*
 257                 * If this is a !child event, we must hold ctx::mutex to
 258                 * stabilize the the event->ctx relation. See
 259                 * perf_event_ctx_lock().
 260                 */
 261                lockdep_assert_held(&ctx->mutex);
 262        }
 263
 264        if (!task) {
 265                cpu_function_call(event->cpu, event_function, &efs);
 266                return;
 267        }
 268
 269        if (task == TASK_TOMBSTONE)
 270                return;
 271
 272again:
 273        if (!task_function_call(task, event_function, &efs))
 274                return;
 275
 276        raw_spin_lock_irq(&ctx->lock);
 277        /*
 278         * Reload the task pointer, it might have been changed by
 279         * a concurrent perf_event_context_sched_out().
 280         */
 281        task = ctx->task;
 282        if (task == TASK_TOMBSTONE) {
 283                raw_spin_unlock_irq(&ctx->lock);
 284                return;
 285        }
 286        if (ctx->is_active) {
 287                raw_spin_unlock_irq(&ctx->lock);
 288                goto again;
 289        }
 290        func(event, NULL, ctx, data);
 291        raw_spin_unlock_irq(&ctx->lock);
 292}
 293
 294/*
 295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 296 * are already disabled and we're on the right CPU.
 297 */
 298static void event_function_local(struct perf_event *event, event_f func, void *data)
 299{
 300        struct perf_event_context *ctx = event->ctx;
 301        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 302        struct task_struct *task = READ_ONCE(ctx->task);
 303        struct perf_event_context *task_ctx = NULL;
 304
 305        WARN_ON_ONCE(!irqs_disabled());
 306
 307        if (task) {
 308                if (task == TASK_TOMBSTONE)
 309                        return;
 310
 311                task_ctx = ctx;
 312        }
 313
 314        perf_ctx_lock(cpuctx, task_ctx);
 315
 316        task = ctx->task;
 317        if (task == TASK_TOMBSTONE)
 318                goto unlock;
 319
 320        if (task) {
 321                /*
 322                 * We must be either inactive or active and the right task,
 323                 * otherwise we're screwed, since we cannot IPI to somewhere
 324                 * else.
 325                 */
 326                if (ctx->is_active) {
 327                        if (WARN_ON_ONCE(task != current))
 328                                goto unlock;
 329
 330                        if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
 331                                goto unlock;
 332                }
 333        } else {
 334                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 335        }
 336
 337        func(event, cpuctx, ctx, data);
 338unlock:
 339        perf_ctx_unlock(cpuctx, task_ctx);
 340}
 341
 342#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 343                       PERF_FLAG_FD_OUTPUT  |\
 344                       PERF_FLAG_PID_CGROUP |\
 345                       PERF_FLAG_FD_CLOEXEC)
 346
 347/*
 348 * branch priv levels that need permission checks
 349 */
 350#define PERF_SAMPLE_BRANCH_PERM_PLM \
 351        (PERF_SAMPLE_BRANCH_KERNEL |\
 352         PERF_SAMPLE_BRANCH_HV)
 353
 354enum event_type_t {
 355        EVENT_FLEXIBLE = 0x1,
 356        EVENT_PINNED = 0x2,
 357        EVENT_TIME = 0x4,
 358        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 359};
 360
 361/*
 362 * perf_sched_events : >0 events exist
 363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 364 */
 365
 366static void perf_sched_delayed(struct work_struct *work);
 367DEFINE_STATIC_KEY_FALSE(perf_sched_events);
 368static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
 369static DEFINE_MUTEX(perf_sched_mutex);
 370static atomic_t perf_sched_count;
 371
 372static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 373static DEFINE_PER_CPU(int, perf_sched_cb_usages);
 374static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
 375
 376static atomic_t nr_mmap_events __read_mostly;
 377static atomic_t nr_comm_events __read_mostly;
 378static atomic_t nr_task_events __read_mostly;
 379static atomic_t nr_freq_events __read_mostly;
 380static atomic_t nr_switch_events __read_mostly;
 381
 382static LIST_HEAD(pmus);
 383static DEFINE_MUTEX(pmus_lock);
 384static struct srcu_struct pmus_srcu;
 385
 386/*
 387 * perf event paranoia level:
 388 *  -1 - not paranoid at all
 389 *   0 - disallow raw tracepoint access for unpriv
 390 *   1 - disallow cpu events for unpriv
 391 *   2 - disallow kernel profiling for unpriv
 392 */
 393int sysctl_perf_event_paranoid __read_mostly = 2;
 394
 395/* Minimum for 512 kiB + 1 user control page */
 396int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 397
 398/*
 399 * max perf event sample rate
 400 */
 401#define DEFAULT_MAX_SAMPLE_RATE         100000
 402#define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 403#define DEFAULT_CPU_TIME_MAX_PERCENT    25
 404
 405int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 406
 407static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 408static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
 409
 410static int perf_sample_allowed_ns __read_mostly =
 411        DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 412
 413static void update_perf_cpu_limits(void)
 414{
 415        u64 tmp = perf_sample_period_ns;
 416
 417        tmp *= sysctl_perf_cpu_time_max_percent;
 418        tmp = div_u64(tmp, 100);
 419        if (!tmp)
 420                tmp = 1;
 421
 422        WRITE_ONCE(perf_sample_allowed_ns, tmp);
 423}
 424
 425static int perf_rotate_context(struct perf_cpu_context *cpuctx);
 426
 427int perf_proc_update_handler(struct ctl_table *table, int write,
 428                void __user *buffer, size_t *lenp,
 429                loff_t *ppos)
 430{
 431        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 432
 433        if (ret || !write)
 434                return ret;
 435
 436        /*
 437         * If throttling is disabled don't allow the write:
 438         */
 439        if (sysctl_perf_cpu_time_max_percent == 100 ||
 440            sysctl_perf_cpu_time_max_percent == 0)
 441                return -EINVAL;
 442
 443        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 444        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 445        update_perf_cpu_limits();
 446
 447        return 0;
 448}
 449
 450int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 451
 452int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 453                                void __user *buffer, size_t *lenp,
 454                                loff_t *ppos)
 455{
 456        int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 457
 458        if (ret || !write)
 459                return ret;
 460
 461        if (sysctl_perf_cpu_time_max_percent == 100 ||
 462            sysctl_perf_cpu_time_max_percent == 0) {
 463                printk(KERN_WARNING
 464                       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
 465                WRITE_ONCE(perf_sample_allowed_ns, 0);
 466        } else {
 467                update_perf_cpu_limits();
 468        }
 469
 470        return 0;
 471}
 472
 473/*
 474 * perf samples are done in some very critical code paths (NMIs).
 475 * If they take too much CPU time, the system can lock up and not
 476 * get any real work done.  This will drop the sample rate when
 477 * we detect that events are taking too long.
 478 */
 479#define NR_ACCUMULATED_SAMPLES 128
 480static DEFINE_PER_CPU(u64, running_sample_length);
 481
 482static u64 __report_avg;
 483static u64 __report_allowed;
 484
 485static void perf_duration_warn(struct irq_work *w)
 486{
 487        printk_ratelimited(KERN_INFO
 488                "perf: interrupt took too long (%lld > %lld), lowering "
 489                "kernel.perf_event_max_sample_rate to %d\n",
 490                __report_avg, __report_allowed,
 491                sysctl_perf_event_sample_rate);
 492}
 493
 494static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 495
 496void perf_sample_event_took(u64 sample_len_ns)
 497{
 498        u64 max_len = READ_ONCE(perf_sample_allowed_ns);
 499        u64 running_len;
 500        u64 avg_len;
 501        u32 max;
 502
 503        if (max_len == 0)
 504                return;
 505
 506        /* Decay the counter by 1 average sample. */
 507        running_len = __this_cpu_read(running_sample_length);
 508        running_len -= running_len/NR_ACCUMULATED_SAMPLES;
 509        running_len += sample_len_ns;
 510        __this_cpu_write(running_sample_length, running_len);
 511
 512        /*
 513         * Note: this will be biased artifically low until we have
 514         * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
 515         * from having to maintain a count.
 516         */
 517        avg_len = running_len/NR_ACCUMULATED_SAMPLES;
 518        if (avg_len <= max_len)
 519                return;
 520
 521        __report_avg = avg_len;
 522        __report_allowed = max_len;
 523
 524        /*
 525         * Compute a throttle threshold 25% below the current duration.
 526         */
 527        avg_len += avg_len / 4;
 528        max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
 529        if (avg_len < max)
 530                max /= (u32)avg_len;
 531        else
 532                max = 1;
 533
 534        WRITE_ONCE(perf_sample_allowed_ns, avg_len);
 535        WRITE_ONCE(max_samples_per_tick, max);
 536
 537        sysctl_perf_event_sample_rate = max * HZ;
 538        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 539
 540        if (!irq_work_queue(&perf_duration_work)) {
 541                early_printk("perf: interrupt took too long (%lld > %lld), lowering "
 542                             "kernel.perf_event_max_sample_rate to %d\n",
 543                             __report_avg, __report_allowed,
 544                             sysctl_perf_event_sample_rate);
 545        }
 546}
 547
 548static atomic64_t perf_event_id;
 549
 550static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 551                              enum event_type_t event_type);
 552
 553static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 554                             enum event_type_t event_type,
 555                             struct task_struct *task);
 556
 557static void update_context_time(struct perf_event_context *ctx);
 558static u64 perf_event_time(struct perf_event *event);
 559
 560void __weak perf_event_print_debug(void)        { }
 561
 562extern __weak const char *perf_pmu_name(void)
 563{
 564        return "pmu";
 565}
 566
 567static inline u64 perf_clock(void)
 568{
 569        return local_clock();
 570}
 571
 572static inline u64 perf_event_clock(struct perf_event *event)
 573{
 574        return event->clock();
 575}
 576
 577#ifdef CONFIG_CGROUP_PERF
 578
 579static inline bool
 580perf_cgroup_match(struct perf_event *event)
 581{
 582        struct perf_event_context *ctx = event->ctx;
 583        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 584
 585        /* @event doesn't care about cgroup */
 586        if (!event->cgrp)
 587                return true;
 588
 589        /* wants specific cgroup scope but @cpuctx isn't associated with any */
 590        if (!cpuctx->cgrp)
 591                return false;
 592
 593        /*
 594         * Cgroup scoping is recursive.  An event enabled for a cgroup is
 595         * also enabled for all its descendant cgroups.  If @cpuctx's
 596         * cgroup is a descendant of @event's (the test covers identity
 597         * case), it's a match.
 598         */
 599        return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 600                                    event->cgrp->css.cgroup);
 601}
 602
 603static inline void perf_detach_cgroup(struct perf_event *event)
 604{
 605        css_put(&event->cgrp->css);
 606        event->cgrp = NULL;
 607}
 608
 609static inline int is_cgroup_event(struct perf_event *event)
 610{
 611        return event->cgrp != NULL;
 612}
 613
 614static inline u64 perf_cgroup_event_time(struct perf_event *event)
 615{
 616        struct perf_cgroup_info *t;
 617
 618        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 619        return t->time;
 620}
 621
 622static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 623{
 624        struct perf_cgroup_info *info;
 625        u64 now;
 626
 627        now = perf_clock();
 628
 629        info = this_cpu_ptr(cgrp->info);
 630
 631        info->time += now - info->timestamp;
 632        info->timestamp = now;
 633}
 634
 635static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 636{
 637        struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 638        if (cgrp_out)
 639                __update_cgrp_time(cgrp_out);
 640}
 641
 642static inline void update_cgrp_time_from_event(struct perf_event *event)
 643{
 644        struct perf_cgroup *cgrp;
 645
 646        /*
 647         * ensure we access cgroup data only when needed and
 648         * when we know the cgroup is pinned (css_get)
 649         */
 650        if (!is_cgroup_event(event))
 651                return;
 652
 653        cgrp = perf_cgroup_from_task(current, event->ctx);
 654        /*
 655         * Do not update time when cgroup is not active
 656         */
 657        if (cgrp == event->cgrp)
 658                __update_cgrp_time(event->cgrp);
 659}
 660
 661static inline void
 662perf_cgroup_set_timestamp(struct task_struct *task,
 663                          struct perf_event_context *ctx)
 664{
 665        struct perf_cgroup *cgrp;
 666        struct perf_cgroup_info *info;
 667
 668        /*
 669         * ctx->lock held by caller
 670         * ensure we do not access cgroup data
 671         * unless we have the cgroup pinned (css_get)
 672         */
 673        if (!task || !ctx->nr_cgroups)
 674                return;
 675
 676        cgrp = perf_cgroup_from_task(task, ctx);
 677        info = this_cpu_ptr(cgrp->info);
 678        info->timestamp = ctx->timestamp;
 679}
 680
 681#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 682#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 683
 684/*
 685 * reschedule events based on the cgroup constraint of task.
 686 *
 687 * mode SWOUT : schedule out everything
 688 * mode SWIN : schedule in based on cgroup for next
 689 */
 690static void perf_cgroup_switch(struct task_struct *task, int mode)
 691{
 692        struct perf_cpu_context *cpuctx;
 693        struct pmu *pmu;
 694        unsigned long flags;
 695
 696        /*
 697         * disable interrupts to avoid geting nr_cgroup
 698         * changes via __perf_event_disable(). Also
 699         * avoids preemption.
 700         */
 701        local_irq_save(flags);
 702
 703        /*
 704         * we reschedule only in the presence of cgroup
 705         * constrained events.
 706         */
 707
 708        list_for_each_entry_rcu(pmu, &pmus, entry) {
 709                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 710                if (cpuctx->unique_pmu != pmu)
 711                        continue; /* ensure we process each cpuctx once */
 712
 713                /*
 714                 * perf_cgroup_events says at least one
 715                 * context on this CPU has cgroup events.
 716                 *
 717                 * ctx->nr_cgroups reports the number of cgroup
 718                 * events for a context.
 719                 */
 720                if (cpuctx->ctx.nr_cgroups > 0) {
 721                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 722                        perf_pmu_disable(cpuctx->ctx.pmu);
 723
 724                        if (mode & PERF_CGROUP_SWOUT) {
 725                                cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 726                                /*
 727                                 * must not be done before ctxswout due
 728                                 * to event_filter_match() in event_sched_out()
 729                                 */
 730                                cpuctx->cgrp = NULL;
 731                        }
 732
 733                        if (mode & PERF_CGROUP_SWIN) {
 734                                WARN_ON_ONCE(cpuctx->cgrp);
 735                                /*
 736                                 * set cgrp before ctxsw in to allow
 737                                 * event_filter_match() to not have to pass
 738                                 * task around
 739                                 * we pass the cpuctx->ctx to perf_cgroup_from_task()
 740                                 * because cgorup events are only per-cpu
 741                                 */
 742                                cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
 743                                cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 744                        }
 745                        perf_pmu_enable(cpuctx->ctx.pmu);
 746                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 747                }
 748        }
 749
 750        local_irq_restore(flags);
 751}
 752
 753static inline void perf_cgroup_sched_out(struct task_struct *task,
 754                                         struct task_struct *next)
 755{
 756        struct perf_cgroup *cgrp1;
 757        struct perf_cgroup *cgrp2 = NULL;
 758
 759        rcu_read_lock();
 760        /*
 761         * we come here when we know perf_cgroup_events > 0
 762         * we do not need to pass the ctx here because we know
 763         * we are holding the rcu lock
 764         */
 765        cgrp1 = perf_cgroup_from_task(task, NULL);
 766        cgrp2 = perf_cgroup_from_task(next, NULL);
 767
 768        /*
 769         * only schedule out current cgroup events if we know
 770         * that we are switching to a different cgroup. Otherwise,
 771         * do no touch the cgroup events.
 772         */
 773        if (cgrp1 != cgrp2)
 774                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 775
 776        rcu_read_unlock();
 777}
 778
 779static inline void perf_cgroup_sched_in(struct task_struct *prev,
 780                                        struct task_struct *task)
 781{
 782        struct perf_cgroup *cgrp1;
 783        struct perf_cgroup *cgrp2 = NULL;
 784
 785        rcu_read_lock();
 786        /*
 787         * we come here when we know perf_cgroup_events > 0
 788         * we do not need to pass the ctx here because we know
 789         * we are holding the rcu lock
 790         */
 791        cgrp1 = perf_cgroup_from_task(task, NULL);
 792        cgrp2 = perf_cgroup_from_task(prev, NULL);
 793
 794        /*
 795         * only need to schedule in cgroup events if we are changing
 796         * cgroup during ctxsw. Cgroup events were not scheduled
 797         * out of ctxsw out if that was not the case.
 798         */
 799        if (cgrp1 != cgrp2)
 800                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 801
 802        rcu_read_unlock();
 803}
 804
 805static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 806                                      struct perf_event_attr *attr,
 807                                      struct perf_event *group_leader)
 808{
 809        struct perf_cgroup *cgrp;
 810        struct cgroup_subsys_state *css;
 811        struct fd f = fdget(fd);
 812        int ret = 0;
 813
 814        if (!f.file)
 815                return -EBADF;
 816
 817        css = css_tryget_online_from_dir(f.file->f_path.dentry,
 818                                         &perf_event_cgrp_subsys);
 819        if (IS_ERR(css)) {
 820                ret = PTR_ERR(css);
 821                goto out;
 822        }
 823
 824        cgrp = container_of(css, struct perf_cgroup, css);
 825        event->cgrp = cgrp;
 826
 827        /*
 828         * all events in a group must monitor
 829         * the same cgroup because a task belongs
 830         * to only one perf cgroup at a time
 831         */
 832        if (group_leader && group_leader->cgrp != cgrp) {
 833                perf_detach_cgroup(event);
 834                ret = -EINVAL;
 835        }
 836out:
 837        fdput(f);
 838        return ret;
 839}
 840
 841static inline void
 842perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 843{
 844        struct perf_cgroup_info *t;
 845        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 846        event->shadow_ctx_time = now - t->timestamp;
 847}
 848
 849static inline void
 850perf_cgroup_defer_enabled(struct perf_event *event)
 851{
 852        /*
 853         * when the current task's perf cgroup does not match
 854         * the event's, we need to remember to call the
 855         * perf_mark_enable() function the first time a task with
 856         * a matching perf cgroup is scheduled in.
 857         */
 858        if (is_cgroup_event(event) && !perf_cgroup_match(event))
 859                event->cgrp_defer_enabled = 1;
 860}
 861
 862static inline void
 863perf_cgroup_mark_enabled(struct perf_event *event,
 864                         struct perf_event_context *ctx)
 865{
 866        struct perf_event *sub;
 867        u64 tstamp = perf_event_time(event);
 868
 869        if (!event->cgrp_defer_enabled)
 870                return;
 871
 872        event->cgrp_defer_enabled = 0;
 873
 874        event->tstamp_enabled = tstamp - event->total_time_enabled;
 875        list_for_each_entry(sub, &event->sibling_list, group_entry) {
 876                if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 877                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 878                        sub->cgrp_defer_enabled = 0;
 879                }
 880        }
 881}
 882
 883/*
 884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 885 * cleared when last cgroup event is removed.
 886 */
 887static inline void
 888list_update_cgroup_event(struct perf_event *event,
 889                         struct perf_event_context *ctx, bool add)
 890{
 891        struct perf_cpu_context *cpuctx;
 892
 893        if (!is_cgroup_event(event))
 894                return;
 895
 896        if (add && ctx->nr_cgroups++)
 897                return;
 898        else if (!add && --ctx->nr_cgroups)
 899                return;
 900        /*
 901         * Because cgroup events are always per-cpu events,
 902         * this will always be called from the right CPU.
 903         */
 904        cpuctx = __get_cpu_context(ctx);
 905
 906        /*
 907         * cpuctx->cgrp is NULL until a cgroup event is sched in or
 908         * ctx->nr_cgroup == 0 .
 909         */
 910        if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
 911                cpuctx->cgrp = event->cgrp;
 912        else if (!add)
 913                cpuctx->cgrp = NULL;
 914}
 915
 916#else /* !CONFIG_CGROUP_PERF */
 917
 918static inline bool
 919perf_cgroup_match(struct perf_event *event)
 920{
 921        return true;
 922}
 923
 924static inline void perf_detach_cgroup(struct perf_event *event)
 925{}
 926
 927static inline int is_cgroup_event(struct perf_event *event)
 928{
 929        return 0;
 930}
 931
 932static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 933{
 934        return 0;
 935}
 936
 937static inline void update_cgrp_time_from_event(struct perf_event *event)
 938{
 939}
 940
 941static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 942{
 943}
 944
 945static inline void perf_cgroup_sched_out(struct task_struct *task,
 946                                         struct task_struct *next)
 947{
 948}
 949
 950static inline void perf_cgroup_sched_in(struct task_struct *prev,
 951                                        struct task_struct *task)
 952{
 953}
 954
 955static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 956                                      struct perf_event_attr *attr,
 957                                      struct perf_event *group_leader)
 958{
 959        return -EINVAL;
 960}
 961
 962static inline void
 963perf_cgroup_set_timestamp(struct task_struct *task,
 964                          struct perf_event_context *ctx)
 965{
 966}
 967
 968void
 969perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 970{
 971}
 972
 973static inline void
 974perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 975{
 976}
 977
 978static inline u64 perf_cgroup_event_time(struct perf_event *event)
 979{
 980        return 0;
 981}
 982
 983static inline void
 984perf_cgroup_defer_enabled(struct perf_event *event)
 985{
 986}
 987
 988static inline void
 989perf_cgroup_mark_enabled(struct perf_event *event,
 990                         struct perf_event_context *ctx)
 991{
 992}
 993
 994static inline void
 995list_update_cgroup_event(struct perf_event *event,
 996                         struct perf_event_context *ctx, bool add)
 997{
 998}
 999
1000#endif
1001
1002/*
1003 * set default to be dependent on timer tick just
1004 * like original code
1005 */
1006#define PERF_CPU_HRTIMER (1000 / HZ)
1007/*
1008 * function must be called with interrupts disbled
1009 */
1010static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011{
1012        struct perf_cpu_context *cpuctx;
1013        int rotations = 0;
1014
1015        WARN_ON(!irqs_disabled());
1016
1017        cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018        rotations = perf_rotate_context(cpuctx);
1019
1020        raw_spin_lock(&cpuctx->hrtimer_lock);
1021        if (rotations)
1022                hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023        else
1024                cpuctx->hrtimer_active = 0;
1025        raw_spin_unlock(&cpuctx->hrtimer_lock);
1026
1027        return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028}
1029
1030static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031{
1032        struct hrtimer *timer = &cpuctx->hrtimer;
1033        struct pmu *pmu = cpuctx->ctx.pmu;
1034        u64 interval;
1035
1036        /* no multiplexing needed for SW PMU */
1037        if (pmu->task_ctx_nr == perf_sw_context)
1038                return;
1039
1040        /*
1041         * check default is sane, if not set then force to
1042         * default interval (1/tick)
1043         */
1044        interval = pmu->hrtimer_interval_ms;
1045        if (interval < 1)
1046                interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047
1048        cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049
1050        raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052        timer->function = perf_mux_hrtimer_handler;
1053}
1054
1055static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056{
1057        struct hrtimer *timer = &cpuctx->hrtimer;
1058        struct pmu *pmu = cpuctx->ctx.pmu;
1059        unsigned long flags;
1060
1061        /* not for SW PMU */
1062        if (pmu->task_ctx_nr == perf_sw_context)
1063                return 0;
1064
1065        raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066        if (!cpuctx->hrtimer_active) {
1067                cpuctx->hrtimer_active = 1;
1068                hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069                hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070        }
1071        raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072
1073        return 0;
1074}
1075
1076void perf_pmu_disable(struct pmu *pmu)
1077{
1078        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079        if (!(*count)++)
1080                pmu->pmu_disable(pmu);
1081}
1082
1083void perf_pmu_enable(struct pmu *pmu)
1084{
1085        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086        if (!--(*count))
1087                pmu->pmu_enable(pmu);
1088}
1089
1090static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091
1092/*
1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094 * perf_event_task_tick() are fully serialized because they're strictly cpu
1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096 * disabled, while perf_event_task_tick is called from IRQ context.
1097 */
1098static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099{
1100        struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101
1102        WARN_ON(!irqs_disabled());
1103
1104        WARN_ON(!list_empty(&ctx->active_ctx_list));
1105
1106        list_add(&ctx->active_ctx_list, head);
1107}
1108
1109static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110{
1111        WARN_ON(!irqs_disabled());
1112
1113        WARN_ON(list_empty(&ctx->active_ctx_list));
1114
1115        list_del_init(&ctx->active_ctx_list);
1116}
1117
1118static void get_ctx(struct perf_event_context *ctx)
1119{
1120        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121}
1122
1123static void free_ctx(struct rcu_head *head)
1124{
1125        struct perf_event_context *ctx;
1126
1127        ctx = container_of(head, struct perf_event_context, rcu_head);
1128        kfree(ctx->task_ctx_data);
1129        kfree(ctx);
1130}
1131
1132static void put_ctx(struct perf_event_context *ctx)
1133{
1134        if (atomic_dec_and_test(&ctx->refcount)) {
1135                if (ctx->parent_ctx)
1136                        put_ctx(ctx->parent_ctx);
1137                if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138                        put_task_struct(ctx->task);
1139                call_rcu(&ctx->rcu_head, free_ctx);
1140        }
1141}
1142
1143/*
1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145 * perf_pmu_migrate_context() we need some magic.
1146 *
1147 * Those places that change perf_event::ctx will hold both
1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149 *
1150 * Lock ordering is by mutex address. There are two other sites where
1151 * perf_event_context::mutex nests and those are:
1152 *
1153 *  - perf_event_exit_task_context()    [ child , 0 ]
1154 *      perf_event_exit_event()
1155 *        put_event()                   [ parent, 1 ]
1156 *
1157 *  - perf_event_init_context()         [ parent, 0 ]
1158 *      inherit_task_group()
1159 *        inherit_group()
1160 *          inherit_event()
1161 *            perf_event_alloc()
1162 *              perf_init_event()
1163 *                perf_try_init_event() [ child , 1 ]
1164 *
1165 * While it appears there is an obvious deadlock here -- the parent and child
1166 * nesting levels are inverted between the two. This is in fact safe because
1167 * life-time rules separate them. That is an exiting task cannot fork, and a
1168 * spawning task cannot (yet) exit.
1169 *
1170 * But remember that that these are parent<->child context relations, and
1171 * migration does not affect children, therefore these two orderings should not
1172 * interact.
1173 *
1174 * The change in perf_event::ctx does not affect children (as claimed above)
1175 * because the sys_perf_event_open() case will install a new event and break
1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177 * concerned with cpuctx and that doesn't have children.
1178 *
1179 * The places that change perf_event::ctx will issue:
1180 *
1181 *   perf_remove_from_context();
1182 *   synchronize_rcu();
1183 *   perf_install_in_context();
1184 *
1185 * to affect the change. The remove_from_context() + synchronize_rcu() should
1186 * quiesce the event, after which we can install it in the new location. This
1187 * means that only external vectors (perf_fops, prctl) can perturb the event
1188 * while in transit. Therefore all such accessors should also acquire
1189 * perf_event_context::mutex to serialize against this.
1190 *
1191 * However; because event->ctx can change while we're waiting to acquire
1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193 * function.
1194 *
1195 * Lock order:
1196 *    cred_guard_mutex
1197 *      task_struct::perf_event_mutex
1198 *        perf_event_context::mutex
1199 *          perf_event::child_mutex;
1200 *            perf_event_context::lock
1201 *          perf_event::mmap_mutex
1202 *          mmap_sem
1203 */
1204static struct perf_event_context *
1205perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206{
1207        struct perf_event_context *ctx;
1208
1209again:
1210        rcu_read_lock();
1211        ctx = ACCESS_ONCE(event->ctx);
1212        if (!atomic_inc_not_zero(&ctx->refcount)) {
1213                rcu_read_unlock();
1214                goto again;
1215        }
1216        rcu_read_unlock();
1217
1218        mutex_lock_nested(&ctx->mutex, nesting);
1219        if (event->ctx != ctx) {
1220                mutex_unlock(&ctx->mutex);
1221                put_ctx(ctx);
1222                goto again;
1223        }
1224
1225        return ctx;
1226}
1227
1228static inline struct perf_event_context *
1229perf_event_ctx_lock(struct perf_event *event)
1230{
1231        return perf_event_ctx_lock_nested(event, 0);
1232}
1233
1234static void perf_event_ctx_unlock(struct perf_event *event,
1235                                  struct perf_event_context *ctx)
1236{
1237        mutex_unlock(&ctx->mutex);
1238        put_ctx(ctx);
1239}
1240
1241/*
1242 * This must be done under the ctx->lock, such as to serialize against
1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244 * calling scheduler related locks and ctx->lock nests inside those.
1245 */
1246static __must_check struct perf_event_context *
1247unclone_ctx(struct perf_event_context *ctx)
1248{
1249        struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250
1251        lockdep_assert_held(&ctx->lock);
1252
1253        if (parent_ctx)
1254                ctx->parent_ctx = NULL;
1255        ctx->generation++;
1256
1257        return parent_ctx;
1258}
1259
1260static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261{
1262        /*
1263         * only top level events have the pid namespace they were created in
1264         */
1265        if (event->parent)
1266                event = event->parent;
1267
1268        return task_tgid_nr_ns(p, event->ns);
1269}
1270
1271static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272{
1273        /*
1274         * only top level events have the pid namespace they were created in
1275         */
1276        if (event->parent)
1277                event = event->parent;
1278
1279        return task_pid_nr_ns(p, event->ns);
1280}
1281
1282/*
1283 * If we inherit events we want to return the parent event id
1284 * to userspace.
1285 */
1286static u64 primary_event_id(struct perf_event *event)
1287{
1288        u64 id = event->id;
1289
1290        if (event->parent)
1291                id = event->parent->id;
1292
1293        return id;
1294}
1295
1296/*
1297 * Get the perf_event_context for a task and lock it.
1298 *
1299 * This has to cope with with the fact that until it is locked,
1300 * the context could get moved to another task.
1301 */
1302static struct perf_event_context *
1303perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304{
1305        struct perf_event_context *ctx;
1306
1307retry:
1308        /*
1309         * One of the few rules of preemptible RCU is that one cannot do
1310         * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311         * part of the read side critical section was irqs-enabled -- see
1312         * rcu_read_unlock_special().
1313         *
1314         * Since ctx->lock nests under rq->lock we must ensure the entire read
1315         * side critical section has interrupts disabled.
1316         */
1317        local_irq_save(*flags);
1318        rcu_read_lock();
1319        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320        if (ctx) {
1321                /*
1322                 * If this context is a clone of another, it might
1323                 * get swapped for another underneath us by
1324                 * perf_event_task_sched_out, though the
1325                 * rcu_read_lock() protects us from any context
1326                 * getting freed.  Lock the context and check if it
1327                 * got swapped before we could get the lock, and retry
1328                 * if so.  If we locked the right context, then it
1329                 * can't get swapped on us any more.
1330                 */
1331                raw_spin_lock(&ctx->lock);
1332                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333                        raw_spin_unlock(&ctx->lock);
1334                        rcu_read_unlock();
1335                        local_irq_restore(*flags);
1336                        goto retry;
1337                }
1338
1339                if (ctx->task == TASK_TOMBSTONE ||
1340                    !atomic_inc_not_zero(&ctx->refcount)) {
1341                        raw_spin_unlock(&ctx->lock);
1342                        ctx = NULL;
1343                } else {
1344                        WARN_ON_ONCE(ctx->task != task);
1345                }
1346        }
1347        rcu_read_unlock();
1348        if (!ctx)
1349                local_irq_restore(*flags);
1350        return ctx;
1351}
1352
1353/*
1354 * Get the context for a task and increment its pin_count so it
1355 * can't get swapped to another task.  This also increments its
1356 * reference count so that the context can't get freed.
1357 */
1358static struct perf_event_context *
1359perf_pin_task_context(struct task_struct *task, int ctxn)
1360{
1361        struct perf_event_context *ctx;
1362        unsigned long flags;
1363
1364        ctx = perf_lock_task_context(task, ctxn, &flags);
1365        if (ctx) {
1366                ++ctx->pin_count;
1367                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368        }
1369        return ctx;
1370}
1371
1372static void perf_unpin_context(struct perf_event_context *ctx)
1373{
1374        unsigned long flags;
1375
1376        raw_spin_lock_irqsave(&ctx->lock, flags);
1377        --ctx->pin_count;
1378        raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379}
1380
1381/*
1382 * Update the record of the current time in a context.
1383 */
1384static void update_context_time(struct perf_event_context *ctx)
1385{
1386        u64 now = perf_clock();
1387
1388        ctx->time += now - ctx->timestamp;
1389        ctx->timestamp = now;
1390}
1391
1392static u64 perf_event_time(struct perf_event *event)
1393{
1394        struct perf_event_context *ctx = event->ctx;
1395
1396        if (is_cgroup_event(event))
1397                return perf_cgroup_event_time(event);
1398
1399        return ctx ? ctx->time : 0;
1400}
1401
1402/*
1403 * Update the total_time_enabled and total_time_running fields for a event.
1404 */
1405static void update_event_times(struct perf_event *event)
1406{
1407        struct perf_event_context *ctx = event->ctx;
1408        u64 run_end;
1409
1410        lockdep_assert_held(&ctx->lock);
1411
1412        if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413            event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414                return;
1415
1416        /*
1417         * in cgroup mode, time_enabled represents
1418         * the time the event was enabled AND active
1419         * tasks were in the monitored cgroup. This is
1420         * independent of the activity of the context as
1421         * there may be a mix of cgroup and non-cgroup events.
1422         *
1423         * That is why we treat cgroup events differently
1424         * here.
1425         */
1426        if (is_cgroup_event(event))
1427                run_end = perf_cgroup_event_time(event);
1428        else if (ctx->is_active)
1429                run_end = ctx->time;
1430        else
1431                run_end = event->tstamp_stopped;
1432
1433        event->total_time_enabled = run_end - event->tstamp_enabled;
1434
1435        if (event->state == PERF_EVENT_STATE_INACTIVE)
1436                run_end = event->tstamp_stopped;
1437        else
1438                run_end = perf_event_time(event);
1439
1440        event->total_time_running = run_end - event->tstamp_running;
1441
1442}
1443
1444/*
1445 * Update total_time_enabled and total_time_running for all events in a group.
1446 */
1447static void update_group_times(struct perf_event *leader)
1448{
1449        struct perf_event *event;
1450
1451        update_event_times(leader);
1452        list_for_each_entry(event, &leader->sibling_list, group_entry)
1453                update_event_times(event);
1454}
1455
1456static struct list_head *
1457ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458{
1459        if (event->attr.pinned)
1460                return &ctx->pinned_groups;
1461        else
1462                return &ctx->flexible_groups;
1463}
1464
1465/*
1466 * Add a event from the lists for its context.
1467 * Must be called with ctx->mutex and ctx->lock held.
1468 */
1469static void
1470list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471{
1472
1473        lockdep_assert_held(&ctx->lock);
1474
1475        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1476        event->attach_state |= PERF_ATTACH_CONTEXT;
1477
1478        /*
1479         * If we're a stand alone event or group leader, we go to the context
1480         * list, group events are kept attached to the group so that
1481         * perf_group_detach can, at all times, locate all siblings.
1482         */
1483        if (event->group_leader == event) {
1484                struct list_head *list;
1485
1486                event->group_caps = event->event_caps;
1487
1488                list = ctx_group_list(event, ctx);
1489                list_add_tail(&event->group_entry, list);
1490        }
1491
1492        list_update_cgroup_event(event, ctx, true);
1493
1494        list_add_rcu(&event->event_entry, &ctx->event_list);
1495        ctx->nr_events++;
1496        if (event->attr.inherit_stat)
1497                ctx->nr_stat++;
1498
1499        ctx->generation++;
1500}
1501
1502/*
1503 * Initialize event state based on the perf_event_attr::disabled.
1504 */
1505static inline void perf_event__state_init(struct perf_event *event)
1506{
1507        event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1508                                              PERF_EVENT_STATE_INACTIVE;
1509}
1510
1511static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1512{
1513        int entry = sizeof(u64); /* value */
1514        int size = 0;
1515        int nr = 1;
1516
1517        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1518                size += sizeof(u64);
1519
1520        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1521                size += sizeof(u64);
1522
1523        if (event->attr.read_format & PERF_FORMAT_ID)
1524                entry += sizeof(u64);
1525
1526        if (event->attr.read_format & PERF_FORMAT_GROUP) {
1527                nr += nr_siblings;
1528                size += sizeof(u64);
1529        }
1530
1531        size += entry * nr;
1532        event->read_size = size;
1533}
1534
1535static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1536{
1537        struct perf_sample_data *data;
1538        u16 size = 0;
1539
1540        if (sample_type & PERF_SAMPLE_IP)
1541                size += sizeof(data->ip);
1542
1543        if (sample_type & PERF_SAMPLE_ADDR)
1544                size += sizeof(data->addr);
1545
1546        if (sample_type & PERF_SAMPLE_PERIOD)
1547                size += sizeof(data->period);
1548
1549        if (sample_type & PERF_SAMPLE_WEIGHT)
1550                size += sizeof(data->weight);
1551
1552        if (sample_type & PERF_SAMPLE_READ)
1553                size += event->read_size;
1554
1555        if (sample_type & PERF_SAMPLE_DATA_SRC)
1556                size += sizeof(data->data_src.val);
1557
1558        if (sample_type & PERF_SAMPLE_TRANSACTION)
1559                size += sizeof(data->txn);
1560
1561        event->header_size = size;
1562}
1563
1564/*
1565 * Called at perf_event creation and when events are attached/detached from a
1566 * group.
1567 */
1568static void perf_event__header_size(struct perf_event *event)
1569{
1570        __perf_event_read_size(event,
1571                               event->group_leader->nr_siblings);
1572        __perf_event_header_size(event, event->attr.sample_type);
1573}
1574
1575static void perf_event__id_header_size(struct perf_event *event)
1576{
1577        struct perf_sample_data *data;
1578        u64 sample_type = event->attr.sample_type;
1579        u16 size = 0;
1580
1581        if (sample_type & PERF_SAMPLE_TID)
1582                size += sizeof(data->tid_entry);
1583
1584        if (sample_type & PERF_SAMPLE_TIME)
1585                size += sizeof(data->time);
1586
1587        if (sample_type & PERF_SAMPLE_IDENTIFIER)
1588                size += sizeof(data->id);
1589
1590        if (sample_type & PERF_SAMPLE_ID)
1591                size += sizeof(data->id);
1592
1593        if (sample_type & PERF_SAMPLE_STREAM_ID)
1594                size += sizeof(data->stream_id);
1595
1596        if (sample_type & PERF_SAMPLE_CPU)
1597                size += sizeof(data->cpu_entry);
1598
1599        event->id_header_size = size;
1600}
1601
1602static bool perf_event_validate_size(struct perf_event *event)
1603{
1604        /*
1605         * The values computed here will be over-written when we actually
1606         * attach the event.
1607         */
1608        __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1609        __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1610        perf_event__id_header_size(event);
1611
1612        /*
1613         * Sum the lot; should not exceed the 64k limit we have on records.
1614         * Conservative limit to allow for callchains and other variable fields.
1615         */
1616        if (event->read_size + event->header_size +
1617            event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1618                return false;
1619
1620        return true;
1621}
1622
1623static void perf_group_attach(struct perf_event *event)
1624{
1625        struct perf_event *group_leader = event->group_leader, *pos;
1626
1627        /*
1628         * We can have double attach due to group movement in perf_event_open.
1629         */
1630        if (event->attach_state & PERF_ATTACH_GROUP)
1631                return;
1632
1633        event->attach_state |= PERF_ATTACH_GROUP;
1634
1635        if (group_leader == event)
1636                return;
1637
1638        WARN_ON_ONCE(group_leader->ctx != event->ctx);
1639
1640        group_leader->group_caps &= event->event_caps;
1641
1642        list_add_tail(&event->group_entry, &group_leader->sibling_list);
1643        group_leader->nr_siblings++;
1644
1645        perf_event__header_size(group_leader);
1646
1647        list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1648                perf_event__header_size(pos);
1649}
1650
1651/*
1652 * Remove a event from the lists for its context.
1653 * Must be called with ctx->mutex and ctx->lock held.
1654 */
1655static void
1656list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1657{
1658        WARN_ON_ONCE(event->ctx != ctx);
1659        lockdep_assert_held(&ctx->lock);
1660
1661        /*
1662         * We can have double detach due to exit/hot-unplug + close.
1663         */
1664        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1665                return;
1666
1667        event->attach_state &= ~PERF_ATTACH_CONTEXT;
1668
1669        list_update_cgroup_event(event, ctx, false);
1670
1671        ctx->nr_events--;
1672        if (event->attr.inherit_stat)
1673                ctx->nr_stat--;
1674
1675        list_del_rcu(&event->event_entry);
1676
1677        if (event->group_leader == event)
1678                list_del_init(&event->group_entry);
1679
1680        update_group_times(event);
1681
1682        /*
1683         * If event was in error state, then keep it
1684         * that way, otherwise bogus counts will be
1685         * returned on read(). The only way to get out
1686         * of error state is by explicit re-enabling
1687         * of the event
1688         */
1689        if (event->state > PERF_EVENT_STATE_OFF)
1690                event->state = PERF_EVENT_STATE_OFF;
1691
1692        ctx->generation++;
1693}
1694
1695static void perf_group_detach(struct perf_event *event)
1696{
1697        struct perf_event *sibling, *tmp;
1698        struct list_head *list = NULL;
1699
1700        /*
1701         * We can have double detach due to exit/hot-unplug + close.
1702         */
1703        if (!(event->attach_state & PERF_ATTACH_GROUP))
1704                return;
1705
1706        event->attach_state &= ~PERF_ATTACH_GROUP;
1707
1708        /*
1709         * If this is a sibling, remove it from its group.
1710         */
1711        if (event->group_leader != event) {
1712                list_del_init(&event->group_entry);
1713                event->group_leader->nr_siblings--;
1714                goto out;
1715        }
1716
1717        if (!list_empty(&event->group_entry))
1718                list = &event->group_entry;
1719
1720        /*
1721         * If this was a group event with sibling events then
1722         * upgrade the siblings to singleton events by adding them
1723         * to whatever list we are on.
1724         */
1725        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1726                if (list)
1727                        list_move_tail(&sibling->group_entry, list);
1728                sibling->group_leader = sibling;
1729
1730                /* Inherit group flags from the previous leader */
1731                sibling->group_caps = event->group_caps;
1732
1733                WARN_ON_ONCE(sibling->ctx != event->ctx);
1734        }
1735
1736out:
1737        perf_event__header_size(event->group_leader);
1738
1739        list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1740                perf_event__header_size(tmp);
1741}
1742
1743static bool is_orphaned_event(struct perf_event *event)
1744{
1745        return event->state == PERF_EVENT_STATE_DEAD;
1746}
1747
1748static inline int __pmu_filter_match(struct perf_event *event)
1749{
1750        struct pmu *pmu = event->pmu;
1751        return pmu->filter_match ? pmu->filter_match(event) : 1;
1752}
1753
1754/*
1755 * Check whether we should attempt to schedule an event group based on
1756 * PMU-specific filtering. An event group can consist of HW and SW events,
1757 * potentially with a SW leader, so we must check all the filters, to
1758 * determine whether a group is schedulable:
1759 */
1760static inline int pmu_filter_match(struct perf_event *event)
1761{
1762        struct perf_event *child;
1763
1764        if (!__pmu_filter_match(event))
1765                return 0;
1766
1767        list_for_each_entry(child, &event->sibling_list, group_entry) {
1768                if (!__pmu_filter_match(child))
1769                        return 0;
1770        }
1771
1772        return 1;
1773}
1774
1775static inline int
1776event_filter_match(struct perf_event *event)
1777{
1778        return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1779               perf_cgroup_match(event) && pmu_filter_match(event);
1780}
1781
1782static void
1783event_sched_out(struct perf_event *event,
1784                  struct perf_cpu_context *cpuctx,
1785                  struct perf_event_context *ctx)
1786{
1787        u64 tstamp = perf_event_time(event);
1788        u64 delta;
1789
1790        WARN_ON_ONCE(event->ctx != ctx);
1791        lockdep_assert_held(&ctx->lock);
1792
1793        /*
1794         * An event which could not be activated because of
1795         * filter mismatch still needs to have its timings
1796         * maintained, otherwise bogus information is return
1797         * via read() for time_enabled, time_running:
1798         */
1799        if (event->state == PERF_EVENT_STATE_INACTIVE &&
1800            !event_filter_match(event)) {
1801                delta = tstamp - event->tstamp_stopped;
1802                event->tstamp_running += delta;
1803                event->tstamp_stopped = tstamp;
1804        }
1805
1806        if (event->state != PERF_EVENT_STATE_ACTIVE)
1807                return;
1808
1809        perf_pmu_disable(event->pmu);
1810
1811        event->tstamp_stopped = tstamp;
1812        event->pmu->del(event, 0);
1813        event->oncpu = -1;
1814        event->state = PERF_EVENT_STATE_INACTIVE;
1815        if (event->pending_disable) {
1816                event->pending_disable = 0;
1817                event->state = PERF_EVENT_STATE_OFF;
1818        }
1819
1820        if (!is_software_event(event))
1821                cpuctx->active_oncpu--;
1822        if (!--ctx->nr_active)
1823                perf_event_ctx_deactivate(ctx);
1824        if (event->attr.freq && event->attr.sample_freq)
1825                ctx->nr_freq--;
1826        if (event->attr.exclusive || !cpuctx->active_oncpu)
1827                cpuctx->exclusive = 0;
1828
1829        perf_pmu_enable(event->pmu);
1830}
1831
1832static void
1833group_sched_out(struct perf_event *group_event,
1834                struct perf_cpu_context *cpuctx,
1835                struct perf_event_context *ctx)
1836{
1837        struct perf_event *event;
1838        int state = group_event->state;
1839
1840        perf_pmu_disable(ctx->pmu);
1841
1842        event_sched_out(group_event, cpuctx, ctx);
1843
1844        /*
1845         * Schedule out siblings (if any):
1846         */
1847        list_for_each_entry(event, &group_event->sibling_list, group_entry)
1848                event_sched_out(event, cpuctx, ctx);
1849
1850        perf_pmu_enable(ctx->pmu);
1851
1852        if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1853                cpuctx->exclusive = 0;
1854}
1855
1856#define DETACH_GROUP    0x01UL
1857
1858/*
1859 * Cross CPU call to remove a performance event
1860 *
1861 * We disable the event on the hardware level first. After that we
1862 * remove it from the context list.
1863 */
1864static void
1865__perf_remove_from_context(struct perf_event *event,
1866                           struct perf_cpu_context *cpuctx,
1867                           struct perf_event_context *ctx,
1868                           void *info)
1869{
1870        unsigned long flags = (unsigned long)info;
1871
1872        event_sched_out(event, cpuctx, ctx);
1873        if (flags & DETACH_GROUP)
1874                perf_group_detach(event);
1875        list_del_event(event, ctx);
1876
1877        if (!ctx->nr_events && ctx->is_active) {
1878                ctx->is_active = 0;
1879                if (ctx->task) {
1880                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1881                        cpuctx->task_ctx = NULL;
1882                }
1883        }
1884}
1885
1886/*
1887 * Remove the event from a task's (or a CPU's) list of events.
1888 *
1889 * If event->ctx is a cloned context, callers must make sure that
1890 * every task struct that event->ctx->task could possibly point to
1891 * remains valid.  This is OK when called from perf_release since
1892 * that only calls us on the top-level context, which can't be a clone.
1893 * When called from perf_event_exit_task, it's OK because the
1894 * context has been detached from its task.
1895 */
1896static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1897{
1898        lockdep_assert_held(&event->ctx->mutex);
1899
1900        event_function_call(event, __perf_remove_from_context, (void *)flags);
1901}
1902
1903/*
1904 * Cross CPU call to disable a performance event
1905 */
1906static void __perf_event_disable(struct perf_event *event,
1907                                 struct perf_cpu_context *cpuctx,
1908                                 struct perf_event_context *ctx,
1909                                 void *info)
1910{
1911        if (event->state < PERF_EVENT_STATE_INACTIVE)
1912                return;
1913
1914        update_context_time(ctx);
1915        update_cgrp_time_from_event(event);
1916        update_group_times(event);
1917        if (event == event->group_leader)
1918                group_sched_out(event, cpuctx, ctx);
1919        else
1920                event_sched_out(event, cpuctx, ctx);
1921        event->state = PERF_EVENT_STATE_OFF;
1922}
1923
1924/*
1925 * Disable a event.
1926 *
1927 * If event->ctx is a cloned context, callers must make sure that
1928 * every task struct that event->ctx->task could possibly point to
1929 * remains valid.  This condition is satisifed when called through
1930 * perf_event_for_each_child or perf_event_for_each because they
1931 * hold the top-level event's child_mutex, so any descendant that
1932 * goes to exit will block in perf_event_exit_event().
1933 *
1934 * When called from perf_pending_event it's OK because event->ctx
1935 * is the current context on this CPU and preemption is disabled,
1936 * hence we can't get into perf_event_task_sched_out for this context.
1937 */
1938static void _perf_event_disable(struct perf_event *event)
1939{
1940        struct perf_event_context *ctx = event->ctx;
1941
1942        raw_spin_lock_irq(&ctx->lock);
1943        if (event->state <= PERF_EVENT_STATE_OFF) {
1944                raw_spin_unlock_irq(&ctx->lock);
1945                return;
1946        }
1947        raw_spin_unlock_irq(&ctx->lock);
1948
1949        event_function_call(event, __perf_event_disable, NULL);
1950}
1951
1952void perf_event_disable_local(struct perf_event *event)
1953{
1954        event_function_local(event, __perf_event_disable, NULL);
1955}
1956
1957/*
1958 * Strictly speaking kernel users cannot create groups and therefore this
1959 * interface does not need the perf_event_ctx_lock() magic.
1960 */
1961void perf_event_disable(struct perf_event *event)
1962{
1963        struct perf_event_context *ctx;
1964
1965        ctx = perf_event_ctx_lock(event);
1966        _perf_event_disable(event);
1967        perf_event_ctx_unlock(event, ctx);
1968}
1969EXPORT_SYMBOL_GPL(perf_event_disable);
1970
1971void perf_event_disable_inatomic(struct perf_event *event)
1972{
1973        event->pending_disable = 1;
1974        irq_work_queue(&event->pending);
1975}
1976
1977static void perf_set_shadow_time(struct perf_event *event,
1978                                 struct perf_event_context *ctx,
1979                                 u64 tstamp)
1980{
1981        /*
1982         * use the correct time source for the time snapshot
1983         *
1984         * We could get by without this by leveraging the
1985         * fact that to get to this function, the caller
1986         * has most likely already called update_context_time()
1987         * and update_cgrp_time_xx() and thus both timestamp
1988         * are identical (or very close). Given that tstamp is,
1989         * already adjusted for cgroup, we could say that:
1990         *    tstamp - ctx->timestamp
1991         * is equivalent to
1992         *    tstamp - cgrp->timestamp.
1993         *
1994         * Then, in perf_output_read(), the calculation would
1995         * work with no changes because:
1996         * - event is guaranteed scheduled in
1997         * - no scheduled out in between
1998         * - thus the timestamp would be the same
1999         *
2000         * But this is a bit hairy.
2001         *
2002         * So instead, we have an explicit cgroup call to remain
2003         * within the time time source all along. We believe it
2004         * is cleaner and simpler to understand.
2005         */
2006        if (is_cgroup_event(event))
2007                perf_cgroup_set_shadow_time(event, tstamp);
2008        else
2009                event->shadow_ctx_time = tstamp - ctx->timestamp;
2010}
2011
2012#define MAX_INTERRUPTS (~0ULL)
2013
2014static void perf_log_throttle(struct perf_event *event, int enable);
2015static void perf_log_itrace_start(struct perf_event *event);
2016
2017static int
2018event_sched_in(struct perf_event *event,
2019                 struct perf_cpu_context *cpuctx,
2020                 struct perf_event_context *ctx)
2021{
2022        u64 tstamp = perf_event_time(event);
2023        int ret = 0;
2024
2025        lockdep_assert_held(&ctx->lock);
2026
2027        if (event->state <= PERF_EVENT_STATE_OFF)
2028                return 0;
2029
2030        WRITE_ONCE(event->oncpu, smp_processor_id());
2031        /*
2032         * Order event::oncpu write to happen before the ACTIVE state
2033         * is visible.
2034         */
2035        smp_wmb();
2036        WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2037
2038        /*
2039         * Unthrottle events, since we scheduled we might have missed several
2040         * ticks already, also for a heavily scheduling task there is little
2041         * guarantee it'll get a tick in a timely manner.
2042         */
2043        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2044                perf_log_throttle(event, 1);
2045                event->hw.interrupts = 0;
2046        }
2047
2048        /*
2049         * The new state must be visible before we turn it on in the hardware:
2050         */
2051        smp_wmb();
2052
2053        perf_pmu_disable(event->pmu);
2054
2055        perf_set_shadow_time(event, ctx, tstamp);
2056
2057        perf_log_itrace_start(event);
2058
2059        if (event->pmu->add(event, PERF_EF_START)) {
2060                event->state = PERF_EVENT_STATE_INACTIVE;
2061                event->oncpu = -1;
2062                ret = -EAGAIN;
2063                goto out;
2064        }
2065
2066        event->tstamp_running += tstamp - event->tstamp_stopped;
2067
2068        if (!is_software_event(event))
2069                cpuctx->active_oncpu++;
2070        if (!ctx->nr_active++)
2071                perf_event_ctx_activate(ctx);
2072        if (event->attr.freq && event->attr.sample_freq)
2073                ctx->nr_freq++;
2074
2075        if (event->attr.exclusive)
2076                cpuctx->exclusive = 1;
2077
2078out:
2079        perf_pmu_enable(event->pmu);
2080
2081        return ret;
2082}
2083
2084static int
2085group_sched_in(struct perf_event *group_event,
2086               struct perf_cpu_context *cpuctx,
2087               struct perf_event_context *ctx)
2088{
2089        struct perf_event *event, *partial_group = NULL;
2090        struct pmu *pmu = ctx->pmu;
2091        u64 now = ctx->time;
2092        bool simulate = false;
2093
2094        if (group_event->state == PERF_EVENT_STATE_OFF)
2095                return 0;
2096
2097        pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2098
2099        if (event_sched_in(group_event, cpuctx, ctx)) {
2100                pmu->cancel_txn(pmu);
2101                perf_mux_hrtimer_restart(cpuctx);
2102                return -EAGAIN;
2103        }
2104
2105        /*
2106         * Schedule in siblings as one group (if any):
2107         */
2108        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2109                if (event_sched_in(event, cpuctx, ctx)) {
2110                        partial_group = event;
2111                        goto group_error;
2112                }
2113        }
2114
2115        if (!pmu->commit_txn(pmu))
2116                return 0;
2117
2118group_error:
2119        /*
2120         * Groups can be scheduled in as one unit only, so undo any
2121         * partial group before returning:
2122         * The events up to the failed event are scheduled out normally,
2123         * tstamp_stopped will be updated.
2124         *
2125         * The failed events and the remaining siblings need to have
2126         * their timings updated as if they had gone thru event_sched_in()
2127         * and event_sched_out(). This is required to get consistent timings
2128         * across the group. This also takes care of the case where the group
2129         * could never be scheduled by ensuring tstamp_stopped is set to mark
2130         * the time the event was actually stopped, such that time delta
2131         * calculation in update_event_times() is correct.
2132         */
2133        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2134                if (event == partial_group)
2135                        simulate = true;
2136
2137                if (simulate) {
2138                        event->tstamp_running += now - event->tstamp_stopped;
2139                        event->tstamp_stopped = now;
2140                } else {
2141                        event_sched_out(event, cpuctx, ctx);
2142                }
2143        }
2144        event_sched_out(group_event, cpuctx, ctx);
2145
2146        pmu->cancel_txn(pmu);
2147
2148        perf_mux_hrtimer_restart(cpuctx);
2149
2150        return -EAGAIN;
2151}
2152
2153/*
2154 * Work out whether we can put this event group on the CPU now.
2155 */
2156static int group_can_go_on(struct perf_event *event,
2157                           struct perf_cpu_context *cpuctx,
2158                           int can_add_hw)
2159{
2160        /*
2161         * Groups consisting entirely of software events can always go on.
2162         */
2163        if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2164                return 1;
2165        /*
2166         * If an exclusive group is already on, no other hardware
2167         * events can go on.
2168         */
2169        if (cpuctx->exclusive)
2170                return 0;
2171        /*
2172         * If this group is exclusive and there are already
2173         * events on the CPU, it can't go on.
2174         */
2175        if (event->attr.exclusive && cpuctx->active_oncpu)
2176                return 0;
2177        /*
2178         * Otherwise, try to add it if all previous groups were able
2179         * to go on.
2180         */
2181        return can_add_hw;
2182}
2183
2184static void add_event_to_ctx(struct perf_event *event,
2185                               struct perf_event_context *ctx)
2186{
2187        u64 tstamp = perf_event_time(event);
2188
2189        list_add_event(event, ctx);
2190        perf_group_attach(event);
2191        event->tstamp_enabled = tstamp;
2192        event->tstamp_running = tstamp;
2193        event->tstamp_stopped = tstamp;
2194}
2195
2196static void ctx_sched_out(struct perf_event_context *ctx,
2197                          struct perf_cpu_context *cpuctx,
2198                          enum event_type_t event_type);
2199static void
2200ctx_sched_in(struct perf_event_context *ctx,
2201             struct perf_cpu_context *cpuctx,
2202             enum event_type_t event_type,
2203             struct task_struct *task);
2204
2205static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206                               struct perf_event_context *ctx)
2207{
2208        if (!cpuctx->task_ctx)
2209                return;
2210
2211        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2212                return;
2213
2214        ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2215}
2216
2217static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2218                                struct perf_event_context *ctx,
2219                                struct task_struct *task)
2220{
2221        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2222        if (ctx)
2223                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2224        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2225        if (ctx)
2226                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2227}
2228
2229static void ctx_resched(struct perf_cpu_context *cpuctx,
2230                        struct perf_event_context *task_ctx)
2231{
2232        perf_pmu_disable(cpuctx->ctx.pmu);
2233        if (task_ctx)
2234                task_ctx_sched_out(cpuctx, task_ctx);
2235        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2236        perf_event_sched_in(cpuctx, task_ctx, current);
2237        perf_pmu_enable(cpuctx->ctx.pmu);
2238}
2239
2240/*
2241 * Cross CPU call to install and enable a performance event
2242 *
2243 * Very similar to remote_function() + event_function() but cannot assume that
2244 * things like ctx->is_active and cpuctx->task_ctx are set.
2245 */
2246static int  __perf_install_in_context(void *info)
2247{
2248        struct perf_event *event = info;
2249        struct perf_event_context *ctx = event->ctx;
2250        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2251        struct perf_event_context *task_ctx = cpuctx->task_ctx;
2252        bool activate = true;
2253        int ret = 0;
2254
2255        raw_spin_lock(&cpuctx->ctx.lock);
2256        if (ctx->task) {
2257                raw_spin_lock(&ctx->lock);
2258                task_ctx = ctx;
2259
2260                /* If we're on the wrong CPU, try again */
2261                if (task_cpu(ctx->task) != smp_processor_id()) {
2262                        ret = -ESRCH;
2263                        goto unlock;
2264                }
2265
2266                /*
2267                 * If we're on the right CPU, see if the task we target is
2268                 * current, if not we don't have to activate the ctx, a future
2269                 * context switch will do that for us.
2270                 */
2271                if (ctx->task != current)
2272                        activate = false;
2273                else
2274                        WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2275
2276        } else if (task_ctx) {
2277                raw_spin_lock(&task_ctx->lock);
2278        }
2279
2280        if (activate) {
2281                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2282                add_event_to_ctx(event, ctx);
2283                ctx_resched(cpuctx, task_ctx);
2284        } else {
2285                add_event_to_ctx(event, ctx);
2286        }
2287
2288unlock:
2289        perf_ctx_unlock(cpuctx, task_ctx);
2290
2291        return ret;
2292}
2293
2294/*
2295 * Attach a performance event to a context.
2296 *
2297 * Very similar to event_function_call, see comment there.
2298 */
2299static void
2300perf_install_in_context(struct perf_event_context *ctx,
2301                        struct perf_event *event,
2302                        int cpu)
2303{
2304        struct task_struct *task = READ_ONCE(ctx->task);
2305
2306        lockdep_assert_held(&ctx->mutex);
2307
2308        if (event->cpu != -1)
2309                event->cpu = cpu;
2310
2311        /*
2312         * Ensures that if we can observe event->ctx, both the event and ctx
2313         * will be 'complete'. See perf_iterate_sb_cpu().
2314         */
2315        smp_store_release(&event->ctx, ctx);
2316
2317        if (!task) {
2318                cpu_function_call(cpu, __perf_install_in_context, event);
2319                return;
2320        }
2321
2322        /*
2323         * Should not happen, we validate the ctx is still alive before calling.
2324         */
2325        if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2326                return;
2327
2328        /*
2329         * Installing events is tricky because we cannot rely on ctx->is_active
2330         * to be set in case this is the nr_events 0 -> 1 transition.
2331         */
2332again:
2333        /*
2334         * Cannot use task_function_call() because we need to run on the task's
2335         * CPU regardless of whether its current or not.
2336         */
2337        if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2338                return;
2339
2340        raw_spin_lock_irq(&ctx->lock);
2341        task = ctx->task;
2342        if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2343                /*
2344                 * Cannot happen because we already checked above (which also
2345                 * cannot happen), and we hold ctx->mutex, which serializes us
2346                 * against perf_event_exit_task_context().
2347                 */
2348                raw_spin_unlock_irq(&ctx->lock);
2349                return;
2350        }
2351        raw_spin_unlock_irq(&ctx->lock);
2352        /*
2353         * Since !ctx->is_active doesn't mean anything, we must IPI
2354         * unconditionally.
2355         */
2356        goto again;
2357}
2358
2359/*
2360 * Put a event into inactive state and update time fields.
2361 * Enabling the leader of a group effectively enables all
2362 * the group members that aren't explicitly disabled, so we
2363 * have to update their ->tstamp_enabled also.
2364 * Note: this works for group members as well as group leaders
2365 * since the non-leader members' sibling_lists will be empty.
2366 */
2367static void __perf_event_mark_enabled(struct perf_event *event)
2368{
2369        struct perf_event *sub;
2370        u64 tstamp = perf_event_time(event);
2371
2372        event->state = PERF_EVENT_STATE_INACTIVE;
2373        event->tstamp_enabled = tstamp - event->total_time_enabled;
2374        list_for_each_entry(sub, &event->sibling_list, group_entry) {
2375                if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2376                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2377        }
2378}
2379
2380/*
2381 * Cross CPU call to enable a performance event
2382 */
2383static void __perf_event_enable(struct perf_event *event,
2384                                struct perf_cpu_context *cpuctx,
2385                                struct perf_event_context *ctx,
2386                                void *info)
2387{
2388        struct perf_event *leader = event->group_leader;
2389        struct perf_event_context *task_ctx;
2390
2391        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2392            event->state <= PERF_EVENT_STATE_ERROR)
2393                return;
2394
2395        if (ctx->is_active)
2396                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2397
2398        __perf_event_mark_enabled(event);
2399
2400        if (!ctx->is_active)
2401                return;
2402
2403        if (!event_filter_match(event)) {
2404                if (is_cgroup_event(event))
2405                        perf_cgroup_defer_enabled(event);
2406                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2407                return;
2408        }
2409
2410        /*
2411         * If the event is in a group and isn't the group leader,
2412         * then don't put it on unless the group is on.
2413         */
2414        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2415                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2416                return;
2417        }
2418
2419        task_ctx = cpuctx->task_ctx;
2420        if (ctx->task)
2421                WARN_ON_ONCE(task_ctx != ctx);
2422
2423        ctx_resched(cpuctx, task_ctx);
2424}
2425
2426/*
2427 * Enable a event.
2428 *
2429 * If event->ctx is a cloned context, callers must make sure that
2430 * every task struct that event->ctx->task could possibly point to
2431 * remains valid.  This condition is satisfied when called through
2432 * perf_event_for_each_child or perf_event_for_each as described
2433 * for perf_event_disable.
2434 */
2435static void _perf_event_enable(struct perf_event *event)
2436{
2437        struct perf_event_context *ctx = event->ctx;
2438
2439        raw_spin_lock_irq(&ctx->lock);
2440        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2441            event->state <  PERF_EVENT_STATE_ERROR) {
2442                raw_spin_unlock_irq(&ctx->lock);
2443                return;
2444        }
2445
2446        /*
2447         * If the event is in error state, clear that first.
2448         *
2449         * That way, if we see the event in error state below, we know that it
2450         * has gone back into error state, as distinct from the task having
2451         * been scheduled away before the cross-call arrived.
2452         */
2453        if (event->state == PERF_EVENT_STATE_ERROR)
2454                event->state = PERF_EVENT_STATE_OFF;
2455        raw_spin_unlock_irq(&ctx->lock);
2456
2457        event_function_call(event, __perf_event_enable, NULL);
2458}
2459
2460/*
2461 * See perf_event_disable();
2462 */
2463void perf_event_enable(struct perf_event *event)
2464{
2465        struct perf_event_context *ctx;
2466
2467        ctx = perf_event_ctx_lock(event);
2468        _perf_event_enable(event);
2469        perf_event_ctx_unlock(event, ctx);
2470}
2471EXPORT_SYMBOL_GPL(perf_event_enable);
2472
2473struct stop_event_data {
2474        struct perf_event       *event;
2475        unsigned int            restart;
2476};
2477
2478static int __perf_event_stop(void *info)
2479{
2480        struct stop_event_data *sd = info;
2481        struct perf_event *event = sd->event;
2482
2483        /* if it's already INACTIVE, do nothing */
2484        if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2485                return 0;
2486
2487        /* matches smp_wmb() in event_sched_in() */
2488        smp_rmb();
2489
2490        /*
2491         * There is a window with interrupts enabled before we get here,
2492         * so we need to check again lest we try to stop another CPU's event.
2493         */
2494        if (READ_ONCE(event->oncpu) != smp_processor_id())
2495                return -EAGAIN;
2496
2497        event->pmu->stop(event, PERF_EF_UPDATE);
2498
2499        /*
2500         * May race with the actual stop (through perf_pmu_output_stop()),
2501         * but it is only used for events with AUX ring buffer, and such
2502         * events will refuse to restart because of rb::aux_mmap_count==0,
2503         * see comments in perf_aux_output_begin().
2504         *
2505         * Since this is happening on a event-local CPU, no trace is lost
2506         * while restarting.
2507         */
2508        if (sd->restart)
2509                event->pmu->start(event, 0);
2510
2511        return 0;
2512}
2513
2514static int perf_event_stop(struct perf_event *event, int restart)
2515{
2516        struct stop_event_data sd = {
2517                .event          = event,
2518                .restart        = restart,
2519        };
2520        int ret = 0;
2521
2522        do {
2523                if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2524                        return 0;
2525
2526                /* matches smp_wmb() in event_sched_in() */
2527                smp_rmb();
2528
2529                /*
2530                 * We only want to restart ACTIVE events, so if the event goes
2531                 * inactive here (event->oncpu==-1), there's nothing more to do;
2532                 * fall through with ret==-ENXIO.
2533                 */
2534                ret = cpu_function_call(READ_ONCE(event->oncpu),
2535                                        __perf_event_stop, &sd);
2536        } while (ret == -EAGAIN);
2537
2538        return ret;
2539}
2540
2541/*
2542 * In order to contain the amount of racy and tricky in the address filter
2543 * configuration management, it is a two part process:
2544 *
2545 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2546 *      we update the addresses of corresponding vmas in
2547 *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2548 * (p2) when an event is scheduled in (pmu::add), it calls
2549 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2550 *      if the generation has changed since the previous call.
2551 *
2552 * If (p1) happens while the event is active, we restart it to force (p2).
2553 *
2554 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2555 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2556 *     ioctl;
2557 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2558 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2559 *     for reading;
2560 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2561 *     of exec.
2562 */
2563void perf_event_addr_filters_sync(struct perf_event *event)
2564{
2565        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2566
2567        if (!has_addr_filter(event))
2568                return;
2569
2570        raw_spin_lock(&ifh->lock);
2571        if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2572                event->pmu->addr_filters_sync(event);
2573                event->hw.addr_filters_gen = event->addr_filters_gen;
2574        }
2575        raw_spin_unlock(&ifh->lock);
2576}
2577EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2578
2579static int _perf_event_refresh(struct perf_event *event, int refresh)
2580{
2581        /*
2582         * not supported on inherited events
2583         */
2584        if (event->attr.inherit || !is_sampling_event(event))
2585                return -EINVAL;
2586
2587        atomic_add(refresh, &event->event_limit);
2588        _perf_event_enable(event);
2589
2590        return 0;
2591}
2592
2593/*
2594 * See perf_event_disable()
2595 */
2596int perf_event_refresh(struct perf_event *event, int refresh)
2597{
2598        struct perf_event_context *ctx;
2599        int ret;
2600
2601        ctx = perf_event_ctx_lock(event);
2602        ret = _perf_event_refresh(event, refresh);
2603        perf_event_ctx_unlock(event, ctx);
2604
2605        return ret;
2606}
2607EXPORT_SYMBOL_GPL(perf_event_refresh);
2608
2609static void ctx_sched_out(struct perf_event_context *ctx,
2610                          struct perf_cpu_context *cpuctx,
2611                          enum event_type_t event_type)
2612{
2613        int is_active = ctx->is_active;
2614        struct perf_event *event;
2615
2616        lockdep_assert_held(&ctx->lock);
2617
2618        if (likely(!ctx->nr_events)) {
2619                /*
2620                 * See __perf_remove_from_context().
2621                 */
2622                WARN_ON_ONCE(ctx->is_active);
2623                if (ctx->task)
2624                        WARN_ON_ONCE(cpuctx->task_ctx);
2625                return;
2626        }
2627
2628        ctx->is_active &= ~event_type;
2629        if (!(ctx->is_active & EVENT_ALL))
2630                ctx->is_active = 0;
2631
2632        if (ctx->task) {
2633                WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2634                if (!ctx->is_active)
2635                        cpuctx->task_ctx = NULL;
2636        }
2637
2638        /*
2639         * Always update time if it was set; not only when it changes.
2640         * Otherwise we can 'forget' to update time for any but the last
2641         * context we sched out. For example:
2642         *
2643         *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2644         *   ctx_sched_out(.event_type = EVENT_PINNED)
2645         *
2646         * would only update time for the pinned events.
2647         */
2648        if (is_active & EVENT_TIME) {
2649                /* update (and stop) ctx time */
2650                update_context_time(ctx);
2651                update_cgrp_time_from_cpuctx(cpuctx);
2652        }
2653
2654        is_active ^= ctx->is_active; /* changed bits */
2655
2656        if (!ctx->nr_active || !(is_active & EVENT_ALL))
2657                return;
2658
2659        perf_pmu_disable(ctx->pmu);
2660        if (is_active & EVENT_PINNED) {
2661                list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2662                        group_sched_out(event, cpuctx, ctx);
2663        }
2664
2665        if (is_active & EVENT_FLEXIBLE) {
2666                list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2667                        group_sched_out(event, cpuctx, ctx);
2668        }
2669        perf_pmu_enable(ctx->pmu);
2670}
2671
2672/*
2673 * Test whether two contexts are equivalent, i.e. whether they have both been
2674 * cloned from the same version of the same context.
2675 *
2676 * Equivalence is measured using a generation number in the context that is
2677 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2678 * and list_del_event().
2679 */
2680static int context_equiv(struct perf_event_context *ctx1,
2681                         struct perf_event_context *ctx2)
2682{
2683        lockdep_assert_held(&ctx1->lock);
2684        lockdep_assert_held(&ctx2->lock);
2685
2686        /* Pinning disables the swap optimization */
2687        if (ctx1->pin_count || ctx2->pin_count)
2688                return 0;
2689
2690        /* If ctx1 is the parent of ctx2 */
2691        if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2692                return 1;
2693
2694        /* If ctx2 is the parent of ctx1 */
2695        if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2696                return 1;
2697
2698        /*
2699         * If ctx1 and ctx2 have the same parent; we flatten the parent
2700         * hierarchy, see perf_event_init_context().
2701         */
2702        if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2703                        ctx1->parent_gen == ctx2->parent_gen)
2704                return 1;
2705
2706        /* Unmatched */
2707        return 0;
2708}
2709
2710static void __perf_event_sync_stat(struct perf_event *event,
2711                                     struct perf_event *next_event)
2712{
2713        u64 value;
2714
2715        if (!event->attr.inherit_stat)
2716                return;
2717
2718        /*
2719         * Update the event value, we cannot use perf_event_read()
2720         * because we're in the middle of a context switch and have IRQs
2721         * disabled, which upsets smp_call_function_single(), however
2722         * we know the event must be on the current CPU, therefore we
2723         * don't need to use it.
2724         */
2725        switch (event->state) {
2726        case PERF_EVENT_STATE_ACTIVE:
2727                event->pmu->read(event);
2728                /* fall-through */
2729
2730        case PERF_EVENT_STATE_INACTIVE:
2731                update_event_times(event);
2732                break;
2733
2734        default:
2735                break;
2736        }
2737
2738        /*
2739         * In order to keep per-task stats reliable we need to flip the event
2740         * values when we flip the contexts.
2741         */
2742        value = local64_read(&next_event->count);
2743        value = local64_xchg(&event->count, value);
2744        local64_set(&next_event->count, value);
2745
2746        swap(event->total_time_enabled, next_event->total_time_enabled);
2747        swap(event->total_time_running, next_event->total_time_running);
2748
2749        /*
2750         * Since we swizzled the values, update the user visible data too.
2751         */
2752        perf_event_update_userpage(event);
2753        perf_event_update_userpage(next_event);
2754}
2755
2756static void perf_event_sync_stat(struct perf_event_context *ctx,
2757                                   struct perf_event_context *next_ctx)
2758{
2759        struct perf_event *event, *next_event;
2760
2761        if (!ctx->nr_stat)
2762                return;
2763
2764        update_context_time(ctx);
2765
2766        event = list_first_entry(&ctx->event_list,
2767                                   struct perf_event, event_entry);
2768
2769        next_event = list_first_entry(&next_ctx->event_list,
2770                                        struct perf_event, event_entry);
2771
2772        while (&event->event_entry != &ctx->event_list &&
2773               &next_event->event_entry != &next_ctx->event_list) {
2774
2775                __perf_event_sync_stat(event, next_event);
2776
2777                event = list_next_entry(event, event_entry);
2778                next_event = list_next_entry(next_event, event_entry);
2779        }
2780}
2781
2782static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2783                                         struct task_struct *next)
2784{
2785        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2786        struct perf_event_context *next_ctx;
2787        struct perf_event_context *parent, *next_parent;
2788        struct perf_cpu_context *cpuctx;
2789        int do_switch = 1;
2790
2791        if (likely(!ctx))
2792                return;
2793
2794        cpuctx = __get_cpu_context(ctx);
2795        if (!cpuctx->task_ctx)
2796                return;
2797
2798        rcu_read_lock();
2799        next_ctx = next->perf_event_ctxp[ctxn];
2800        if (!next_ctx)
2801                goto unlock;
2802
2803        parent = rcu_dereference(ctx->parent_ctx);
2804        next_parent = rcu_dereference(next_ctx->parent_ctx);
2805
2806        /* If neither context have a parent context; they cannot be clones. */
2807        if (!parent && !next_parent)
2808                goto unlock;
2809
2810        if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2811                /*
2812                 * Looks like the two contexts are clones, so we might be
2813                 * able to optimize the context switch.  We lock both
2814                 * contexts and check that they are clones under the
2815                 * lock (including re-checking that neither has been
2816                 * uncloned in the meantime).  It doesn't matter which
2817                 * order we take the locks because no other cpu could
2818                 * be trying to lock both of these tasks.
2819                 */
2820                raw_spin_lock(&ctx->lock);
2821                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2822                if (context_equiv(ctx, next_ctx)) {
2823                        WRITE_ONCE(ctx->task, next);
2824                        WRITE_ONCE(next_ctx->task, task);
2825
2826                        swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2827
2828                        /*
2829                         * RCU_INIT_POINTER here is safe because we've not
2830                         * modified the ctx and the above modification of
2831                         * ctx->task and ctx->task_ctx_data are immaterial
2832                         * since those values are always verified under
2833                         * ctx->lock which we're now holding.
2834                         */
2835                        RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2836                        RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2837
2838                        do_switch = 0;
2839
2840                        perf_event_sync_stat(ctx, next_ctx);
2841                }
2842                raw_spin_unlock(&next_ctx->lock);
2843                raw_spin_unlock(&ctx->lock);
2844        }
2845unlock:
2846        rcu_read_unlock();
2847
2848        if (do_switch) {
2849                raw_spin_lock(&ctx->lock);
2850                task_ctx_sched_out(cpuctx, ctx);
2851                raw_spin_unlock(&ctx->lock);
2852        }
2853}
2854
2855static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2856
2857void perf_sched_cb_dec(struct pmu *pmu)
2858{
2859        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2860
2861        this_cpu_dec(perf_sched_cb_usages);
2862
2863        if (!--cpuctx->sched_cb_usage)
2864                list_del(&cpuctx->sched_cb_entry);
2865}
2866
2867
2868void perf_sched_cb_inc(struct pmu *pmu)
2869{
2870        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2871
2872        if (!cpuctx->sched_cb_usage++)
2873                list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2874
2875        this_cpu_inc(perf_sched_cb_usages);
2876}
2877
2878/*
2879 * This function provides the context switch callback to the lower code
2880 * layer. It is invoked ONLY when the context switch callback is enabled.
2881 *
2882 * This callback is relevant even to per-cpu events; for example multi event
2883 * PEBS requires this to provide PID/TID information. This requires we flush
2884 * all queued PEBS records before we context switch to a new task.
2885 */
2886static void perf_pmu_sched_task(struct task_struct *prev,
2887                                struct task_struct *next,
2888                                bool sched_in)
2889{
2890        struct perf_cpu_context *cpuctx;
2891        struct pmu *pmu;
2892
2893        if (prev == next)
2894                return;
2895
2896        list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2897                pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2898
2899                if (WARN_ON_ONCE(!pmu->sched_task))
2900                        continue;
2901
2902                perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2903                perf_pmu_disable(pmu);
2904
2905                pmu->sched_task(cpuctx->task_ctx, sched_in);
2906
2907                perf_pmu_enable(pmu);
2908                perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2909        }
2910}
2911
2912static void perf_event_switch(struct task_struct *task,
2913                              struct task_struct *next_prev, bool sched_in);
2914
2915#define for_each_task_context_nr(ctxn)                                  \
2916        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2917
2918/*
2919 * Called from scheduler to remove the events of the current task,
2920 * with interrupts disabled.
2921 *
2922 * We stop each event and update the event value in event->count.
2923 *
2924 * This does not protect us against NMI, but disable()
2925 * sets the disabled bit in the control field of event _before_
2926 * accessing the event control register. If a NMI hits, then it will
2927 * not restart the event.
2928 */
2929void __perf_event_task_sched_out(struct task_struct *task,
2930                                 struct task_struct *next)
2931{
2932        int ctxn;
2933
2934        if (__this_cpu_read(perf_sched_cb_usages))
2935                perf_pmu_sched_task(task, next, false);
2936
2937        if (atomic_read(&nr_switch_events))
2938                perf_event_switch(task, next, false);
2939
2940        for_each_task_context_nr(ctxn)
2941                perf_event_context_sched_out(task, ctxn, next);
2942
2943        /*
2944         * if cgroup events exist on this CPU, then we need
2945         * to check if we have to switch out PMU state.
2946         * cgroup event are system-wide mode only
2947         */
2948        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2949                perf_cgroup_sched_out(task, next);
2950}
2951
2952/*
2953 * Called with IRQs disabled
2954 */
2955static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2956                              enum event_type_t event_type)
2957{
2958        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2959}
2960
2961static void
2962ctx_pinned_sched_in(struct perf_event_context *ctx,
2963                    struct perf_cpu_context *cpuctx)
2964{
2965        struct perf_event *event;
2966
2967        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2968                if (event->state <= PERF_EVENT_STATE_OFF)
2969                        continue;
2970                if (!event_filter_match(event))
2971                        continue;
2972
2973                /* may need to reset tstamp_enabled */
2974                if (is_cgroup_event(event))
2975                        perf_cgroup_mark_enabled(event, ctx);
2976
2977                if (group_can_go_on(event, cpuctx, 1))
2978                        group_sched_in(event, cpuctx, ctx);
2979
2980                /*
2981                 * If this pinned group hasn't been scheduled,
2982                 * put it in error state.
2983                 */
2984                if (event->state == PERF_EVENT_STATE_INACTIVE) {
2985                        update_group_times(event);
2986                        event->state = PERF_EVENT_STATE_ERROR;
2987                }
2988        }
2989}
2990
2991static void
2992ctx_flexible_sched_in(struct perf_event_context *ctx,
2993                      struct perf_cpu_context *cpuctx)
2994{
2995        struct perf_event *event;
2996        int can_add_hw = 1;
2997
2998        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2999                /* Ignore events in OFF or ERROR state */
3000                if (event->state <= PERF_EVENT_STATE_OFF)
3001                        continue;
3002                /*
3003                 * Listen to the 'cpu' scheduling filter constraint
3004                 * of events:
3005                 */
3006                if (!event_filter_match(event))
3007                        continue;
3008
3009                /* may need to reset tstamp_enabled */
3010                if (is_cgroup_event(event))
3011                        perf_cgroup_mark_enabled(event, ctx);
3012
3013                if (group_can_go_on(event, cpuctx, can_add_hw)) {
3014                        if (group_sched_in(event, cpuctx, ctx))
3015                                can_add_hw = 0;
3016                }
3017        }
3018}
3019
3020static void
3021ctx_sched_in(struct perf_event_context *ctx,
3022             struct perf_cpu_context *cpuctx,
3023             enum event_type_t event_type,
3024             struct task_struct *task)
3025{
3026        int is_active = ctx->is_active;
3027        u64 now;
3028
3029        lockdep_assert_held(&ctx->lock);
3030
3031        if (likely(!ctx->nr_events))
3032                return;
3033
3034        ctx->is_active |= (event_type | EVENT_TIME);
3035        if (ctx->task) {
3036                if (!is_active)
3037                        cpuctx->task_ctx = ctx;
3038                else
3039                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3040        }
3041
3042        is_active ^= ctx->is_active; /* changed bits */
3043
3044        if (is_active & EVENT_TIME) {
3045                /* start ctx time */
3046                now = perf_clock();
3047                ctx->timestamp = now;
3048                perf_cgroup_set_timestamp(task, ctx);
3049        }
3050
3051        /*
3052         * First go through the list and put on any pinned groups
3053         * in order to give them the best chance of going on.
3054         */
3055        if (is_active & EVENT_PINNED)
3056                ctx_pinned_sched_in(ctx, cpuctx);
3057
3058        /* Then walk through the lower prio flexible groups */
3059        if (is_active & EVENT_FLEXIBLE)
3060                ctx_flexible_sched_in(ctx, cpuctx);
3061}
3062
3063static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3064                             enum event_type_t event_type,
3065                             struct task_struct *task)
3066{
3067        struct perf_event_context *ctx = &cpuctx->ctx;
3068
3069        ctx_sched_in(ctx, cpuctx, event_type, task);
3070}
3071
3072static void perf_event_context_sched_in(struct perf_event_context *ctx,
3073                                        struct task_struct *task)
3074{
3075        struct perf_cpu_context *cpuctx;
3076
3077        cpuctx = __get_cpu_context(ctx);
3078        if (cpuctx->task_ctx == ctx)
3079                return;
3080
3081        perf_ctx_lock(cpuctx, ctx);
3082        perf_pmu_disable(ctx->pmu);
3083        /*
3084         * We want to keep the following priority order:
3085         * cpu pinned (that don't need to move), task pinned,
3086         * cpu flexible, task flexible.
3087         */
3088        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3089        perf_event_sched_in(cpuctx, ctx, task);
3090        perf_pmu_enable(ctx->pmu);
3091        perf_ctx_unlock(cpuctx, ctx);
3092}
3093
3094/*
3095 * Called from scheduler to add the events of the current task
3096 * with interrupts disabled.
3097 *
3098 * We restore the event value and then enable it.
3099 *
3100 * This does not protect us against NMI, but enable()
3101 * sets the enabled bit in the control field of event _before_
3102 * accessing the event control register. If a NMI hits, then it will
3103 * keep the event running.
3104 */
3105void __perf_event_task_sched_in(struct task_struct *prev,
3106                                struct task_struct *task)
3107{
3108        struct perf_event_context *ctx;
3109        int ctxn;
3110
3111        /*
3112         * If cgroup events exist on this CPU, then we need to check if we have
3113         * to switch in PMU state; cgroup event are system-wide mode only.
3114         *
3115         * Since cgroup events are CPU events, we must schedule these in before
3116         * we schedule in the task events.
3117         */
3118        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3119                perf_cgroup_sched_in(prev, task);
3120
3121        for_each_task_context_nr(ctxn) {
3122                ctx = task->perf_event_ctxp[ctxn];
3123                if (likely(!ctx))
3124                        continue;
3125
3126                perf_event_context_sched_in(ctx, task);
3127        }
3128
3129        if (atomic_read(&nr_switch_events))
3130                perf_event_switch(task, prev, true);
3131
3132        if (__this_cpu_read(perf_sched_cb_usages))
3133                perf_pmu_sched_task(prev, task, true);
3134}
3135
3136static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3137{
3138        u64 frequency = event->attr.sample_freq;
3139        u64 sec = NSEC_PER_SEC;
3140        u64 divisor, dividend;
3141
3142        int count_fls, nsec_fls, frequency_fls, sec_fls;
3143
3144        count_fls = fls64(count);
3145        nsec_fls = fls64(nsec);
3146        frequency_fls = fls64(frequency);
3147        sec_fls = 30;
3148
3149        /*
3150         * We got @count in @nsec, with a target of sample_freq HZ
3151         * the target period becomes:
3152         *
3153         *             @count * 10^9
3154         * period = -------------------
3155         *          @nsec * sample_freq
3156         *
3157         */
3158
3159        /*
3160         * Reduce accuracy by one bit such that @a and @b converge
3161         * to a similar magnitude.
3162         */
3163#define REDUCE_FLS(a, b)                \
3164do {                                    \
3165        if (a##_fls > b##_fls) {        \
3166                a >>= 1;                \
3167                a##_fls--;              \
3168        } else {                        \
3169                b >>= 1;                \
3170                b##_fls--;              \
3171        }                               \
3172} while (0)
3173
3174        /*
3175         * Reduce accuracy until either term fits in a u64, then proceed with
3176         * the other, so that finally we can do a u64/u64 division.
3177         */
3178        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3179                REDUCE_FLS(nsec, frequency);
3180                REDUCE_FLS(sec, count);
3181        }
3182
3183        if (count_fls + sec_fls > 64) {
3184                divisor = nsec * frequency;
3185
3186                while (count_fls + sec_fls > 64) {
3187                        REDUCE_FLS(count, sec);
3188                        divisor >>= 1;
3189                }
3190
3191                dividend = count * sec;
3192        } else {
3193                dividend = count * sec;
3194
3195                while (nsec_fls + frequency_fls > 64) {
3196                        REDUCE_FLS(nsec, frequency);
3197                        dividend >>= 1;
3198                }
3199
3200                divisor = nsec * frequency;
3201        }
3202
3203        if (!divisor)
3204                return dividend;
3205
3206        return div64_u64(dividend, divisor);
3207}
3208
3209static DEFINE_PER_CPU(int, perf_throttled_count);
3210static DEFINE_PER_CPU(u64, perf_throttled_seq);
3211
3212static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3213{
3214        struct hw_perf_event *hwc = &event->hw;
3215        s64 period, sample_period;
3216        s64 delta;
3217
3218        period = perf_calculate_period(event, nsec, count);
3219
3220        delta = (s64)(period - hwc->sample_period);
3221        delta = (delta + 7) / 8; /* low pass filter */
3222
3223        sample_period = hwc->sample_period + delta;
3224
3225        if (!sample_period)
3226                sample_period = 1;
3227
3228        hwc->sample_period = sample_period;
3229
3230        if (local64_read(&hwc->period_left) > 8*sample_period) {
3231                if (disable)
3232                        event->pmu->stop(event, PERF_EF_UPDATE);
3233
3234                local64_set(&hwc->period_left, 0);
3235
3236                if (disable)
3237                        event->pmu->start(event, PERF_EF_RELOAD);
3238        }
3239}
3240
3241/*
3242 * combine freq adjustment with unthrottling to avoid two passes over the
3243 * events. At the same time, make sure, having freq events does not change
3244 * the rate of unthrottling as that would introduce bias.
3245 */
3246static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3247                                           int needs_unthr)
3248{
3249        struct perf_event *event;
3250        struct hw_perf_event *hwc;
3251        u64 now, period = TICK_NSEC;
3252        s64 delta;
3253
3254        /*
3255         * only need to iterate over all events iff:
3256         * - context have events in frequency mode (needs freq adjust)
3257         * - there are events to unthrottle on this cpu
3258         */
3259        if (!(ctx->nr_freq || needs_unthr))
3260                return;
3261
3262        raw_spin_lock(&ctx->lock);
3263        perf_pmu_disable(ctx->pmu);
3264
3265        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3266                if (event->state != PERF_EVENT_STATE_ACTIVE)
3267                        continue;
3268
3269                if (!event_filter_match(event))
3270                        continue;
3271
3272                perf_pmu_disable(event->pmu);
3273
3274                hwc = &event->hw;
3275
3276                if (hwc->interrupts == MAX_INTERRUPTS) {
3277                        hwc->interrupts = 0;
3278                        perf_log_throttle(event, 1);
3279                        event->pmu->start(event, 0);
3280                }
3281
3282                if (!event->attr.freq || !event->attr.sample_freq)
3283                        goto next;
3284
3285                /*
3286                 * stop the event and update event->count
3287                 */
3288                event->pmu->stop(event, PERF_EF_UPDATE);
3289
3290                now = local64_read(&event->count);
3291                delta = now - hwc->freq_count_stamp;
3292                hwc->freq_count_stamp = now;
3293
3294                /*
3295                 * restart the event
3296                 * reload only if value has changed
3297                 * we have stopped the event so tell that
3298                 * to perf_adjust_period() to avoid stopping it
3299                 * twice.
3300                 */
3301                if (delta > 0)
3302                        perf_adjust_period(event, period, delta, false);
3303
3304                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3305        next:
3306                perf_pmu_enable(event->pmu);
3307        }
3308
3309        perf_pmu_enable(ctx->pmu);
3310        raw_spin_unlock(&ctx->lock);
3311}
3312
3313/*
3314 * Round-robin a context's events:
3315 */
3316static void rotate_ctx(struct perf_event_context *ctx)
3317{
3318        /*
3319         * Rotate the first entry last of non-pinned groups. Rotation might be
3320         * disabled by the inheritance code.
3321         */
3322        if (!ctx->rotate_disable)
3323                list_rotate_left(&ctx->flexible_groups);
3324}
3325
3326static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3327{
3328        struct perf_event_context *ctx = NULL;
3329        int rotate = 0;
3330
3331        if (cpuctx->ctx.nr_events) {
3332                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3333                        rotate = 1;
3334        }
3335
3336        ctx = cpuctx->task_ctx;
3337        if (ctx && ctx->nr_events) {
3338                if (ctx->nr_events != ctx->nr_active)
3339                        rotate = 1;
3340        }
3341
3342        if (!rotate)
3343                goto done;
3344
3345        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3346        perf_pmu_disable(cpuctx->ctx.pmu);
3347
3348        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3349        if (ctx)
3350                ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3351
3352        rotate_ctx(&cpuctx->ctx);
3353        if (ctx)
3354                rotate_ctx(ctx);
3355
3356        perf_event_sched_in(cpuctx, ctx, current);
3357
3358        perf_pmu_enable(cpuctx->ctx.pmu);
3359        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3360done:
3361
3362        return rotate;
3363}
3364
3365void perf_event_task_tick(void)
3366{
3367        struct list_head *head = this_cpu_ptr(&active_ctx_list);
3368        struct perf_event_context *ctx, *tmp;
3369        int throttled;
3370
3371        WARN_ON(!irqs_disabled());
3372
3373        __this_cpu_inc(perf_throttled_seq);
3374        throttled = __this_cpu_xchg(perf_throttled_count, 0);
3375        tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3376
3377        list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3378                perf_adjust_freq_unthr_context(ctx, throttled);
3379}
3380
3381static int event_enable_on_exec(struct perf_event *event,
3382                                struct perf_event_context *ctx)
3383{
3384        if (!event->attr.enable_on_exec)
3385                return 0;
3386
3387        event->attr.enable_on_exec = 0;
3388        if (event->state >= PERF_EVENT_STATE_INACTIVE)
3389                return 0;
3390
3391        __perf_event_mark_enabled(event);
3392
3393        return 1;
3394}
3395
3396/*
3397 * Enable all of a task's events that have been marked enable-on-exec.
3398 * This expects task == current.
3399 */
3400static void perf_event_enable_on_exec(int ctxn)
3401{
3402        struct perf_event_context *ctx, *clone_ctx = NULL;
3403        struct perf_cpu_context *cpuctx;
3404        struct perf_event *event;
3405        unsigned long flags;
3406        int enabled = 0;
3407
3408        local_irq_save(flags);
3409        ctx = current->perf_event_ctxp[ctxn];
3410        if (!ctx || !ctx->nr_events)
3411                goto out;
3412
3413        cpuctx = __get_cpu_context(ctx);
3414        perf_ctx_lock(cpuctx, ctx);
3415        ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3416        list_for_each_entry(event, &ctx->event_list, event_entry)
3417                enabled |= event_enable_on_exec(event, ctx);
3418
3419        /*
3420         * Unclone and reschedule this context if we enabled any event.
3421         */
3422        if (enabled) {
3423                clone_ctx = unclone_ctx(ctx);
3424                ctx_resched(cpuctx, ctx);
3425        }
3426        perf_ctx_unlock(cpuctx, ctx);
3427
3428out:
3429        local_irq_restore(flags);
3430
3431        if (clone_ctx)
3432                put_ctx(clone_ctx);
3433}
3434
3435struct perf_read_data {
3436        struct perf_event *event;
3437        bool group;
3438        int ret;
3439};
3440
3441static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3442{
3443        int event_cpu = event->oncpu;
3444        u16 local_pkg, event_pkg;
3445
3446        if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3447                event_pkg =  topology_physical_package_id(event_cpu);
3448                local_pkg =  topology_physical_package_id(local_cpu);
3449
3450                if (event_pkg == local_pkg)
3451                        return local_cpu;
3452        }
3453
3454        return event_cpu;
3455}
3456
3457/*
3458 * Cross CPU call to read the hardware event
3459 */
3460static void __perf_event_read(void *info)
3461{
3462        struct perf_read_data *data = info;
3463        struct perf_event *sub, *event = data->event;
3464        struct perf_event_context *ctx = event->ctx;
3465        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3466        struct pmu *pmu = event->pmu;
3467
3468        /*
3469         * If this is a task context, we need to check whether it is
3470         * the current task context of this cpu.  If not it has been
3471         * scheduled out before the smp call arrived.  In that case
3472         * event->count would have been updated to a recent sample
3473         * when the event was scheduled out.
3474         */
3475        if (ctx->task && cpuctx->task_ctx != ctx)
3476                return;
3477
3478        raw_spin_lock(&ctx->lock);
3479        if (ctx->is_active) {
3480                update_context_time(ctx);
3481                update_cgrp_time_from_event(event);
3482        }
3483
3484        update_event_times(event);
3485        if (event->state != PERF_EVENT_STATE_ACTIVE)
3486                goto unlock;
3487
3488        if (!data->group) {
3489                pmu->read(event);
3490                data->ret = 0;
3491                goto unlock;
3492        }
3493
3494        pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3495
3496        pmu->read(event);
3497
3498        list_for_each_entry(sub, &event->sibling_list, group_entry) {
3499                update_event_times(sub);
3500                if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3501                        /*
3502                         * Use sibling's PMU rather than @event's since
3503                         * sibling could be on different (eg: software) PMU.
3504                         */
3505                        sub->pmu->read(sub);
3506                }
3507        }
3508
3509        data->ret = pmu->commit_txn(pmu);
3510
3511unlock:
3512        raw_spin_unlock(&ctx->lock);
3513}
3514
3515static inline u64 perf_event_count(struct perf_event *event)
3516{
3517        if (event->pmu->count)
3518                return event->pmu->count(event);
3519
3520        return __perf_event_count(event);
3521}
3522
3523/*
3524 * NMI-safe method to read a local event, that is an event that
3525 * is:
3526 *   - either for the current task, or for this CPU
3527 *   - does not have inherit set, for inherited task events
3528 *     will not be local and we cannot read them atomically
3529 *   - must not have a pmu::count method
3530 */
3531u64 perf_event_read_local(struct perf_event *event)
3532{
3533        unsigned long flags;
3534        u64 val;
3535
3536        /*
3537         * Disabling interrupts avoids all counter scheduling (context
3538         * switches, timer based rotation and IPIs).
3539         */
3540        local_irq_save(flags);
3541
3542        /* If this is a per-task event, it must be for current */
3543        WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3544                     event->hw.target != current);
3545
3546        /* If this is a per-CPU event, it must be for this CPU */
3547        WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3548                     event->cpu != smp_processor_id());
3549
3550        /*
3551         * It must not be an event with inherit set, we cannot read
3552         * all child counters from atomic context.
3553         */
3554        WARN_ON_ONCE(event->attr.inherit);
3555
3556        /*
3557         * It must not have a pmu::count method, those are not
3558         * NMI safe.
3559         */
3560        WARN_ON_ONCE(event->pmu->count);
3561
3562        /*
3563         * If the event is currently on this CPU, its either a per-task event,
3564         * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3565         * oncpu == -1).
3566         */
3567        if (event->oncpu == smp_processor_id())
3568                event->pmu->read(event);
3569
3570        val = local64_read(&event->count);
3571        local_irq_restore(flags);
3572
3573        return val;
3574}
3575
3576static int perf_event_read(struct perf_event *event, bool group)
3577{
3578        int ret = 0, cpu_to_read, local_cpu;
3579
3580        /*
3581         * If event is enabled and currently active on a CPU, update the
3582         * value in the event structure:
3583         */
3584        if (event->state == PERF_EVENT_STATE_ACTIVE) {
3585                struct perf_read_data data = {
3586                        .event = event,
3587                        .group = group,
3588                        .ret = 0,
3589                };
3590
3591                local_cpu = get_cpu();
3592                cpu_to_read = find_cpu_to_read(event, local_cpu);
3593                put_cpu();
3594
3595                /*
3596                 * Purposely ignore the smp_call_function_single() return
3597                 * value.
3598                 *
3599                 * If event->oncpu isn't a valid CPU it means the event got
3600                 * scheduled out and that will have updated the event count.
3601                 *
3602                 * Therefore, either way, we'll have an up-to-date event count
3603                 * after this.
3604                 */
3605                (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3606                ret = data.ret;
3607        } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3608                struct perf_event_context *ctx = event->ctx;
3609                unsigned long flags;
3610
3611                raw_spin_lock_irqsave(&ctx->lock, flags);
3612                /*
3613                 * may read while context is not active
3614                 * (e.g., thread is blocked), in that case
3615                 * we cannot update context time
3616                 */
3617                if (ctx->is_active) {
3618                        update_context_time(ctx);
3619                        update_cgrp_time_from_event(event);
3620                }
3621                if (group)
3622                        update_group_times(event);
3623                else
3624                        update_event_times(event);
3625                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3626        }
3627
3628        return ret;
3629}
3630
3631/*
3632 * Initialize the perf_event context in a task_struct:
3633 */
3634static void __perf_event_init_context(struct perf_event_context *ctx)
3635{
3636        raw_spin_lock_init(&ctx->lock);
3637        mutex_init(&ctx->mutex);
3638        INIT_LIST_HEAD(&ctx->active_ctx_list);
3639        INIT_LIST_HEAD(&ctx->pinned_groups);
3640        INIT_LIST_HEAD(&ctx->flexible_groups);
3641        INIT_LIST_HEAD(&ctx->event_list);
3642        atomic_set(&ctx->refcount, 1);
3643}
3644
3645static struct perf_event_context *
3646alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3647{
3648        struct perf_event_context *ctx;
3649
3650        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3651        if (!ctx)
3652                return NULL;
3653
3654        __perf_event_init_context(ctx);
3655        if (task) {
3656                ctx->task = task;
3657                get_task_struct(task);
3658        }
3659        ctx->pmu = pmu;
3660
3661        return ctx;
3662}
3663
3664static struct task_struct *
3665find_lively_task_by_vpid(pid_t vpid)
3666{
3667        struct task_struct *task;
3668
3669        rcu_read_lock();
3670        if (!vpid)
3671                task = current;
3672        else
3673                task = find_task_by_vpid(vpid);
3674        if (task)
3675                get_task_struct(task);
3676        rcu_read_unlock();
3677
3678        if (!task)
3679                return ERR_PTR(-ESRCH);
3680
3681        return task;
3682}
3683
3684/*
3685 * Returns a matching context with refcount and pincount.
3686 */
3687static struct perf_event_context *
3688find_get_context(struct pmu *pmu, struct task_struct *task,
3689                struct perf_event *event)
3690{
3691        struct perf_event_context *ctx, *clone_ctx = NULL;
3692        struct perf_cpu_context *cpuctx;
3693        void *task_ctx_data = NULL;
3694        unsigned long flags;
3695        int ctxn, err;
3696        int cpu = event->cpu;
3697
3698        if (!task) {
3699                /* Must be root to operate on a CPU event: */
3700                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3701                        return ERR_PTR(-EACCES);
3702
3703                /*
3704                 * We could be clever and allow to attach a event to an
3705                 * offline CPU and activate it when the CPU comes up, but
3706                 * that's for later.
3707                 */
3708                if (!cpu_online(cpu))
3709                        return ERR_PTR(-ENODEV);
3710
3711                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3712                ctx = &cpuctx->ctx;
3713                get_ctx(ctx);
3714                ++ctx->pin_count;
3715
3716                return ctx;
3717        }
3718
3719        err = -EINVAL;
3720        ctxn = pmu->task_ctx_nr;
3721        if (ctxn < 0)
3722                goto errout;
3723
3724        if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3725                task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3726                if (!task_ctx_data) {
3727                        err = -ENOMEM;
3728                        goto errout;
3729                }
3730        }
3731
3732retry:
3733        ctx = perf_lock_task_context(task, ctxn, &flags);
3734        if (ctx) {
3735                clone_ctx = unclone_ctx(ctx);
3736                ++ctx->pin_count;
3737
3738                if (task_ctx_data && !ctx->task_ctx_data) {
3739                        ctx->task_ctx_data = task_ctx_data;
3740                        task_ctx_data = NULL;
3741                }
3742                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3743
3744                if (clone_ctx)
3745                        put_ctx(clone_ctx);
3746        } else {
3747                ctx = alloc_perf_context(pmu, task);
3748                err = -ENOMEM;
3749                if (!ctx)
3750                        goto errout;
3751
3752                if (task_ctx_data) {
3753                        ctx->task_ctx_data = task_ctx_data;
3754                        task_ctx_data = NULL;
3755                }
3756
3757                err = 0;
3758                mutex_lock(&task->perf_event_mutex);
3759                /*
3760                 * If it has already passed perf_event_exit_task().
3761                 * we must see PF_EXITING, it takes this mutex too.
3762                 */
3763                if (task->flags & PF_EXITING)
3764                        err = -ESRCH;
3765                else if (task->perf_event_ctxp[ctxn])
3766                        err = -EAGAIN;
3767                else {
3768                        get_ctx(ctx);
3769                        ++ctx->pin_count;
3770                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3771                }
3772                mutex_unlock(&task->perf_event_mutex);
3773
3774                if (unlikely(err)) {
3775                        put_ctx(ctx);
3776
3777                        if (err == -EAGAIN)
3778                                goto retry;
3779                        goto errout;
3780                }
3781        }
3782
3783        kfree(task_ctx_data);
3784        return ctx;
3785
3786errout:
3787        kfree(task_ctx_data);
3788        return ERR_PTR(err);
3789}
3790
3791static void perf_event_free_filter(struct perf_event *event);
3792static void perf_event_free_bpf_prog(struct perf_event *event);
3793
3794static void free_event_rcu(struct rcu_head *head)
3795{
3796        struct perf_event *event;
3797
3798        event = container_of(head, struct perf_event, rcu_head);
3799        if (event->ns)
3800                put_pid_ns(event->ns);
3801        perf_event_free_filter(event);
3802        kfree(event);
3803}
3804
3805static void ring_buffer_attach(struct perf_event *event,
3806                               struct ring_buffer *rb);
3807
3808static void detach_sb_event(struct perf_event *event)
3809{
3810        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3811
3812        raw_spin_lock(&pel->lock);
3813        list_del_rcu(&event->sb_list);
3814        raw_spin_unlock(&pel->lock);
3815}
3816
3817static bool is_sb_event(struct perf_event *event)
3818{
3819        struct perf_event_attr *attr = &event->attr;
3820
3821        if (event->parent)
3822                return false;
3823
3824        if (event->attach_state & PERF_ATTACH_TASK)
3825                return false;
3826
3827        if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3828            attr->comm || attr->comm_exec ||
3829            attr->task ||
3830            attr->context_switch)
3831                return true;
3832        return false;
3833}
3834
3835static void unaccount_pmu_sb_event(struct perf_event *event)
3836{
3837        if (is_sb_event(event))
3838                detach_sb_event(event);
3839}
3840
3841static void unaccount_event_cpu(struct perf_event *event, int cpu)
3842{
3843        if (event->parent)
3844                return;
3845
3846        if (is_cgroup_event(event))
3847                atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3848}
3849
3850#ifdef CONFIG_NO_HZ_FULL
3851static DEFINE_SPINLOCK(nr_freq_lock);
3852#endif
3853
3854static void unaccount_freq_event_nohz(void)
3855{
3856#ifdef CONFIG_NO_HZ_FULL
3857        spin_lock(&nr_freq_lock);
3858        if (atomic_dec_and_test(&nr_freq_events))
3859                tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3860        spin_unlock(&nr_freq_lock);
3861#endif
3862}
3863
3864static void unaccount_freq_event(void)
3865{
3866        if (tick_nohz_full_enabled())
3867                unaccount_freq_event_nohz();
3868        else
3869                atomic_dec(&nr_freq_events);
3870}
3871
3872static void unaccount_event(struct perf_event *event)
3873{
3874        bool dec = false;
3875
3876        if (event->parent)
3877                return;
3878
3879        if (event->attach_state & PERF_ATTACH_TASK)
3880                dec = true;
3881        if (event->attr.mmap || event->attr.mmap_data)
3882                atomic_dec(&nr_mmap_events);
3883        if (event->attr.comm)
3884                atomic_dec(&nr_comm_events);
3885        if (event->attr.task)
3886                atomic_dec(&nr_task_events);
3887        if (event->attr.freq)
3888                unaccount_freq_event();
3889        if (event->attr.context_switch) {
3890                dec = true;
3891                atomic_dec(&nr_switch_events);
3892        }
3893        if (is_cgroup_event(event))
3894                dec = true;
3895        if (has_branch_stack(event))
3896                dec = true;
3897
3898        if (dec) {
3899                if (!atomic_add_unless(&perf_sched_count, -1, 1))
3900                        schedule_delayed_work(&perf_sched_work, HZ);
3901        }
3902
3903        unaccount_event_cpu(event, event->cpu);
3904
3905        unaccount_pmu_sb_event(event);
3906}
3907
3908static void perf_sched_delayed(struct work_struct *work)
3909{
3910        mutex_lock(&perf_sched_mutex);
3911        if (atomic_dec_and_test(&perf_sched_count))
3912                static_branch_disable(&perf_sched_events);
3913        mutex_unlock(&perf_sched_mutex);
3914}
3915
3916/*
3917 * The following implement mutual exclusion of events on "exclusive" pmus
3918 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3919 * at a time, so we disallow creating events that might conflict, namely:
3920 *
3921 *  1) cpu-wide events in the presence of per-task events,
3922 *  2) per-task events in the presence of cpu-wide events,
3923 *  3) two matching events on the same context.
3924 *
3925 * The former two cases are handled in the allocation path (perf_event_alloc(),
3926 * _free_event()), the latter -- before the first perf_install_in_context().
3927 */
3928static int exclusive_event_init(struct perf_event *event)
3929{
3930        struct pmu *pmu = event->pmu;
3931
3932        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3933                return 0;
3934
3935        /*
3936         * Prevent co-existence of per-task and cpu-wide events on the
3937         * same exclusive pmu.
3938         *
3939         * Negative pmu::exclusive_cnt means there are cpu-wide
3940         * events on this "exclusive" pmu, positive means there are
3941         * per-task events.
3942         *
3943         * Since this is called in perf_event_alloc() path, event::ctx
3944         * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3945         * to mean "per-task event", because unlike other attach states it
3946         * never gets cleared.
3947         */
3948        if (event->attach_state & PERF_ATTACH_TASK) {
3949                if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3950                        return -EBUSY;
3951        } else {
3952                if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3953                        return -EBUSY;
3954        }
3955
3956        return 0;
3957}
3958
3959static void exclusive_event_destroy(struct perf_event *event)
3960{
3961        struct pmu *pmu = event->pmu;
3962
3963        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3964                return;
3965
3966        /* see comment in exclusive_event_init() */
3967        if (event->attach_state & PERF_ATTACH_TASK)
3968                atomic_dec(&pmu->exclusive_cnt);
3969        else
3970                atomic_inc(&pmu->exclusive_cnt);
3971}
3972
3973static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3974{
3975        if ((e1->pmu == e2->pmu) &&
3976            (e1->cpu == e2->cpu ||
3977             e1->cpu == -1 ||
3978             e2->cpu == -1))
3979                return true;
3980        return false;
3981}
3982
3983/* Called under the same ctx::mutex as perf_install_in_context() */
3984static bool exclusive_event_installable(struct perf_event *event,
3985                                        struct perf_event_context *ctx)
3986{
3987        struct perf_event *iter_event;
3988        struct pmu *pmu = event->pmu;
3989
3990        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3991                return true;
3992
3993        list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3994                if (exclusive_event_match(iter_event, event))
3995                        return false;
3996        }
3997
3998        return true;
3999}
4000
4001static void perf_addr_filters_splice(struct perf_event *event,
4002                                       struct list_head *head);
4003
4004static void _free_event(struct perf_event *event)
4005{
4006        irq_work_sync(&event->pending);
4007
4008        unaccount_event(event);
4009
4010        if (event->rb) {
4011                /*
4012                 * Can happen when we close an event with re-directed output.
4013                 *
4014                 * Since we have a 0 refcount, perf_mmap_close() will skip
4015                 * over us; possibly making our ring_buffer_put() the last.
4016                 */
4017                mutex_lock(&event->mmap_mutex);
4018                ring_buffer_attach(event, NULL);
4019                mutex_unlock(&event->mmap_mutex);
4020        }
4021
4022        if (is_cgroup_event(event))
4023                perf_detach_cgroup(event);
4024
4025        if (!event->parent) {
4026                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4027                        put_callchain_buffers();
4028        }
4029
4030        perf_event_free_bpf_prog(event);
4031        perf_addr_filters_splice(event, NULL);
4032        kfree(event->addr_filters_offs);
4033
4034        if (event->destroy)
4035                event->destroy(event);
4036
4037        if (event->ctx)
4038                put_ctx(event->ctx);
4039
4040        exclusive_event_destroy(event);
4041        module_put(event->pmu->module);
4042
4043        call_rcu(&event->rcu_head, free_event_rcu);
4044}
4045
4046/*
4047 * Used to free events which have a known refcount of 1, such as in error paths
4048 * where the event isn't exposed yet and inherited events.
4049 */
4050static void free_event(struct perf_event *event)
4051{
4052        if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4053                                "unexpected event refcount: %ld; ptr=%p\n",
4054                                atomic_long_read(&event->refcount), event)) {
4055                /* leak to avoid use-after-free */
4056                return;
4057        }
4058
4059        _free_event(event);
4060}
4061
4062/*
4063 * Remove user event from the owner task.
4064 */
4065static void perf_remove_from_owner(struct perf_event *event)
4066{
4067        struct task_struct *owner;
4068
4069        rcu_read_lock();
4070        /*
4071         * Matches the smp_store_release() in perf_event_exit_task(). If we
4072         * observe !owner it means the list deletion is complete and we can
4073         * indeed free this event, otherwise we need to serialize on
4074         * owner->perf_event_mutex.
4075         */
4076        owner = lockless_dereference(event->owner);
4077        if (owner) {
4078                /*
4079                 * Since delayed_put_task_struct() also drops the last
4080                 * task reference we can safely take a new reference
4081                 * while holding the rcu_read_lock().
4082                 */
4083                get_task_struct(owner);
4084        }
4085        rcu_read_unlock();
4086
4087        if (owner) {
4088                /*
4089                 * If we're here through perf_event_exit_task() we're already
4090                 * holding ctx->mutex which would be an inversion wrt. the
4091                 * normal lock order.
4092                 *
4093                 * However we can safely take this lock because its the child
4094                 * ctx->mutex.
4095                 */
4096                mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4097
4098                /*
4099                 * We have to re-check the event->owner field, if it is cleared
4100                 * we raced with perf_event_exit_task(), acquiring the mutex
4101                 * ensured they're done, and we can proceed with freeing the
4102                 * event.
4103                 */
4104                if (event->owner) {
4105                        list_del_init(&event->owner_entry);
4106                        smp_store_release(&event->owner, NULL);
4107                }
4108                mutex_unlock(&owner->perf_event_mutex);
4109                put_task_struct(owner);
4110        }
4111}
4112
4113static void put_event(struct perf_event *event)
4114{
4115        if (!atomic_long_dec_and_test(&event->refcount))
4116                return;
4117
4118        _free_event(event);
4119}
4120
4121/*
4122 * Kill an event dead; while event:refcount will preserve the event
4123 * object, it will not preserve its functionality. Once the last 'user'
4124 * gives up the object, we'll destroy the thing.
4125 */
4126int perf_event_release_kernel(struct perf_event *event)
4127{
4128        struct perf_event_context *ctx = event->ctx;
4129        struct perf_event *child, *tmp;
4130
4131        /*
4132         * If we got here through err_file: fput(event_file); we will not have
4133         * attached to a context yet.
4134         */
4135        if (!ctx) {
4136                WARN_ON_ONCE(event->attach_state &
4137                                (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4138                goto no_ctx;
4139        }
4140
4141        if (!is_kernel_event(event))
4142                perf_remove_from_owner(event);
4143
4144        ctx = perf_event_ctx_lock(event);
4145        WARN_ON_ONCE(ctx->parent_ctx);
4146        perf_remove_from_context(event, DETACH_GROUP);
4147
4148        raw_spin_lock_irq(&ctx->lock);
4149        /*
4150         * Mark this even as STATE_DEAD, there is no external reference to it
4151         * anymore.
4152         *
4153         * Anybody acquiring event->child_mutex after the below loop _must_
4154         * also see this, most importantly inherit_event() which will avoid
4155         * placing more children on the list.
4156         *
4157         * Thus this guarantees that we will in fact observe and kill _ALL_
4158         * child events.
4159         */
4160        event->state = PERF_EVENT_STATE_DEAD;
4161        raw_spin_unlock_irq(&ctx->lock);
4162
4163        perf_event_ctx_unlock(event, ctx);
4164
4165again:
4166        mutex_lock(&event->child_mutex);
4167        list_for_each_entry(child, &event->child_list, child_list) {
4168
4169                /*
4170                 * Cannot change, child events are not migrated, see the
4171                 * comment with perf_event_ctx_lock_nested().
4172                 */
4173                ctx = lockless_dereference(child->ctx);
4174                /*
4175                 * Since child_mutex nests inside ctx::mutex, we must jump
4176                 * through hoops. We start by grabbing a reference on the ctx.
4177                 *
4178                 * Since the event cannot get freed while we hold the
4179                 * child_mutex, the context must also exist and have a !0
4180                 * reference count.
4181                 */
4182                get_ctx(ctx);
4183
4184                /*
4185                 * Now that we have a ctx ref, we can drop child_mutex, and
4186                 * acquire ctx::mutex without fear of it going away. Then we
4187                 * can re-acquire child_mutex.
4188                 */
4189                mutex_unlock(&event->child_mutex);
4190                mutex_lock(&ctx->mutex);
4191                mutex_lock(&event->child_mutex);
4192
4193                /*
4194                 * Now that we hold ctx::mutex and child_mutex, revalidate our
4195                 * state, if child is still the first entry, it didn't get freed
4196                 * and we can continue doing so.
4197                 */
4198                tmp = list_first_entry_or_null(&event->child_list,
4199                                               struct perf_event, child_list);
4200                if (tmp == child) {
4201                        perf_remove_from_context(child, DETACH_GROUP);
4202                        list_del(&child->child_list);
4203                        free_event(child);
4204                        /*
4205                         * This matches the refcount bump in inherit_event();
4206                         * this can't be the last reference.
4207                         */
4208                        put_event(event);
4209                }
4210
4211                mutex_unlock(&event->child_mutex);
4212                mutex_unlock(&ctx->mutex);
4213                put_ctx(ctx);
4214                goto again;
4215        }
4216        mutex_unlock(&event->child_mutex);
4217
4218no_ctx:
4219        put_event(event); /* Must be the 'last' reference */
4220        return 0;
4221}
4222EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4223
4224/*
4225 * Called when the last reference to the file is gone.
4226 */
4227static int perf_release(struct inode *inode, struct file *file)
4228{
4229        perf_event_release_kernel(file->private_data);
4230        return 0;
4231}
4232
4233u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4234{
4235        struct perf_event *child;
4236        u64 total = 0;
4237
4238        *enabled = 0;
4239        *running = 0;
4240
4241        mutex_lock(&event->child_mutex);
4242
4243        (void)perf_event_read(event, false);
4244        total += perf_event_count(event);
4245
4246        *enabled += event->total_time_enabled +
4247                        atomic64_read(&event->child_total_time_enabled);
4248        *running += event->total_time_running +
4249                        atomic64_read(&event->child_total_time_running);
4250
4251        list_for_each_entry(child, &event->child_list, child_list) {
4252                (void)perf_event_read(child, false);
4253                total += perf_event_count(child);
4254                *enabled += child->total_time_enabled;
4255                *running += child->total_time_running;
4256        }
4257        mutex_unlock(&event->child_mutex);
4258
4259        return total;
4260}
4261EXPORT_SYMBOL_GPL(perf_event_read_value);
4262
4263static int __perf_read_group_add(struct perf_event *leader,
4264                                        u64 read_format, u64 *values)
4265{
4266        struct perf_event *sub;
4267        int n = 1; /* skip @nr */
4268        int ret;
4269
4270        ret = perf_event_read(leader, true);
4271        if (ret)
4272                return ret;
4273
4274        /*
4275         * Since we co-schedule groups, {enabled,running} times of siblings
4276         * will be identical to those of the leader, so we only publish one
4277         * set.
4278         */
4279        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4280                values[n++] += leader->total_time_enabled +
4281                        atomic64_read(&leader->child_total_time_enabled);
4282        }
4283
4284        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4285                values[n++] += leader->total_time_running +
4286                        atomic64_read(&leader->child_total_time_running);
4287        }
4288
4289        /*
4290         * Write {count,id} tuples for every sibling.
4291         */
4292        values[n++] += perf_event_count(leader);
4293        if (read_format & PERF_FORMAT_ID)
4294                values[n++] = primary_event_id(leader);
4295
4296        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4297                values[n++] += perf_event_count(sub);
4298                if (read_format & PERF_FORMAT_ID)
4299                        values[n++] = primary_event_id(sub);
4300        }
4301
4302        return 0;
4303}
4304
4305static int perf_read_group(struct perf_event *event,
4306                                   u64 read_format, char __user *buf)
4307{
4308        struct perf_event *leader = event->group_leader, *child;
4309        struct perf_event_context *ctx = leader->ctx;
4310        int ret;
4311        u64 *values;
4312
4313        lockdep_assert_held(&ctx->mutex);
4314
4315        values = kzalloc(event->read_size, GFP_KERNEL);
4316        if (!values)
4317                return -ENOMEM;
4318
4319        values[0] = 1 + leader->nr_siblings;
4320
4321        /*
4322         * By locking the child_mutex of the leader we effectively
4323         * lock the child list of all siblings.. XXX explain how.
4324         */
4325        mutex_lock(&leader->child_mutex);
4326
4327        ret = __perf_read_group_add(leader, read_format, values);
4328        if (ret)
4329                goto unlock;
4330
4331        list_for_each_entry(child, &leader->child_list, child_list) {
4332                ret = __perf_read_group_add(child, read_format, values);
4333                if (ret)
4334                        goto unlock;
4335        }
4336
4337        mutex_unlock(&leader->child_mutex);
4338
4339        ret = event->read_size;
4340        if (copy_to_user(buf, values, event->read_size))
4341                ret = -EFAULT;
4342        goto out;
4343
4344unlock:
4345        mutex_unlock(&leader->child_mutex);
4346out:
4347        kfree(values);
4348        return ret;
4349}
4350
4351static int perf_read_one(struct perf_event *event,
4352                                 u64 read_format, char __user *buf)
4353{
4354        u64 enabled, running;
4355        u64 values[4];
4356        int n = 0;
4357
4358        values[n++] = perf_event_read_value(event, &enabled, &running);
4359        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4360                values[n++] = enabled;
4361        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4362                values[n++] = running;
4363        if (read_format & PERF_FORMAT_ID)
4364                values[n++] = primary_event_id(event);
4365
4366        if (copy_to_user(buf, values, n * sizeof(u64)))
4367                return -EFAULT;
4368
4369        return n * sizeof(u64);
4370}
4371
4372static bool is_event_hup(struct perf_event *event)
4373{
4374        bool no_children;
4375
4376        if (event->state > PERF_EVENT_STATE_EXIT)
4377                return false;
4378
4379        mutex_lock(&event->child_mutex);
4380        no_children = list_empty(&event->child_list);
4381        mutex_unlock(&event->child_mutex);
4382        return no_children;
4383}
4384
4385/*
4386 * Read the performance event - simple non blocking version for now
4387 */
4388static ssize_t
4389__perf_read(struct perf_event *event, char __user *buf, size_t count)
4390{
4391        u64 read_format = event->attr.read_format;
4392        int ret;
4393
4394        /*
4395         * Return end-of-file for a read on a event that is in
4396         * error state (i.e. because it was pinned but it couldn't be
4397         * scheduled on to the CPU at some point).
4398         */
4399        if (event->state == PERF_EVENT_STATE_ERROR)
4400                return 0;
4401
4402        if (count < event->read_size)
4403                return -ENOSPC;
4404
4405        WARN_ON_ONCE(event->ctx->parent_ctx);
4406        if (read_format & PERF_FORMAT_GROUP)
4407                ret = perf_read_group(event, read_format, buf);
4408        else
4409                ret = perf_read_one(event, read_format, buf);
4410
4411        return ret;
4412}
4413
4414static ssize_t
4415perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4416{
4417        struct perf_event *event = file->private_data;
4418        struct perf_event_context *ctx;
4419        int ret;
4420
4421        ctx = perf_event_ctx_lock(event);
4422        ret = __perf_read(event, buf, count);
4423        perf_event_ctx_unlock(event, ctx);
4424
4425        return ret;
4426}
4427
4428static unsigned int perf_poll(struct file *file, poll_table *wait)
4429{
4430        struct perf_event *event = file->private_data;
4431        struct ring_buffer *rb;
4432        unsigned int events = POLLHUP;
4433
4434        poll_wait(file, &event->waitq, wait);
4435
4436        if (is_event_hup(event))
4437                return events;
4438
4439        /*
4440         * Pin the event->rb by taking event->mmap_mutex; otherwise
4441         * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4442         */
4443        mutex_lock(&event->mmap_mutex);
4444        rb = event->rb;
4445        if (rb)
4446                events = atomic_xchg(&rb->poll, 0);
4447        mutex_unlock(&event->mmap_mutex);
4448        return events;
4449}
4450
4451static void _perf_event_reset(struct perf_event *event)
4452{
4453        (void)perf_event_read(event, false);
4454        local64_set(&event->count, 0);
4455        perf_event_update_userpage(event);
4456}
4457
4458/*
4459 * Holding the top-level event's child_mutex means that any
4460 * descendant process that has inherited this event will block
4461 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4462 * task existence requirements of perf_event_enable/disable.
4463 */
4464static void perf_event_for_each_child(struct perf_event *event,
4465                                        void (*func)(struct perf_event *))
4466{
4467        struct perf_event *child;
4468
4469        WARN_ON_ONCE(event->ctx->parent_ctx);
4470
4471        mutex_lock(&event->child_mutex);
4472        func(event);
4473        list_for_each_entry(child, &event->child_list, child_list)
4474                func(child);
4475        mutex_unlock(&event->child_mutex);
4476}
4477
4478static void perf_event_for_each(struct perf_event *event,
4479                                  void (*func)(struct perf_event *))
4480{
4481        struct perf_event_context *ctx = event->ctx;
4482        struct perf_event *sibling;
4483
4484        lockdep_assert_held(&ctx->mutex);
4485
4486        event = event->group_leader;
4487
4488        perf_event_for_each_child(event, func);
4489        list_for_each_entry(sibling, &event->sibling_list, group_entry)
4490                perf_event_for_each_child(sibling, func);
4491}
4492
4493static void __perf_event_period(struct perf_event *event,
4494                                struct perf_cpu_context *cpuctx,
4495                                struct perf_event_context *ctx,
4496                                void *info)
4497{
4498        u64 value = *((u64 *)info);
4499        bool active;
4500
4501        if (event->attr.freq) {
4502                event->attr.sample_freq = value;
4503        } else {
4504                event->attr.sample_period = value;
4505                event->hw.sample_period = value;
4506        }
4507
4508        active = (event->state == PERF_EVENT_STATE_ACTIVE);
4509        if (active) {
4510                perf_pmu_disable(ctx->pmu);
4511                /*
4512                 * We could be throttled; unthrottle now to avoid the tick
4513                 * trying to unthrottle while we already re-started the event.
4514                 */
4515                if (event->hw.interrupts == MAX_INTERRUPTS) {
4516                        event->hw.interrupts = 0;
4517                        perf_log_throttle(event, 1);
4518                }
4519                event->pmu->stop(event, PERF_EF_UPDATE);
4520        }
4521
4522        local64_set(&event->hw.period_left, 0);
4523
4524        if (active) {
4525                event->pmu->start(event, PERF_EF_RELOAD);
4526                perf_pmu_enable(ctx->pmu);
4527        }
4528}
4529
4530static int perf_event_period(struct perf_event *event, u64 __user *arg)
4531{
4532        u64 value;
4533
4534        if (!is_sampling_event(event))
4535                return -EINVAL;
4536
4537        if (copy_from_user(&value, arg, sizeof(value)))
4538                return -EFAULT;
4539
4540        if (!value)
4541                return -EINVAL;
4542
4543        if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4544                return -EINVAL;
4545
4546        event_function_call(event, __perf_event_period, &value);
4547
4548        return 0;
4549}
4550
4551static const struct file_operations perf_fops;
4552
4553static inline int perf_fget_light(int fd, struct fd *p)
4554{
4555        struct fd f = fdget(fd);
4556        if (!f.file)
4557                return -EBADF;
4558
4559        if (f.file->f_op != &perf_fops) {
4560                fdput(f);
4561                return -EBADF;
4562        }
4563        *p = f;
4564        return 0;
4565}
4566
4567static int perf_event_set_output(struct perf_event *event,
4568                                 struct perf_event *output_event);
4569static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4570static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4571
4572static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4573{
4574        void (*func)(struct perf_event *);
4575        u32 flags = arg;
4576
4577        switch (cmd) {
4578        case PERF_EVENT_IOC_ENABLE:
4579                func = _perf_event_enable;
4580                break;
4581        case PERF_EVENT_IOC_DISABLE:
4582                func = _perf_event_disable;
4583                break;
4584        case PERF_EVENT_IOC_RESET:
4585                func = _perf_event_reset;
4586                break;
4587
4588        case PERF_EVENT_IOC_REFRESH:
4589                return _perf_event_refresh(event, arg);
4590
4591        case PERF_EVENT_IOC_PERIOD:
4592                return perf_event_period(event, (u64 __user *)arg);
4593
4594        case PERF_EVENT_IOC_ID:
4595        {
4596                u64 id = primary_event_id(event);
4597
4598                if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4599                        return -EFAULT;
4600                return 0;
4601        }
4602
4603        case PERF_EVENT_IOC_SET_OUTPUT:
4604        {
4605                int ret;
4606                if (arg != -1) {
4607                        struct perf_event *output_event;
4608                        struct fd output;
4609                        ret = perf_fget_light(arg, &output);
4610                        if (ret)
4611                                return ret;
4612                        output_event = output.file->private_data;
4613                        ret = perf_event_set_output(event, output_event);
4614                        fdput(output);
4615                } else {
4616                        ret = perf_event_set_output(event, NULL);
4617                }
4618                return ret;
4619        }
4620
4621        case PERF_EVENT_IOC_SET_FILTER:
4622                return perf_event_set_filter(event, (void __user *)arg);
4623
4624        case PERF_EVENT_IOC_SET_BPF:
4625                return perf_event_set_bpf_prog(event, arg);
4626
4627        case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4628                struct ring_buffer *rb;
4629
4630                rcu_read_lock();
4631                rb = rcu_dereference(event->rb);
4632                if (!rb || !rb->nr_pages) {
4633                        rcu_read_unlock();
4634                        return -EINVAL;
4635                }
4636                rb_toggle_paused(rb, !!arg);
4637                rcu_read_unlock();
4638                return 0;
4639        }
4640        default:
4641                return -ENOTTY;
4642        }
4643
4644        if (flags & PERF_IOC_FLAG_GROUP)
4645                perf_event_for_each(event, func);
4646        else
4647                perf_event_for_each_child(event, func);
4648
4649        return 0;
4650}
4651
4652static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4653{
4654        struct perf_event *event = file->private_data;
4655        struct perf_event_context *ctx;
4656        long ret;
4657
4658        ctx = perf_event_ctx_lock(event);
4659        ret = _perf_ioctl(event, cmd, arg);
4660        perf_event_ctx_unlock(event, ctx);
4661
4662        return ret;
4663}
4664
4665#ifdef CONFIG_COMPAT
4666static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4667                                unsigned long arg)
4668{
4669        switch (_IOC_NR(cmd)) {
4670        case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4671        case _IOC_NR(PERF_EVENT_IOC_ID):
4672                /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4673                if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4674                        cmd &= ~IOCSIZE_MASK;
4675                        cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4676                }
4677                break;
4678        }
4679        return perf_ioctl(file, cmd, arg);
4680}
4681#else
4682# define perf_compat_ioctl NULL
4683#endif
4684
4685int perf_event_task_enable(void)
4686{
4687        struct perf_event_context *ctx;
4688        struct perf_event *event;
4689
4690        mutex_lock(&current->perf_event_mutex);
4691        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4692                ctx = perf_event_ctx_lock(event);
4693                perf_event_for_each_child(event, _perf_event_enable);
4694                perf_event_ctx_unlock(event, ctx);
4695        }
4696        mutex_unlock(&current->perf_event_mutex);
4697
4698        return 0;
4699}
4700
4701int perf_event_task_disable(void)
4702{
4703        struct perf_event_context *ctx;
4704        struct perf_event *event;
4705
4706        mutex_lock(&current->perf_event_mutex);
4707        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4708                ctx = perf_event_ctx_lock(event);
4709                perf_event_for_each_child(event, _perf_event_disable);
4710                perf_event_ctx_unlock(event, ctx);
4711        }
4712        mutex_unlock(&current->perf_event_mutex);
4713
4714        return 0;
4715}
4716
4717static int perf_event_index(struct perf_event *event)
4718{
4719        if (event->hw.state & PERF_HES_STOPPED)
4720                return 0;
4721
4722        if (event->state != PERF_EVENT_STATE_ACTIVE)
4723                return 0;
4724
4725        return event->pmu->event_idx(event);
4726}
4727
4728static void calc_timer_values(struct perf_event *event,
4729                                u64 *now,
4730                                u64 *enabled,
4731                                u64 *running)
4732{
4733        u64 ctx_time;
4734
4735        *now = perf_clock();
4736        ctx_time = event->shadow_ctx_time + *now;
4737        *enabled = ctx_time - event->tstamp_enabled;
4738        *running = ctx_time - event->tstamp_running;
4739}
4740
4741static void perf_event_init_userpage(struct perf_event *event)
4742{
4743        struct perf_event_mmap_page *userpg;
4744        struct ring_buffer *rb;
4745
4746        rcu_read_lock();
4747        rb = rcu_dereference(event->rb);
4748        if (!rb)
4749                goto unlock;
4750
4751        userpg = rb->user_page;
4752
4753        /* Allow new userspace to detect that bit 0 is deprecated */
4754        userpg->cap_bit0_is_deprecated = 1;
4755        userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4756        userpg->data_offset = PAGE_SIZE;
4757        userpg->data_size = perf_data_size(rb);
4758
4759unlock:
4760        rcu_read_unlock();
4761}
4762
4763void __weak arch_perf_update_userpage(
4764        struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4765{
4766}
4767
4768/*
4769 * Callers need to ensure there can be no nesting of this function, otherwise
4770 * the seqlock logic goes bad. We can not serialize this because the arch
4771 * code calls this from NMI context.
4772 */
4773void perf_event_update_userpage(struct perf_event *event)
4774{
4775        struct perf_event_mmap_page *userpg;
4776        struct ring_buffer *rb;
4777        u64 enabled, running, now;
4778
4779        rcu_read_lock();
4780        rb = rcu_dereference(event->rb);
4781        if (!rb)
4782                goto unlock;
4783
4784        /*
4785         * compute total_time_enabled, total_time_running
4786         * based on snapshot values taken when the event
4787         * was last scheduled in.
4788         *
4789         * we cannot simply called update_context_time()
4790         * because of locking issue as we can be called in
4791         * NMI context
4792         */
4793        calc_timer_values(event, &now, &enabled, &running);
4794
4795        userpg = rb->user_page;
4796        /*
4797         * Disable preemption so as to not let the corresponding user-space
4798         * spin too long if we get preempted.
4799         */
4800        preempt_disable();
4801        ++userpg->lock;
4802        barrier();
4803        userpg->index = perf_event_index(event);
4804        userpg->offset = perf_event_count(event);
4805        if (userpg->index)
4806                userpg->offset -= local64_read(&event->hw.prev_count);
4807
4808        userpg->time_enabled = enabled +
4809                        atomic64_read(&event->child_total_time_enabled);
4810
4811        userpg->time_running = running +
4812                        atomic64_read(&event->child_total_time_running);
4813
4814        arch_perf_update_userpage(event, userpg, now);
4815
4816        barrier();
4817        ++userpg->lock;
4818        preempt_enable();
4819unlock:
4820        rcu_read_unlock();
4821}
4822
4823static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4824{
4825        struct perf_event *event = vma->vm_file->private_data;
4826        struct ring_buffer *rb;
4827        int ret = VM_FAULT_SIGBUS;
4828
4829        if (vmf->flags & FAULT_FLAG_MKWRITE) {
4830                if (vmf->pgoff == 0)
4831                        ret = 0;
4832                return ret;
4833        }
4834
4835        rcu_read_lock();
4836        rb = rcu_dereference(event->rb);
4837        if (!rb)
4838                goto unlock;
4839
4840        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4841                goto unlock;
4842
4843        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4844        if (!vmf->page)
4845                goto unlock;
4846
4847        get_page(vmf->page);
4848        vmf->page->mapping = vma->vm_file->f_mapping;
4849        vmf->page->index   = vmf->pgoff;
4850
4851        ret = 0;
4852unlock:
4853        rcu_read_unlock();
4854
4855        return ret;
4856}
4857
4858static void ring_buffer_attach(struct perf_event *event,
4859                               struct ring_buffer *rb)
4860{
4861        struct ring_buffer *old_rb = NULL;
4862        unsigned long flags;
4863
4864        if (event->rb) {
4865                /*
4866                 * Should be impossible, we set this when removing
4867                 * event->rb_entry and wait/clear when adding event->rb_entry.
4868                 */
4869                WARN_ON_ONCE(event->rcu_pending);
4870
4871                old_rb = event->rb;
4872                spin_lock_irqsave(&old_rb->event_lock, flags);
4873                list_del_rcu(&event->rb_entry);
4874                spin_unlock_irqrestore(&old_rb->event_lock, flags);
4875
4876                event->rcu_batches = get_state_synchronize_rcu();
4877                event->rcu_pending = 1;
4878        }
4879
4880        if (rb) {
4881                if (event->rcu_pending) {
4882                        cond_synchronize_rcu(event->rcu_batches);
4883                        event->rcu_pending = 0;
4884                }
4885
4886                spin_lock_irqsave(&rb->event_lock, flags);
4887                list_add_rcu(&event->rb_entry, &rb->event_list);
4888                spin_unlock_irqrestore(&rb->event_lock, flags);
4889        }
4890
4891        /*
4892         * Avoid racing with perf_mmap_close(AUX): stop the event
4893         * before swizzling the event::rb pointer; if it's getting
4894         * unmapped, its aux_mmap_count will be 0 and it won't
4895         * restart. See the comment in __perf_pmu_output_stop().
4896         *
4897         * Data will inevitably be lost when set_output is done in
4898         * mid-air, but then again, whoever does it like this is
4899         * not in for the data anyway.
4900         */
4901        if (has_aux(event))
4902                perf_event_stop(event, 0);
4903
4904        rcu_assign_pointer(event->rb, rb);
4905
4906        if (old_rb) {
4907                ring_buffer_put(old_rb);
4908                /*
4909                 * Since we detached before setting the new rb, so that we
4910                 * could attach the new rb, we could have missed a wakeup.
4911                 * Provide it now.
4912                 */
4913                wake_up_all(&event->waitq);
4914        }
4915}
4916
4917static void ring_buffer_wakeup(struct perf_event *event)
4918{
4919        struct ring_buffer *rb;
4920
4921        rcu_read_lock();
4922        rb = rcu_dereference(event->rb);
4923        if (rb) {
4924                list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4925                        wake_up_all(&event->waitq);
4926        }
4927        rcu_read_unlock();
4928}
4929
4930struct ring_buffer *ring_buffer_get(struct perf_event *event)
4931{
4932        struct ring_buffer *rb;
4933
4934        rcu_read_lock();
4935        rb = rcu_dereference(event->rb);
4936        if (rb) {
4937                if (!atomic_inc_not_zero(&rb->refcount))
4938                        rb = NULL;
4939        }
4940        rcu_read_unlock();
4941
4942        return rb;
4943}
4944
4945void ring_buffer_put(struct ring_buffer *rb)
4946{
4947        if (!atomic_dec_and_test(&rb->refcount))
4948                return;
4949
4950        WARN_ON_ONCE(!list_empty(&rb->event_list));
4951
4952        call_rcu(&rb->rcu_head, rb_free_rcu);
4953}
4954
4955static void perf_mmap_open(struct vm_area_struct *vma)
4956{
4957        struct perf_event *event = vma->vm_file->private_data;
4958
4959        atomic_inc(&event->mmap_count);
4960        atomic_inc(&event->rb->mmap_count);
4961
4962        if (vma->vm_pgoff)
4963                atomic_inc(&event->rb->aux_mmap_count);
4964
4965        if (event->pmu->event_mapped)
4966                event->pmu->event_mapped(event);
4967}
4968
4969static void perf_pmu_output_stop(struct perf_event *event);
4970
4971/*
4972 * A buffer can be mmap()ed multiple times; either directly through the same
4973 * event, or through other events by use of perf_event_set_output().
4974 *
4975 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4976 * the buffer here, where we still have a VM context. This means we need
4977 * to detach all events redirecting to us.
4978 */
4979static void perf_mmap_close(struct vm_area_struct *vma)
4980{
4981        struct perf_event *event = vma->vm_file->private_data;
4982
4983        struct ring_buffer *rb = ring_buffer_get(event);
4984        struct user_struct *mmap_user = rb->mmap_user;
4985        int mmap_locked = rb->mmap_locked;
4986        unsigned long size = perf_data_size(rb);
4987
4988        if (event->pmu->event_unmapped)
4989                event->pmu->event_unmapped(event);
4990
4991        /*
4992         * rb->aux_mmap_count will always drop before rb->mmap_count and
4993         * event->mmap_count, so it is ok to use event->mmap_mutex to
4994         * serialize with perf_mmap here.
4995         */
4996        if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4997            atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4998                /*
4999                 * Stop all AUX events that are writing to this buffer,
5000                 * so that we can free its AUX pages and corresponding PMU
5001                 * data. Note that after rb::aux_mmap_count dropped to zero,
5002                 * they won't start any more (see perf_aux_output_begin()).
5003                 */
5004                perf_pmu_output_stop(event);
5005
5006                /* now it's safe to free the pages */
5007                atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5008                vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5009
5010                /* this has to be the last one */
5011                rb_free_aux(rb);
5012                WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5013
5014                mutex_unlock(&event->mmap_mutex);
5015        }
5016
5017        atomic_dec(&rb->mmap_count);
5018
5019        if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5020                goto out_put;
5021
5022        ring_buffer_attach(event, NULL);
5023        mutex_unlock(&event->mmap_mutex);
5024
5025        /* If there's still other mmap()s of this buffer, we're done. */
5026        if (atomic_read(&rb->mmap_count))
5027                goto out_put;
5028
5029        /*
5030         * No other mmap()s, detach from all other events that might redirect
5031         * into the now unreachable buffer. Somewhat complicated by the
5032         * fact that rb::event_lock otherwise nests inside mmap_mutex.
5033         */
5034again:
5035        rcu_read_lock();
5036        list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5037                if (!atomic_long_inc_not_zero(&event->refcount)) {
5038                        /*
5039                         * This event is en-route to free_event() which will
5040                         * detach it and remove it from the list.
5041                         */
5042                        continue;
5043                }
5044                rcu_read_unlock();
5045
5046                mutex_lock(&event->mmap_mutex);
5047                /*
5048                 * Check we didn't race with perf_event_set_output() which can
5049                 * swizzle the rb from under us while we were waiting to
5050                 * acquire mmap_mutex.
5051                 *
5052                 * If we find a different rb; ignore this event, a next
5053                 * iteration will no longer find it on the list. We have to
5054                 * still restart the iteration to make sure we're not now
5055                 * iterating the wrong list.
5056                 */
5057                if (event->rb == rb)
5058                        ring_buffer_attach(event, NULL);
5059
5060                mutex_unlock(&event->mmap_mutex);
5061                put_event(event);
5062
5063                /*
5064                 * Restart the iteration; either we're on the wrong list or
5065                 * destroyed its integrity by doing a deletion.
5066                 */
5067                goto again;
5068        }
5069        rcu_read_unlock();
5070
5071        /*
5072         * It could be there's still a few 0-ref events on the list; they'll
5073         * get cleaned up by free_event() -- they'll also still have their
5074         * ref on the rb and will free it whenever they are done with it.
5075         *
5076         * Aside from that, this buffer is 'fully' detached and unmapped,
5077         * undo the VM accounting.
5078         */
5079
5080        atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5081        vma->vm_mm->pinned_vm -= mmap_locked;
5082        free_uid(mmap_user);
5083
5084out_put:
5085        ring_buffer_put(rb); /* could be last */
5086}
5087
5088static const struct vm_operations_struct perf_mmap_vmops = {
5089        .open           = perf_mmap_open,
5090        .close          = perf_mmap_close, /* non mergable */
5091        .fault          = perf_mmap_fault,
5092        .page_mkwrite   = perf_mmap_fault,
5093};
5094
5095static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5096{
5097        struct perf_event *event = file->private_data;
5098        unsigned long user_locked, user_lock_limit;
5099        struct user_struct *user = current_user();
5100        unsigned long locked, lock_limit;
5101        struct ring_buffer *rb = NULL;
5102        unsigned long vma_size;
5103        unsigned long nr_pages;
5104        long user_extra = 0, extra = 0;
5105        int ret = 0, flags = 0;
5106
5107        /*
5108         * Don't allow mmap() of inherited per-task counters. This would
5109         * create a performance issue due to all children writing to the
5110         * same rb.
5111         */
5112        if (event->cpu == -1 && event->attr.inherit)
5113                return -EINVAL;
5114
5115        if (!(vma->vm_flags & VM_SHARED))
5116                return -EINVAL;
5117
5118        vma_size = vma->vm_end - vma->vm_start;
5119
5120        if (vma->vm_pgoff == 0) {
5121                nr_pages = (vma_size / PAGE_SIZE) - 1;
5122        } else {
5123                /*
5124                 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5125                 * mapped, all subsequent mappings should have the same size
5126                 * and offset. Must be above the normal perf buffer.
5127                 */
5128                u64 aux_offset, aux_size;
5129
5130                if (!event->rb)
5131                        return -EINVAL;
5132
5133                nr_pages = vma_size / PAGE_SIZE;
5134
5135                mutex_lock(&event->mmap_mutex);
5136                ret = -EINVAL;
5137
5138                rb = event->rb;
5139                if (!rb)
5140                        goto aux_unlock;
5141
5142                aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5143                aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5144
5145                if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5146                        goto aux_unlock;
5147
5148                if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5149                        goto aux_unlock;
5150
5151                /* already mapped with a different offset */
5152                if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5153                        goto aux_unlock;
5154
5155                if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5156                        goto aux_unlock;
5157
5158                /* already mapped with a different size */
5159                if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5160                        goto aux_unlock;
5161
5162                if (!is_power_of_2(nr_pages))
5163                        goto aux_unlock;
5164
5165                if (!atomic_inc_not_zero(&rb->mmap_count))
5166                        goto aux_unlock;
5167
5168                if (rb_has_aux(rb)) {
5169                        atomic_inc(&rb->aux_mmap_count);
5170                        ret = 0;
5171                        goto unlock;
5172                }
5173
5174                atomic_set(&rb->aux_mmap_count, 1);
5175                user_extra = nr_pages;
5176
5177                goto accounting;
5178        }
5179
5180        /*
5181         * If we have rb pages ensure they're a power-of-two number, so we
5182         * can do bitmasks instead of modulo.
5183         */
5184        if (nr_pages != 0 && !is_power_of_2(nr_pages))
5185                return -EINVAL;
5186
5187        if (vma_size != PAGE_SIZE * (1 + nr_pages))
5188                return -EINVAL;
5189
5190        WARN_ON_ONCE(event->ctx->parent_ctx);
5191again:
5192        mutex_lock(&event->mmap_mutex);
5193        if (event->rb) {
5194                if (event->rb->nr_pages != nr_pages) {
5195                        ret = -EINVAL;
5196                        goto unlock;
5197                }
5198
5199                if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5200                        /*
5201                         * Raced against perf_mmap_close() through
5202                         * perf_event_set_output(). Try again, hope for better
5203                         * luck.
5204                         */
5205                        mutex_unlock(&event->mmap_mutex);
5206                        goto again;
5207                }
5208
5209                goto unlock;
5210        }
5211
5212        user_extra = nr_pages + 1;
5213
5214accounting:
5215        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5216
5217        /*
5218         * Increase the limit linearly with more CPUs:
5219         */
5220        user_lock_limit *= num_online_cpus();
5221
5222        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5223
5224        if (user_locked > user_lock_limit)
5225                extra = user_locked - user_lock_limit;
5226
5227        lock_limit = rlimit(RLIMIT_MEMLOCK);
5228        lock_limit >>= PAGE_SHIFT;
5229        locked = vma->vm_mm->pinned_vm + extra;
5230
5231        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5232                !capable(CAP_IPC_LOCK)) {
5233                ret = -EPERM;
5234                goto unlock;
5235        }
5236
5237        WARN_ON(!rb && event->rb);
5238
5239        if (vma->vm_flags & VM_WRITE)
5240                flags |= RING_BUFFER_WRITABLE;
5241
5242        if (!rb) {
5243                rb = rb_alloc(nr_pages,
5244                              event->attr.watermark ? event->attr.wakeup_watermark : 0,
5245                              event->cpu, flags);
5246
5247                if (!rb) {
5248                        ret = -ENOMEM;
5249                        goto unlock;
5250                }
5251
5252                atomic_set(&rb->mmap_count, 1);
5253                rb->mmap_user = get_current_user();
5254                rb->mmap_locked = extra;
5255
5256                ring_buffer_attach(event, rb);
5257
5258                perf_event_init_userpage(event);
5259                perf_event_update_userpage(event);
5260        } else {
5261                ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5262                                   event->attr.aux_watermark, flags);
5263                if (!ret)
5264                        rb->aux_mmap_locked = extra;
5265        }
5266
5267unlock:
5268        if (!ret) {
5269                atomic_long_add(user_extra, &user->locked_vm);
5270                vma->vm_mm->pinned_vm += extra;
5271
5272                atomic_inc(&event->mmap_count);
5273        } else if (rb) {
5274                atomic_dec(&rb->mmap_count);
5275        }
5276aux_unlock:
5277        mutex_unlock(&event->mmap_mutex);
5278
5279        /*
5280         * Since pinned accounting is per vm we cannot allow fork() to copy our
5281         * vma.
5282         */
5283        vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5284        vma->vm_ops = &perf_mmap_vmops;
5285
5286        if (event->pmu->event_mapped)
5287                event->pmu->event_mapped(event);
5288
5289        return ret;
5290}
5291
5292static int perf_fasync(int fd, struct file *filp, int on)
5293{
5294        struct inode *inode = file_inode(filp);
5295        struct perf_event *event = filp->private_data;
5296        int retval;
5297
5298        inode_lock(inode);
5299        retval = fasync_helper(fd, filp, on, &event->fasync);
5300        inode_unlock(inode);
5301
5302        if (retval < 0)
5303                return retval;
5304
5305        return 0;
5306}
5307
5308static const struct file_operations perf_fops = {
5309        .llseek                 = no_llseek,
5310        .release                = perf_release,
5311        .read                   = perf_read,
5312        .poll                   = perf_poll,
5313        .unlocked_ioctl         = perf_ioctl,
5314        .compat_ioctl           = perf_compat_ioctl,
5315        .mmap                   = perf_mmap,
5316        .fasync                 = perf_fasync,
5317};
5318
5319/*
5320 * Perf event wakeup
5321 *
5322 * If there's data, ensure we set the poll() state and publish everything
5323 * to user-space before waking everybody up.
5324 */
5325
5326static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5327{
5328        /* only the parent has fasync state */
5329        if (event->parent)
5330                event = event->parent;
5331        return &event->fasync;
5332}
5333
5334void perf_event_wakeup(struct perf_event *event)
5335{
5336        ring_buffer_wakeup(event);
5337
5338        if (event->pending_kill) {
5339                kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5340                event->pending_kill = 0;
5341        }
5342}
5343
5344static void perf_pending_event(struct irq_work *entry)
5345{
5346        struct perf_event *event = container_of(entry,
5347                        struct perf_event, pending);
5348        int rctx;
5349
5350        rctx = perf_swevent_get_recursion_context();
5351        /*
5352         * If we 'fail' here, that's OK, it means recursion is already disabled
5353         * and we won't recurse 'further'.
5354         */
5355
5356        if (event->pending_disable) {
5357                event->pending_disable = 0;
5358                perf_event_disable_local(event);
5359        }
5360
5361        if (event->pending_wakeup) {
5362                event->pending_wakeup = 0;
5363                perf_event_wakeup(event);
5364        }
5365
5366        if (rctx >= 0)
5367                perf_swevent_put_recursion_context(rctx);
5368}
5369
5370/*
5371 * We assume there is only KVM supporting the callbacks.
5372 * Later on, we might change it to a list if there is
5373 * another virtualization implementation supporting the callbacks.
5374 */
5375struct perf_guest_info_callbacks *perf_guest_cbs;
5376
5377int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5378{
5379        perf_guest_cbs = cbs;
5380        return 0;
5381}
5382EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5383
5384int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5385{
5386        perf_guest_cbs = NULL;
5387        return 0;
5388}
5389EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5390
5391static void
5392perf_output_sample_regs(struct perf_output_handle *handle,
5393                        struct pt_regs *regs, u64 mask)
5394{
5395        int bit;
5396        DECLARE_BITMAP(_mask, 64);
5397
5398        bitmap_from_u64(_mask, mask);
5399        for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5400                u64 val;
5401
5402                val = perf_reg_value(regs, bit);
5403                perf_output_put(handle, val);
5404        }
5405}
5406
5407static void perf_sample_regs_user(struct perf_regs *regs_user,
5408                                  struct pt_regs *regs,
5409                                  struct pt_regs *regs_user_copy)
5410{
5411        if (user_mode(regs)) {
5412                regs_user->abi = perf_reg_abi(current);
5413                regs_user->regs = regs;
5414        } else if (current->mm) {
5415                perf_get_regs_user(regs_user, regs, regs_user_copy);
5416        } else {
5417                regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5418                regs_user->regs = NULL;
5419        }
5420}
5421
5422static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5423                                  struct pt_regs *regs)
5424{
5425        regs_intr->regs = regs;
5426        regs_intr->abi  = perf_reg_abi(current);
5427}
5428
5429
5430/*
5431 * Get remaining task size from user stack pointer.
5432 *
5433 * It'd be better to take stack vma map and limit this more
5434 * precisly, but there's no way to get it safely under interrupt,
5435 * so using TASK_SIZE as limit.
5436 */
5437static u64 perf_ustack_task_size(struct pt_regs *regs)
5438{
5439        unsigned long addr = perf_user_stack_pointer(regs);
5440
5441        if (!addr || addr >= TASK_SIZE)
5442                return 0;
5443
5444        return TASK_SIZE - addr;
5445}
5446
5447static u16
5448perf_sample_ustack_size(u16 stack_size, u16 header_size,
5449                        struct pt_regs *regs)
5450{
5451        u64 task_size;
5452
5453        /* No regs, no stack pointer, no dump. */
5454        if (!regs)
5455                return 0;
5456
5457        /*
5458         * Check if we fit in with the requested stack size into the:
5459         * - TASK_SIZE
5460         *   If we don't, we limit the size to the TASK_SIZE.
5461         *
5462         * - remaining sample size
5463         *   If we don't, we customize the stack size to
5464         *   fit in to the remaining sample size.
5465         */
5466
5467        task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5468        stack_size = min(stack_size, (u16) task_size);
5469
5470        /* Current header size plus static size and dynamic size. */
5471        header_size += 2 * sizeof(u64);
5472
5473        /* Do we fit in with the current stack dump size? */
5474        if ((u16) (header_size + stack_size) < header_size) {
5475                /*
5476                 * If we overflow the maximum size for the sample,
5477                 * we customize the stack dump size to fit in.
5478                 */
5479                stack_size = USHRT_MAX - header_size - sizeof(u64);
5480                stack_size = round_up(stack_size, sizeof(u64));
5481        }
5482
5483        return stack_size;
5484}
5485
5486static void
5487perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5488                          struct pt_regs *regs)
5489{
5490        /* Case of a kernel thread, nothing to dump */
5491        if (!regs) {
5492                u64 size = 0;
5493                perf_output_put(handle, size);
5494        } else {
5495                unsigned long sp;
5496                unsigned int rem;
5497                u64 dyn_size;
5498
5499                /*
5500                 * We dump:
5501                 * static size
5502                 *   - the size requested by user or the best one we can fit
5503                 *     in to the sample max size
5504                 * data
5505                 *   - user stack dump data
5506                 * dynamic size
5507                 *   - the actual dumped size
5508                 */
5509
5510                /* Static size. */
5511                perf_output_put(handle, dump_size);
5512
5513                /* Data. */
5514                sp = perf_user_stack_pointer(regs);
5515                rem = __output_copy_user(handle, (void *) sp, dump_size);
5516                dyn_size = dump_size - rem;
5517
5518                perf_output_skip(handle, rem);
5519
5520                /* Dynamic size. */
5521                perf_output_put(handle, dyn_size);
5522        }
5523}
5524
5525static void __perf_event_header__init_id(struct perf_event_header *header,
5526                                         struct perf_sample_data *data,
5527                                         struct perf_event *event)
5528{
5529        u64 sample_type = event->attr.sample_type;
5530
5531        data->type = sample_type;
5532        header->size += event->id_header_size;
5533
5534        if (sample_type & PERF_SAMPLE_TID) {
5535                /* namespace issues */
5536                data->tid_entry.pid = perf_event_pid(event, current);
5537                data->tid_entry.tid = perf_event_tid(event, current);
5538        }
5539
5540        if (sample_type & PERF_SAMPLE_TIME)
5541                data->time = perf_event_clock(event);
5542
5543        if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5544                data->id = primary_event_id(event);
5545
5546        if (sample_type & PERF_SAMPLE_STREAM_ID)
5547                data->stream_id = event->id;
5548
5549        if (sample_type & PERF_SAMPLE_CPU) {
5550                data->cpu_entry.cpu      = raw_smp_processor_id();
5551                data->cpu_entry.reserved = 0;
5552        }
5553}
5554
5555void perf_event_header__init_id(struct perf_event_header *header,
5556                                struct perf_sample_data *data,
5557                                struct perf_event *event)
5558{
5559        if (event->attr.sample_id_all)
5560                __perf_event_header__init_id(header, data, event);
5561}
5562
5563static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5564                                           struct perf_sample_data *data)
5565{
5566        u64 sample_type = data->type;
5567
5568        if (sample_type & PERF_SAMPLE_TID)
5569                perf_output_put(handle, data->tid_entry);
5570
5571        if (sample_type & PERF_SAMPLE_TIME)
5572                perf_output_put(handle, data->time);
5573
5574        if (sample_type & PERF_SAMPLE_ID)
5575                perf_output_put(handle, data->id);
5576
5577        if (sample_type & PERF_SAMPLE_STREAM_ID)
5578                perf_output_put(handle, data->stream_id);
5579
5580        if (sample_type & PERF_SAMPLE_CPU)
5581                perf_output_put(handle, data->cpu_entry);
5582
5583        if (sample_type & PERF_SAMPLE_IDENTIFIER)
5584                perf_output_put(handle, data->id);
5585}
5586
5587void perf_event__output_id_sample(struct perf_event *event,
5588                                  struct perf_output_handle *handle,
5589                                  struct perf_sample_data *sample)
5590{
5591        if (event->attr.sample_id_all)
5592                __perf_event__output_id_sample(handle, sample);
5593}
5594
5595static void perf_output_read_one(struct perf_output_handle *handle,
5596                                 struct perf_event *event,
5597                                 u64 enabled, u64 running)
5598{
5599        u64 read_format = event->attr.read_format;
5600        u64 values[4];
5601        int n = 0;
5602
5603        values[n++] = perf_event_count(event);
5604        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5605                values[n++] = enabled +
5606                        atomic64_read(&event->child_total_time_enabled);
5607        }
5608        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5609                values[n++] = running +
5610                        atomic64_read(&event->child_total_time_running);
5611        }
5612        if (read_format & PERF_FORMAT_ID)
5613                values[n++] = primary_event_id(event);
5614
5615        __output_copy(handle, values, n * sizeof(u64));
5616}
5617
5618/*
5619 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5620 */
5621static void perf_output_read_group(struct perf_output_handle *handle,
5622                            struct perf_event *event,
5623                            u64 enabled, u64 running)
5624{
5625        struct perf_event *leader = event->group_leader, *sub;
5626        u64 read_format = event->attr.read_format;
5627        u64 values[5];
5628        int n = 0;
5629
5630        values[n++] = 1 + leader->nr_siblings;
5631
5632        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5633                values[n++] = enabled;
5634
5635        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5636                values[n++] = running;
5637
5638        if (leader != event)
5639                leader->pmu->read(leader);
5640
5641        values[n++] = perf_event_count(leader);
5642        if (read_format & PERF_FORMAT_ID)
5643                values[n++] = primary_event_id(leader);
5644
5645        __output_copy(handle, values, n * sizeof(u64));
5646
5647        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5648                n = 0;
5649
5650                if ((sub != event) &&
5651                    (sub->state == PERF_EVENT_STATE_ACTIVE))
5652                        sub->pmu->read(sub);
5653
5654                values[n++] = perf_event_count(sub);
5655                if (read_format & PERF_FORMAT_ID)
5656                        values[n++] = primary_event_id(sub);
5657
5658                __output_copy(handle, values, n * sizeof(u64));
5659        }
5660}
5661
5662#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5663                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
5664
5665static void perf_output_read(struct perf_output_handle *handle,
5666                             struct perf_event *event)
5667{
5668        u64 enabled = 0, running = 0, now;
5669        u64 read_format = event->attr.read_format;
5670
5671        /*
5672         * compute total_time_enabled, total_time_running
5673         * based on snapshot values taken when the event
5674         * was last scheduled in.
5675         *
5676         * we cannot simply called update_context_time()
5677         * because of locking issue as we are called in
5678         * NMI context
5679         */
5680        if (read_format & PERF_FORMAT_TOTAL_TIMES)
5681                calc_timer_values(event, &now, &enabled, &running);
5682
5683        if (event->attr.read_format & PERF_FORMAT_GROUP)
5684                perf_output_read_group(handle, event, enabled, running);
5685        else
5686                perf_output_read_one(handle, event, enabled, running);
5687}
5688
5689void perf_output_sample(struct perf_output_handle *handle,
5690                        struct perf_event_header *header,
5691                        struct perf_sample_data *data,
5692                        struct perf_event *event)
5693{
5694        u64 sample_type = data->type;
5695
5696        perf_output_put(handle, *header);
5697
5698        if (sample_type & PERF_SAMPLE_IDENTIFIER)
5699                perf_output_put(handle, data->id);
5700
5701        if (sample_type & PERF_SAMPLE_IP)
5702                perf_output_put(handle, data->ip);
5703
5704        if (sample_type & PERF_SAMPLE_TID)
5705                perf_output_put(handle, data->tid_entry);
5706
5707        if (sample_type & PERF_SAMPLE_TIME)
5708                perf_output_put(handle, data->time);
5709
5710        if (sample_type & PERF_SAMPLE_ADDR)
5711                perf_output_put(handle, data->addr);
5712
5713        if (sample_type & PERF_SAMPLE_ID)
5714                perf_output_put(handle, data->id);
5715
5716        if (sample_type & PERF_SAMPLE_STREAM_ID)
5717                perf_output_put(handle, data->stream_id);
5718
5719        if (sample_type & PERF_SAMPLE_CPU)
5720                perf_output_put(handle, data->cpu_entry);
5721
5722        if (sample_type & PERF_SAMPLE_PERIOD)
5723                perf_output_put(handle, data->period);
5724
5725        if (sample_type & PERF_SAMPLE_READ)
5726                perf_output_read(handle, event);
5727
5728        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5729                if (data->callchain) {
5730                        int size = 1;
5731
5732                        if (data->callchain)
5733                                size += data->callchain->nr;
5734
5735                        size *= sizeof(u64);
5736
5737                        __output_copy(handle, data->callchain, size);
5738                } else {
5739                        u64 nr = 0;
5740                        perf_output_put(handle, nr);
5741                }
5742        }
5743
5744        if (sample_type & PERF_SAMPLE_RAW) {
5745                struct perf_raw_record *raw = data->raw;
5746
5747                if (raw) {
5748                        struct perf_raw_frag *frag = &raw->frag;
5749
5750                        perf_output_put(handle, raw->size);
5751                        do {
5752                                if (frag->copy) {
5753                                        __output_custom(handle, frag->copy,
5754                                                        frag->data, frag->size);
5755                                } else {
5756                                        __output_copy(handle, frag->data,
5757                                                      frag->size);
5758                                }
5759                                if (perf_raw_frag_last(frag))
5760                                        break;
5761                                frag = frag->next;
5762                        } while (1);
5763                        if (frag->pad)
5764                                __output_skip(handle, NULL, frag->pad);
5765                } else {
5766                        struct {
5767                                u32     size;
5768                                u32     data;
5769                        } raw = {
5770                                .size = sizeof(u32),
5771                                .data = 0,
5772                        };
5773                        perf_output_put(handle, raw);
5774                }
5775        }
5776
5777        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5778                if (data->br_stack) {
5779                        size_t size;
5780
5781                        size = data->br_stack->nr
5782                             * sizeof(struct perf_branch_entry);
5783
5784                        perf_output_put(handle, data->br_stack->nr);
5785                        perf_output_copy(handle, data->br_stack->entries, size);
5786                } else {
5787                        /*
5788                         * we always store at least the value of nr
5789                         */
5790                        u64 nr = 0;
5791                        perf_output_put(handle, nr);
5792                }
5793        }
5794
5795        if (sample_type & PERF_SAMPLE_REGS_USER) {
5796                u64 abi = data->regs_user.abi;
5797
5798                /*
5799                 * If there are no regs to dump, notice it through
5800                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5801                 */
5802                perf_output_put(handle, abi);
5803
5804                if (abi) {
5805                        u64 mask = event->attr.sample_regs_user;
5806                        perf_output_sample_regs(handle,
5807                                                data->regs_user.regs,
5808                                                mask);
5809                }
5810        }
5811
5812        if (sample_type & PERF_SAMPLE_STACK_USER) {
5813                perf_output_sample_ustack(handle,
5814                                          data->stack_user_size,
5815                                          data->regs_user.regs);
5816        }
5817
5818        if (sample_type & PERF_SAMPLE_WEIGHT)
5819                perf_output_put(handle, data->weight);
5820
5821        if (sample_type & PERF_SAMPLE_DATA_SRC)
5822                perf_output_put(handle, data->data_src.val);
5823
5824        if (sample_type & PERF_SAMPLE_TRANSACTION)
5825                perf_output_put(handle, data->txn);
5826
5827        if (sample_type & PERF_SAMPLE_REGS_INTR) {
5828                u64 abi = data->regs_intr.abi;
5829                /*
5830                 * If there are no regs to dump, notice it through
5831                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5832                 */
5833                perf_output_put(handle, abi);
5834
5835                if (abi) {
5836                        u64 mask = event->attr.sample_regs_intr;
5837
5838                        perf_output_sample_regs(handle,
5839                                                data->regs_intr.regs,
5840                                                mask);
5841                }
5842        }
5843
5844        if (!event->attr.watermark) {
5845                int wakeup_events = event->attr.wakeup_events;
5846
5847                if (wakeup_events) {
5848                        struct ring_buffer *rb = handle->rb;
5849                        int events = local_inc_return(&rb->events);
5850
5851                        if (events >= wakeup_events) {
5852                                local_sub(wakeup_events, &rb->events);
5853                                local_inc(&rb->wakeup);
5854                        }
5855                }
5856        }
5857}
5858
5859void perf_prepare_sample(struct perf_event_header *header,
5860                         struct perf_sample_data *data,
5861                         struct perf_event *event,
5862                         struct pt_regs *regs)
5863{
5864        u64 sample_type = event->attr.sample_type;
5865
5866        header->type = PERF_RECORD_SAMPLE;
5867        header->size = sizeof(*header) + event->header_size;
5868
5869        header->misc = 0;
5870        header->misc |= perf_misc_flags(regs);
5871
5872        __perf_event_header__init_id(header, data, event);
5873
5874        if (sample_type & PERF_SAMPLE_IP)
5875                data->ip = perf_instruction_pointer(regs);
5876
5877        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5878                int size = 1;
5879
5880                data->callchain = perf_callchain(event, regs);
5881
5882                if (data->callchain)
5883                        size += data->callchain->nr;
5884
5885                header->size += size * sizeof(u64);
5886        }
5887
5888        if (sample_type & PERF_SAMPLE_RAW) {
5889                struct perf_raw_record *raw = data->raw;
5890                int size;
5891
5892                if (raw) {
5893                        struct perf_raw_frag *frag = &raw->frag;
5894                        u32 sum = 0;
5895
5896                        do {
5897                                sum += frag->size;
5898                                if (perf_raw_frag_last(frag))
5899                                        break;
5900                                frag = frag->next;
5901                        } while (1);
5902
5903                        size = round_up(sum + sizeof(u32), sizeof(u64));
5904                        raw->size = size - sizeof(u32);
5905                        frag->pad = raw->size - sum;
5906                } else {
5907                        size = sizeof(u64);
5908                }
5909
5910                header->size += size;
5911        }
5912
5913        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5914                int size = sizeof(u64); /* nr */
5915                if (data->br_stack) {
5916                        size += data->br_stack->nr
5917                              * sizeof(struct perf_branch_entry);
5918                }
5919                header->size += size;
5920        }
5921
5922        if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5923                perf_sample_regs_user(&data->regs_user, regs,
5924                                      &data->regs_user_copy);
5925
5926        if (sample_type & PERF_SAMPLE_REGS_USER) {
5927                /* regs dump ABI info */
5928                int size = sizeof(u64);
5929
5930                if (data->regs_user.regs) {
5931                        u64 mask = event->attr.sample_regs_user;
5932                        size += hweight64(mask) * sizeof(u64);
5933                }
5934
5935                header->size += size;
5936        }
5937
5938        if (sample_type & PERF_SAMPLE_STACK_USER) {
5939                /*
5940                 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5941                 * processed as the last one or have additional check added
5942                 * in case new sample type is added, because we could eat
5943                 * up the rest of the sample size.
5944                 */
5945                u16 stack_size = event->attr.sample_stack_user;
5946                u16 size = sizeof(u64);
5947
5948                stack_size = perf_sample_ustack_size(stack_size, header->size,
5949                                                     data->regs_user.regs);
5950
5951                /*
5952                 * If there is something to dump, add space for the dump
5953                 * itself and for the field that tells the dynamic size,
5954                 * which is how many have been actually dumped.
5955                 */
5956                if (stack_size)
5957                        size += sizeof(u64) + stack_size;
5958
5959                data->stack_user_size = stack_size;
5960                header->size += size;
5961        }
5962
5963        if (sample_type & PERF_SAMPLE_REGS_INTR) {
5964                /* regs dump ABI info */
5965                int size = sizeof(u64);
5966
5967                perf_sample_regs_intr(&data->regs_intr, regs);
5968
5969                if (data->regs_intr.regs) {
5970                        u64 mask = event->attr.sample_regs_intr;
5971
5972                        size += hweight64(mask) * sizeof(u64);
5973                }
5974
5975                header->size += size;
5976        }
5977}
5978
5979static void __always_inline
5980__perf_event_output(struct perf_event *event,
5981                    struct perf_sample_data *data,
5982                    struct pt_regs *regs,
5983                    int (*output_begin)(struct perf_output_handle *,
5984                                        struct perf_event *,
5985                                        unsigned int))
5986{
5987        struct perf_output_handle handle;
5988        struct perf_event_header header;
5989
5990        /* protect the callchain buffers */
5991        rcu_read_lock();
5992
5993        perf_prepare_sample(&header, data, event, regs);
5994
5995        if (output_begin(&handle, event, header.size))
5996                goto exit;
5997
5998        perf_output_sample(&handle, &header, data, event);
5999
6000        perf_output_end(&handle);
6001
6002exit:
6003        rcu_read_unlock();
6004}
6005
6006void
6007perf_event_output_forward(struct perf_event *event,
6008                         struct perf_sample_data *data,
6009                         struct pt_regs *regs)
6010{
6011        __perf_event_output(event, data, regs, perf_output_begin_forward);
6012}
6013
6014void
6015perf_event_output_backward(struct perf_event *event,
6016                           struct perf_sample_data *data,
6017                           struct pt_regs *regs)
6018{
6019        __perf_event_output(event, data, regs, perf_output_begin_backward);
6020}
6021
6022void
6023perf_event_output(struct perf_event *event,
6024                  struct perf_sample_data *data,
6025                  struct pt_regs *regs)
6026{
6027        __perf_event_output(event, data, regs, perf_output_begin);
6028}
6029
6030/*
6031 * read event_id
6032 */
6033
6034struct perf_read_event {
6035        struct perf_event_header        header;
6036
6037        u32                             pid;
6038        u32                             tid;
6039};
6040
6041static void
6042perf_event_read_event(struct perf_event *event,
6043                        struct task_struct *task)
6044{
6045        struct perf_output_handle handle;
6046        struct perf_sample_data sample;
6047        struct perf_read_event read_event = {
6048                .header = {
6049                        .type = PERF_RECORD_READ,
6050                        .misc = 0,
6051                        .size = sizeof(read_event) + event->read_size,
6052                },
6053                .pid = perf_event_pid(event, task),
6054                .tid = perf_event_tid(event, task),
6055        };
6056        int ret;
6057
6058        perf_event_header__init_id(&read_event.header, &sample, event);
6059        ret = perf_output_begin(&handle, event, read_event.header.size);
6060        if (ret)
6061                return;
6062
6063        perf_output_put(&handle, read_event);
6064        perf_output_read(&handle, event);
6065        perf_event__output_id_sample(event, &handle, &sample);
6066
6067        perf_output_end(&handle);
6068}
6069
6070typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6071
6072static void
6073perf_iterate_ctx(struct perf_event_context *ctx,
6074                   perf_iterate_f output,
6075                   void *data, bool all)
6076{
6077        struct perf_event *event;
6078
6079        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6080                if (!all) {
6081                        if (event->state < PERF_EVENT_STATE_INACTIVE)
6082                                continue;
6083                        if (!event_filter_match(event))
6084                                continue;
6085                }
6086
6087                output(event, data);
6088        }
6089}
6090
6091static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6092{
6093        struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6094        struct perf_event *event;
6095
6096        list_for_each_entry_rcu(event, &pel->list, sb_list) {
6097                /*
6098                 * Skip events that are not fully formed yet; ensure that
6099                 * if we observe event->ctx, both event and ctx will be
6100                 * complete enough. See perf_install_in_context().
6101                 */
6102                if (!smp_load_acquire(&event->ctx))
6103                        continue;
6104
6105                if (event->state < PERF_EVENT_STATE_INACTIVE)
6106                        continue;
6107                if (!event_filter_match(event))
6108                        continue;
6109                output(event, data);
6110        }
6111}
6112
6113/*
6114 * Iterate all events that need to receive side-band events.
6115 *
6116 * For new callers; ensure that account_pmu_sb_event() includes
6117 * your event, otherwise it might not get delivered.
6118 */
6119static void
6120perf_iterate_sb(perf_iterate_f output, void *data,
6121               struct perf_event_context *task_ctx)
6122{
6123        struct perf_event_context *ctx;
6124        int ctxn;
6125
6126        rcu_read_lock();
6127        preempt_disable();
6128
6129        /*
6130         * If we have task_ctx != NULL we only notify the task context itself.
6131         * The task_ctx is set only for EXIT events before releasing task
6132         * context.
6133         */
6134        if (task_ctx) {
6135                perf_iterate_ctx(task_ctx, output, data, false);
6136                goto done;
6137        }
6138
6139        perf_iterate_sb_cpu(output, data);
6140
6141        for_each_task_context_nr(ctxn) {
6142                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6143                if (ctx)
6144                        perf_iterate_ctx(ctx, output, data, false);
6145        }
6146done:
6147        preempt_enable();
6148        rcu_read_unlock();
6149}
6150
6151/*
6152 * Clear all file-based filters at exec, they'll have to be
6153 * re-instated when/if these objects are mmapped again.
6154 */
6155static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6156{
6157        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6158        struct perf_addr_filter *filter;
6159        unsigned int restart = 0, count = 0;
6160        unsigned long flags;
6161
6162        if (!has_addr_filter(event))
6163                return;
6164
6165        raw_spin_lock_irqsave(&ifh->lock, flags);
6166        list_for_each_entry(filter, &ifh->list, entry) {
6167                if (filter->inode) {
6168                        event->addr_filters_offs[count] = 0;
6169                        restart++;
6170                }
6171
6172                count++;
6173        }
6174
6175        if (restart)
6176                event->addr_filters_gen++;
6177        raw_spin_unlock_irqrestore(&ifh->lock, flags);
6178
6179        if (restart)
6180                perf_event_stop(event, 1);
6181}
6182
6183void perf_event_exec(void)
6184{
6185        struct perf_event_context *ctx;
6186        int ctxn;
6187
6188        rcu_read_lock();
6189        for_each_task_context_nr(ctxn) {
6190                ctx = current->perf_event_ctxp[ctxn];
6191                if (!ctx)
6192                        continue;
6193
6194                perf_event_enable_on_exec(ctxn);
6195
6196                perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6197                                   true);
6198        }
6199        rcu_read_unlock();
6200}
6201
6202struct remote_output {
6203        struct ring_buffer      *rb;
6204        int                     err;
6205};
6206
6207static void __perf_event_output_stop(struct perf_event *event, void *data)
6208{
6209        struct perf_event *parent = event->parent;
6210        struct remote_output *ro = data;
6211        struct ring_buffer *rb = ro->rb;
6212        struct stop_event_data sd = {
6213                .event  = event,
6214        };
6215
6216        if (!has_aux(event))
6217                return;
6218
6219        if (!parent)
6220                parent = event;
6221
6222        /*
6223         * In case of inheritance, it will be the parent that links to the
6224         * ring-buffer, but it will be the child that's actually using it.
6225         *
6226         * We are using event::rb to determine if the event should be stopped,
6227         * however this may race with ring_buffer_attach() (through set_output),
6228         * which will make us skip the event that actually needs to be stopped.
6229         * So ring_buffer_attach() has to stop an aux event before re-assigning
6230         * its rb pointer.
6231         */
6232        if (rcu_dereference(parent->rb) == rb)
6233                ro->err = __perf_event_stop(&sd);
6234}
6235
6236static int __perf_pmu_output_stop(void *info)
6237{
6238        struct perf_event *event = info;
6239        struct pmu *pmu = event->pmu;
6240        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6241        struct remote_output ro = {
6242                .rb     = event->rb,
6243        };
6244
6245        rcu_read_lock();
6246        perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6247        if (cpuctx->task_ctx)
6248                perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6249                                   &ro, false);
6250        rcu_read_unlock();
6251
6252        return ro.err;
6253}
6254
6255static void perf_pmu_output_stop(struct perf_event *event)
6256{
6257        struct perf_event *iter;
6258        int err, cpu;
6259
6260restart:
6261        rcu_read_lock();
6262        list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6263                /*
6264                 * For per-CPU events, we need to make sure that neither they
6265                 * nor their children are running; for cpu==-1 events it's
6266                 * sufficient to stop the event itself if it's active, since
6267                 * it can't have children.
6268                 */
6269                cpu = iter->cpu;
6270                if (cpu == -1)
6271                        cpu = READ_ONCE(iter->oncpu);
6272
6273                if (cpu == -1)
6274                        continue;
6275
6276                err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6277                if (err == -EAGAIN) {
6278                        rcu_read_unlock();
6279                        goto restart;
6280                }
6281        }
6282        rcu_read_unlock();
6283}
6284
6285/*
6286 * task tracking -- fork/exit
6287 *
6288 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6289 */
6290
6291struct perf_task_event {
6292        struct task_struct              *task;
6293        struct perf_event_context       *task_ctx;
6294
6295        struct {
6296                struct perf_event_header        header;
6297
6298                u32                             pid;
6299                u32                             ppid;
6300                u32                             tid;
6301                u32                             ptid;
6302                u64                             time;
6303        } event_id;
6304};
6305
6306static int perf_event_task_match(struct perf_event *event)
6307{
6308        return event->attr.comm  || event->attr.mmap ||
6309               event->attr.mmap2 || event->attr.mmap_data ||
6310               event->attr.task;
6311}
6312
6313static void perf_event_task_output(struct perf_event *event,
6314                                   void *data)
6315{
6316        struct perf_task_event *task_event = data;
6317        struct perf_output_handle handle;
6318        struct perf_sample_data sample;
6319        struct task_struct *task = task_event->task;
6320        int ret, size = task_event->event_id.header.size;
6321
6322        if (!perf_event_task_match(event))
6323                return;
6324
6325        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6326
6327        ret = perf_output_begin(&handle, event,
6328                                task_event->event_id.header.size);
6329        if (ret)
6330                goto out;
6331
6332        task_event->event_id.pid = perf_event_pid(event, task);
6333        task_event->event_id.ppid = perf_event_pid(event, current);
6334
6335        task_event->event_id.tid = perf_event_tid(event, task);
6336        task_event->event_id.ptid = perf_event_tid(event, current);
6337
6338        task_event->event_id.time = perf_event_clock(event);
6339
6340        perf_output_put(&handle, task_event->event_id);
6341
6342        perf_event__output_id_sample(event, &handle, &sample);
6343
6344        perf_output_end(&handle);
6345out:
6346        task_event->event_id.header.size = size;
6347}
6348
6349static void perf_event_task(struct task_struct *task,
6350                              struct perf_event_context *task_ctx,
6351                              int new)
6352{
6353        struct perf_task_event task_event;
6354
6355        if (!atomic_read(&nr_comm_events) &&
6356            !atomic_read(&nr_mmap_events) &&
6357            !atomic_read(&nr_task_events))
6358                return;
6359
6360        task_event = (struct perf_task_event){
6361                .task     = task,
6362                .task_ctx = task_ctx,
6363                .event_id    = {
6364                        .header = {
6365                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6366                                .misc = 0,
6367                                .size = sizeof(task_event.event_id),
6368                        },
6369                        /* .pid  */
6370                        /* .ppid */
6371                        /* .tid  */
6372                        /* .ptid */
6373                        /* .time */
6374                },
6375        };
6376
6377        perf_iterate_sb(perf_event_task_output,
6378                       &task_event,
6379                       task_ctx);
6380}
6381
6382void perf_event_fork(struct task_struct *task)
6383{
6384        perf_event_task(task, NULL, 1);
6385}
6386
6387/*
6388 * comm tracking
6389 */
6390
6391struct perf_comm_event {
6392        struct task_struct      *task;
6393        char                    *comm;
6394        int                     comm_size;
6395
6396        struct {
6397                struct perf_event_header        header;
6398
6399                u32                             pid;
6400                u32                             tid;
6401        } event_id;
6402};
6403
6404static int perf_event_comm_match(struct perf_event *event)
6405{
6406        return event->attr.comm;
6407}
6408
6409static void perf_event_comm_output(struct perf_event *event,
6410                                   void *data)
6411{
6412        struct perf_comm_event *comm_event = data;
6413        struct perf_output_handle handle;
6414        struct perf_sample_data sample;
6415        int size = comm_event->event_id.header.size;
6416        int ret;
6417
6418        if (!perf_event_comm_match(event))
6419                return;
6420
6421        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6422        ret = perf_output_begin(&handle, event,
6423                                comm_event->event_id.header.size);
6424
6425        if (ret)
6426                goto out;
6427
6428        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6429        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6430
6431        perf_output_put(&handle, comm_event->event_id);
6432        __output_copy(&handle, comm_event->comm,
6433                                   comm_event->comm_size);
6434
6435        perf_event__output_id_sample(event, &handle, &sample);
6436
6437        perf_output_end(&handle);
6438out:
6439        comm_event->event_id.header.size = size;
6440}
6441
6442static void perf_event_comm_event(struct perf_comm_event *comm_event)
6443{
6444        char comm[TASK_COMM_LEN];
6445        unsigned int size;
6446
6447        memset(comm, 0, sizeof(comm));
6448        strlcpy(comm, comm_event->task->comm, sizeof(comm));
6449        size = ALIGN(strlen(comm)+1, sizeof(u64));
6450
6451        comm_event->comm = comm;
6452        comm_event->comm_size = size;
6453
6454        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6455
6456        perf_iterate_sb(perf_event_comm_output,
6457                       comm_event,
6458                       NULL);
6459}
6460
6461void perf_event_comm(struct task_struct *task, bool exec)
6462{
6463        struct perf_comm_event comm_event;
6464
6465        if (!atomic_read(&nr_comm_events))
6466                return;
6467
6468        comm_event = (struct perf_comm_event){
6469                .task   = task,
6470                /* .comm      */
6471                /* .comm_size */
6472                .event_id  = {
6473                        .header = {
6474                                .type = PERF_RECORD_COMM,
6475                                .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6476                                /* .size */
6477                        },
6478                        /* .pid */
6479                        /* .tid */
6480                },
6481        };
6482
6483        perf_event_comm_event(&comm_event);
6484}
6485
6486/*
6487 * mmap tracking
6488 */
6489
6490struct perf_mmap_event {
6491        struct vm_area_struct   *vma;
6492
6493        const char              *file_name;
6494        int                     file_size;
6495        int                     maj, min;
6496        u64                     ino;
6497        u64                     ino_generation;
6498        u32                     prot, flags;
6499
6500        struct {
6501                struct perf_event_header        header;
6502
6503                u32                             pid;
6504                u32                             tid;
6505                u64                             start;
6506                u64                             len;
6507                u64                             pgoff;
6508        } event_id;
6509};
6510
6511static int perf_event_mmap_match(struct perf_event *event,
6512                                 void *data)
6513{
6514        struct perf_mmap_event *mmap_event = data;
6515        struct vm_area_struct *vma = mmap_event->vma;
6516        int executable = vma->vm_flags & VM_EXEC;
6517
6518        return (!executable && event->attr.mmap_data) ||
6519               (executable && (event->attr.mmap || event->attr.mmap2));
6520}
6521
6522static void perf_event_mmap_output(struct perf_event *event,
6523                                   void *data)
6524{
6525        struct perf_mmap_event *mmap_event = data;
6526        struct perf_output_handle handle;
6527        struct perf_sample_data sample;
6528        int size = mmap_event->event_id.header.size;
6529        int ret;
6530
6531        if (!perf_event_mmap_match(event, data))
6532                return;
6533
6534        if (event->attr.mmap2) {
6535                mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6536                mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6537                mmap_event->event_id.header.size += sizeof(mmap_event->min);
6538                mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6539                mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6540                mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6541                mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6542        }
6543
6544        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6545        ret = perf_output_begin(&handle, event,
6546                                mmap_event->event_id.header.size);
6547        if (ret)
6548                goto out;
6549
6550        mmap_event->event_id.pid = perf_event_pid(event, current);
6551        mmap_event->event_id.tid = perf_event_tid(event, current);
6552
6553        perf_output_put(&handle, mmap_event->event_id);
6554
6555        if (event->attr.mmap2) {
6556                perf_output_put(&handle, mmap_event->maj);
6557                perf_output_put(&handle, mmap_event->min);
6558                perf_output_put(&handle, mmap_event->ino);
6559                perf_output_put(&handle, mmap_event->ino_generation);
6560                perf_output_put(&handle, mmap_event->prot);
6561                perf_output_put(&handle, mmap_event->flags);
6562        }
6563
6564        __output_copy(&handle, mmap_event->file_name,
6565                                   mmap_event->file_size);
6566
6567        perf_event__output_id_sample(event, &handle, &sample);
6568
6569        perf_output_end(&handle);
6570out:
6571        mmap_event->event_id.header.size = size;
6572}
6573
6574static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6575{
6576        struct vm_area_struct *vma = mmap_event->vma;
6577        struct file *file = vma->vm_file;
6578        int maj = 0, min = 0;
6579        u64 ino = 0, gen = 0;
6580        u32 prot = 0, flags = 0;
6581        unsigned int size;
6582        char tmp[16];
6583        char *buf = NULL;
6584        char *name;
6585
6586        if (file) {
6587                struct inode *inode;
6588                dev_t dev;
6589
6590                buf = kmalloc(PATH_MAX, GFP_KERNEL);
6591                if (!buf) {
6592                        name = "//enomem";
6593                        goto cpy_name;
6594                }
6595                /*
6596                 * d_path() works from the end of the rb backwards, so we
6597                 * need to add enough zero bytes after the string to handle
6598                 * the 64bit alignment we do later.
6599                 */
6600                name = file_path(file, buf, PATH_MAX - sizeof(u64));
6601                if (IS_ERR(name)) {
6602                        name = "//toolong";
6603                        goto cpy_name;
6604                }
6605                inode = file_inode(vma->vm_file);
6606                dev = inode->i_sb->s_dev;
6607                ino = inode->i_ino;
6608                gen = inode->i_generation;
6609                maj = MAJOR(dev);
6610                min = MINOR(dev);
6611
6612                if (vma->vm_flags & VM_READ)
6613                        prot |= PROT_READ;
6614                if (vma->vm_flags & VM_WRITE)
6615                        prot |= PROT_WRITE;
6616                if (vma->vm_flags & VM_EXEC)
6617                        prot |= PROT_EXEC;
6618
6619                if (vma->vm_flags & VM_MAYSHARE)
6620                        flags = MAP_SHARED;
6621                else
6622                        flags = MAP_PRIVATE;
6623
6624                if (vma->vm_flags & VM_DENYWRITE)
6625                        flags |= MAP_DENYWRITE;
6626                if (vma->vm_flags & VM_MAYEXEC)
6627                        flags |= MAP_EXECUTABLE;
6628                if (vma->vm_flags & VM_LOCKED)
6629                        flags |= MAP_LOCKED;
6630                if (vma->vm_flags & VM_HUGETLB)
6631                        flags |= MAP_HUGETLB;
6632
6633                goto got_name;
6634        } else {
6635                if (vma->vm_ops && vma->vm_ops->name) {
6636                        name = (char *) vma->vm_ops->name(vma);
6637                        if (name)
6638                                goto cpy_name;
6639                }
6640
6641                name = (char *)arch_vma_name(vma);
6642                if (name)
6643                        goto cpy_name;
6644
6645                if (vma->vm_start <= vma->vm_mm->start_brk &&
6646                                vma->vm_end >= vma->vm_mm->brk) {
6647                        name = "[heap]";
6648                        goto cpy_name;
6649                }
6650                if (vma->vm_start <= vma->vm_mm->start_stack &&
6651                                vma->vm_end >= vma->vm_mm->start_stack) {
6652                        name = "[stack]";
6653                        goto cpy_name;
6654                }
6655
6656                name = "//anon";
6657                goto cpy_name;
6658        }
6659
6660cpy_name:
6661        strlcpy(tmp, name, sizeof(tmp));
6662        name = tmp;
6663got_name:
6664        /*
6665         * Since our buffer works in 8 byte units we need to align our string
6666         * size to a multiple of 8. However, we must guarantee the tail end is
6667         * zero'd out to avoid leaking random bits to userspace.
6668         */
6669        size = strlen(name)+1;
6670        while (!IS_ALIGNED(size, sizeof(u64)))
6671                name[size++] = '\0';
6672
6673        mmap_event->file_name = name;
6674        mmap_event->file_size = size;
6675        mmap_event->maj = maj;
6676        mmap_event->min = min;
6677        mmap_event->ino = ino;
6678        mmap_event->ino_generation = gen;
6679        mmap_event->prot = prot;
6680        mmap_event->flags = flags;
6681
6682        if (!(vma->vm_flags & VM_EXEC))
6683                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6684
6685        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6686
6687        perf_iterate_sb(perf_event_mmap_output,
6688                       mmap_event,
6689                       NULL);
6690
6691        kfree(buf);
6692}
6693
6694/*
6695 * Check whether inode and address range match filter criteria.
6696 */
6697static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6698                                     struct file *file, unsigned long offset,
6699                                     unsigned long size)
6700{
6701        if (filter->inode != file->f_inode)
6702                return false;
6703
6704        if (filter->offset > offset + size)
6705                return false;
6706
6707        if (filter->offset + filter->size < offset)
6708                return false;
6709
6710        return true;
6711}
6712
6713static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6714{
6715        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6716        struct vm_area_struct *vma = data;
6717        unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6718        struct file *file = vma->vm_file;
6719        struct perf_addr_filter *filter;
6720        unsigned int restart = 0, count = 0;
6721
6722        if (!has_addr_filter(event))
6723                return;
6724
6725        if (!file)
6726                return;
6727
6728        raw_spin_lock_irqsave(&ifh->lock, flags);
6729        list_for_each_entry(filter, &ifh->list, entry) {
6730                if (perf_addr_filter_match(filter, file, off,
6731                                             vma->vm_end - vma->vm_start)) {
6732                        event->addr_filters_offs[count] = vma->vm_start;
6733                        restart++;
6734                }
6735
6736                count++;
6737        }
6738
6739        if (restart)
6740                event->addr_filters_gen++;
6741        raw_spin_unlock_irqrestore(&ifh->lock, flags);
6742
6743        if (restart)
6744                perf_event_stop(event, 1);
6745}
6746
6747/*
6748 * Adjust all task's events' filters to the new vma
6749 */
6750static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6751{
6752        struct perf_event_context *ctx;
6753        int ctxn;
6754
6755        /*
6756         * Data tracing isn't supported yet and as such there is no need
6757         * to keep track of anything that isn't related to executable code:
6758         */
6759        if (!(vma->vm_flags & VM_EXEC))
6760                return;
6761
6762        rcu_read_lock();
6763        for_each_task_context_nr(ctxn) {
6764                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6765                if (!ctx)
6766                        continue;
6767
6768                perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6769        }
6770        rcu_read_unlock();
6771}
6772
6773void perf_event_mmap(struct vm_area_struct *vma)
6774{
6775        struct perf_mmap_event mmap_event;
6776
6777        if (!atomic_read(&nr_mmap_events))
6778                return;
6779
6780        mmap_event = (struct perf_mmap_event){
6781                .vma    = vma,
6782                /* .file_name */
6783                /* .file_size */
6784                .event_id  = {
6785                        .header = {
6786                                .type = PERF_RECORD_MMAP,
6787                                .misc = PERF_RECORD_MISC_USER,
6788                                /* .size */
6789                        },
6790                        /* .pid */
6791                        /* .tid */
6792                        .start  = vma->vm_start,
6793                        .len    = vma->vm_end - vma->vm_start,
6794                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6795                },
6796                /* .maj (attr_mmap2 only) */
6797                /* .min (attr_mmap2 only) */
6798                /* .ino (attr_mmap2 only) */
6799                /* .ino_generation (attr_mmap2 only) */
6800                /* .prot (attr_mmap2 only) */
6801                /* .flags (attr_mmap2 only) */
6802        };
6803
6804        perf_addr_filters_adjust(vma);
6805        perf_event_mmap_event(&mmap_event);
6806}
6807
6808void perf_event_aux_event(struct perf_event *event, unsigned long head,
6809                          unsigned long size, u64 flags)
6810{
6811        struct perf_output_handle handle;
6812        struct perf_sample_data sample;
6813        struct perf_aux_event {
6814                struct perf_event_header        header;
6815                u64                             offset;
6816                u64                             size;
6817                u64                             flags;
6818        } rec = {
6819                .header = {
6820                        .type = PERF_RECORD_AUX,
6821                        .misc = 0,
6822                        .size = sizeof(rec),
6823                },
6824                .offset         = head,
6825                .size           = size,
6826                .flags          = flags,
6827        };
6828        int ret;
6829
6830        perf_event_header__init_id(&rec.header, &sample, event);
6831        ret = perf_output_begin(&handle, event, rec.header.size);
6832
6833        if (ret)
6834                return;
6835
6836        perf_output_put(&handle, rec);
6837        perf_event__output_id_sample(event, &handle, &sample);
6838
6839        perf_output_end(&handle);
6840}
6841
6842/*
6843 * Lost/dropped samples logging
6844 */
6845void perf_log_lost_samples(struct perf_event *event, u64 lost)
6846{
6847        struct perf_output_handle handle;
6848        struct perf_sample_data sample;
6849        int ret;
6850
6851        struct {
6852                struct perf_event_header        header;
6853                u64                             lost;
6854        } lost_samples_event = {
6855                .header = {
6856                        .type = PERF_RECORD_LOST_SAMPLES,
6857                        .misc = 0,
6858                        .size = sizeof(lost_samples_event),
6859                },
6860                .lost           = lost,
6861        };
6862
6863        perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6864
6865        ret = perf_output_begin(&handle, event,
6866                                lost_samples_event.header.size);
6867        if (ret)
6868                return;
6869
6870        perf_output_put(&handle, lost_samples_event);
6871        perf_event__output_id_sample(event, &handle, &sample);
6872        perf_output_end(&handle);
6873}
6874
6875/*
6876 * context_switch tracking
6877 */
6878
6879struct perf_switch_event {
6880        struct task_struct      *task;
6881        struct task_struct      *next_prev;
6882
6883        struct {
6884                struct perf_event_header        header;
6885                u32                             next_prev_pid;
6886                u32                             next_prev_tid;
6887        } event_id;
6888};
6889
6890static int perf_event_switch_match(struct perf_event *event)
6891{
6892        return event->attr.context_switch;
6893}
6894
6895static void perf_event_switch_output(struct perf_event *event, void *data)
6896{
6897        struct perf_switch_event *se = data;
6898        struct perf_output_handle handle;
6899        struct perf_sample_data sample;
6900        int ret;
6901
6902        if (!perf_event_switch_match(event))
6903                return;
6904
6905        /* Only CPU-wide events are allowed to see next/prev pid/tid */
6906        if (event->ctx->task) {
6907                se->event_id.header.type = PERF_RECORD_SWITCH;
6908                se->event_id.header.size = sizeof(se->event_id.header);
6909        } else {
6910                se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6911                se->event_id.header.size = sizeof(se->event_id);
6912                se->event_id.next_prev_pid =
6913                                        perf_event_pid(event, se->next_prev);
6914                se->event_id.next_prev_tid =
6915                                        perf_event_tid(event, se->next_prev);
6916        }
6917
6918        perf_event_header__init_id(&se->event_id.header, &sample, event);
6919
6920        ret = perf_output_begin(&handle, event, se->event_id.header.size);
6921        if (ret)
6922                return;
6923
6924        if (event->ctx->task)
6925                perf_output_put(&handle, se->event_id.header);
6926        else
6927                perf_output_put(&handle, se->event_id);
6928
6929        perf_event__output_id_sample(event, &handle, &sample);
6930
6931        perf_output_end(&handle);
6932}
6933
6934static void perf_event_switch(struct task_struct *task,
6935                              struct task_struct *next_prev, bool sched_in)
6936{
6937        struct perf_switch_event switch_event;
6938
6939        /* N.B. caller checks nr_switch_events != 0 */
6940
6941        switch_event = (struct perf_switch_event){
6942                .task           = task,
6943                .next_prev      = next_prev,
6944                .event_id       = {
6945                        .header = {
6946                                /* .type */
6947                                .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6948                                /* .size */
6949                        },
6950                        /* .next_prev_pid */
6951                        /* .next_prev_tid */
6952                },
6953        };
6954
6955        perf_iterate_sb(perf_event_switch_output,
6956                       &switch_event,
6957                       NULL);
6958}
6959
6960/*
6961 * IRQ throttle logging
6962 */
6963
6964static void perf_log_throttle(struct perf_event *event, int enable)
6965{
6966        struct perf_output_handle handle;
6967        struct perf_sample_data sample;
6968        int ret;
6969
6970        struct {
6971                struct perf_event_header        header;
6972                u64                             time;
6973                u64                             id;
6974                u64                             stream_id;
6975        } throttle_event = {
6976                .header = {
6977                        .type = PERF_RECORD_THROTTLE,
6978                        .misc = 0,
6979                        .size = sizeof(throttle_event),
6980                },
6981                .time           = perf_event_clock(event),
6982                .id             = primary_event_id(event),
6983                .stream_id      = event->id,
6984        };
6985
6986        if (enable)
6987                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6988
6989        perf_event_header__init_id(&throttle_event.header, &sample, event);
6990
6991        ret = perf_output_begin(&handle, event,
6992                                throttle_event.header.size);
6993        if (ret)
6994                return;
6995
6996        perf_output_put(&handle, throttle_event);
6997        perf_event__output_id_sample(event, &handle, &sample);
6998        perf_output_end(&handle);
6999}
7000
7001static void perf_log_itrace_start(struct perf_event *event)
7002{
7003        struct perf_output_handle handle;
7004        struct perf_sample_data sample;
7005        struct perf_aux_event {
7006                struct perf_event_header        header;
7007                u32                             pid;
7008                u32                             tid;
7009        } rec;
7010        int ret;
7011
7012        if (event->parent)
7013                event = event->parent;
7014
7015        if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7016            event->hw.itrace_started)
7017                return;
7018
7019        rec.header.type = PERF_RECORD_ITRACE_START;
7020        rec.header.misc = 0;
7021        rec.header.size = sizeof(rec);
7022        rec.pid = perf_event_pid(event, current);
7023        rec.tid = perf_event_tid(event, current);
7024
7025        perf_event_header__init_id(&rec.header, &sample, event);
7026        ret = perf_output_begin(&handle, event, rec.header.size);
7027
7028        if (ret)
7029                return;
7030
7031        perf_output_put(&handle, rec);
7032        perf_event__output_id_sample(event, &handle, &sample);
7033
7034        perf_output_end(&handle);
7035}
7036
7037/*
7038 * Generic event overflow handling, sampling.
7039 */
7040
7041static int __perf_event_overflow(struct perf_event *event,
7042                                   int throttle, struct perf_sample_data *data,
7043                                   struct pt_regs *regs)
7044{
7045        int events = atomic_read(&event->event_limit);
7046        struct hw_perf_event *hwc = &event->hw;
7047        u64 seq;
7048        int ret = 0;
7049
7050        /*
7051         * Non-sampling counters might still use the PMI to fold short
7052         * hardware counters, ignore those.
7053         */
7054        if (unlikely(!is_sampling_event(event)))
7055                return 0;
7056
7057        seq = __this_cpu_read(perf_throttled_seq);
7058        if (seq != hwc->interrupts_seq) {
7059                hwc->interrupts_seq = seq;
7060                hwc->interrupts = 1;
7061        } else {
7062                hwc->interrupts++;
7063                if (unlikely(throttle
7064                             && hwc->interrupts >= max_samples_per_tick)) {
7065                        __this_cpu_inc(perf_throttled_count);
7066                        tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7067                        hwc->interrupts = MAX_INTERRUPTS;
7068                        perf_log_throttle(event, 0);
7069                        ret = 1;
7070                }
7071        }
7072
7073        if (event->attr.freq) {
7074                u64 now = perf_clock();
7075                s64 delta = now - hwc->freq_time_stamp;
7076
7077                hwc->freq_time_stamp = now;
7078
7079                if (delta > 0 && delta < 2*TICK_NSEC)
7080                        perf_adjust_period(event, delta, hwc->last_period, true);
7081        }
7082
7083        /*
7084         * XXX event_limit might not quite work as expected on inherited
7085         * events
7086         */
7087
7088        event->pending_kill = POLL_IN;
7089        if (events && atomic_dec_and_test(&event->event_limit)) {
7090                ret = 1;
7091                event->pending_kill = POLL_HUP;
7092
7093                perf_event_disable_inatomic(event);
7094        }
7095
7096        READ_ONCE(event->overflow_handler)(event, data, regs);
7097
7098        if (*perf_event_fasync(event) && event->pending_kill) {
7099                event->pending_wakeup = 1;
7100                irq_work_queue(&event->pending);
7101        }
7102
7103        return ret;
7104}
7105
7106int perf_event_overflow(struct perf_event *event,
7107                          struct perf_sample_data *data,
7108                          struct pt_regs *regs)
7109{
7110        return __perf_event_overflow(event, 1, data, regs);
7111}
7112
7113/*
7114 * Generic software event infrastructure
7115 */
7116
7117struct swevent_htable {
7118        struct swevent_hlist            *swevent_hlist;
7119        struct mutex                    hlist_mutex;
7120        int                             hlist_refcount;
7121
7122        /* Recursion avoidance in each contexts */
7123        int                             recursion[PERF_NR_CONTEXTS];
7124};
7125
7126static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7127
7128/*
7129 * We directly increment event->count and keep a second value in
7130 * event->hw.period_left to count intervals. This period event
7131 * is kept in the range [-sample_period, 0] so that we can use the
7132 * sign as trigger.
7133 */
7134
7135u64 perf_swevent_set_period(struct perf_event *event)
7136{
7137        struct hw_perf_event *hwc = &event->hw;
7138        u64 period = hwc->last_period;
7139        u64 nr, offset;
7140        s64 old, val;
7141
7142        hwc->last_period = hwc->sample_period;
7143
7144again:
7145        old = val = local64_read(&hwc->period_left);
7146        if (val < 0)
7147                return 0;
7148
7149        nr = div64_u64(period + val, period);
7150        offset = nr * period;
7151        val -= offset;
7152        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7153                goto again;
7154
7155        return nr;
7156}
7157
7158static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7159                                    struct perf_sample_data *data,
7160                                    struct pt_regs *regs)
7161{
7162        struct hw_perf_event *hwc = &event->hw;
7163        int throttle = 0;
7164
7165        if (!overflow)
7166                overflow = perf_swevent_set_period(event);
7167
7168        if (hwc->interrupts == MAX_INTERRUPTS)
7169                return;
7170
7171        for (; overflow; overflow--) {
7172                if (__perf_event_overflow(event, throttle,
7173                                            data, regs)) {
7174                        /*
7175                         * We inhibit the overflow from happening when
7176                         * hwc->interrupts == MAX_INTERRUPTS.
7177                         */
7178                        break;
7179                }
7180                throttle = 1;
7181        }
7182}
7183
7184static void perf_swevent_event(struct perf_event *event, u64 nr,
7185                               struct perf_sample_data *data,
7186                               struct pt_regs *regs)
7187{
7188        struct hw_perf_event *hwc = &event->hw;
7189
7190        local64_add(nr, &event->count);
7191
7192        if (!regs)
7193                return;
7194
7195        if (!is_sampling_event(event))
7196                return;
7197
7198        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7199                data->period = nr;
7200                return perf_swevent_overflow(event, 1, data, regs);
7201        } else
7202                data->period = event->hw.last_period;
7203
7204        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7205                return perf_swevent_overflow(event, 1, data, regs);
7206
7207        if (local64_add_negative(nr, &hwc->period_left))
7208                return;
7209
7210        perf_swevent_overflow(event, 0, data, regs);
7211}
7212
7213static int perf_exclude_event(struct perf_event *event,
7214                              struct pt_regs *regs)
7215{
7216        if (event->hw.state & PERF_HES_STOPPED)
7217                return 1;
7218
7219        if (regs) {
7220                if (event->attr.exclude_user && user_mode(regs))
7221                        return 1;
7222
7223                if (event->attr.exclude_kernel && !user_mode(regs))
7224                        return 1;
7225        }
7226
7227        return 0;
7228}
7229
7230static int perf_swevent_match(struct perf_event *event,
7231                                enum perf_type_id type,
7232                                u32 event_id,
7233                                struct perf_sample_data *data,
7234                                struct pt_regs *regs)
7235{
7236        if (event->attr.type != type)
7237                return 0;
7238
7239        if (event->attr.config != event_id)
7240                return 0;
7241
7242        if (perf_exclude_event(event, regs))
7243                return 0;
7244
7245        return 1;
7246}
7247
7248static inline u64 swevent_hash(u64 type, u32 event_id)
7249{
7250        u64 val = event_id | (type << 32);
7251
7252        return hash_64(val, SWEVENT_HLIST_BITS);
7253}
7254
7255static inline struct hlist_head *
7256__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7257{
7258        u64 hash = swevent_hash(type, event_id);
7259
7260        return &hlist->heads[hash];
7261}
7262
7263/* For the read side: events when they trigger */
7264static inline struct hlist_head *
7265find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7266{
7267        struct swevent_hlist *hlist;
7268
7269        hlist = rcu_dereference(swhash->swevent_hlist);
7270        if (!hlist)
7271                return NULL;
7272
7273        return __find_swevent_head(hlist, type, event_id);
7274}
7275
7276/* For the event head insertion and removal in the hlist */
7277static inline struct hlist_head *
7278find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7279{
7280        struct swevent_hlist *hlist;
7281        u32 event_id = event->attr.config;
7282        u64 type = event->attr.type;
7283
7284        /*
7285         * Event scheduling is always serialized against hlist allocation
7286         * and release. Which makes the protected version suitable here.
7287         * The context lock guarantees that.
7288         */
7289        hlist = rcu_dereference_protected(swhash->swevent_hlist,
7290                                          lockdep_is_held(&event->ctx->lock));
7291        if (!hlist)
7292                return NULL;
7293
7294        return __find_swevent_head(hlist, type, event_id);
7295}
7296
7297static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7298                                    u64 nr,
7299                                    struct perf_sample_data *data,
7300                                    struct pt_regs *regs)
7301{
7302        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7303        struct perf_event *event;
7304        struct hlist_head *head;
7305
7306        rcu_read_lock();
7307        head = find_swevent_head_rcu(swhash, type, event_id);
7308        if (!head)
7309                goto end;
7310
7311        hlist_for_each_entry_rcu(event, head, hlist_entry) {
7312                if (perf_swevent_match(event, type, event_id, data, regs))
7313                        perf_swevent_event(event, nr, data, regs);
7314        }
7315end:
7316        rcu_read_unlock();
7317}
7318
7319DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7320
7321int perf_swevent_get_recursion_context(void)
7322{
7323        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7324
7325        return get_recursion_context(swhash->recursion);
7326}
7327EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7328
7329void perf_swevent_put_recursion_context(int rctx)
7330{
7331        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7332
7333        put_recursion_context(swhash->recursion, rctx);
7334}
7335
7336void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7337{
7338        struct perf_sample_data data;
7339
7340        if (WARN_ON_ONCE(!regs))
7341                return;
7342
7343        perf_sample_data_init(&data, addr, 0);
7344        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7345}
7346
7347void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7348{
7349        int rctx;
7350
7351        preempt_disable_notrace();
7352        rctx = perf_swevent_get_recursion_context();
7353        if (unlikely(rctx < 0))
7354                goto fail;
7355
7356        ___perf_sw_event(event_id, nr, regs, addr);
7357
7358        perf_swevent_put_recursion_context(rctx);
7359fail:
7360        preempt_enable_notrace();
7361}
7362
7363static void perf_swevent_read(struct perf_event *event)
7364{
7365}
7366
7367static int perf_swevent_add(struct perf_event *event, int flags)
7368{
7369        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7370        struct hw_perf_event *hwc = &event->hw;
7371        struct hlist_head *head;
7372
7373        if (is_sampling_event(event)) {
7374                hwc->last_period = hwc->sample_period;
7375                perf_swevent_set_period(event);
7376        }
7377
7378        hwc->state = !(flags & PERF_EF_START);
7379
7380        head = find_swevent_head(swhash, event);
7381        if (WARN_ON_ONCE(!head))
7382                return -EINVAL;
7383
7384        hlist_add_head_rcu(&event->hlist_entry, head);
7385        perf_event_update_userpage(event);
7386
7387        return 0;
7388}
7389
7390static void perf_swevent_del(struct perf_event *event, int flags)
7391{
7392        hlist_del_rcu(&event->hlist_entry);
7393}
7394
7395static void perf_swevent_start(struct perf_event *event, int flags)
7396{
7397        event->hw.state = 0;
7398}
7399
7400static void perf_swevent_stop(struct perf_event *event, int flags)
7401{
7402        event->hw.state = PERF_HES_STOPPED;
7403}
7404
7405/* Deref the hlist from the update side */
7406static inline struct swevent_hlist *
7407swevent_hlist_deref(struct swevent_htable *swhash)
7408{
7409        return rcu_dereference_protected(swhash->swevent_hlist,
7410                                         lockdep_is_held(&swhash->hlist_mutex));
7411}
7412
7413static void swevent_hlist_release(struct swevent_htable *swhash)
7414{
7415        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7416
7417        if (!hlist)
7418                return;
7419
7420        RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7421        kfree_rcu(hlist, rcu_head);
7422}
7423
7424static void swevent_hlist_put_cpu(int cpu)
7425{
7426        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7427
7428        mutex_lock(&swhash->hlist_mutex);
7429
7430        if (!--swhash->hlist_refcount)
7431                swevent_hlist_release(swhash);
7432
7433        mutex_unlock(&swhash->hlist_mutex);
7434}
7435
7436static void swevent_hlist_put(void)
7437{
7438        int cpu;
7439
7440        for_each_possible_cpu(cpu)
7441                swevent_hlist_put_cpu(cpu);
7442}
7443
7444static int swevent_hlist_get_cpu(int cpu)
7445{
7446        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7447        int err = 0;
7448
7449        mutex_lock(&swhash->hlist_mutex);
7450        if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7451                struct swevent_hlist *hlist;
7452
7453                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7454                if (!hlist) {
7455                        err = -ENOMEM;
7456                        goto exit;
7457                }
7458                rcu_assign_pointer(swhash->swevent_hlist, hlist);
7459        }
7460        swhash->hlist_refcount++;
7461exit:
7462        mutex_unlock(&swhash->hlist_mutex);
7463
7464        return err;
7465}
7466
7467static int swevent_hlist_get(void)
7468{
7469        int err, cpu, failed_cpu;
7470
7471        get_online_cpus();
7472        for_each_possible_cpu(cpu) {
7473                err = swevent_hlist_get_cpu(cpu);
7474                if (err) {
7475                        failed_cpu = cpu;
7476                        goto fail;
7477                }
7478        }
7479        put_online_cpus();
7480
7481        return 0;
7482fail:
7483        for_each_possible_cpu(cpu) {
7484                if (cpu == failed_cpu)
7485                        break;
7486                swevent_hlist_put_cpu(cpu);
7487        }
7488
7489        put_online_cpus();
7490        return err;
7491}
7492
7493struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7494
7495static void sw_perf_event_destroy(struct perf_event *event)
7496{
7497        u64 event_id = event->attr.config;
7498
7499        WARN_ON(event->parent);
7500
7501        static_key_slow_dec(&perf_swevent_enabled[event_id]);
7502        swevent_hlist_put();
7503}
7504
7505static int perf_swevent_init(struct perf_event *event)
7506{
7507        u64 event_id = event->attr.config;
7508
7509        if (event->attr.type != PERF_TYPE_SOFTWARE)
7510                return -ENOENT;
7511
7512        /*
7513         * no branch sampling for software events
7514         */
7515        if (has_branch_stack(event))
7516                return -EOPNOTSUPP;
7517
7518        switch (event_id) {
7519        case PERF_COUNT_SW_CPU_CLOCK:
7520        case PERF_COUNT_SW_TASK_CLOCK:
7521                return -ENOENT;
7522
7523        default:
7524                break;
7525        }
7526
7527        if (event_id >= PERF_COUNT_SW_MAX)
7528                return -ENOENT;
7529
7530        if (!event->parent) {
7531                int err;
7532
7533                err = swevent_hlist_get();
7534                if (err)
7535                        return err;
7536
7537                static_key_slow_inc(&perf_swevent_enabled[event_id]);
7538                event->destroy = sw_perf_event_destroy;
7539        }
7540
7541        return 0;
7542}
7543
7544static struct pmu perf_swevent = {
7545        .task_ctx_nr    = perf_sw_context,
7546
7547        .capabilities   = PERF_PMU_CAP_NO_NMI,
7548
7549        .event_init     = perf_swevent_init,
7550        .add            = perf_swevent_add,
7551        .del            = perf_swevent_del,
7552        .start          = perf_swevent_start,
7553        .stop           = perf_swevent_stop,
7554        .read           = perf_swevent_read,
7555};
7556
7557#ifdef CONFIG_EVENT_TRACING
7558
7559static int perf_tp_filter_match(struct perf_event *event,
7560                                struct perf_sample_data *data)
7561{
7562        void *record = data->raw->frag.data;
7563
7564        /* only top level events have filters set */
7565        if (event->parent)
7566                event = event->parent;
7567
7568        if (likely(!event->filter) || filter_match_preds(event->filter, record))
7569                return 1;
7570        return 0;
7571}
7572
7573static int perf_tp_event_match(struct perf_event *event,
7574                                struct perf_sample_data *data,
7575                                struct pt_regs *regs)
7576{
7577        if (event->hw.state & PERF_HES_STOPPED)
7578                return 0;
7579        /*
7580         * All tracepoints are from kernel-space.
7581         */
7582        if (event->attr.exclude_kernel)
7583                return 0;
7584
7585        if (!perf_tp_filter_match(event, data))
7586                return 0;
7587
7588        return 1;
7589}
7590
7591void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7592                               struct trace_event_call *call, u64 count,
7593                               struct pt_regs *regs, struct hlist_head *head,
7594                               struct task_struct *task)
7595{
7596        struct bpf_prog *prog = call->prog;
7597
7598        if (prog) {
7599                *(struct pt_regs **)raw_data = regs;
7600                if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7601                        perf_swevent_put_recursion_context(rctx);
7602                        return;
7603                }
7604        }
7605        perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7606                      rctx, task);
7607}
7608EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7609
7610void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7611                   struct pt_regs *regs, struct hlist_head *head, int rctx,
7612                   struct task_struct *task)
7613{
7614        struct perf_sample_data data;
7615        struct perf_event *event;
7616
7617        struct perf_raw_record raw = {
7618                .frag = {
7619                        .size = entry_size,
7620                        .data = record,
7621                },
7622        };
7623
7624        perf_sample_data_init(&data, 0, 0);
7625        data.raw = &raw;
7626
7627        perf_trace_buf_update(record, event_type);
7628
7629        hlist_for_each_entry_rcu(event, head, hlist_entry) {
7630                if (perf_tp_event_match(event, &data, regs))
7631                        perf_swevent_event(event, count, &data, regs);
7632        }
7633
7634        /*
7635         * If we got specified a target task, also iterate its context and
7636         * deliver this event there too.
7637         */
7638        if (task && task != current) {
7639                struct perf_event_context *ctx;
7640                struct trace_entry *entry = record;
7641
7642                rcu_read_lock();
7643                ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7644                if (!ctx)
7645                        goto unlock;
7646
7647                list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7648                        if (event->attr.type != PERF_TYPE_TRACEPOINT)
7649                                continue;
7650                        if (event->attr.config != entry->type)
7651                                continue;
7652                        if (perf_tp_event_match(event, &data, regs))
7653                                perf_swevent_event(event, count, &data, regs);
7654                }
7655unlock:
7656                rcu_read_unlock();
7657        }
7658
7659        perf_swevent_put_recursion_context(rctx);
7660}
7661EXPORT_SYMBOL_GPL(perf_tp_event);
7662
7663static void tp_perf_event_destroy(struct perf_event *event)
7664{
7665        perf_trace_destroy(event);
7666}
7667
7668static int perf_tp_event_init(struct perf_event *event)
7669{
7670        int err;
7671
7672        if (event->attr.type != PERF_TYPE_TRACEPOINT)
7673                return -ENOENT;
7674
7675        /*
7676         * no branch sampling for tracepoint events
7677         */
7678        if (has_branch_stack(event))
7679                return -EOPNOTSUPP;
7680
7681        err = perf_trace_init(event);
7682        if (err)
7683                return err;
7684
7685        event->destroy = tp_perf_event_destroy;
7686
7687        return 0;
7688}
7689
7690static struct pmu perf_tracepoint = {
7691        .task_ctx_nr    = perf_sw_context,
7692
7693        .event_init     = perf_tp_event_init,
7694        .add            = perf_trace_add,
7695        .del            = perf_trace_del,
7696        .start          = perf_swevent_start,
7697        .stop           = perf_swevent_stop,
7698        .read           = perf_swevent_read,
7699};
7700
7701static inline void perf_tp_register(void)
7702{
7703        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7704}
7705
7706static void perf_event_free_filter(struct perf_event *event)
7707{
7708        ftrace_profile_free_filter(event);
7709}
7710
7711#ifdef CONFIG_BPF_SYSCALL
7712static void bpf_overflow_handler(struct perf_event *event,
7713                                 struct perf_sample_data *data,
7714                                 struct pt_regs *regs)
7715{
7716        struct bpf_perf_event_data_kern ctx = {
7717                .data = data,
7718                .regs = regs,
7719        };
7720        int ret = 0;
7721
7722        preempt_disable();
7723        if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7724                goto out;
7725        rcu_read_lock();
7726        ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7727        rcu_read_unlock();
7728out:
7729        __this_cpu_dec(bpf_prog_active);
7730        preempt_enable();
7731        if (!ret)
7732                return;
7733
7734        event->orig_overflow_handler(event, data, regs);
7735}
7736
7737static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7738{
7739        struct bpf_prog *prog;
7740
7741        if (event->overflow_handler_context)
7742                /* hw breakpoint or kernel counter */
7743                return -EINVAL;
7744
7745        if (event->prog)
7746                return -EEXIST;
7747
7748        prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7749        if (IS_ERR(prog))
7750                return PTR_ERR(prog);
7751
7752        event->prog = prog;
7753        event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7754        WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7755        return 0;
7756}
7757
7758static void perf_event_free_bpf_handler(struct perf_event *event)
7759{
7760        struct bpf_prog *prog = event->prog;
7761
7762        if (!prog)
7763                return;
7764
7765        WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7766        event->prog = NULL;
7767        bpf_prog_put(prog);
7768}
7769#else
7770static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7771{
7772        return -EOPNOTSUPP;
7773}
7774static void perf_event_free_bpf_handler(struct perf_event *event)
7775{
7776}
7777#endif
7778
7779static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7780{
7781        bool is_kprobe, is_tracepoint;
7782        struct bpf_prog *prog;
7783
7784        if (event->attr.type == PERF_TYPE_HARDWARE ||
7785            event->attr.type == PERF_TYPE_SOFTWARE)
7786                return perf_event_set_bpf_handler(event, prog_fd);
7787
7788        if (event->attr.type != PERF_TYPE_TRACEPOINT)
7789                return -EINVAL;
7790
7791        if (event->tp_event->prog)
7792                return -EEXIST;
7793
7794        is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7795        is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7796        if (!is_kprobe && !is_tracepoint)
7797                /* bpf programs can only be attached to u/kprobe or tracepoint */
7798                return -EINVAL;
7799
7800        prog = bpf_prog_get(prog_fd);
7801        if (IS_ERR(prog))
7802                return PTR_ERR(prog);
7803
7804        if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7805            (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7806                /* valid fd, but invalid bpf program type */
7807                bpf_prog_put(prog);
7808                return -EINVAL;
7809        }
7810
7811        if (is_tracepoint) {
7812                int off = trace_event_get_offsets(event->tp_event);
7813
7814                if (prog->aux->max_ctx_offset > off) {
7815                        bpf_prog_put(prog);
7816                        return -EACCES;
7817                }
7818        }
7819        event->tp_event->prog = prog;
7820
7821        return 0;
7822}
7823
7824static void perf_event_free_bpf_prog(struct perf_event *event)
7825{
7826        struct bpf_prog *prog;
7827
7828        perf_event_free_bpf_handler(event);
7829
7830        if (!event->tp_event)
7831                return;
7832
7833        prog = event->tp_event->prog;
7834        if (prog) {
7835                event->tp_event->prog = NULL;
7836                bpf_prog_put(prog);
7837        }
7838}
7839
7840#else
7841
7842static inline void perf_tp_register(void)
7843{
7844}
7845
7846static void perf_event_free_filter(struct perf_event *event)
7847{
7848}
7849
7850static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7851{
7852        return -ENOENT;
7853}
7854
7855static void perf_event_free_bpf_prog(struct perf_event *event)
7856{
7857}
7858#endif /* CONFIG_EVENT_TRACING */
7859
7860#ifdef CONFIG_HAVE_HW_BREAKPOINT
7861void perf_bp_event(struct perf_event *bp, void *data)
7862{
7863        struct perf_sample_data sample;
7864        struct pt_regs *regs = data;
7865
7866        perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7867
7868        if (!bp->hw.state && !perf_exclude_event(bp, regs))
7869                perf_swevent_event(bp, 1, &sample, regs);
7870}
7871#endif
7872
7873/*
7874 * Allocate a new address filter
7875 */
7876static struct perf_addr_filter *
7877perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7878{
7879        int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7880        struct perf_addr_filter *filter;
7881
7882        filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7883        if (!filter)
7884                return NULL;
7885
7886        INIT_LIST_HEAD(&filter->entry);
7887        list_add_tail(&filter->entry, filters);
7888
7889        return filter;
7890}
7891
7892static void free_filters_list(struct list_head *filters)
7893{
7894        struct perf_addr_filter *filter, *iter;
7895
7896        list_for_each_entry_safe(filter, iter, filters, entry) {
7897                if (filter->inode)
7898                        iput(filter->inode);
7899                list_del(&filter->entry);
7900                kfree(filter);
7901        }
7902}
7903
7904/*
7905 * Free existing address filters and optionally install new ones
7906 */
7907static void perf_addr_filters_splice(struct perf_event *event,
7908                                     struct list_head *head)
7909{
7910        unsigned long flags;
7911        LIST_HEAD(list);
7912
7913        if (!has_addr_filter(event))
7914                return;
7915
7916        /* don't bother with children, they don't have their own filters */
7917        if (event->parent)
7918                return;
7919
7920        raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7921
7922        list_splice_init(&event->addr_filters.list, &list);
7923        if (head)
7924                list_splice(head, &event->addr_filters.list);
7925
7926        raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7927
7928        free_filters_list(&list);
7929}
7930
7931/*
7932 * Scan through mm's vmas and see if one of them matches the
7933 * @filter; if so, adjust filter's address range.
7934 * Called with mm::mmap_sem down for reading.
7935 */
7936static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7937                                            struct mm_struct *mm)
7938{
7939        struct vm_area_struct *vma;
7940
7941        for (vma = mm->mmap; vma; vma = vma->vm_next) {
7942                struct file *file = vma->vm_file;
7943                unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7944                unsigned long vma_size = vma->vm_end - vma->vm_start;
7945
7946                if (!file)
7947                        continue;
7948
7949                if (!perf_addr_filter_match(filter, file, off, vma_size))
7950                        continue;
7951
7952                return vma->vm_start;
7953        }
7954
7955        return 0;
7956}
7957
7958/*
7959 * Update event's address range filters based on the
7960 * task's existing mappings, if any.
7961 */
7962static void perf_event_addr_filters_apply(struct perf_event *event)
7963{
7964        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7965        struct task_struct *task = READ_ONCE(event->ctx->task);
7966        struct perf_addr_filter *filter;
7967        struct mm_struct *mm = NULL;
7968        unsigned int count = 0;
7969        unsigned long flags;
7970
7971        /*
7972         * We may observe TASK_TOMBSTONE, which means that the event tear-down
7973         * will stop on the parent's child_mutex that our caller is also holding
7974         */
7975        if (task == TASK_TOMBSTONE)
7976                return;
7977
7978        mm = get_task_mm(event->ctx->task);
7979        if (!mm)
7980                goto restart;
7981
7982        down_read(&mm->mmap_sem);
7983
7984        raw_spin_lock_irqsave(&ifh->lock, flags);
7985        list_for_each_entry(filter, &ifh->list, entry) {
7986                event->addr_filters_offs[count] = 0;
7987
7988                /*
7989                 * Adjust base offset if the filter is associated to a binary
7990                 * that needs to be mapped:
7991                 */
7992                if (filter->inode)
7993                        event->addr_filters_offs[count] =
7994                                perf_addr_filter_apply(filter, mm);
7995
7996                count++;
7997        }
7998
7999        event->addr_filters_gen++;
8000        raw_spin_unlock_irqrestore(&ifh->lock, flags);
8001
8002        up_read(&mm->mmap_sem);
8003
8004        mmput(mm);
8005
8006restart:
8007        perf_event_stop(event, 1);
8008}
8009
8010/*
8011 * Address range filtering: limiting the data to certain
8012 * instruction address ranges. Filters are ioctl()ed to us from
8013 * userspace as ascii strings.
8014 *
8015 * Filter string format:
8016 *
8017 * ACTION RANGE_SPEC
8018 * where ACTION is one of the
8019 *  * "filter": limit the trace to this region
8020 *  * "start": start tracing from this address
8021 *  * "stop": stop tracing at this address/region;
8022 * RANGE_SPEC is
8023 *  * for kernel addresses: <start address>[/<size>]
8024 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8025 *
8026 * if <size> is not specified, the range is treated as a single address.
8027 */
8028enum {
8029        IF_ACT_NONE = -1,
8030        IF_ACT_FILTER,
8031        IF_ACT_START,
8032        IF_ACT_STOP,
8033        IF_SRC_FILE,
8034        IF_SRC_KERNEL,
8035        IF_SRC_FILEADDR,
8036        IF_SRC_KERNELADDR,
8037};
8038
8039enum {
8040        IF_STATE_ACTION = 0,
8041        IF_STATE_SOURCE,
8042        IF_STATE_END,
8043};
8044
8045static const match_table_t if_tokens = {
8046        { IF_ACT_FILTER,        "filter" },
8047        { IF_ACT_START,         "start" },
8048        { IF_ACT_STOP,          "stop" },
8049        { IF_SRC_FILE,          "%u/%u@%s" },
8050        { IF_SRC_KERNEL,        "%u/%u" },
8051        { IF_SRC_FILEADDR,      "%u@%s" },
8052        { IF_SRC_KERNELADDR,    "%u" },
8053        { IF_ACT_NONE,          NULL },
8054};
8055
8056/*
8057 * Address filter string parser
8058 */
8059static int
8060perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8061                             struct list_head *filters)
8062{
8063        struct perf_addr_filter *filter = NULL;
8064        char *start, *orig, *filename = NULL;
8065        struct path path;
8066        substring_t args[MAX_OPT_ARGS];
8067        int state = IF_STATE_ACTION, token;
8068        unsigned int kernel = 0;
8069        int ret = -EINVAL;
8070
8071        orig = fstr = kstrdup(fstr, GFP_KERNEL);
8072        if (!fstr)
8073                return -ENOMEM;
8074
8075        while ((start = strsep(&fstr, " ,\n")) != NULL) {
8076                ret = -EINVAL;
8077
8078                if (!*start)
8079                        continue;
8080
8081                /* filter definition begins */
8082                if (state == IF_STATE_ACTION) {
8083                        filter = perf_addr_filter_new(event, filters);
8084                        if (!filter)
8085                                goto fail;
8086                }
8087
8088                token = match_token(start, if_tokens, args);
8089                switch (token) {
8090                case IF_ACT_FILTER:
8091                case IF_ACT_START:
8092                        filter->filter = 1;
8093
8094                case IF_ACT_STOP:
8095                        if (state != IF_STATE_ACTION)
8096                                goto fail;
8097
8098                        state = IF_STATE_SOURCE;
8099                        break;
8100
8101                case IF_SRC_KERNELADDR:
8102                case IF_SRC_KERNEL:
8103                        kernel = 1;
8104
8105                case IF_SRC_FILEADDR:
8106                case IF_SRC_FILE:
8107                        if (state != IF_STATE_SOURCE)
8108                                goto fail;
8109
8110                        if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8111                                filter->range = 1;
8112
8113                        *args[0].to = 0;
8114                        ret = kstrtoul(args[0].from, 0, &filter->offset);
8115                        if (ret)
8116                                goto fail;
8117
8118                        if (filter->range) {
8119                                *args[1].to = 0;
8120                                ret = kstrtoul(args[1].from, 0, &filter->size);
8121                                if (ret)
8122                                        goto fail;
8123                        }
8124
8125                        if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8126                                int fpos = filter->range ? 2 : 1;
8127
8128                                filename = match_strdup(&args[fpos]);
8129                                if (!filename) {
8130                                        ret = -ENOMEM;
8131                                        goto fail;
8132                                }
8133                        }
8134
8135                        state = IF_STATE_END;
8136                        break;
8137
8138                default:
8139                        goto fail;
8140                }
8141
8142                /*
8143                 * Filter definition is fully parsed, validate and install it.
8144                 * Make sure that it doesn't contradict itself or the event's
8145                 * attribute.
8146                 */
8147                if (state == IF_STATE_END) {
8148                        if (kernel && event->attr.exclude_kernel)
8149                                goto fail;
8150
8151                        if (!kernel) {
8152                                if (!filename)
8153                                        goto fail;
8154
8155                                /* look up the path and grab its inode */
8156                                ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8157                                if (ret)
8158                                        goto fail_free_name;
8159
8160                                filter->inode = igrab(d_inode(path.dentry));
8161                                path_put(&path);
8162                                kfree(filename);
8163                                filename = NULL;
8164
8165                                ret = -EINVAL;
8166                                if (!filter->inode ||
8167                                    !S_ISREG(filter->inode->i_mode))
8168                                        /* free_filters_list() will iput() */
8169                                        goto fail;
8170                        }
8171
8172                        /* ready to consume more filters */
8173                        state = IF_STATE_ACTION;
8174                        filter = NULL;
8175                }
8176        }
8177
8178        if (state != IF_STATE_ACTION)
8179                goto fail;
8180
8181        kfree(orig);
8182
8183        return 0;
8184
8185fail_free_name:
8186        kfree(filename);
8187fail:
8188        free_filters_list(filters);
8189        kfree(orig);
8190
8191        return ret;
8192}
8193
8194static int
8195perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8196{
8197        LIST_HEAD(filters);
8198        int ret;
8199
8200        /*
8201         * Since this is called in perf_ioctl() path, we're already holding
8202         * ctx::mutex.
8203         */
8204        lockdep_assert_held(&event->ctx->mutex);
8205
8206        if (WARN_ON_ONCE(event->parent))
8207                return -EINVAL;
8208
8209        /*
8210         * For now, we only support filtering in per-task events; doing so
8211         * for CPU-wide events requires additional context switching trickery,
8212         * since same object code will be mapped at different virtual
8213         * addresses in different processes.
8214         */
8215        if (!event->ctx->task)
8216                return -EOPNOTSUPP;
8217
8218        ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8219        if (ret)
8220                return ret;
8221
8222        ret = event->pmu->addr_filters_validate(&filters);
8223        if (ret) {
8224                free_filters_list(&filters);
8225                return ret;
8226        }
8227
8228        /* remove existing filters, if any */
8229        perf_addr_filters_splice(event, &filters);
8230
8231        /* install new filters */
8232        perf_event_for_each_child(event, perf_event_addr_filters_apply);
8233
8234        return ret;
8235}
8236
8237static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8238{
8239        char *filter_str;
8240        int ret = -EINVAL;
8241
8242        if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8243            !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8244            !has_addr_filter(event))
8245                return -EINVAL;
8246
8247        filter_str = strndup_user(arg, PAGE_SIZE);
8248        if (IS_ERR(filter_str))
8249                return PTR_ERR(filter_str);
8250
8251        if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8252            event->attr.type == PERF_TYPE_TRACEPOINT)
8253                ret = ftrace_profile_set_filter(event, event->attr.config,
8254                                                filter_str);
8255        else if (has_addr_filter(event))
8256                ret = perf_event_set_addr_filter(event, filter_str);
8257
8258        kfree(filter_str);
8259        return ret;
8260}
8261
8262/*
8263 * hrtimer based swevent callback
8264 */
8265
8266static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8267{
8268        enum hrtimer_restart ret = HRTIMER_RESTART;
8269        struct perf_sample_data data;
8270        struct pt_regs *regs;
8271        struct perf_event *event;
8272        u64 period;
8273
8274        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8275
8276        if (event->state != PERF_EVENT_STATE_ACTIVE)
8277                return HRTIMER_NORESTART;
8278
8279        event->pmu->read(event);
8280
8281        perf_sample_data_init(&data, 0, event->hw.last_period);
8282        regs = get_irq_regs();
8283
8284        if (regs && !perf_exclude_event(event, regs)) {
8285                if (!(event->attr.exclude_idle && is_idle_task(current)))
8286                        if (__perf_event_overflow(event, 1, &data, regs))
8287                                ret = HRTIMER_NORESTART;
8288        }
8289
8290        period = max_t(u64, 10000, event->hw.sample_period);
8291        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8292
8293        return ret;
8294}
8295
8296static void perf_swevent_start_hrtimer(struct perf_event *event)
8297{
8298        struct hw_perf_event *hwc = &event->hw;
8299        s64 period;
8300
8301        if (!is_sampling_event(event))
8302                return;
8303
8304        period = local64_read(&hwc->period_left);
8305        if (period) {
8306                if (period < 0)
8307                        period = 10000;
8308
8309                local64_set(&hwc->period_left, 0);
8310        } else {
8311                period = max_t(u64, 10000, hwc->sample_period);
8312        }
8313        hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8314                      HRTIMER_MODE_REL_PINNED);
8315}
8316
8317static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8318{
8319        struct hw_perf_event *hwc = &event->hw;
8320
8321        if (is_sampling_event(event)) {
8322                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8323                local64_set(&hwc->period_left, ktime_to_ns(remaining));
8324
8325                hrtimer_cancel(&hwc->hrtimer);
8326        }
8327}
8328
8329static void perf_swevent_init_hrtimer(struct perf_event *event)
8330{
8331        struct hw_perf_event *hwc = &event->hw;
8332
8333        if (!is_sampling_event(event))
8334                return;
8335
8336        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8337        hwc->hrtimer.function = perf_swevent_hrtimer;
8338
8339        /*
8340         * Since hrtimers have a fixed rate, we can do a static freq->period
8341         * mapping and avoid the whole period adjust feedback stuff.
8342         */
8343        if (event->attr.freq) {
8344                long freq = event->attr.sample_freq;
8345
8346                event->attr.sample_period = NSEC_PER_SEC / freq;
8347                hwc->sample_period = event->attr.sample_period;
8348                local64_set(&hwc->period_left, hwc->sample_period);
8349                hwc->last_period = hwc->sample_period;
8350                event->attr.freq = 0;
8351        }
8352}
8353
8354/*
8355 * Software event: cpu wall time clock
8356 */
8357
8358static void cpu_clock_event_update(struct perf_event *event)
8359{
8360        s64 prev;
8361        u64 now;
8362
8363        now = local_clock();
8364        prev = local64_xchg(&event->hw.prev_count, now);
8365        local64_add(now - prev, &event->count);
8366}
8367
8368static void cpu_clock_event_start(struct perf_event *event, int flags)
8369{
8370        local64_set(&event->hw.prev_count, local_clock());
8371        perf_swevent_start_hrtimer(event);
8372}
8373
8374static void cpu_clock_event_stop(struct perf_event *event, int flags)
8375{
8376        perf_swevent_cancel_hrtimer(event);
8377        cpu_clock_event_update(event);
8378}
8379
8380static int cpu_clock_event_add(struct perf_event *event, int flags)
8381{
8382        if (flags & PERF_EF_START)
8383                cpu_clock_event_start(event, flags);
8384        perf_event_update_userpage(event);
8385
8386        return 0;
8387}
8388
8389static void cpu_clock_event_del(struct perf_event *event, int flags)
8390{
8391        cpu_clock_event_stop(event, flags);
8392}
8393
8394static void cpu_clock_event_read(struct perf_event *event)
8395{
8396        cpu_clock_event_update(event);
8397}
8398
8399static int cpu_clock_event_init(struct perf_event *event)
8400{
8401        if (event->attr.type != PERF_TYPE_SOFTWARE)
8402                return -ENOENT;
8403
8404        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8405                return -ENOENT;
8406
8407        /*
8408         * no branch sampling for software events
8409         */
8410        if (has_branch_stack(event))
8411                return -EOPNOTSUPP;
8412
8413        perf_swevent_init_hrtimer(event);
8414
8415        return 0;
8416}
8417
8418static struct pmu perf_cpu_clock = {
8419        .task_ctx_nr    = perf_sw_context,
8420
8421        .capabilities   = PERF_PMU_CAP_NO_NMI,
8422
8423        .event_init     = cpu_clock_event_init,
8424        .add            = cpu_clock_event_add,
8425        .del            = cpu_clock_event_del,
8426        .start          = cpu_clock_event_start,
8427        .stop           = cpu_clock_event_stop,
8428        .read           = cpu_clock_event_read,
8429};
8430
8431/*
8432 * Software event: task time clock
8433 */
8434
8435static void task_clock_event_update(struct perf_event *event, u64 now)
8436{
8437        u64 prev;
8438        s64 delta;
8439
8440        prev = local64_xchg(&event->hw.prev_count, now);
8441        delta = now - prev;
8442        local64_add(delta, &event->count);
8443}
8444
8445static void task_clock_event_start(struct perf_event *event, int flags)
8446{
8447        local64_set(&event->hw.prev_count, event->ctx->time);
8448        perf_swevent_start_hrtimer(event);
8449}
8450
8451static void task_clock_event_stop(struct perf_event *event, int flags)
8452{
8453        perf_swevent_cancel_hrtimer(event);
8454        task_clock_event_update(event, event->ctx->time);
8455}
8456
8457static int task_clock_event_add(struct perf_event *event, int flags)
8458{
8459        if (flags & PERF_EF_START)
8460                task_clock_event_start(event, flags);
8461        perf_event_update_userpage(event);
8462
8463        return 0;
8464}
8465
8466static void task_clock_event_del(struct perf_event *event, int flags)
8467{
8468        task_clock_event_stop(event, PERF_EF_UPDATE);
8469}
8470
8471static void task_clock_event_read(struct perf_event *event)
8472{
8473        u64 now = perf_clock();
8474        u64 delta = now - event->ctx->timestamp;
8475        u64 time = event->ctx->time + delta;
8476
8477        task_clock_event_update(event, time);
8478}
8479
8480static int task_clock_event_init(struct perf_event *event)
8481{
8482        if (event->attr.type != PERF_TYPE_SOFTWARE)
8483                return -ENOENT;
8484
8485        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8486                return -ENOENT;
8487
8488        /*
8489         * no branch sampling for software events
8490         */
8491        if (has_branch_stack(event))
8492                return -EOPNOTSUPP;
8493
8494        perf_swevent_init_hrtimer(event);
8495
8496        return 0;
8497}
8498
8499static struct pmu perf_task_clock = {
8500        .task_ctx_nr    = perf_sw_context,
8501
8502        .capabilities   = PERF_PMU_CAP_NO_NMI,
8503
8504        .event_init     = task_clock_event_init,
8505        .add            = task_clock_event_add,
8506        .del            = task_clock_event_del,
8507        .start          = task_clock_event_start,
8508        .stop           = task_clock_event_stop,
8509        .read           = task_clock_event_read,
8510};
8511
8512static void perf_pmu_nop_void(struct pmu *pmu)
8513{
8514}
8515
8516static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8517{
8518}
8519
8520static int perf_pmu_nop_int(struct pmu *pmu)
8521{
8522        return 0;
8523}
8524
8525static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8526
8527static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8528{
8529        __this_cpu_write(nop_txn_flags, flags);
8530
8531        if (flags & ~PERF_PMU_TXN_ADD)
8532                return;
8533
8534        perf_pmu_disable(pmu);
8535}
8536
8537static int perf_pmu_commit_txn(struct pmu *pmu)
8538{
8539        unsigned int flags = __this_cpu_read(nop_txn_flags);
8540
8541        __this_cpu_write(nop_txn_flags, 0);
8542
8543        if (flags & ~PERF_PMU_TXN_ADD)
8544                return 0;
8545
8546        perf_pmu_enable(pmu);
8547        return 0;
8548}
8549
8550static void perf_pmu_cancel_txn(struct pmu *pmu)
8551{
8552        unsigned int flags =  __this_cpu_read(nop_txn_flags);
8553
8554        __this_cpu_write(nop_txn_flags, 0);
8555
8556        if (flags & ~PERF_PMU_TXN_ADD)
8557                return;
8558
8559        perf_pmu_enable(pmu);
8560}
8561
8562static int perf_event_idx_default(struct perf_event *event)
8563{
8564        return 0;
8565}
8566
8567/*
8568 * Ensures all contexts with the same task_ctx_nr have the same
8569 * pmu_cpu_context too.
8570 */
8571static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8572{
8573        struct pmu *pmu;
8574
8575        if (ctxn < 0)
8576                return NULL;
8577
8578        list_for_each_entry(pmu, &pmus, entry) {
8579                if (pmu->task_ctx_nr == ctxn)
8580                        return pmu->pmu_cpu_context;
8581        }
8582
8583        return NULL;
8584}
8585
8586static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8587{
8588        int cpu;
8589
8590        for_each_possible_cpu(cpu) {
8591                struct perf_cpu_context *cpuctx;
8592
8593                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8594
8595                if (cpuctx->unique_pmu == old_pmu)
8596                        cpuctx->unique_pmu = pmu;
8597        }
8598}
8599
8600static void free_pmu_context(struct pmu *pmu)
8601{
8602        struct pmu *i;
8603
8604        mutex_lock(&pmus_lock);
8605        /*
8606         * Like a real lame refcount.
8607         */
8608        list_for_each_entry(i, &pmus, entry) {
8609                if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8610                        update_pmu_context(i, pmu);
8611                        goto out;
8612                }
8613        }
8614
8615        free_percpu(pmu->pmu_cpu_context);
8616out:
8617        mutex_unlock(&pmus_lock);
8618}
8619
8620/*
8621 * Let userspace know that this PMU supports address range filtering:
8622 */
8623static ssize_t nr_addr_filters_show(struct device *dev,
8624                                    struct device_attribute *attr,
8625                                    char *page)
8626{
8627        struct pmu *pmu = dev_get_drvdata(dev);
8628
8629        return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8630}
8631DEVICE_ATTR_RO(nr_addr_filters);
8632
8633static struct idr pmu_idr;
8634
8635static ssize_t
8636type_show(struct device *dev, struct device_attribute *attr, char *page)
8637{
8638        struct pmu *pmu = dev_get_drvdata(dev);
8639
8640        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8641}
8642static DEVICE_ATTR_RO(type);
8643
8644static ssize_t
8645perf_event_mux_interval_ms_show(struct device *dev,
8646                                struct device_attribute *attr,
8647                                char *page)
8648{
8649        struct pmu *pmu = dev_get_drvdata(dev);
8650
8651        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8652}
8653
8654static DEFINE_MUTEX(mux_interval_mutex);
8655
8656static ssize_t
8657perf_event_mux_interval_ms_store(struct device *dev,
8658                                 struct device_attribute *attr,
8659                                 const char *buf, size_t count)
8660{
8661        struct pmu *pmu = dev_get_drvdata(dev);
8662        int timer, cpu, ret;
8663
8664        ret = kstrtoint(buf, 0, &timer);
8665        if (ret)
8666                return ret;
8667
8668        if (timer < 1)
8669                return -EINVAL;
8670
8671        /* same value, noting to do */
8672        if (timer == pmu->hrtimer_interval_ms)
8673                return count;
8674
8675        mutex_lock(&mux_interval_mutex);
8676        pmu->hrtimer_interval_ms = timer;
8677
8678        /* update all cpuctx for this PMU */
8679        get_online_cpus();
8680        for_each_online_cpu(cpu) {
8681                struct perf_cpu_context *cpuctx;
8682                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8683                cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8684
8685                cpu_function_call(cpu,
8686                        (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8687        }
8688        put_online_cpus();
8689        mutex_unlock(&mux_interval_mutex);
8690
8691        return count;
8692}
8693static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8694
8695static struct attribute *pmu_dev_attrs[] = {
8696        &dev_attr_type.attr,
8697        &dev_attr_perf_event_mux_interval_ms.attr,
8698        NULL,
8699};
8700ATTRIBUTE_GROUPS(pmu_dev);
8701
8702static int pmu_bus_running;
8703static struct bus_type pmu_bus = {
8704        .name           = "event_source",
8705        .dev_groups     = pmu_dev_groups,
8706};
8707
8708static void pmu_dev_release(struct device *dev)
8709{
8710        kfree(dev);
8711}
8712
8713static int pmu_dev_alloc(struct pmu *pmu)
8714{
8715        int ret = -ENOMEM;
8716
8717        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8718        if (!pmu->dev)
8719                goto out;
8720
8721        pmu->dev->groups = pmu->attr_groups;
8722        device_initialize(pmu->dev);
8723        ret = dev_set_name(pmu->dev, "%s", pmu->name);
8724        if (ret)
8725                goto free_dev;
8726
8727        dev_set_drvdata(pmu->dev, pmu);
8728        pmu->dev->bus = &pmu_bus;
8729        pmu->dev->release = pmu_dev_release;
8730        ret = device_add(pmu->dev);
8731        if (ret)
8732                goto free_dev;
8733
8734        /* For PMUs with address filters, throw in an extra attribute: */
8735        if (pmu->nr_addr_filters)
8736                ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8737
8738        if (ret)
8739                goto del_dev;
8740
8741out:
8742        return ret;
8743
8744del_dev:
8745        device_del(pmu->dev);
8746
8747free_dev:
8748        put_device(pmu->dev);
8749        goto out;
8750}
8751
8752static struct lock_class_key cpuctx_mutex;
8753static struct lock_class_key cpuctx_lock;
8754
8755int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8756{
8757        int cpu, ret;
8758
8759        mutex_lock(&pmus_lock);
8760        ret = -ENOMEM;
8761        pmu->pmu_disable_count = alloc_percpu(int);
8762        if (!pmu->pmu_disable_count)
8763                goto unlock;
8764
8765        pmu->type = -1;
8766        if (!name)
8767                goto skip_type;
8768        pmu->name = name;
8769
8770        if (type < 0) {
8771                type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8772                if (type < 0) {
8773                        ret = type;
8774                        goto free_pdc;
8775                }
8776        }
8777        pmu->type = type;
8778
8779        if (pmu_bus_running) {
8780                ret = pmu_dev_alloc(pmu);
8781                if (ret)
8782                        goto free_idr;
8783        }
8784
8785skip_type:
8786        if (pmu->task_ctx_nr == perf_hw_context) {
8787                static int hw_context_taken = 0;
8788
8789                /*
8790                 * Other than systems with heterogeneous CPUs, it never makes
8791                 * sense for two PMUs to share perf_hw_context. PMUs which are
8792                 * uncore must use perf_invalid_context.
8793                 */
8794                if (WARN_ON_ONCE(hw_context_taken &&
8795                    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8796                        pmu->task_ctx_nr = perf_invalid_context;
8797
8798                hw_context_taken = 1;
8799        }
8800
8801        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8802        if (pmu->pmu_cpu_context)
8803                goto got_cpu_context;
8804
8805        ret = -ENOMEM;
8806        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8807        if (!pmu->pmu_cpu_context)
8808                goto free_dev;
8809
8810        for_each_possible_cpu(cpu) {
8811                struct perf_cpu_context *cpuctx;
8812
8813                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8814                __perf_event_init_context(&cpuctx->ctx);
8815                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8816                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8817                cpuctx->ctx.pmu = pmu;
8818
8819                __perf_mux_hrtimer_init(cpuctx, cpu);
8820
8821                cpuctx->unique_pmu = pmu;
8822        }
8823
8824got_cpu_context:
8825        if (!pmu->start_txn) {
8826                if (pmu->pmu_enable) {
8827                        /*
8828                         * If we have pmu_enable/pmu_disable calls, install
8829                         * transaction stubs that use that to try and batch
8830                         * hardware accesses.
8831                         */
8832                        pmu->start_txn  = perf_pmu_start_txn;
8833                        pmu->commit_txn = perf_pmu_commit_txn;
8834                        pmu->cancel_txn = perf_pmu_cancel_txn;
8835                } else {
8836                        pmu->start_txn  = perf_pmu_nop_txn;
8837                        pmu->commit_txn = perf_pmu_nop_int;
8838                        pmu->cancel_txn = perf_pmu_nop_void;
8839                }
8840        }
8841
8842        if (!pmu->pmu_enable) {
8843                pmu->pmu_enable  = perf_pmu_nop_void;
8844                pmu->pmu_disable = perf_pmu_nop_void;
8845        }
8846
8847        if (!pmu->event_idx)
8848                pmu->event_idx = perf_event_idx_default;
8849
8850        list_add_rcu(&pmu->entry, &pmus);
8851        atomic_set(&pmu->exclusive_cnt, 0);
8852        ret = 0;
8853unlock:
8854        mutex_unlock(&pmus_lock);
8855
8856        return ret;
8857
8858free_dev:
8859        device_del(pmu->dev);
8860        put_device(pmu->dev);
8861
8862free_idr:
8863        if (pmu->type >= PERF_TYPE_MAX)
8864                idr_remove(&pmu_idr, pmu->type);
8865
8866free_pdc:
8867        free_percpu(pmu->pmu_disable_count);
8868        goto unlock;
8869}
8870EXPORT_SYMBOL_GPL(perf_pmu_register);
8871
8872void perf_pmu_unregister(struct pmu *pmu)
8873{
8874        int remove_device;
8875
8876        mutex_lock(&pmus_lock);
8877        remove_device = pmu_bus_running;
8878        list_del_rcu(&pmu->entry);
8879        mutex_unlock(&pmus_lock);
8880
8881        /*
8882         * We dereference the pmu list under both SRCU and regular RCU, so
8883         * synchronize against both of those.
8884         */
8885        synchronize_srcu(&pmus_srcu);
8886        synchronize_rcu();
8887
8888        free_percpu(pmu->pmu_disable_count);
8889        if (pmu->type >= PERF_TYPE_MAX)
8890                idr_remove(&pmu_idr, pmu->type);
8891        if (remove_device) {
8892                if (pmu->nr_addr_filters)
8893                        device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8894                device_del(pmu->dev);
8895                put_device(pmu->dev);
8896        }
8897        free_pmu_context(pmu);
8898}
8899EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8900
8901static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8902{
8903        struct perf_event_context *ctx = NULL;
8904        int ret;
8905
8906        if (!try_module_get(pmu->module))
8907                return -ENODEV;
8908
8909        if (event->group_leader != event) {
8910                /*
8911                 * This ctx->mutex can nest when we're called through
8912                 * inheritance. See the perf_event_ctx_lock_nested() comment.
8913                 */
8914                ctx = perf_event_ctx_lock_nested(event->group_leader,
8915                                                 SINGLE_DEPTH_NESTING);
8916                BUG_ON(!ctx);
8917        }
8918
8919        event->pmu = pmu;
8920        ret = pmu->event_init(event);
8921
8922        if (ctx)
8923                perf_event_ctx_unlock(event->group_leader, ctx);
8924
8925        if (ret)
8926                module_put(pmu->module);
8927
8928        return ret;
8929}
8930
8931static struct pmu *perf_init_event(struct perf_event *event)
8932{
8933        struct pmu *pmu = NULL;
8934        int idx;
8935        int ret;
8936
8937        idx = srcu_read_lock(&pmus_srcu);
8938
8939        rcu_read_lock();
8940        pmu = idr_find(&pmu_idr, event->attr.type);
8941        rcu_read_unlock();
8942        if (pmu) {
8943                ret = perf_try_init_event(pmu, event);
8944                if (ret)
8945                        pmu = ERR_PTR(ret);
8946                goto unlock;
8947        }
8948
8949        list_for_each_entry_rcu(pmu, &pmus, entry) {
8950                ret = perf_try_init_event(pmu, event);
8951                if (!ret)
8952                        goto unlock;
8953
8954                if (ret != -ENOENT) {
8955                        pmu = ERR_PTR(ret);
8956                        goto unlock;
8957                }
8958        }
8959        pmu = ERR_PTR(-ENOENT);
8960unlock:
8961        srcu_read_unlock(&pmus_srcu, idx);
8962
8963        return pmu;
8964}
8965
8966static void attach_sb_event(struct perf_event *event)
8967{
8968        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8969
8970        raw_spin_lock(&pel->lock);
8971        list_add_rcu(&event->sb_list, &pel->list);
8972        raw_spin_unlock(&pel->lock);
8973}
8974
8975/*
8976 * We keep a list of all !task (and therefore per-cpu) events
8977 * that need to receive side-band records.
8978 *
8979 * This avoids having to scan all the various PMU per-cpu contexts
8980 * looking for them.
8981 */
8982static void account_pmu_sb_event(struct perf_event *event)
8983{
8984        if (is_sb_event(event))
8985                attach_sb_event(event);
8986}
8987
8988static void account_event_cpu(struct perf_event *event, int cpu)
8989{
8990        if (event->parent)
8991                return;
8992
8993        if (is_cgroup_event(event))
8994                atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8995}
8996
8997/* Freq events need the tick to stay alive (see perf_event_task_tick). */
8998static void account_freq_event_nohz(void)
8999{
9000#ifdef CONFIG_NO_HZ_FULL
9001        /* Lock so we don't race with concurrent unaccount */
9002        spin_lock(&nr_freq_lock);
9003        if (atomic_inc_return(&nr_freq_events) == 1)
9004                tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9005        spin_unlock(&nr_freq_lock);
9006#endif
9007}
9008
9009static void account_freq_event(void)
9010{
9011        if (tick_nohz_full_enabled())
9012                account_freq_event_nohz();
9013        else
9014                atomic_inc(&nr_freq_events);
9015}
9016
9017
9018static void account_event(struct perf_event *event)
9019{
9020        bool inc = false;
9021
9022        if (event->parent)
9023                return;
9024
9025        if (event->attach_state & PERF_ATTACH_TASK)
9026                inc = true;
9027        if (event->attr.mmap || event->attr.mmap_data)
9028                atomic_inc(&nr_mmap_events);
9029        if (event->attr.comm)
9030                atomic_inc(&nr_comm_events);
9031        if (event->attr.task)
9032                atomic_inc(&nr_task_events);
9033        if (event->attr.freq)
9034                account_freq_event();
9035        if (event->attr.context_switch) {
9036                atomic_inc(&nr_switch_events);
9037                inc = true;
9038        }
9039        if (has_branch_stack(event))
9040                inc = true;
9041        if (is_cgroup_event(event))
9042                inc = true;
9043
9044        if (inc) {
9045                if (atomic_inc_not_zero(&perf_sched_count))
9046                        goto enabled;
9047
9048                mutex_lock(&perf_sched_mutex);
9049                if (!atomic_read(&perf_sched_count)) {
9050                        static_branch_enable(&perf_sched_events);
9051                        /*
9052                         * Guarantee that all CPUs observe they key change and
9053                         * call the perf scheduling hooks before proceeding to
9054                         * install events that need them.
9055                         */
9056                        synchronize_sched();
9057                }
9058                /*
9059                 * Now that we have waited for the sync_sched(), allow further
9060                 * increments to by-pass the mutex.
9061                 */
9062                atomic_inc(&perf_sched_count);
9063                mutex_unlock(&perf_sched_mutex);
9064        }
9065enabled:
9066
9067        account_event_cpu(event, event->cpu);
9068
9069        account_pmu_sb_event(event);
9070}
9071
9072/*
9073 * Allocate and initialize a event structure
9074 */
9075static struct perf_event *
9076perf_event_alloc(struct perf_event_attr *attr, int cpu,
9077                 struct task_struct *task,
9078                 struct perf_event *group_leader,
9079                 struct perf_event *parent_event,
9080                 perf_overflow_handler_t overflow_handler,
9081                 void *context, int cgroup_fd)
9082{
9083        struct pmu *pmu;
9084        struct perf_event *event;
9085        struct hw_perf_event *hwc;
9086        long err = -EINVAL;
9087
9088        if ((unsigned)cpu >= nr_cpu_ids) {
9089                if (!task || cpu != -1)
9090                        return ERR_PTR(-EINVAL);
9091        }
9092
9093        event = kzalloc(sizeof(*event), GFP_KERNEL);
9094        if (!event)
9095                return ERR_PTR(-ENOMEM);
9096
9097        /*
9098         * Single events are their own group leaders, with an
9099         * empty sibling list:
9100         */
9101        if (!group_leader)
9102                group_leader = event;
9103
9104        mutex_init(&event->child_mutex);
9105        INIT_LIST_HEAD(&event->child_list);
9106
9107        INIT_LIST_HEAD(&event->group_entry);
9108        INIT_LIST_HEAD(&event->event_entry);
9109        INIT_LIST_HEAD(&event->sibling_list);
9110        INIT_LIST_HEAD(&event->rb_entry);
9111        INIT_LIST_HEAD(&event->active_entry);
9112        INIT_LIST_HEAD(&event->addr_filters.list);
9113        INIT_HLIST_NODE(&event->hlist_entry);
9114
9115
9116        init_waitqueue_head(&event->waitq);
9117        init_irq_work(&event->pending, perf_pending_event);
9118
9119        mutex_init(&event->mmap_mutex);
9120        raw_spin_lock_init(&event->addr_filters.lock);
9121
9122        atomic_long_set(&event->refcount, 1);
9123        event->cpu              = cpu;
9124        event->attr             = *attr;
9125        event->group_leader     = group_leader;
9126        event->pmu              = NULL;
9127        event->oncpu            = -1;
9128
9129        event->parent           = parent_event;
9130
9131        event->ns               = get_pid_ns(task_active_pid_ns(current));
9132        event->id               = atomic64_inc_return(&perf_event_id);
9133
9134        event->state            = PERF_EVENT_STATE_INACTIVE;
9135
9136        if (task) {
9137                event->attach_state = PERF_ATTACH_TASK;
9138                /*
9139                 * XXX pmu::event_init needs to know what task to account to
9140                 * and we cannot use the ctx information because we need the
9141                 * pmu before we get a ctx.
9142                 */
9143                event->hw.target = task;
9144        }
9145
9146        event->clock = &local_clock;
9147        if (parent_event)
9148                event->clock = parent_event->clock;
9149
9150        if (!overflow_handler && parent_event) {
9151                overflow_handler = parent_event->overflow_handler;
9152                context = parent_event->overflow_handler_context;
9153#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9154                if (overflow_handler == bpf_overflow_handler) {
9155                        struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9156
9157                        if (IS_ERR(prog)) {
9158                                err = PTR_ERR(prog);
9159                                goto err_ns;
9160                        }
9161                        event->prog = prog;
9162                        event->orig_overflow_handler =
9163                                parent_event->orig_overflow_handler;
9164                }
9165#endif
9166        }
9167
9168        if (overflow_handler) {
9169                event->overflow_handler = overflow_handler;
9170                event->overflow_handler_context = context;
9171        } else if (is_write_backward(event)){
9172                event->overflow_handler = perf_event_output_backward;
9173                event->overflow_handler_context = NULL;
9174        } else {
9175                event->overflow_handler = perf_event_output_forward;
9176                event->overflow_handler_context = NULL;
9177        }
9178
9179        perf_event__state_init(event);
9180
9181        pmu = NULL;
9182
9183        hwc = &event->hw;
9184        hwc->sample_period = attr->sample_period;
9185        if (attr->freq && attr->sample_freq)
9186                hwc->sample_period = 1;
9187        hwc->last_period = hwc->sample_period;
9188
9189        local64_set(&hwc->period_left, hwc->sample_period);
9190
9191        /*
9192         * we currently do not support PERF_FORMAT_GROUP on inherited events
9193         */
9194        if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9195                goto err_ns;
9196
9197        if (!has_branch_stack(event))
9198                event->attr.branch_sample_type = 0;
9199
9200        if (cgroup_fd != -1) {
9201                err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9202                if (err)
9203                        goto err_ns;
9204        }
9205
9206        pmu = perf_init_event(event);
9207        if (!pmu)
9208                goto err_ns;
9209        else if (IS_ERR(pmu)) {
9210                err = PTR_ERR(pmu);
9211                goto err_ns;
9212        }
9213
9214        err = exclusive_event_init(event);
9215        if (err)
9216                goto err_pmu;
9217
9218        if (has_addr_filter(event)) {
9219                event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9220                                                   sizeof(unsigned long),
9221                                                   GFP_KERNEL);
9222                if (!event->addr_filters_offs)
9223                        goto err_per_task;
9224
9225                /* force hw sync on the address filters */
9226                event->addr_filters_gen = 1;
9227        }
9228
9229        if (!event->parent) {
9230                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9231                        err = get_callchain_buffers(attr->sample_max_stack);
9232                        if (err)
9233                                goto err_addr_filters;
9234                }
9235        }
9236
9237        /* symmetric to unaccount_event() in _free_event() */
9238        account_event(event);
9239
9240        return event;
9241
9242err_addr_filters:
9243        kfree(event->addr_filters_offs);
9244
9245err_per_task:
9246        exclusive_event_destroy(event);
9247
9248err_pmu:
9249        if (event->destroy)
9250                event->destroy(event);
9251        module_put(pmu->module);
9252err_ns:
9253        if (is_cgroup_event(event))
9254                perf_detach_cgroup(event);
9255        if (event->ns)
9256                put_pid_ns(event->ns);
9257        kfree(event);
9258
9259        return ERR_PTR(err);
9260}
9261
9262static int perf_copy_attr(struct perf_event_attr __user *uattr,
9263                          struct perf_event_attr *attr)
9264{
9265        u32 size;
9266        int ret;
9267
9268        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9269                return -EFAULT;
9270
9271        /*
9272         * zero the full structure, so that a short copy will be nice.
9273         */
9274        memset(attr, 0, sizeof(*attr));
9275
9276        ret = get_user(size, &uattr->size);
9277        if (ret)
9278                return ret;
9279
9280        if (size > PAGE_SIZE)   /* silly large */
9281                goto err_size;
9282
9283        if (!size)              /* abi compat */
9284                size = PERF_ATTR_SIZE_VER0;
9285
9286        if (size < PERF_ATTR_SIZE_VER0)
9287                goto err_size;
9288
9289        /*
9290         * If we're handed a bigger struct than we know of,
9291         * ensure all the unknown bits are 0 - i.e. new
9292         * user-space does not rely on any kernel feature
9293         * extensions we dont know about yet.
9294         */
9295        if (size > sizeof(*attr)) {
9296                unsigned char __user *addr;
9297                unsigned char __user *end;
9298                unsigned char val;
9299
9300                addr = (void __user *)uattr + sizeof(*attr);
9301                end  = (void __user *)uattr + size;
9302
9303                for (; addr < end; addr++) {
9304                        ret = get_user(val, addr);
9305                        if (ret)
9306                                return ret;
9307                        if (val)
9308                                goto err_size;
9309                }
9310                size = sizeof(*attr);
9311        }
9312
9313        ret = copy_from_user(attr, uattr, size);
9314        if (ret)
9315                return -EFAULT;
9316
9317        if (attr->__reserved_1)
9318                return -EINVAL;
9319
9320        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9321                return -EINVAL;
9322
9323        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9324                return -EINVAL;
9325
9326        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9327                u64 mask = attr->branch_sample_type;
9328
9329                /* only using defined bits */
9330                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9331                        return -EINVAL;
9332
9333                /* at least one branch bit must be set */
9334                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9335                        return -EINVAL;
9336
9337                /* propagate priv level, when not set for branch */
9338                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9339
9340                        /* exclude_kernel checked on syscall entry */
9341                        if (!attr->exclude_kernel)
9342                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
9343
9344                        if (!attr->exclude_user)
9345                                mask |= PERF_SAMPLE_BRANCH_USER;
9346
9347                        if (!attr->exclude_hv)
9348                                mask |= PERF_SAMPLE_BRANCH_HV;
9349                        /*
9350                         * adjust user setting (for HW filter setup)
9351                         */
9352                        attr->branch_sample_type = mask;
9353                }
9354                /* privileged levels capture (kernel, hv): check permissions */
9355                if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9356                    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9357                        return -EACCES;
9358        }
9359
9360        if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9361                ret = perf_reg_validate(attr->sample_regs_user);
9362                if (ret)
9363                        return ret;
9364        }
9365
9366        if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9367                if (!arch_perf_have_user_stack_dump())
9368                        return -ENOSYS;
9369
9370                /*
9371                 * We have __u32 type for the size, but so far
9372                 * we can only use __u16 as maximum due to the
9373                 * __u16 sample size limit.
9374                 */
9375                if (attr->sample_stack_user >= USHRT_MAX)
9376                        ret = -EINVAL;
9377                else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9378                        ret = -EINVAL;
9379        }
9380
9381        if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9382                ret = perf_reg_validate(attr->sample_regs_intr);
9383out:
9384        return ret;
9385
9386err_size:
9387        put_user(sizeof(*attr), &uattr->size);
9388        ret = -E2BIG;
9389        goto out;
9390}
9391
9392static int
9393perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9394{
9395        struct ring_buffer *rb = NULL;
9396        int ret = -EINVAL;
9397
9398        if (!output_event)
9399                goto set;
9400
9401        /* don't allow circular references */
9402        if (event == output_event)
9403                goto out;
9404
9405        /*
9406         * Don't allow cross-cpu buffers
9407         */
9408        if (output_event->cpu != event->cpu)
9409                goto out;
9410
9411        /*
9412         * If its not a per-cpu rb, it must be the same task.
9413         */
9414        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9415                goto out;
9416
9417        /*
9418         * Mixing clocks in the same buffer is trouble you don't need.
9419         */
9420        if (output_event->clock != event->clock)
9421                goto out;
9422
9423        /*
9424         * Either writing ring buffer from beginning or from end.
9425         * Mixing is not allowed.
9426         */
9427        if (is_write_backward(output_event) != is_write_backward(event))
9428                goto out;
9429
9430        /*
9431         * If both events generate aux data, they must be on the same PMU
9432         */
9433        if (has_aux(event) && has_aux(output_event) &&
9434            event->pmu != output_event->pmu)
9435                goto out;
9436
9437set:
9438        mutex_lock(&event->mmap_mutex);
9439        /* Can't redirect output if we've got an active mmap() */
9440        if (atomic_read(&event->mmap_count))
9441                goto unlock;
9442
9443        if (output_event) {
9444                /* get the rb we want to redirect to */
9445                rb = ring_buffer_get(output_event);
9446                if (!rb)
9447                        goto unlock;
9448        }
9449
9450        ring_buffer_attach(event, rb);
9451
9452        ret = 0;
9453unlock:
9454        mutex_unlock(&event->mmap_mutex);
9455
9456out:
9457        return ret;
9458}
9459
9460static void mutex_lock_double(struct mutex *a, struct mutex *b)
9461{
9462        if (b < a)
9463                swap(a, b);
9464
9465        mutex_lock(a);
9466        mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9467}
9468
9469static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9470{
9471        bool nmi_safe = false;
9472
9473        switch (clk_id) {
9474        case CLOCK_MONOTONIC:
9475                event->clock = &ktime_get_mono_fast_ns;
9476                nmi_safe = true;
9477                break;
9478
9479        case CLOCK_MONOTONIC_RAW:
9480                event->clock = &ktime_get_raw_fast_ns;
9481                nmi_safe = true;
9482                break;
9483
9484        case CLOCK_REALTIME:
9485                event->clock = &ktime_get_real_ns;
9486                break;
9487
9488        case CLOCK_BOOTTIME:
9489                event->clock = &ktime_get_boot_ns;
9490                break;
9491
9492        case CLOCK_TAI:
9493                event->clock = &ktime_get_tai_ns;
9494                break;
9495
9496        default:
9497                return -EINVAL;
9498        }
9499
9500        if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9501                return -EINVAL;
9502
9503        return 0;
9504}
9505
9506/**
9507 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9508 *
9509 * @attr_uptr:  event_id type attributes for monitoring/sampling
9510 * @pid:                target pid
9511 * @cpu:                target cpu
9512 * @group_fd:           group leader event fd
9513 */
9514SYSCALL_DEFINE5(perf_event_open,
9515                struct perf_event_attr __user *, attr_uptr,
9516                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9517{
9518        struct perf_event *group_leader = NULL, *output_event = NULL;
9519        struct perf_event *event, *sibling;
9520        struct perf_event_attr attr;
9521        struct perf_event_context *ctx, *uninitialized_var(gctx);
9522        struct file *event_file = NULL;
9523        struct fd group = {NULL, 0};
9524        struct task_struct *task = NULL;
9525        struct pmu *pmu;
9526        int event_fd;
9527        int move_group = 0;
9528        int err;
9529        int f_flags = O_RDWR;
9530        int cgroup_fd = -1;
9531
9532        /* for future expandability... */
9533        if (flags & ~PERF_FLAG_ALL)
9534                return -EINVAL;
9535
9536        err = perf_copy_attr(attr_uptr, &attr);
9537        if (err)
9538                return err;
9539
9540        if (!attr.exclude_kernel) {
9541                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9542                        return -EACCES;
9543        }
9544
9545        if (attr.freq) {
9546                if (attr.sample_freq > sysctl_perf_event_sample_rate)
9547                        return -EINVAL;
9548        } else {
9549                if (attr.sample_period & (1ULL << 63))
9550                        return -EINVAL;
9551        }
9552
9553        if (!attr.sample_max_stack)
9554                attr.sample_max_stack = sysctl_perf_event_max_stack;
9555
9556        /*
9557         * In cgroup mode, the pid argument is used to pass the fd
9558         * opened to the cgroup directory in cgroupfs. The cpu argument
9559         * designates the cpu on which to monitor threads from that
9560         * cgroup.
9561         */
9562        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9563                return -EINVAL;
9564
9565        if (flags & PERF_FLAG_FD_CLOEXEC)
9566                f_flags |= O_CLOEXEC;
9567
9568        event_fd = get_unused_fd_flags(f_flags);
9569        if (event_fd < 0)
9570                return event_fd;
9571
9572        if (group_fd != -1) {
9573                err = perf_fget_light(group_fd, &group);
9574                if (err)
9575                        goto err_fd;
9576                group_leader = group.file->private_data;
9577                if (flags & PERF_FLAG_FD_OUTPUT)
9578                        output_event = group_leader;
9579                if (flags & PERF_FLAG_FD_NO_GROUP)
9580                        group_leader = NULL;
9581        }
9582
9583        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9584                task = find_lively_task_by_vpid(pid);
9585                if (IS_ERR(task)) {
9586                        err = PTR_ERR(task);
9587                        goto err_group_fd;
9588                }
9589        }
9590
9591        if (task && group_leader &&
9592            group_leader->attr.inherit != attr.inherit) {
9593                err = -EINVAL;
9594                goto err_task;
9595        }
9596
9597        get_online_cpus();
9598
9599        if (task) {
9600                err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9601                if (err)
9602                        goto err_cpus;
9603
9604                /*
9605                 * Reuse ptrace permission checks for now.
9606                 *
9607                 * We must hold cred_guard_mutex across this and any potential
9608                 * perf_install_in_context() call for this new event to
9609                 * serialize against exec() altering our credentials (and the
9610                 * perf_event_exit_task() that could imply).
9611                 */
9612                err = -EACCES;
9613                if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9614                        goto err_cred;
9615        }
9616
9617        if (flags & PERF_FLAG_PID_CGROUP)
9618                cgroup_fd = pid;
9619
9620        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9621                                 NULL, NULL, cgroup_fd);
9622        if (IS_ERR(event)) {
9623                err = PTR_ERR(event);
9624                goto err_cred;
9625        }
9626
9627        if (is_sampling_event(event)) {
9628                if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9629                        err = -EOPNOTSUPP;
9630                        goto err_alloc;
9631                }
9632        }
9633
9634        /*
9635         * Special case software events and allow them to be part of
9636         * any hardware group.
9637         */
9638        pmu = event->pmu;
9639
9640        if (attr.use_clockid) {
9641                err = perf_event_set_clock(event, attr.clockid);
9642                if (err)
9643                        goto err_alloc;
9644        }
9645
9646        if (pmu->task_ctx_nr == perf_sw_context)
9647                event->event_caps |= PERF_EV_CAP_SOFTWARE;
9648
9649        if (group_leader &&
9650            (is_software_event(event) != is_software_event(group_leader))) {
9651                if (is_software_event(event)) {
9652                        /*
9653                         * If event and group_leader are not both a software
9654                         * event, and event is, then group leader is not.
9655                         *
9656                         * Allow the addition of software events to !software
9657                         * groups, this is safe because software events never
9658                         * fail to schedule.
9659                         */
9660                        pmu = group_leader->pmu;
9661                } else if (is_software_event(group_leader) &&
9662                           (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9663                        /*
9664                         * In case the group is a pure software group, and we
9665                         * try to add a hardware event, move the whole group to
9666                         * the hardware context.
9667                         */
9668                        move_group = 1;
9669                }
9670        }
9671
9672        /*
9673         * Get the target context (task or percpu):
9674         */
9675        ctx = find_get_context(pmu, task, event);
9676        if (IS_ERR(ctx)) {
9677                err = PTR_ERR(ctx);
9678                goto err_alloc;
9679        }
9680
9681        if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9682                err = -EBUSY;
9683                goto err_context;
9684        }
9685
9686        /*
9687         * Look up the group leader (we will attach this event to it):
9688         */
9689        if (group_leader) {
9690                err = -EINVAL;
9691
9692                /*
9693                 * Do not allow a recursive hierarchy (this new sibling
9694                 * becoming part of another group-sibling):
9695                 */
9696                if (group_leader->group_leader != group_leader)
9697                        goto err_context;
9698
9699                /* All events in a group should have the same clock */
9700                if (group_leader->clock != event->clock)
9701                        goto err_context;
9702
9703                /*
9704                 * Do not allow to attach to a group in a different
9705                 * task or CPU context:
9706                 */
9707                if (move_group) {
9708                        /*
9709                         * Make sure we're both on the same task, or both
9710                         * per-cpu events.
9711                         */
9712                        if (group_leader->ctx->task != ctx->task)
9713                                goto err_context;
9714
9715                        /*
9716                         * Make sure we're both events for the same CPU;
9717                         * grouping events for different CPUs is broken; since
9718                         * you can never concurrently schedule them anyhow.
9719                         */
9720                        if (group_leader->cpu != event->cpu)
9721                                goto err_context;
9722                } else {
9723                        if (group_leader->ctx != ctx)
9724                                goto err_context;
9725                }
9726
9727                /*
9728                 * Only a group leader can be exclusive or pinned
9729                 */
9730                if (attr.exclusive || attr.pinned)
9731                        goto err_context;
9732        }
9733
9734        if (output_event) {
9735                err = perf_event_set_output(event, output_event);
9736                if (err)
9737                        goto err_context;
9738        }
9739
9740        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9741                                        f_flags);
9742        if (IS_ERR(event_file)) {
9743                err = PTR_ERR(event_file);
9744                event_file = NULL;
9745                goto err_context;
9746        }
9747
9748        if (move_group) {
9749                gctx = group_leader->ctx;
9750                mutex_lock_double(&gctx->mutex, &ctx->mutex);
9751                if (gctx->task == TASK_TOMBSTONE) {
9752                        err = -ESRCH;
9753                        goto err_locked;
9754                }
9755        } else {
9756                mutex_lock(&ctx->mutex);
9757        }
9758
9759        if (ctx->task == TASK_TOMBSTONE) {
9760                err = -ESRCH;
9761                goto err_locked;
9762        }
9763
9764        if (!perf_event_validate_size(event)) {
9765                err = -E2BIG;
9766                goto err_locked;
9767        }
9768
9769        /*
9770         * Must be under the same ctx::mutex as perf_install_in_context(),
9771         * because we need to serialize with concurrent event creation.
9772         */
9773        if (!exclusive_event_installable(event, ctx)) {
9774                /* exclusive and group stuff are assumed mutually exclusive */
9775                WARN_ON_ONCE(move_group);
9776
9777                err = -EBUSY;
9778                goto err_locked;
9779        }
9780
9781        WARN_ON_ONCE(ctx->parent_ctx);
9782
9783        /*
9784         * This is the point on no return; we cannot fail hereafter. This is
9785         * where we start modifying current state.
9786         */
9787
9788        if (move_group) {
9789                /*
9790                 * See perf_event_ctx_lock() for comments on the details
9791                 * of swizzling perf_event::ctx.
9792                 */
9793                perf_remove_from_context(group_leader, 0);
9794
9795                list_for_each_entry(sibling, &group_leader->sibling_list,
9796                                    group_entry) {
9797                        perf_remove_from_context(sibling, 0);
9798                        put_ctx(gctx);
9799                }
9800
9801                /*
9802                 * Wait for everybody to stop referencing the events through
9803                 * the old lists, before installing it on new lists.
9804                 */
9805                synchronize_rcu();
9806
9807                /*
9808                 * Install the group siblings before the group leader.
9809                 *
9810                 * Because a group leader will try and install the entire group
9811                 * (through the sibling list, which is still in-tact), we can
9812                 * end up with siblings installed in the wrong context.
9813                 *
9814                 * By installing siblings first we NO-OP because they're not
9815                 * reachable through the group lists.
9816                 */
9817                list_for_each_entry(sibling, &group_leader->sibling_list,
9818                                    group_entry) {
9819                        perf_event__state_init(sibling);
9820                        perf_install_in_context(ctx, sibling, sibling->cpu);
9821                        get_ctx(ctx);
9822                }
9823
9824                /*
9825                 * Removing from the context ends up with disabled
9826                 * event. What we want here is event in the initial
9827                 * startup state, ready to be add into new context.
9828                 */
9829                perf_event__state_init(group_leader);
9830                perf_install_in_context(ctx, group_leader, group_leader->cpu);
9831                get_ctx(ctx);
9832
9833                /*
9834                 * Now that all events are installed in @ctx, nothing
9835                 * references @gctx anymore, so drop the last reference we have
9836                 * on it.
9837                 */
9838                put_ctx(gctx);
9839        }
9840
9841        /*
9842         * Precalculate sample_data sizes; do while holding ctx::mutex such
9843         * that we're serialized against further additions and before
9844         * perf_install_in_context() which is the point the event is active and
9845         * can use these values.
9846         */
9847        perf_event__header_size(event);
9848        perf_event__id_header_size(event);
9849
9850        event->owner = current;
9851
9852        perf_install_in_context(ctx, event, event->cpu);
9853        perf_unpin_context(ctx);
9854
9855        if (move_group)
9856                mutex_unlock(&gctx->mutex);
9857        mutex_unlock(&ctx->mutex);
9858
9859        if (task) {
9860                mutex_unlock(&task->signal->cred_guard_mutex);
9861                put_task_struct(task);
9862        }
9863
9864        put_online_cpus();
9865
9866        mutex_lock(&current->perf_event_mutex);
9867        list_add_tail(&event->owner_entry, &current->perf_event_list);
9868        mutex_unlock(&current->perf_event_mutex);
9869
9870        /*
9871         * Drop the reference on the group_event after placing the
9872         * new event on the sibling_list. This ensures destruction
9873         * of the group leader will find the pointer to itself in
9874         * perf_group_detach().
9875         */
9876        fdput(group);
9877        fd_install(event_fd, event_file);
9878        return event_fd;
9879
9880err_locked:
9881        if (move_group)
9882                mutex_unlock(&gctx->mutex);
9883        mutex_unlock(&ctx->mutex);
9884/* err_file: */
9885        fput(event_file);
9886err_context:
9887        perf_unpin_context(ctx);
9888        put_ctx(ctx);
9889err_alloc:
9890        /*
9891         * If event_file is set, the fput() above will have called ->release()
9892         * and that will take care of freeing the event.
9893         */
9894        if (!event_file)
9895                free_event(event);
9896err_cred:
9897        if (task)
9898                mutex_unlock(&task->signal->cred_guard_mutex);
9899err_cpus:
9900        put_online_cpus();
9901err_task:
9902        if (task)
9903                put_task_struct(task);
9904err_group_fd:
9905        fdput(group);
9906err_fd:
9907        put_unused_fd(event_fd);
9908        return err;
9909}
9910
9911/**
9912 * perf_event_create_kernel_counter
9913 *
9914 * @attr: attributes of the counter to create
9915 * @cpu: cpu in which the counter is bound
9916 * @task: task to profile (NULL for percpu)
9917 */
9918struct perf_event *
9919perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9920                                 struct task_struct *task,
9921                                 perf_overflow_handler_t overflow_handler,
9922                                 void *context)
9923{
9924        struct perf_event_context *ctx;
9925        struct perf_event *event;
9926        int err;
9927
9928        /*
9929         * Get the target context (task or percpu):
9930         */
9931
9932        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9933                                 overflow_handler, context, -1);
9934        if (IS_ERR(event)) {
9935                err = PTR_ERR(event);
9936                goto err;
9937        }
9938
9939        /* Mark owner so we could distinguish it from user events. */
9940        event->owner = TASK_TOMBSTONE;
9941
9942        ctx = find_get_context(event->pmu, task, event);
9943        if (IS_ERR(ctx)) {
9944                err = PTR_ERR(ctx);
9945                goto err_free;
9946        }
9947
9948        WARN_ON_ONCE(ctx->parent_ctx);
9949        mutex_lock(&ctx->mutex);
9950        if (ctx->task == TASK_TOMBSTONE) {
9951                err = -ESRCH;
9952                goto err_unlock;
9953        }
9954
9955        if (!exclusive_event_installable(event, ctx)) {
9956                err = -EBUSY;
9957                goto err_unlock;
9958        }
9959
9960        perf_install_in_context(ctx, event, cpu);
9961        perf_unpin_context(ctx);
9962        mutex_unlock(&ctx->mutex);
9963
9964        return event;
9965
9966err_unlock:
9967        mutex_unlock(&ctx->mutex);
9968        perf_unpin_context(ctx);
9969        put_ctx(ctx);
9970err_free:
9971        free_event(event);
9972err:
9973        return ERR_PTR(err);
9974}
9975EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9976
9977void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9978{
9979        struct perf_event_context *src_ctx;
9980        struct perf_event_context *dst_ctx;
9981        struct perf_event *event, *tmp;
9982        LIST_HEAD(events);
9983
9984        src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9985        dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9986
9987        /*
9988         * See perf_event_ctx_lock() for comments on the details
9989         * of swizzling perf_event::ctx.
9990         */
9991        mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9992        list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9993                                 event_entry) {
9994                perf_remove_from_context(event, 0);
9995                unaccount_event_cpu(event, src_cpu);
9996                put_ctx(src_ctx);
9997                list_add(&event->migrate_entry, &events);
9998        }
9999
10000        /*
10001         * Wait for the events to quiesce before re-instating them.
10002         */
10003        synchronize_rcu();
10004
10005        /*
10006         * Re-instate events in 2 passes.
10007         *
10008         * Skip over group leaders and only install siblings on this first
10009         * pass, siblings will not get enabled without a leader, however a
10010         * leader will enable its siblings, even if those are still on the old
10011         * context.
10012         */
10013        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10014                if (event->group_leader == event)
10015                        continue;
10016
10017                list_del(&event->migrate_entry);
10018                if (event->state >= PERF_EVENT_STATE_OFF)
10019                        event->state = PERF_EVENT_STATE_INACTIVE;
10020                account_event_cpu(event, dst_cpu);
10021                perf_install_in_context(dst_ctx, event, dst_cpu);
10022                get_ctx(dst_ctx);
10023        }
10024
10025        /*
10026         * Once all the siblings are setup properly, install the group leaders
10027         * to make it go.
10028         */
10029        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10030                list_del(&event->migrate_entry);
10031                if (event->state >= PERF_EVENT_STATE_OFF)
10032                        event->state = PERF_EVENT_STATE_INACTIVE;
10033                account_event_cpu(event, dst_cpu);
10034                perf_install_in_context(dst_ctx, event, dst_cpu);
10035                get_ctx(dst_ctx);
10036        }
10037        mutex_unlock(&dst_ctx->mutex);
10038        mutex_unlock(&src_ctx->mutex);
10039}
10040EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10041
10042static void sync_child_event(struct perf_event *child_event,
10043                               struct task_struct *child)
10044{
10045        struct perf_event *parent_event = child_event->parent;
10046        u64 child_val;
10047
10048        if (child_event->attr.inherit_stat)
10049                perf_event_read_event(child_event, child);
10050
10051        child_val = perf_event_count(child_event);
10052
10053        /*
10054         * Add back the child's count to the parent's count:
10055         */
10056        atomic64_add(child_val, &parent_event->child_count);
10057        atomic64_add(child_event->total_time_enabled,
10058                     &parent_event->child_total_time_enabled);
10059        atomic64_add(child_event->total_time_running,
10060                     &parent_event->child_total_time_running);
10061}
10062
10063static void
10064perf_event_exit_event(struct perf_event *child_event,
10065                      struct perf_event_context *child_ctx,
10066                      struct task_struct *child)
10067{
10068        struct perf_event *parent_event = child_event->parent;
10069
10070        /*
10071         * Do not destroy the 'original' grouping; because of the context
10072         * switch optimization the original events could've ended up in a
10073         * random child task.
10074         *
10075         * If we were to destroy the original group, all group related
10076         * operations would cease to function properly after this random
10077         * child dies.
10078         *
10079         * Do destroy all inherited groups, we don't care about those
10080         * and being thorough is better.
10081         */
10082        raw_spin_lock_irq(&child_ctx->lock);
10083        WARN_ON_ONCE(child_ctx->is_active);
10084
10085        if (parent_event)
10086                perf_group_detach(child_event);
10087        list_del_event(child_event, child_ctx);
10088        child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10089        raw_spin_unlock_irq(&child_ctx->lock);
10090
10091        /*
10092         * Parent events are governed by their filedesc, retain them.
10093         */
10094        if (!parent_event) {
10095                perf_event_wakeup(child_event);
10096                return;
10097        }
10098        /*
10099         * Child events can be cleaned up.
10100         */
10101
10102        sync_child_event(child_event, child);
10103
10104        /*
10105         * Remove this event from the parent's list
10106         */
10107        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10108        mutex_lock(&parent_event->child_mutex);
10109        list_del_init(&child_event->child_list);
10110        mutex_unlock(&parent_event->child_mutex);
10111
10112        /*
10113         * Kick perf_poll() for is_event_hup().
10114         */
10115        perf_event_wakeup(parent_event);
10116        free_event(child_event);
10117        put_event(parent_event);
10118}
10119
10120static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10121{
10122        struct perf_event_context *child_ctx, *clone_ctx = NULL;
10123        struct perf_event *child_event, *next;
10124
10125        WARN_ON_ONCE(child != current);
10126
10127        child_ctx = perf_pin_task_context(child, ctxn);
10128        if (!child_ctx)
10129                return;
10130
10131        /*
10132         * In order to reduce the amount of tricky in ctx tear-down, we hold
10133         * ctx::mutex over the entire thing. This serializes against almost
10134         * everything that wants to access the ctx.
10135         *
10136         * The exception is sys_perf_event_open() /
10137         * perf_event_create_kernel_count() which does find_get_context()
10138         * without ctx::mutex (it cannot because of the move_group double mutex
10139         * lock thing). See the comments in perf_install_in_context().
10140         */
10141        mutex_lock(&child_ctx->mutex);
10142
10143        /*
10144         * In a single ctx::lock section, de-schedule the events and detach the
10145         * context from the task such that we cannot ever get it scheduled back
10146         * in.
10147         */
10148        raw_spin_lock_irq(&child_ctx->lock);
10149        task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10150
10151        /*
10152         * Now that the context is inactive, destroy the task <-> ctx relation
10153         * and mark the context dead.
10154         */
10155        RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10156        put_ctx(child_ctx); /* cannot be last */
10157        WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10158        put_task_struct(current); /* cannot be last */
10159
10160        clone_ctx = unclone_ctx(child_ctx);
10161        raw_spin_unlock_irq(&child_ctx->lock);
10162
10163        if (clone_ctx)
10164                put_ctx(clone_ctx);
10165
10166        /*
10167         * Report the task dead after unscheduling the events so that we
10168         * won't get any samples after PERF_RECORD_EXIT. We can however still
10169         * get a few PERF_RECORD_READ events.
10170         */
10171        perf_event_task(child, child_ctx, 0);
10172
10173        list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10174                perf_event_exit_event(child_event, child_ctx, child);
10175
10176        mutex_unlock(&child_ctx->mutex);
10177
10178        put_ctx(child_ctx);
10179}
10180
10181/*
10182 * When a child task exits, feed back event values to parent events.
10183 *
10184 * Can be called with cred_guard_mutex held when called from
10185 * install_exec_creds().
10186 */
10187void perf_event_exit_task(struct task_struct *child)
10188{
10189        struct perf_event *event, *tmp;
10190        int ctxn;
10191
10192        mutex_lock(&child->perf_event_mutex);
10193        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10194                                 owner_entry) {
10195                list_del_init(&event->owner_entry);
10196
10197                /*
10198                 * Ensure the list deletion is visible before we clear
10199                 * the owner, closes a race against perf_release() where
10200                 * we need to serialize on the owner->perf_event_mutex.
10201                 */
10202                smp_store_release(&event->owner, NULL);
10203        }
10204        mutex_unlock(&child->perf_event_mutex);
10205
10206        for_each_task_context_nr(ctxn)
10207                perf_event_exit_task_context(child, ctxn);
10208
10209        /*
10210         * The perf_event_exit_task_context calls perf_event_task
10211         * with child's task_ctx, which generates EXIT events for
10212         * child contexts and sets child->perf_event_ctxp[] to NULL.
10213         * At this point we need to send EXIT events to cpu contexts.
10214         */
10215        perf_event_task(child, NULL, 0);
10216}
10217
10218static void perf_free_event(struct perf_event *event,
10219                            struct perf_event_context *ctx)
10220{
10221        struct perf_event *parent = event->parent;
10222
10223        if (WARN_ON_ONCE(!parent))
10224                return;
10225
10226        mutex_lock(&parent->child_mutex);
10227        list_del_init(&event->child_list);
10228        mutex_unlock(&parent->child_mutex);
10229
10230        put_event(parent);
10231
10232        raw_spin_lock_irq(&ctx->lock);
10233        perf_group_detach(event);
10234        list_del_event(event, ctx);
10235        raw_spin_unlock_irq(&ctx->lock);
10236        free_event(event);
10237}
10238
10239/*
10240 * Free an unexposed, unused context as created by inheritance by
10241 * perf_event_init_task below, used by fork() in case of fail.
10242 *
10243 * Not all locks are strictly required, but take them anyway to be nice and
10244 * help out with the lockdep assertions.
10245 */
10246void perf_event_free_task(struct task_struct *task)
10247{
10248        struct perf_event_context *ctx;
10249        struct perf_event *event, *tmp;
10250        int ctxn;
10251
10252        for_each_task_context_nr(ctxn) {
10253                ctx = task->perf_event_ctxp[ctxn];
10254                if (!ctx)
10255                        continue;
10256
10257                mutex_lock(&ctx->mutex);
10258again:
10259                list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10260                                group_entry)
10261                        perf_free_event(event, ctx);
10262
10263                list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10264                                group_entry)
10265                        perf_free_event(event, ctx);
10266
10267                if (!list_empty(&ctx->pinned_groups) ||
10268                                !list_empty(&ctx->flexible_groups))
10269                        goto again;
10270
10271                mutex_unlock(&ctx->mutex);
10272
10273                put_ctx(ctx);
10274        }
10275}
10276
10277void perf_event_delayed_put(struct task_struct *task)
10278{
10279        int ctxn;
10280
10281        for_each_task_context_nr(ctxn)
10282                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10283}
10284
10285struct file *perf_event_get(unsigned int fd)
10286{
10287        struct file *file;
10288
10289        file = fget_raw(fd);
10290        if (!file)
10291                return ERR_PTR(-EBADF);
10292
10293        if (file->f_op != &perf_fops) {
10294                fput(file);
10295                return ERR_PTR(-EBADF);
10296        }
10297
10298        return file;
10299}
10300
10301const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10302{
10303        if (!event)
10304                return ERR_PTR(-EINVAL);
10305
10306        return &event->attr;
10307}
10308
10309/*
10310 * inherit a event from parent task to child task:
10311 */
10312static struct perf_event *
10313inherit_event(struct perf_event *parent_event,
10314              struct task_struct *parent,
10315              struct perf_event_context *parent_ctx,
10316              struct task_struct *child,
10317              struct perf_event *group_leader,
10318              struct perf_event_context *child_ctx)
10319{
10320        enum perf_event_active_state parent_state = parent_event->state;
10321        struct perf_event *child_event;
10322        unsigned long flags;
10323
10324        /*
10325         * Instead of creating recursive hierarchies of events,
10326         * we link inherited events back to the original parent,
10327         * which has a filp for sure, which we use as the reference
10328         * count:
10329         */
10330        if (parent_event->parent)
10331                parent_event = parent_event->parent;
10332
10333        child_event = perf_event_alloc(&parent_event->attr,
10334                                           parent_event->cpu,
10335                                           child,
10336                                           group_leader, parent_event,
10337                                           NULL, NULL, -1);
10338        if (IS_ERR(child_event))
10339                return child_event;
10340
10341        /*
10342         * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10343         * must be under the same lock in order to serialize against
10344         * perf_event_release_kernel(), such that either we must observe
10345         * is_orphaned_event() or they will observe us on the child_list.
10346         */
10347        mutex_lock(&parent_event->child_mutex);
10348        if (is_orphaned_event(parent_event) ||
10349            !atomic_long_inc_not_zero(&parent_event->refcount)) {
10350                mutex_unlock(&parent_event->child_mutex);
10351                free_event(child_event);
10352                return NULL;
10353        }
10354
10355        get_ctx(child_ctx);
10356
10357        /*
10358         * Make the child state follow the state of the parent event,
10359         * not its attr.disabled bit.  We hold the parent's mutex,
10360         * so we won't race with perf_event_{en, dis}able_family.
10361         */
10362        if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10363                child_event->state = PERF_EVENT_STATE_INACTIVE;
10364        else
10365                child_event->state = PERF_EVENT_STATE_OFF;
10366
10367        if (parent_event->attr.freq) {
10368                u64 sample_period = parent_event->hw.sample_period;
10369                struct hw_perf_event *hwc = &child_event->hw;
10370
10371                hwc->sample_period = sample_period;
10372                hwc->last_period   = sample_period;
10373
10374                local64_set(&hwc->period_left, sample_period);
10375        }
10376
10377        child_event->ctx = child_ctx;
10378        child_event->overflow_handler = parent_event->overflow_handler;
10379        child_event->overflow_handler_context
10380                = parent_event->overflow_handler_context;
10381
10382        /*
10383         * Precalculate sample_data sizes
10384         */
10385        perf_event__header_size(child_event);
10386        perf_event__id_header_size(child_event);
10387
10388        /*
10389         * Link it up in the child's context:
10390         */
10391        raw_spin_lock_irqsave(&child_ctx->lock, flags);
10392        add_event_to_ctx(child_event, child_ctx);
10393        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10394
10395        /*
10396         * Link this into the parent event's child list
10397         */
10398        list_add_tail(&child_event->child_list, &parent_event->child_list);
10399        mutex_unlock(&parent_event->child_mutex);
10400
10401        return child_event;
10402}
10403
10404static int inherit_group(struct perf_event *parent_event,
10405              struct task_struct *parent,
10406              struct perf_event_context *parent_ctx,
10407              struct task_struct *child,
10408              struct perf_event_context *child_ctx)
10409{
10410        struct perf_event *leader;
10411        struct perf_event *sub;
10412        struct perf_event *child_ctr;
10413
10414        leader = inherit_event(parent_event, parent, parent_ctx,
10415                                 child, NULL, child_ctx);
10416        if (IS_ERR(leader))
10417                return PTR_ERR(leader);
10418        list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10419                child_ctr = inherit_event(sub, parent, parent_ctx,
10420                                            child, leader, child_ctx);
10421                if (IS_ERR(child_ctr))
10422                        return PTR_ERR(child_ctr);
10423        }
10424        return 0;
10425}
10426
10427static int
10428inherit_task_group(struct perf_event *event, struct task_struct *parent,
10429                   struct perf_event_context *parent_ctx,
10430                   struct task_struct *child, int ctxn,
10431                   int *inherited_all)
10432{
10433        int ret;
10434        struct perf_event_context *child_ctx;
10435
10436        if (!event->attr.inherit) {
10437                *inherited_all = 0;
10438                return 0;
10439        }
10440
10441        child_ctx = child->perf_event_ctxp[ctxn];
10442        if (!child_ctx) {
10443                /*
10444                 * This is executed from the parent task context, so
10445                 * inherit events that have been marked for cloning.
10446                 * First allocate and initialize a context for the
10447                 * child.
10448                 */
10449
10450                child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10451                if (!child_ctx)
10452                        return -ENOMEM;
10453
10454                child->perf_event_ctxp[ctxn] = child_ctx;
10455        }
10456
10457        ret = inherit_group(event, parent, parent_ctx,
10458                            child, child_ctx);
10459
10460        if (ret)
10461                *inherited_all = 0;
10462
10463        return ret;
10464}
10465
10466/*
10467 * Initialize the perf_event context in task_struct
10468 */
10469static int perf_event_init_context(struct task_struct *child, int ctxn)
10470{
10471        struct perf_event_context *child_ctx, *parent_ctx;
10472        struct perf_event_context *cloned_ctx;
10473        struct perf_event *event;
10474        struct task_struct *parent = current;
10475        int inherited_all = 1;
10476        unsigned long flags;
10477        int ret = 0;
10478
10479        if (likely(!parent->perf_event_ctxp[ctxn]))
10480                return 0;
10481
10482        /*
10483         * If the parent's context is a clone, pin it so it won't get
10484         * swapped under us.
10485         */
10486        parent_ctx = perf_pin_task_context(parent, ctxn);
10487        if (!parent_ctx)
10488                return 0;
10489
10490        /*
10491         * No need to check if parent_ctx != NULL here; since we saw
10492         * it non-NULL earlier, the only reason for it to become NULL
10493         * is if we exit, and since we're currently in the middle of
10494         * a fork we can't be exiting at the same time.
10495         */
10496
10497        /*
10498         * Lock the parent list. No need to lock the child - not PID
10499         * hashed yet and not running, so nobody can access it.
10500         */
10501        mutex_lock(&parent_ctx->mutex);
10502
10503        /*
10504         * We dont have to disable NMIs - we are only looking at
10505         * the list, not manipulating it:
10506         */
10507        list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10508                ret = inherit_task_group(event, parent, parent_ctx,
10509                                         child, ctxn, &inherited_all);
10510                if (ret)
10511                        break;
10512        }
10513
10514        /*
10515         * We can't hold ctx->lock when iterating the ->flexible_group list due
10516         * to allocations, but we need to prevent rotation because
10517         * rotate_ctx() will change the list from interrupt context.
10518         */
10519        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10520        parent_ctx->rotate_disable = 1;
10521        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10522
10523        list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10524                ret = inherit_task_group(event, parent, parent_ctx,
10525                                         child, ctxn, &inherited_all);
10526                if (ret)
10527                        break;
10528        }
10529
10530        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10531        parent_ctx->rotate_disable = 0;
10532
10533        child_ctx = child->perf_event_ctxp[ctxn];
10534
10535        if (child_ctx && inherited_all) {
10536                /*
10537                 * Mark the child context as a clone of the parent
10538                 * context, or of whatever the parent is a clone of.
10539                 *
10540                 * Note that if the parent is a clone, the holding of
10541                 * parent_ctx->lock avoids it from being uncloned.
10542                 */
10543                cloned_ctx = parent_ctx->parent_ctx;
10544                if (cloned_ctx) {
10545                        child_ctx->parent_ctx = cloned_ctx;
10546                        child_ctx->parent_gen = parent_ctx->parent_gen;
10547                } else {
10548                        child_ctx->parent_ctx = parent_ctx;
10549                        child_ctx->parent_gen = parent_ctx->generation;
10550                }
10551                get_ctx(child_ctx->parent_ctx);
10552        }
10553
10554        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10555        mutex_unlock(&parent_ctx->mutex);
10556
10557        perf_unpin_context(parent_ctx);
10558        put_ctx(parent_ctx);
10559
10560        return ret;
10561}
10562
10563/*
10564 * Initialize the perf_event context in task_struct
10565 */
10566int perf_event_init_task(struct task_struct *child)
10567{
10568        int ctxn, ret;
10569
10570        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10571        mutex_init(&child->perf_event_mutex);
10572        INIT_LIST_HEAD(&child->perf_event_list);
10573
10574        for_each_task_context_nr(ctxn) {
10575                ret = perf_event_init_context(child, ctxn);
10576                if (ret) {
10577                        perf_event_free_task(child);
10578                        return ret;
10579                }
10580        }
10581
10582        return 0;
10583}
10584
10585static void __init perf_event_init_all_cpus(void)
10586{
10587        struct swevent_htable *swhash;
10588        int cpu;
10589
10590        for_each_possible_cpu(cpu) {
10591                swhash = &per_cpu(swevent_htable, cpu);
10592                mutex_init(&swhash->hlist_mutex);
10593                INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10594
10595                INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10596                raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10597
10598                INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10599        }
10600}
10601
10602int perf_event_init_cpu(unsigned int cpu)
10603{
10604        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10605
10606        mutex_lock(&swhash->hlist_mutex);
10607        if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10608                struct swevent_hlist *hlist;
10609
10610                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10611                WARN_ON(!hlist);
10612                rcu_assign_pointer(swhash->swevent_hlist, hlist);
10613        }
10614        mutex_unlock(&swhash->hlist_mutex);
10615        return 0;
10616}
10617
10618#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10619static void __perf_event_exit_context(void *__info)
10620{
10621        struct perf_event_context *ctx = __info;
10622        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10623        struct perf_event *event;
10624
10625        raw_spin_lock(&ctx->lock);
10626        list_for_each_entry(event, &ctx->event_list, event_entry)
10627                __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10628        raw_spin_unlock(&ctx->lock);
10629}
10630
10631static void perf_event_exit_cpu_context(int cpu)
10632{
10633        struct perf_event_context *ctx;
10634        struct pmu *pmu;
10635        int idx;
10636
10637        idx = srcu_read_lock(&pmus_srcu);
10638        list_for_each_entry_rcu(pmu, &pmus, entry) {
10639                ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10640
10641                mutex_lock(&ctx->mutex);
10642                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10643                mutex_unlock(&ctx->mutex);
10644        }
10645        srcu_read_unlock(&pmus_srcu, idx);
10646}
10647#else
10648
10649static void perf_event_exit_cpu_context(int cpu) { }
10650
10651#endif
10652
10653int perf_event_exit_cpu(unsigned int cpu)
10654{
10655        perf_event_exit_cpu_context(cpu);
10656        return 0;
10657}
10658
10659static int
10660perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10661{
10662        int cpu;
10663
10664        for_each_online_cpu(cpu)
10665                perf_event_exit_cpu(cpu);
10666
10667        return NOTIFY_OK;
10668}
10669
10670/*
10671 * Run the perf reboot notifier at the very last possible moment so that
10672 * the generic watchdog code runs as long as possible.
10673 */
10674static struct notifier_block perf_reboot_notifier = {
10675        .notifier_call = perf_reboot,
10676        .priority = INT_MIN,
10677};
10678
10679void __init perf_event_init(void)
10680{
10681        int ret;
10682
10683        idr_init(&pmu_idr);
10684
10685        perf_event_init_all_cpus();
10686        init_srcu_struct(&pmus_srcu);
10687        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10688        perf_pmu_register(&perf_cpu_clock, NULL, -1);
10689        perf_pmu_register(&perf_task_clock, NULL, -1);
10690        perf_tp_register();
10691        perf_event_init_cpu(smp_processor_id());
10692        register_reboot_notifier(&perf_reboot_notifier);
10693
10694        ret = init_hw_breakpoint();
10695        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10696
10697        /*
10698         * Build time assertion that we keep the data_head at the intended
10699         * location.  IOW, validation we got the __reserved[] size right.
10700         */
10701        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10702                     != 1024);
10703}
10704
10705ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10706                              char *page)
10707{
10708        struct perf_pmu_events_attr *pmu_attr =
10709                container_of(attr, struct perf_pmu_events_attr, attr);
10710
10711        if (pmu_attr->event_str)
10712                return sprintf(page, "%s\n", pmu_attr->event_str);
10713
10714        return 0;
10715}
10716EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10717
10718static int __init perf_event_sysfs_init(void)
10719{
10720        struct pmu *pmu;
10721        int ret;
10722
10723        mutex_lock(&pmus_lock);
10724
10725        ret = bus_register(&pmu_bus);
10726        if (ret)
10727                goto unlock;
10728
10729        list_for_each_entry(pmu, &pmus, entry) {
10730                if (!pmu->name || pmu->type < 0)
10731                        continue;
10732
10733                ret = pmu_dev_alloc(pmu);
10734                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10735        }
10736        pmu_bus_running = 1;
10737        ret = 0;
10738
10739unlock:
10740        mutex_unlock(&pmus_lock);
10741
10742        return ret;
10743}
10744device_initcall(perf_event_sysfs_init);
10745
10746#ifdef CONFIG_CGROUP_PERF
10747static struct cgroup_subsys_state *
10748perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10749{
10750        struct perf_cgroup *jc;
10751
10752        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10753        if (!jc)
10754                return ERR_PTR(-ENOMEM);
10755
10756        jc->info = alloc_percpu(struct perf_cgroup_info);
10757        if (!jc->info) {
10758                kfree(jc);
10759                return ERR_PTR(-ENOMEM);
10760        }
10761
10762        return &jc->css;
10763}
10764
10765static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10766{
10767        struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10768
10769        free_percpu(jc->info);
10770        kfree(jc);
10771}
10772
10773static int __perf_cgroup_move(void *info)
10774{
10775        struct task_struct *task = info;
10776        rcu_read_lock();
10777        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10778        rcu_read_unlock();
10779        return 0;
10780}
10781
10782static void perf_cgroup_attach(struct cgroup_taskset *tset)
10783{
10784        struct task_struct *task;
10785        struct cgroup_subsys_state *css;
10786
10787        cgroup_taskset_for_each(task, css, tset)
10788                task_function_call(task, __perf_cgroup_move, task);
10789}
10790
10791struct cgroup_subsys perf_event_cgrp_subsys = {
10792        .css_alloc      = perf_cgroup_css_alloc,
10793        .css_free       = perf_cgroup_css_free,
10794        .attach         = perf_cgroup_attach,
10795};
10796#endif /* CONFIG_CGROUP_PERF */
10797