linux/kernel/smpboot.c
<<
>>
Prefs
   1/*
   2 * Common SMP CPU bringup/teardown functions
   3 */
   4#include <linux/cpu.h>
   5#include <linux/err.h>
   6#include <linux/smp.h>
   7#include <linux/delay.h>
   8#include <linux/init.h>
   9#include <linux/list.h>
  10#include <linux/slab.h>
  11#include <linux/sched.h>
  12#include <linux/export.h>
  13#include <linux/percpu.h>
  14#include <linux/kthread.h>
  15#include <linux/smpboot.h>
  16
  17#include "smpboot.h"
  18
  19#ifdef CONFIG_SMP
  20
  21#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
  22/*
  23 * For the hotplug case we keep the task structs around and reuse
  24 * them.
  25 */
  26static DEFINE_PER_CPU(struct task_struct *, idle_threads);
  27
  28struct task_struct *idle_thread_get(unsigned int cpu)
  29{
  30        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  31
  32        if (!tsk)
  33                return ERR_PTR(-ENOMEM);
  34        init_idle(tsk, cpu);
  35        return tsk;
  36}
  37
  38void __init idle_thread_set_boot_cpu(void)
  39{
  40        per_cpu(idle_threads, smp_processor_id()) = current;
  41}
  42
  43/**
  44 * idle_init - Initialize the idle thread for a cpu
  45 * @cpu:        The cpu for which the idle thread should be initialized
  46 *
  47 * Creates the thread if it does not exist.
  48 */
  49static inline void idle_init(unsigned int cpu)
  50{
  51        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  52
  53        if (!tsk) {
  54                tsk = fork_idle(cpu);
  55                if (IS_ERR(tsk))
  56                        pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
  57                else
  58                        per_cpu(idle_threads, cpu) = tsk;
  59        }
  60}
  61
  62/**
  63 * idle_threads_init - Initialize idle threads for all cpus
  64 */
  65void __init idle_threads_init(void)
  66{
  67        unsigned int cpu, boot_cpu;
  68
  69        boot_cpu = smp_processor_id();
  70
  71        for_each_possible_cpu(cpu) {
  72                if (cpu != boot_cpu)
  73                        idle_init(cpu);
  74        }
  75}
  76#endif
  77
  78#endif /* #ifdef CONFIG_SMP */
  79
  80static LIST_HEAD(hotplug_threads);
  81static DEFINE_MUTEX(smpboot_threads_lock);
  82
  83struct smpboot_thread_data {
  84        unsigned int                    cpu;
  85        unsigned int                    status;
  86        struct smp_hotplug_thread       *ht;
  87};
  88
  89enum {
  90        HP_THREAD_NONE = 0,
  91        HP_THREAD_ACTIVE,
  92        HP_THREAD_PARKED,
  93};
  94
  95/**
  96 * smpboot_thread_fn - percpu hotplug thread loop function
  97 * @data:       thread data pointer
  98 *
  99 * Checks for thread stop and park conditions. Calls the necessary
 100 * setup, cleanup, park and unpark functions for the registered
 101 * thread.
 102 *
 103 * Returns 1 when the thread should exit, 0 otherwise.
 104 */
 105static int smpboot_thread_fn(void *data)
 106{
 107        struct smpboot_thread_data *td = data;
 108        struct smp_hotplug_thread *ht = td->ht;
 109
 110        while (1) {
 111                set_current_state(TASK_INTERRUPTIBLE);
 112                preempt_disable();
 113                if (kthread_should_stop()) {
 114                        __set_current_state(TASK_RUNNING);
 115                        preempt_enable();
 116                        /* cleanup must mirror setup */
 117                        if (ht->cleanup && td->status != HP_THREAD_NONE)
 118                                ht->cleanup(td->cpu, cpu_online(td->cpu));
 119                        kfree(td);
 120                        return 0;
 121                }
 122
 123                if (kthread_should_park()) {
 124                        __set_current_state(TASK_RUNNING);
 125                        preempt_enable();
 126                        if (ht->park && td->status == HP_THREAD_ACTIVE) {
 127                                BUG_ON(td->cpu != smp_processor_id());
 128                                ht->park(td->cpu);
 129                                td->status = HP_THREAD_PARKED;
 130                        }
 131                        kthread_parkme();
 132                        /* We might have been woken for stop */
 133                        continue;
 134                }
 135
 136                BUG_ON(td->cpu != smp_processor_id());
 137
 138                /* Check for state change setup */
 139                switch (td->status) {
 140                case HP_THREAD_NONE:
 141                        __set_current_state(TASK_RUNNING);
 142                        preempt_enable();
 143                        if (ht->setup)
 144                                ht->setup(td->cpu);
 145                        td->status = HP_THREAD_ACTIVE;
 146                        continue;
 147
 148                case HP_THREAD_PARKED:
 149                        __set_current_state(TASK_RUNNING);
 150                        preempt_enable();
 151                        if (ht->unpark)
 152                                ht->unpark(td->cpu);
 153                        td->status = HP_THREAD_ACTIVE;
 154                        continue;
 155                }
 156
 157                if (!ht->thread_should_run(td->cpu)) {
 158                        preempt_enable_no_resched();
 159                        schedule();
 160                } else {
 161                        __set_current_state(TASK_RUNNING);
 162                        preempt_enable();
 163                        ht->thread_fn(td->cpu);
 164                }
 165        }
 166}
 167
 168static int
 169__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 170{
 171        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 172        struct smpboot_thread_data *td;
 173
 174        if (tsk)
 175                return 0;
 176
 177        td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
 178        if (!td)
 179                return -ENOMEM;
 180        td->cpu = cpu;
 181        td->ht = ht;
 182
 183        tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
 184                                    ht->thread_comm);
 185        if (IS_ERR(tsk)) {
 186                kfree(td);
 187                return PTR_ERR(tsk);
 188        }
 189        /*
 190         * Park the thread so that it could start right on the CPU
 191         * when it is available.
 192         */
 193        kthread_park(tsk);
 194        get_task_struct(tsk);
 195        *per_cpu_ptr(ht->store, cpu) = tsk;
 196        if (ht->create) {
 197                /*
 198                 * Make sure that the task has actually scheduled out
 199                 * into park position, before calling the create
 200                 * callback. At least the migration thread callback
 201                 * requires that the task is off the runqueue.
 202                 */
 203                if (!wait_task_inactive(tsk, TASK_PARKED))
 204                        WARN_ON(1);
 205                else
 206                        ht->create(cpu);
 207        }
 208        return 0;
 209}
 210
 211int smpboot_create_threads(unsigned int cpu)
 212{
 213        struct smp_hotplug_thread *cur;
 214        int ret = 0;
 215
 216        mutex_lock(&smpboot_threads_lock);
 217        list_for_each_entry(cur, &hotplug_threads, list) {
 218                ret = __smpboot_create_thread(cur, cpu);
 219                if (ret)
 220                        break;
 221        }
 222        mutex_unlock(&smpboot_threads_lock);
 223        return ret;
 224}
 225
 226static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 227{
 228        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 229
 230        if (!ht->selfparking)
 231                kthread_unpark(tsk);
 232}
 233
 234int smpboot_unpark_threads(unsigned int cpu)
 235{
 236        struct smp_hotplug_thread *cur;
 237
 238        mutex_lock(&smpboot_threads_lock);
 239        list_for_each_entry(cur, &hotplug_threads, list)
 240                if (cpumask_test_cpu(cpu, cur->cpumask))
 241                        smpboot_unpark_thread(cur, cpu);
 242        mutex_unlock(&smpboot_threads_lock);
 243        return 0;
 244}
 245
 246static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 247{
 248        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 249
 250        if (tsk && !ht->selfparking)
 251                kthread_park(tsk);
 252}
 253
 254int smpboot_park_threads(unsigned int cpu)
 255{
 256        struct smp_hotplug_thread *cur;
 257
 258        mutex_lock(&smpboot_threads_lock);
 259        list_for_each_entry_reverse(cur, &hotplug_threads, list)
 260                smpboot_park_thread(cur, cpu);
 261        mutex_unlock(&smpboot_threads_lock);
 262        return 0;
 263}
 264
 265static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
 266{
 267        unsigned int cpu;
 268
 269        /* We need to destroy also the parked threads of offline cpus */
 270        for_each_possible_cpu(cpu) {
 271                struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 272
 273                if (tsk) {
 274                        kthread_stop(tsk);
 275                        put_task_struct(tsk);
 276                        *per_cpu_ptr(ht->store, cpu) = NULL;
 277                }
 278        }
 279}
 280
 281/**
 282 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
 283 *                                          to hotplug
 284 * @plug_thread:        Hotplug thread descriptor
 285 * @cpumask:            The cpumask where threads run
 286 *
 287 * Creates and starts the threads on all online cpus.
 288 */
 289int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
 290                                           const struct cpumask *cpumask)
 291{
 292        unsigned int cpu;
 293        int ret = 0;
 294
 295        if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
 296                return -ENOMEM;
 297        cpumask_copy(plug_thread->cpumask, cpumask);
 298
 299        get_online_cpus();
 300        mutex_lock(&smpboot_threads_lock);
 301        for_each_online_cpu(cpu) {
 302                ret = __smpboot_create_thread(plug_thread, cpu);
 303                if (ret) {
 304                        smpboot_destroy_threads(plug_thread);
 305                        free_cpumask_var(plug_thread->cpumask);
 306                        goto out;
 307                }
 308                if (cpumask_test_cpu(cpu, cpumask))
 309                        smpboot_unpark_thread(plug_thread, cpu);
 310        }
 311        list_add(&plug_thread->list, &hotplug_threads);
 312out:
 313        mutex_unlock(&smpboot_threads_lock);
 314        put_online_cpus();
 315        return ret;
 316}
 317EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
 318
 319/**
 320 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
 321 * @plug_thread:        Hotplug thread descriptor
 322 *
 323 * Stops all threads on all possible cpus.
 324 */
 325void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
 326{
 327        get_online_cpus();
 328        mutex_lock(&smpboot_threads_lock);
 329        list_del(&plug_thread->list);
 330        smpboot_destroy_threads(plug_thread);
 331        mutex_unlock(&smpboot_threads_lock);
 332        put_online_cpus();
 333        free_cpumask_var(plug_thread->cpumask);
 334}
 335EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
 336
 337/**
 338 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
 339 * @plug_thread:        Hotplug thread descriptor
 340 * @new:                Revised mask to use
 341 *
 342 * The cpumask field in the smp_hotplug_thread must not be updated directly
 343 * by the client, but only by calling this function.
 344 * This function can only be called on a registered smp_hotplug_thread.
 345 */
 346int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
 347                                         const struct cpumask *new)
 348{
 349        struct cpumask *old = plug_thread->cpumask;
 350        cpumask_var_t tmp;
 351        unsigned int cpu;
 352
 353        if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
 354                return -ENOMEM;
 355
 356        get_online_cpus();
 357        mutex_lock(&smpboot_threads_lock);
 358
 359        /* Park threads that were exclusively enabled on the old mask. */
 360        cpumask_andnot(tmp, old, new);
 361        for_each_cpu_and(cpu, tmp, cpu_online_mask)
 362                smpboot_park_thread(plug_thread, cpu);
 363
 364        /* Unpark threads that are exclusively enabled on the new mask. */
 365        cpumask_andnot(tmp, new, old);
 366        for_each_cpu_and(cpu, tmp, cpu_online_mask)
 367                smpboot_unpark_thread(plug_thread, cpu);
 368
 369        cpumask_copy(old, new);
 370
 371        mutex_unlock(&smpboot_threads_lock);
 372        put_online_cpus();
 373
 374        free_cpumask_var(tmp);
 375
 376        return 0;
 377}
 378EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
 379
 380static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
 381
 382/*
 383 * Called to poll specified CPU's state, for example, when waiting for
 384 * a CPU to come online.
 385 */
 386int cpu_report_state(int cpu)
 387{
 388        return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 389}
 390
 391/*
 392 * If CPU has died properly, set its state to CPU_UP_PREPARE and
 393 * return success.  Otherwise, return -EBUSY if the CPU died after
 394 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
 395 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
 396 * to dying.  In the latter two cases, the CPU might not be set up
 397 * properly, but it is up to the arch-specific code to decide.
 398 * Finally, -EIO indicates an unanticipated problem.
 399 *
 400 * Note that it is permissible to omit this call entirely, as is
 401 * done in architectures that do no CPU-hotplug error checking.
 402 */
 403int cpu_check_up_prepare(int cpu)
 404{
 405        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
 406                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 407                return 0;
 408        }
 409
 410        switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
 411
 412        case CPU_POST_DEAD:
 413
 414                /* The CPU died properly, so just start it up again. */
 415                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 416                return 0;
 417
 418        case CPU_DEAD_FROZEN:
 419
 420                /*
 421                 * Timeout during CPU death, so let caller know.
 422                 * The outgoing CPU completed its processing, but after
 423                 * cpu_wait_death() timed out and reported the error. The
 424                 * caller is free to proceed, in which case the state
 425                 * will be reset properly by cpu_set_state_online().
 426                 * Proceeding despite this -EBUSY return makes sense
 427                 * for systems where the outgoing CPUs take themselves
 428                 * offline, with no post-death manipulation required from
 429                 * a surviving CPU.
 430                 */
 431                return -EBUSY;
 432
 433        case CPU_BROKEN:
 434
 435                /*
 436                 * The most likely reason we got here is that there was
 437                 * a timeout during CPU death, and the outgoing CPU never
 438                 * did complete its processing.  This could happen on
 439                 * a virtualized system if the outgoing VCPU gets preempted
 440                 * for more than five seconds, and the user attempts to
 441                 * immediately online that same CPU.  Trying again later
 442                 * might return -EBUSY above, hence -EAGAIN.
 443                 */
 444                return -EAGAIN;
 445
 446        default:
 447
 448                /* Should not happen.  Famous last words. */
 449                return -EIO;
 450        }
 451}
 452
 453/*
 454 * Mark the specified CPU online.
 455 *
 456 * Note that it is permissible to omit this call entirely, as is
 457 * done in architectures that do no CPU-hotplug error checking.
 458 */
 459void cpu_set_state_online(int cpu)
 460{
 461        (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
 462}
 463
 464#ifdef CONFIG_HOTPLUG_CPU
 465
 466/*
 467 * Wait for the specified CPU to exit the idle loop and die.
 468 */
 469bool cpu_wait_death(unsigned int cpu, int seconds)
 470{
 471        int jf_left = seconds * HZ;
 472        int oldstate;
 473        bool ret = true;
 474        int sleep_jf = 1;
 475
 476        might_sleep();
 477
 478        /* The outgoing CPU will normally get done quite quickly. */
 479        if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
 480                goto update_state;
 481        udelay(5);
 482
 483        /* But if the outgoing CPU dawdles, wait increasingly long times. */
 484        while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
 485                schedule_timeout_uninterruptible(sleep_jf);
 486                jf_left -= sleep_jf;
 487                if (jf_left <= 0)
 488                        break;
 489                sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
 490        }
 491update_state:
 492        oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 493        if (oldstate == CPU_DEAD) {
 494                /* Outgoing CPU died normally, update state. */
 495                smp_mb(); /* atomic_read() before update. */
 496                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
 497        } else {
 498                /* Outgoing CPU still hasn't died, set state accordingly. */
 499                if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 500                                   oldstate, CPU_BROKEN) != oldstate)
 501                        goto update_state;
 502                ret = false;
 503        }
 504        return ret;
 505}
 506
 507/*
 508 * Called by the outgoing CPU to report its successful death.  Return
 509 * false if this report follows the surviving CPU's timing out.
 510 *
 511 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
 512 * timed out.  This approach allows architectures to omit calls to
 513 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
 514 * the next cpu_wait_death()'s polling loop.
 515 */
 516bool cpu_report_death(void)
 517{
 518        int oldstate;
 519        int newstate;
 520        int cpu = smp_processor_id();
 521
 522        do {
 523                oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 524                if (oldstate != CPU_BROKEN)
 525                        newstate = CPU_DEAD;
 526                else
 527                        newstate = CPU_DEAD_FROZEN;
 528        } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 529                                oldstate, newstate) != oldstate);
 530        return newstate == CPU_DEAD;
 531}
 532
 533#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 534