linux/kernel/sys.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
  38#include <linux/file.h>
  39#include <linux/mount.h>
  40#include <linux/gfp.h>
  41#include <linux/syscore_ops.h>
  42#include <linux/version.h>
  43#include <linux/ctype.h>
  44
  45#include <linux/compat.h>
  46#include <linux/syscalls.h>
  47#include <linux/kprobes.h>
  48#include <linux/user_namespace.h>
  49#include <linux/binfmts.h>
  50
  51#include <linux/sched.h>
  52#include <linux/rcupdate.h>
  53#include <linux/uidgid.h>
  54#include <linux/cred.h>
  55
  56#include <linux/kmsg_dump.h>
  57/* Move somewhere else to avoid recompiling? */
  58#include <generated/utsrelease.h>
  59
  60#include <asm/uaccess.h>
  61#include <asm/io.h>
  62#include <asm/unistd.h>
  63
  64#ifndef SET_UNALIGN_CTL
  65# define SET_UNALIGN_CTL(a, b)  (-EINVAL)
  66#endif
  67#ifndef GET_UNALIGN_CTL
  68# define GET_UNALIGN_CTL(a, b)  (-EINVAL)
  69#endif
  70#ifndef SET_FPEMU_CTL
  71# define SET_FPEMU_CTL(a, b)    (-EINVAL)
  72#endif
  73#ifndef GET_FPEMU_CTL
  74# define GET_FPEMU_CTL(a, b)    (-EINVAL)
  75#endif
  76#ifndef SET_FPEXC_CTL
  77# define SET_FPEXC_CTL(a, b)    (-EINVAL)
  78#endif
  79#ifndef GET_FPEXC_CTL
  80# define GET_FPEXC_CTL(a, b)    (-EINVAL)
  81#endif
  82#ifndef GET_ENDIAN
  83# define GET_ENDIAN(a, b)       (-EINVAL)
  84#endif
  85#ifndef SET_ENDIAN
  86# define SET_ENDIAN(a, b)       (-EINVAL)
  87#endif
  88#ifndef GET_TSC_CTL
  89# define GET_TSC_CTL(a)         (-EINVAL)
  90#endif
  91#ifndef SET_TSC_CTL
  92# define SET_TSC_CTL(a)         (-EINVAL)
  93#endif
  94#ifndef MPX_ENABLE_MANAGEMENT
  95# define MPX_ENABLE_MANAGEMENT()        (-EINVAL)
  96#endif
  97#ifndef MPX_DISABLE_MANAGEMENT
  98# define MPX_DISABLE_MANAGEMENT()       (-EINVAL)
  99#endif
 100#ifndef GET_FP_MODE
 101# define GET_FP_MODE(a)         (-EINVAL)
 102#endif
 103#ifndef SET_FP_MODE
 104# define SET_FP_MODE(a,b)       (-EINVAL)
 105#endif
 106
 107/*
 108 * this is where the system-wide overflow UID and GID are defined, for
 109 * architectures that now have 32-bit UID/GID but didn't in the past
 110 */
 111
 112int overflowuid = DEFAULT_OVERFLOWUID;
 113int overflowgid = DEFAULT_OVERFLOWGID;
 114
 115EXPORT_SYMBOL(overflowuid);
 116EXPORT_SYMBOL(overflowgid);
 117
 118/*
 119 * the same as above, but for filesystems which can only store a 16-bit
 120 * UID and GID. as such, this is needed on all architectures
 121 */
 122
 123int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 124int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 125
 126EXPORT_SYMBOL(fs_overflowuid);
 127EXPORT_SYMBOL(fs_overflowgid);
 128
 129/*
 130 * Returns true if current's euid is same as p's uid or euid,
 131 * or has CAP_SYS_NICE to p's user_ns.
 132 *
 133 * Called with rcu_read_lock, creds are safe
 134 */
 135static bool set_one_prio_perm(struct task_struct *p)
 136{
 137        const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 138
 139        if (uid_eq(pcred->uid,  cred->euid) ||
 140            uid_eq(pcred->euid, cred->euid))
 141                return true;
 142        if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 143                return true;
 144        return false;
 145}
 146
 147/*
 148 * set the priority of a task
 149 * - the caller must hold the RCU read lock
 150 */
 151static int set_one_prio(struct task_struct *p, int niceval, int error)
 152{
 153        int no_nice;
 154
 155        if (!set_one_prio_perm(p)) {
 156                error = -EPERM;
 157                goto out;
 158        }
 159        if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 160                error = -EACCES;
 161                goto out;
 162        }
 163        no_nice = security_task_setnice(p, niceval);
 164        if (no_nice) {
 165                error = no_nice;
 166                goto out;
 167        }
 168        if (error == -ESRCH)
 169                error = 0;
 170        set_user_nice(p, niceval);
 171out:
 172        return error;
 173}
 174
 175SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 176{
 177        struct task_struct *g, *p;
 178        struct user_struct *user;
 179        const struct cred *cred = current_cred();
 180        int error = -EINVAL;
 181        struct pid *pgrp;
 182        kuid_t uid;
 183
 184        if (which > PRIO_USER || which < PRIO_PROCESS)
 185                goto out;
 186
 187        /* normalize: avoid signed division (rounding problems) */
 188        error = -ESRCH;
 189        if (niceval < MIN_NICE)
 190                niceval = MIN_NICE;
 191        if (niceval > MAX_NICE)
 192                niceval = MAX_NICE;
 193
 194        rcu_read_lock();
 195        read_lock(&tasklist_lock);
 196        switch (which) {
 197        case PRIO_PROCESS:
 198                if (who)
 199                        p = find_task_by_vpid(who);
 200                else
 201                        p = current;
 202                if (p)
 203                        error = set_one_prio(p, niceval, error);
 204                break;
 205        case PRIO_PGRP:
 206                if (who)
 207                        pgrp = find_vpid(who);
 208                else
 209                        pgrp = task_pgrp(current);
 210                do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 211                        error = set_one_prio(p, niceval, error);
 212                } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 213                break;
 214        case PRIO_USER:
 215                uid = make_kuid(cred->user_ns, who);
 216                user = cred->user;
 217                if (!who)
 218                        uid = cred->uid;
 219                else if (!uid_eq(uid, cred->uid)) {
 220                        user = find_user(uid);
 221                        if (!user)
 222                                goto out_unlock;        /* No processes for this user */
 223                }
 224                do_each_thread(g, p) {
 225                        if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 226                                error = set_one_prio(p, niceval, error);
 227                } while_each_thread(g, p);
 228                if (!uid_eq(uid, cred->uid))
 229                        free_uid(user);         /* For find_user() */
 230                break;
 231        }
 232out_unlock:
 233        read_unlock(&tasklist_lock);
 234        rcu_read_unlock();
 235out:
 236        return error;
 237}
 238
 239/*
 240 * Ugh. To avoid negative return values, "getpriority()" will
 241 * not return the normal nice-value, but a negated value that
 242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 243 * to stay compatible.
 244 */
 245SYSCALL_DEFINE2(getpriority, int, which, int, who)
 246{
 247        struct task_struct *g, *p;
 248        struct user_struct *user;
 249        const struct cred *cred = current_cred();
 250        long niceval, retval = -ESRCH;
 251        struct pid *pgrp;
 252        kuid_t uid;
 253
 254        if (which > PRIO_USER || which < PRIO_PROCESS)
 255                return -EINVAL;
 256
 257        rcu_read_lock();
 258        read_lock(&tasklist_lock);
 259        switch (which) {
 260        case PRIO_PROCESS:
 261                if (who)
 262                        p = find_task_by_vpid(who);
 263                else
 264                        p = current;
 265                if (p) {
 266                        niceval = nice_to_rlimit(task_nice(p));
 267                        if (niceval > retval)
 268                                retval = niceval;
 269                }
 270                break;
 271        case PRIO_PGRP:
 272                if (who)
 273                        pgrp = find_vpid(who);
 274                else
 275                        pgrp = task_pgrp(current);
 276                do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 277                        niceval = nice_to_rlimit(task_nice(p));
 278                        if (niceval > retval)
 279                                retval = niceval;
 280                } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 281                break;
 282        case PRIO_USER:
 283                uid = make_kuid(cred->user_ns, who);
 284                user = cred->user;
 285                if (!who)
 286                        uid = cred->uid;
 287                else if (!uid_eq(uid, cred->uid)) {
 288                        user = find_user(uid);
 289                        if (!user)
 290                                goto out_unlock;        /* No processes for this user */
 291                }
 292                do_each_thread(g, p) {
 293                        if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 294                                niceval = nice_to_rlimit(task_nice(p));
 295                                if (niceval > retval)
 296                                        retval = niceval;
 297                        }
 298                } while_each_thread(g, p);
 299                if (!uid_eq(uid, cred->uid))
 300                        free_uid(user);         /* for find_user() */
 301                break;
 302        }
 303out_unlock:
 304        read_unlock(&tasklist_lock);
 305        rcu_read_unlock();
 306
 307        return retval;
 308}
 309
 310/*
 311 * Unprivileged users may change the real gid to the effective gid
 312 * or vice versa.  (BSD-style)
 313 *
 314 * If you set the real gid at all, or set the effective gid to a value not
 315 * equal to the real gid, then the saved gid is set to the new effective gid.
 316 *
 317 * This makes it possible for a setgid program to completely drop its
 318 * privileges, which is often a useful assertion to make when you are doing
 319 * a security audit over a program.
 320 *
 321 * The general idea is that a program which uses just setregid() will be
 322 * 100% compatible with BSD.  A program which uses just setgid() will be
 323 * 100% compatible with POSIX with saved IDs.
 324 *
 325 * SMP: There are not races, the GIDs are checked only by filesystem
 326 *      operations (as far as semantic preservation is concerned).
 327 */
 328#ifdef CONFIG_MULTIUSER
 329SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 330{
 331        struct user_namespace *ns = current_user_ns();
 332        const struct cred *old;
 333        struct cred *new;
 334        int retval;
 335        kgid_t krgid, kegid;
 336
 337        krgid = make_kgid(ns, rgid);
 338        kegid = make_kgid(ns, egid);
 339
 340        if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 341                return -EINVAL;
 342        if ((egid != (gid_t) -1) && !gid_valid(kegid))
 343                return -EINVAL;
 344
 345        new = prepare_creds();
 346        if (!new)
 347                return -ENOMEM;
 348        old = current_cred();
 349
 350        retval = -EPERM;
 351        if (rgid != (gid_t) -1) {
 352                if (gid_eq(old->gid, krgid) ||
 353                    gid_eq(old->egid, krgid) ||
 354                    ns_capable(old->user_ns, CAP_SETGID))
 355                        new->gid = krgid;
 356                else
 357                        goto error;
 358        }
 359        if (egid != (gid_t) -1) {
 360                if (gid_eq(old->gid, kegid) ||
 361                    gid_eq(old->egid, kegid) ||
 362                    gid_eq(old->sgid, kegid) ||
 363                    ns_capable(old->user_ns, CAP_SETGID))
 364                        new->egid = kegid;
 365                else
 366                        goto error;
 367        }
 368
 369        if (rgid != (gid_t) -1 ||
 370            (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 371                new->sgid = new->egid;
 372        new->fsgid = new->egid;
 373
 374        return commit_creds(new);
 375
 376error:
 377        abort_creds(new);
 378        return retval;
 379}
 380
 381/*
 382 * setgid() is implemented like SysV w/ SAVED_IDS
 383 *
 384 * SMP: Same implicit races as above.
 385 */
 386SYSCALL_DEFINE1(setgid, gid_t, gid)
 387{
 388        struct user_namespace *ns = current_user_ns();
 389        const struct cred *old;
 390        struct cred *new;
 391        int retval;
 392        kgid_t kgid;
 393
 394        kgid = make_kgid(ns, gid);
 395        if (!gid_valid(kgid))
 396                return -EINVAL;
 397
 398        new = prepare_creds();
 399        if (!new)
 400                return -ENOMEM;
 401        old = current_cred();
 402
 403        retval = -EPERM;
 404        if (ns_capable(old->user_ns, CAP_SETGID))
 405                new->gid = new->egid = new->sgid = new->fsgid = kgid;
 406        else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 407                new->egid = new->fsgid = kgid;
 408        else
 409                goto error;
 410
 411        return commit_creds(new);
 412
 413error:
 414        abort_creds(new);
 415        return retval;
 416}
 417
 418/*
 419 * change the user struct in a credentials set to match the new UID
 420 */
 421static int set_user(struct cred *new)
 422{
 423        struct user_struct *new_user;
 424
 425        new_user = alloc_uid(new->uid);
 426        if (!new_user)
 427                return -EAGAIN;
 428
 429        /*
 430         * We don't fail in case of NPROC limit excess here because too many
 431         * poorly written programs don't check set*uid() return code, assuming
 432         * it never fails if called by root.  We may still enforce NPROC limit
 433         * for programs doing set*uid()+execve() by harmlessly deferring the
 434         * failure to the execve() stage.
 435         */
 436        if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 437                        new_user != INIT_USER)
 438                current->flags |= PF_NPROC_EXCEEDED;
 439        else
 440                current->flags &= ~PF_NPROC_EXCEEDED;
 441
 442        free_uid(new->user);
 443        new->user = new_user;
 444        return 0;
 445}
 446
 447/*
 448 * Unprivileged users may change the real uid to the effective uid
 449 * or vice versa.  (BSD-style)
 450 *
 451 * If you set the real uid at all, or set the effective uid to a value not
 452 * equal to the real uid, then the saved uid is set to the new effective uid.
 453 *
 454 * This makes it possible for a setuid program to completely drop its
 455 * privileges, which is often a useful assertion to make when you are doing
 456 * a security audit over a program.
 457 *
 458 * The general idea is that a program which uses just setreuid() will be
 459 * 100% compatible with BSD.  A program which uses just setuid() will be
 460 * 100% compatible with POSIX with saved IDs.
 461 */
 462SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 463{
 464        struct user_namespace *ns = current_user_ns();
 465        const struct cred *old;
 466        struct cred *new;
 467        int retval;
 468        kuid_t kruid, keuid;
 469
 470        kruid = make_kuid(ns, ruid);
 471        keuid = make_kuid(ns, euid);
 472
 473        if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 474                return -EINVAL;
 475        if ((euid != (uid_t) -1) && !uid_valid(keuid))
 476                return -EINVAL;
 477
 478        new = prepare_creds();
 479        if (!new)
 480                return -ENOMEM;
 481        old = current_cred();
 482
 483        retval = -EPERM;
 484        if (ruid != (uid_t) -1) {
 485                new->uid = kruid;
 486                if (!uid_eq(old->uid, kruid) &&
 487                    !uid_eq(old->euid, kruid) &&
 488                    !ns_capable(old->user_ns, CAP_SETUID))
 489                        goto error;
 490        }
 491
 492        if (euid != (uid_t) -1) {
 493                new->euid = keuid;
 494                if (!uid_eq(old->uid, keuid) &&
 495                    !uid_eq(old->euid, keuid) &&
 496                    !uid_eq(old->suid, keuid) &&
 497                    !ns_capable(old->user_ns, CAP_SETUID))
 498                        goto error;
 499        }
 500
 501        if (!uid_eq(new->uid, old->uid)) {
 502                retval = set_user(new);
 503                if (retval < 0)
 504                        goto error;
 505        }
 506        if (ruid != (uid_t) -1 ||
 507            (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 508                new->suid = new->euid;
 509        new->fsuid = new->euid;
 510
 511        retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 512        if (retval < 0)
 513                goto error;
 514
 515        return commit_creds(new);
 516
 517error:
 518        abort_creds(new);
 519        return retval;
 520}
 521
 522/*
 523 * setuid() is implemented like SysV with SAVED_IDS
 524 *
 525 * Note that SAVED_ID's is deficient in that a setuid root program
 526 * like sendmail, for example, cannot set its uid to be a normal
 527 * user and then switch back, because if you're root, setuid() sets
 528 * the saved uid too.  If you don't like this, blame the bright people
 529 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 530 * will allow a root program to temporarily drop privileges and be able to
 531 * regain them by swapping the real and effective uid.
 532 */
 533SYSCALL_DEFINE1(setuid, uid_t, uid)
 534{
 535        struct user_namespace *ns = current_user_ns();
 536        const struct cred *old;
 537        struct cred *new;
 538        int retval;
 539        kuid_t kuid;
 540
 541        kuid = make_kuid(ns, uid);
 542        if (!uid_valid(kuid))
 543                return -EINVAL;
 544
 545        new = prepare_creds();
 546        if (!new)
 547                return -ENOMEM;
 548        old = current_cred();
 549
 550        retval = -EPERM;
 551        if (ns_capable(old->user_ns, CAP_SETUID)) {
 552                new->suid = new->uid = kuid;
 553                if (!uid_eq(kuid, old->uid)) {
 554                        retval = set_user(new);
 555                        if (retval < 0)
 556                                goto error;
 557                }
 558        } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 559                goto error;
 560        }
 561
 562        new->fsuid = new->euid = kuid;
 563
 564        retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 565        if (retval < 0)
 566                goto error;
 567
 568        return commit_creds(new);
 569
 570error:
 571        abort_creds(new);
 572        return retval;
 573}
 574
 575
 576/*
 577 * This function implements a generic ability to update ruid, euid,
 578 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 579 */
 580SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 581{
 582        struct user_namespace *ns = current_user_ns();
 583        const struct cred *old;
 584        struct cred *new;
 585        int retval;
 586        kuid_t kruid, keuid, ksuid;
 587
 588        kruid = make_kuid(ns, ruid);
 589        keuid = make_kuid(ns, euid);
 590        ksuid = make_kuid(ns, suid);
 591
 592        if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 593                return -EINVAL;
 594
 595        if ((euid != (uid_t) -1) && !uid_valid(keuid))
 596                return -EINVAL;
 597
 598        if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 599                return -EINVAL;
 600
 601        new = prepare_creds();
 602        if (!new)
 603                return -ENOMEM;
 604
 605        old = current_cred();
 606
 607        retval = -EPERM;
 608        if (!ns_capable(old->user_ns, CAP_SETUID)) {
 609                if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 610                    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 611                        goto error;
 612                if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 613                    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 614                        goto error;
 615                if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 616                    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 617                        goto error;
 618        }
 619
 620        if (ruid != (uid_t) -1) {
 621                new->uid = kruid;
 622                if (!uid_eq(kruid, old->uid)) {
 623                        retval = set_user(new);
 624                        if (retval < 0)
 625                                goto error;
 626                }
 627        }
 628        if (euid != (uid_t) -1)
 629                new->euid = keuid;
 630        if (suid != (uid_t) -1)
 631                new->suid = ksuid;
 632        new->fsuid = new->euid;
 633
 634        retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 635        if (retval < 0)
 636                goto error;
 637
 638        return commit_creds(new);
 639
 640error:
 641        abort_creds(new);
 642        return retval;
 643}
 644
 645SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 646{
 647        const struct cred *cred = current_cred();
 648        int retval;
 649        uid_t ruid, euid, suid;
 650
 651        ruid = from_kuid_munged(cred->user_ns, cred->uid);
 652        euid = from_kuid_munged(cred->user_ns, cred->euid);
 653        suid = from_kuid_munged(cred->user_ns, cred->suid);
 654
 655        retval = put_user(ruid, ruidp);
 656        if (!retval) {
 657                retval = put_user(euid, euidp);
 658                if (!retval)
 659                        return put_user(suid, suidp);
 660        }
 661        return retval;
 662}
 663
 664/*
 665 * Same as above, but for rgid, egid, sgid.
 666 */
 667SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 668{
 669        struct user_namespace *ns = current_user_ns();
 670        const struct cred *old;
 671        struct cred *new;
 672        int retval;
 673        kgid_t krgid, kegid, ksgid;
 674
 675        krgid = make_kgid(ns, rgid);
 676        kegid = make_kgid(ns, egid);
 677        ksgid = make_kgid(ns, sgid);
 678
 679        if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 680                return -EINVAL;
 681        if ((egid != (gid_t) -1) && !gid_valid(kegid))
 682                return -EINVAL;
 683        if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 684                return -EINVAL;
 685
 686        new = prepare_creds();
 687        if (!new)
 688                return -ENOMEM;
 689        old = current_cred();
 690
 691        retval = -EPERM;
 692        if (!ns_capable(old->user_ns, CAP_SETGID)) {
 693                if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 694                    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 695                        goto error;
 696                if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 697                    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 698                        goto error;
 699                if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 700                    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 701                        goto error;
 702        }
 703
 704        if (rgid != (gid_t) -1)
 705                new->gid = krgid;
 706        if (egid != (gid_t) -1)
 707                new->egid = kegid;
 708        if (sgid != (gid_t) -1)
 709                new->sgid = ksgid;
 710        new->fsgid = new->egid;
 711
 712        return commit_creds(new);
 713
 714error:
 715        abort_creds(new);
 716        return retval;
 717}
 718
 719SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 720{
 721        const struct cred *cred = current_cred();
 722        int retval;
 723        gid_t rgid, egid, sgid;
 724
 725        rgid = from_kgid_munged(cred->user_ns, cred->gid);
 726        egid = from_kgid_munged(cred->user_ns, cred->egid);
 727        sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 728
 729        retval = put_user(rgid, rgidp);
 730        if (!retval) {
 731                retval = put_user(egid, egidp);
 732                if (!retval)
 733                        retval = put_user(sgid, sgidp);
 734        }
 735
 736        return retval;
 737}
 738
 739
 740/*
 741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 743 * whatever uid it wants to). It normally shadows "euid", except when
 744 * explicitly set by setfsuid() or for access..
 745 */
 746SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 747{
 748        const struct cred *old;
 749        struct cred *new;
 750        uid_t old_fsuid;
 751        kuid_t kuid;
 752
 753        old = current_cred();
 754        old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 755
 756        kuid = make_kuid(old->user_ns, uid);
 757        if (!uid_valid(kuid))
 758                return old_fsuid;
 759
 760        new = prepare_creds();
 761        if (!new)
 762                return old_fsuid;
 763
 764        if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 765            uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 766            ns_capable(old->user_ns, CAP_SETUID)) {
 767                if (!uid_eq(kuid, old->fsuid)) {
 768                        new->fsuid = kuid;
 769                        if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 770                                goto change_okay;
 771                }
 772        }
 773
 774        abort_creds(new);
 775        return old_fsuid;
 776
 777change_okay:
 778        commit_creds(new);
 779        return old_fsuid;
 780}
 781
 782/*
 783 * Samma på svenska..
 784 */
 785SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 786{
 787        const struct cred *old;
 788        struct cred *new;
 789        gid_t old_fsgid;
 790        kgid_t kgid;
 791
 792        old = current_cred();
 793        old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 794
 795        kgid = make_kgid(old->user_ns, gid);
 796        if (!gid_valid(kgid))
 797                return old_fsgid;
 798
 799        new = prepare_creds();
 800        if (!new)
 801                return old_fsgid;
 802
 803        if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 804            gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 805            ns_capable(old->user_ns, CAP_SETGID)) {
 806                if (!gid_eq(kgid, old->fsgid)) {
 807                        new->fsgid = kgid;
 808                        goto change_okay;
 809                }
 810        }
 811
 812        abort_creds(new);
 813        return old_fsgid;
 814
 815change_okay:
 816        commit_creds(new);
 817        return old_fsgid;
 818}
 819#endif /* CONFIG_MULTIUSER */
 820
 821/**
 822 * sys_getpid - return the thread group id of the current process
 823 *
 824 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 825 * the pid are identical unless CLONE_THREAD was specified on clone() in
 826 * which case the tgid is the same in all threads of the same group.
 827 *
 828 * This is SMP safe as current->tgid does not change.
 829 */
 830SYSCALL_DEFINE0(getpid)
 831{
 832        return task_tgid_vnr(current);
 833}
 834
 835/* Thread ID - the internal kernel "pid" */
 836SYSCALL_DEFINE0(gettid)
 837{
 838        return task_pid_vnr(current);
 839}
 840
 841/*
 842 * Accessing ->real_parent is not SMP-safe, it could
 843 * change from under us. However, we can use a stale
 844 * value of ->real_parent under rcu_read_lock(), see
 845 * release_task()->call_rcu(delayed_put_task_struct).
 846 */
 847SYSCALL_DEFINE0(getppid)
 848{
 849        int pid;
 850
 851        rcu_read_lock();
 852        pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 853        rcu_read_unlock();
 854
 855        return pid;
 856}
 857
 858SYSCALL_DEFINE0(getuid)
 859{
 860        /* Only we change this so SMP safe */
 861        return from_kuid_munged(current_user_ns(), current_uid());
 862}
 863
 864SYSCALL_DEFINE0(geteuid)
 865{
 866        /* Only we change this so SMP safe */
 867        return from_kuid_munged(current_user_ns(), current_euid());
 868}
 869
 870SYSCALL_DEFINE0(getgid)
 871{
 872        /* Only we change this so SMP safe */
 873        return from_kgid_munged(current_user_ns(), current_gid());
 874}
 875
 876SYSCALL_DEFINE0(getegid)
 877{
 878        /* Only we change this so SMP safe */
 879        return from_kgid_munged(current_user_ns(), current_egid());
 880}
 881
 882void do_sys_times(struct tms *tms)
 883{
 884        cputime_t tgutime, tgstime, cutime, cstime;
 885
 886        thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 887        cutime = current->signal->cutime;
 888        cstime = current->signal->cstime;
 889        tms->tms_utime = cputime_to_clock_t(tgutime);
 890        tms->tms_stime = cputime_to_clock_t(tgstime);
 891        tms->tms_cutime = cputime_to_clock_t(cutime);
 892        tms->tms_cstime = cputime_to_clock_t(cstime);
 893}
 894
 895SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 896{
 897        if (tbuf) {
 898                struct tms tmp;
 899
 900                do_sys_times(&tmp);
 901                if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 902                        return -EFAULT;
 903        }
 904        force_successful_syscall_return();
 905        return (long) jiffies_64_to_clock_t(get_jiffies_64());
 906}
 907
 908/*
 909 * This needs some heavy checking ...
 910 * I just haven't the stomach for it. I also don't fully
 911 * understand sessions/pgrp etc. Let somebody who does explain it.
 912 *
 913 * OK, I think I have the protection semantics right.... this is really
 914 * only important on a multi-user system anyway, to make sure one user
 915 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 916 *
 917 * !PF_FORKNOEXEC check to conform completely to POSIX.
 918 */
 919SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 920{
 921        struct task_struct *p;
 922        struct task_struct *group_leader = current->group_leader;
 923        struct pid *pgrp;
 924        int err;
 925
 926        if (!pid)
 927                pid = task_pid_vnr(group_leader);
 928        if (!pgid)
 929                pgid = pid;
 930        if (pgid < 0)
 931                return -EINVAL;
 932        rcu_read_lock();
 933
 934        /* From this point forward we keep holding onto the tasklist lock
 935         * so that our parent does not change from under us. -DaveM
 936         */
 937        write_lock_irq(&tasklist_lock);
 938
 939        err = -ESRCH;
 940        p = find_task_by_vpid(pid);
 941        if (!p)
 942                goto out;
 943
 944        err = -EINVAL;
 945        if (!thread_group_leader(p))
 946                goto out;
 947
 948        if (same_thread_group(p->real_parent, group_leader)) {
 949                err = -EPERM;
 950                if (task_session(p) != task_session(group_leader))
 951                        goto out;
 952                err = -EACCES;
 953                if (!(p->flags & PF_FORKNOEXEC))
 954                        goto out;
 955        } else {
 956                err = -ESRCH;
 957                if (p != group_leader)
 958                        goto out;
 959        }
 960
 961        err = -EPERM;
 962        if (p->signal->leader)
 963                goto out;
 964
 965        pgrp = task_pid(p);
 966        if (pgid != pid) {
 967                struct task_struct *g;
 968
 969                pgrp = find_vpid(pgid);
 970                g = pid_task(pgrp, PIDTYPE_PGID);
 971                if (!g || task_session(g) != task_session(group_leader))
 972                        goto out;
 973        }
 974
 975        err = security_task_setpgid(p, pgid);
 976        if (err)
 977                goto out;
 978
 979        if (task_pgrp(p) != pgrp)
 980                change_pid(p, PIDTYPE_PGID, pgrp);
 981
 982        err = 0;
 983out:
 984        /* All paths lead to here, thus we are safe. -DaveM */
 985        write_unlock_irq(&tasklist_lock);
 986        rcu_read_unlock();
 987        return err;
 988}
 989
 990SYSCALL_DEFINE1(getpgid, pid_t, pid)
 991{
 992        struct task_struct *p;
 993        struct pid *grp;
 994        int retval;
 995
 996        rcu_read_lock();
 997        if (!pid)
 998                grp = task_pgrp(current);
 999        else {
1000                retval = -ESRCH;
1001                p = find_task_by_vpid(pid);
1002                if (!p)
1003                        goto out;
1004                grp = task_pgrp(p);
1005                if (!grp)
1006                        goto out;
1007
1008                retval = security_task_getpgid(p);
1009                if (retval)
1010                        goto out;
1011        }
1012        retval = pid_vnr(grp);
1013out:
1014        rcu_read_unlock();
1015        return retval;
1016}
1017
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
1020SYSCALL_DEFINE0(getpgrp)
1021{
1022        return sys_getpgid(0);
1023}
1024
1025#endif
1026
1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1028{
1029        struct task_struct *p;
1030        struct pid *sid;
1031        int retval;
1032
1033        rcu_read_lock();
1034        if (!pid)
1035                sid = task_session(current);
1036        else {
1037                retval = -ESRCH;
1038                p = find_task_by_vpid(pid);
1039                if (!p)
1040                        goto out;
1041                sid = task_session(p);
1042                if (!sid)
1043                        goto out;
1044
1045                retval = security_task_getsid(p);
1046                if (retval)
1047                        goto out;
1048        }
1049        retval = pid_vnr(sid);
1050out:
1051        rcu_read_unlock();
1052        return retval;
1053}
1054
1055static void set_special_pids(struct pid *pid)
1056{
1057        struct task_struct *curr = current->group_leader;
1058
1059        if (task_session(curr) != pid)
1060                change_pid(curr, PIDTYPE_SID, pid);
1061
1062        if (task_pgrp(curr) != pid)
1063                change_pid(curr, PIDTYPE_PGID, pid);
1064}
1065
1066SYSCALL_DEFINE0(setsid)
1067{
1068        struct task_struct *group_leader = current->group_leader;
1069        struct pid *sid = task_pid(group_leader);
1070        pid_t session = pid_vnr(sid);
1071        int err = -EPERM;
1072
1073        write_lock_irq(&tasklist_lock);
1074        /* Fail if I am already a session leader */
1075        if (group_leader->signal->leader)
1076                goto out;
1077
1078        /* Fail if a process group id already exists that equals the
1079         * proposed session id.
1080         */
1081        if (pid_task(sid, PIDTYPE_PGID))
1082                goto out;
1083
1084        group_leader->signal->leader = 1;
1085        set_special_pids(sid);
1086
1087        proc_clear_tty(group_leader);
1088
1089        err = session;
1090out:
1091        write_unlock_irq(&tasklist_lock);
1092        if (err > 0) {
1093                proc_sid_connector(group_leader);
1094                sched_autogroup_create_attach(group_leader);
1095        }
1096        return err;
1097}
1098
1099DECLARE_RWSEM(uts_sem);
1100
1101#ifdef COMPAT_UTS_MACHINE
1102#define override_architecture(name) \
1103        (personality(current->personality) == PER_LINUX32 && \
1104         copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1105                      sizeof(COMPAT_UTS_MACHINE)))
1106#else
1107#define override_architecture(name)     0
1108#endif
1109
1110/*
1111 * Work around broken programs that cannot handle "Linux 3.0".
1112 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1113 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1114 */
1115static int override_release(char __user *release, size_t len)
1116{
1117        int ret = 0;
1118
1119        if (current->personality & UNAME26) {
1120                const char *rest = UTS_RELEASE;
1121                char buf[65] = { 0 };
1122                int ndots = 0;
1123                unsigned v;
1124                size_t copy;
1125
1126                while (*rest) {
1127                        if (*rest == '.' && ++ndots >= 3)
1128                                break;
1129                        if (!isdigit(*rest) && *rest != '.')
1130                                break;
1131                        rest++;
1132                }
1133                v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1134                copy = clamp_t(size_t, len, 1, sizeof(buf));
1135                copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1136                ret = copy_to_user(release, buf, copy + 1);
1137        }
1138        return ret;
1139}
1140
1141SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1142{
1143        int errno = 0;
1144
1145        down_read(&uts_sem);
1146        if (copy_to_user(name, utsname(), sizeof *name))
1147                errno = -EFAULT;
1148        up_read(&uts_sem);
1149
1150        if (!errno && override_release(name->release, sizeof(name->release)))
1151                errno = -EFAULT;
1152        if (!errno && override_architecture(name))
1153                errno = -EFAULT;
1154        return errno;
1155}
1156
1157#ifdef __ARCH_WANT_SYS_OLD_UNAME
1158/*
1159 * Old cruft
1160 */
1161SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1162{
1163        int error = 0;
1164
1165        if (!name)
1166                return -EFAULT;
1167
1168        down_read(&uts_sem);
1169        if (copy_to_user(name, utsname(), sizeof(*name)))
1170                error = -EFAULT;
1171        up_read(&uts_sem);
1172
1173        if (!error && override_release(name->release, sizeof(name->release)))
1174                error = -EFAULT;
1175        if (!error && override_architecture(name))
1176                error = -EFAULT;
1177        return error;
1178}
1179
1180SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1181{
1182        int error;
1183
1184        if (!name)
1185                return -EFAULT;
1186        if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1187                return -EFAULT;
1188
1189        down_read(&uts_sem);
1190        error = __copy_to_user(&name->sysname, &utsname()->sysname,
1191                               __OLD_UTS_LEN);
1192        error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1193        error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1194                                __OLD_UTS_LEN);
1195        error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1196        error |= __copy_to_user(&name->release, &utsname()->release,
1197                                __OLD_UTS_LEN);
1198        error |= __put_user(0, name->release + __OLD_UTS_LEN);
1199        error |= __copy_to_user(&name->version, &utsname()->version,
1200                                __OLD_UTS_LEN);
1201        error |= __put_user(0, name->version + __OLD_UTS_LEN);
1202        error |= __copy_to_user(&name->machine, &utsname()->machine,
1203                                __OLD_UTS_LEN);
1204        error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1205        up_read(&uts_sem);
1206
1207        if (!error && override_architecture(name))
1208                error = -EFAULT;
1209        if (!error && override_release(name->release, sizeof(name->release)))
1210                error = -EFAULT;
1211        return error ? -EFAULT : 0;
1212}
1213#endif
1214
1215SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1216{
1217        int errno;
1218        char tmp[__NEW_UTS_LEN];
1219
1220        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1221                return -EPERM;
1222
1223        if (len < 0 || len > __NEW_UTS_LEN)
1224                return -EINVAL;
1225        down_write(&uts_sem);
1226        errno = -EFAULT;
1227        if (!copy_from_user(tmp, name, len)) {
1228                struct new_utsname *u = utsname();
1229
1230                memcpy(u->nodename, tmp, len);
1231                memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1232                errno = 0;
1233                uts_proc_notify(UTS_PROC_HOSTNAME);
1234        }
1235        up_write(&uts_sem);
1236        return errno;
1237}
1238
1239#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1240
1241SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1242{
1243        int i, errno;
1244        struct new_utsname *u;
1245
1246        if (len < 0)
1247                return -EINVAL;
1248        down_read(&uts_sem);
1249        u = utsname();
1250        i = 1 + strlen(u->nodename);
1251        if (i > len)
1252                i = len;
1253        errno = 0;
1254        if (copy_to_user(name, u->nodename, i))
1255                errno = -EFAULT;
1256        up_read(&uts_sem);
1257        return errno;
1258}
1259
1260#endif
1261
1262/*
1263 * Only setdomainname; getdomainname can be implemented by calling
1264 * uname()
1265 */
1266SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1267{
1268        int errno;
1269        char tmp[__NEW_UTS_LEN];
1270
1271        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1272                return -EPERM;
1273        if (len < 0 || len > __NEW_UTS_LEN)
1274                return -EINVAL;
1275
1276        down_write(&uts_sem);
1277        errno = -EFAULT;
1278        if (!copy_from_user(tmp, name, len)) {
1279                struct new_utsname *u = utsname();
1280
1281                memcpy(u->domainname, tmp, len);
1282                memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1283                errno = 0;
1284                uts_proc_notify(UTS_PROC_DOMAINNAME);
1285        }
1286        up_write(&uts_sem);
1287        return errno;
1288}
1289
1290SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1291{
1292        struct rlimit value;
1293        int ret;
1294
1295        ret = do_prlimit(current, resource, NULL, &value);
1296        if (!ret)
1297                ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1298
1299        return ret;
1300}
1301
1302#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1303
1304/*
1305 *      Back compatibility for getrlimit. Needed for some apps.
1306 */
1307SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1308                struct rlimit __user *, rlim)
1309{
1310        struct rlimit x;
1311        if (resource >= RLIM_NLIMITS)
1312                return -EINVAL;
1313
1314        task_lock(current->group_leader);
1315        x = current->signal->rlim[resource];
1316        task_unlock(current->group_leader);
1317        if (x.rlim_cur > 0x7FFFFFFF)
1318                x.rlim_cur = 0x7FFFFFFF;
1319        if (x.rlim_max > 0x7FFFFFFF)
1320                x.rlim_max = 0x7FFFFFFF;
1321        return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1322}
1323
1324#endif
1325
1326static inline bool rlim64_is_infinity(__u64 rlim64)
1327{
1328#if BITS_PER_LONG < 64
1329        return rlim64 >= ULONG_MAX;
1330#else
1331        return rlim64 == RLIM64_INFINITY;
1332#endif
1333}
1334
1335static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1336{
1337        if (rlim->rlim_cur == RLIM_INFINITY)
1338                rlim64->rlim_cur = RLIM64_INFINITY;
1339        else
1340                rlim64->rlim_cur = rlim->rlim_cur;
1341        if (rlim->rlim_max == RLIM_INFINITY)
1342                rlim64->rlim_max = RLIM64_INFINITY;
1343        else
1344                rlim64->rlim_max = rlim->rlim_max;
1345}
1346
1347static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1348{
1349        if (rlim64_is_infinity(rlim64->rlim_cur))
1350                rlim->rlim_cur = RLIM_INFINITY;
1351        else
1352                rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1353        if (rlim64_is_infinity(rlim64->rlim_max))
1354                rlim->rlim_max = RLIM_INFINITY;
1355        else
1356                rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1357}
1358
1359/* make sure you are allowed to change @tsk limits before calling this */
1360int do_prlimit(struct task_struct *tsk, unsigned int resource,
1361                struct rlimit *new_rlim, struct rlimit *old_rlim)
1362{
1363        struct rlimit *rlim;
1364        int retval = 0;
1365
1366        if (resource >= RLIM_NLIMITS)
1367                return -EINVAL;
1368        if (new_rlim) {
1369                if (new_rlim->rlim_cur > new_rlim->rlim_max)
1370                        return -EINVAL;
1371                if (resource == RLIMIT_NOFILE &&
1372                                new_rlim->rlim_max > sysctl_nr_open)
1373                        return -EPERM;
1374        }
1375
1376        /* protect tsk->signal and tsk->sighand from disappearing */
1377        read_lock(&tasklist_lock);
1378        if (!tsk->sighand) {
1379                retval = -ESRCH;
1380                goto out;
1381        }
1382
1383        rlim = tsk->signal->rlim + resource;
1384        task_lock(tsk->group_leader);
1385        if (new_rlim) {
1386                /* Keep the capable check against init_user_ns until
1387                   cgroups can contain all limits */
1388                if (new_rlim->rlim_max > rlim->rlim_max &&
1389                                !capable(CAP_SYS_RESOURCE))
1390                        retval = -EPERM;
1391                if (!retval)
1392                        retval = security_task_setrlimit(tsk->group_leader,
1393                                        resource, new_rlim);
1394                if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1395                        /*
1396                         * The caller is asking for an immediate RLIMIT_CPU
1397                         * expiry.  But we use the zero value to mean "it was
1398                         * never set".  So let's cheat and make it one second
1399                         * instead
1400                         */
1401                        new_rlim->rlim_cur = 1;
1402                }
1403        }
1404        if (!retval) {
1405                if (old_rlim)
1406                        *old_rlim = *rlim;
1407                if (new_rlim)
1408                        *rlim = *new_rlim;
1409        }
1410        task_unlock(tsk->group_leader);
1411
1412        /*
1413         * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1414         * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1415         * very long-standing error, and fixing it now risks breakage of
1416         * applications, so we live with it
1417         */
1418         if (!retval && new_rlim && resource == RLIMIT_CPU &&
1419                         new_rlim->rlim_cur != RLIM_INFINITY)
1420                update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1421out:
1422        read_unlock(&tasklist_lock);
1423        return retval;
1424}
1425
1426/* rcu lock must be held */
1427static int check_prlimit_permission(struct task_struct *task)
1428{
1429        const struct cred *cred = current_cred(), *tcred;
1430
1431        if (current == task)
1432                return 0;
1433
1434        tcred = __task_cred(task);
1435        if (uid_eq(cred->uid, tcred->euid) &&
1436            uid_eq(cred->uid, tcred->suid) &&
1437            uid_eq(cred->uid, tcred->uid)  &&
1438            gid_eq(cred->gid, tcred->egid) &&
1439            gid_eq(cred->gid, tcred->sgid) &&
1440            gid_eq(cred->gid, tcred->gid))
1441                return 0;
1442        if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1443                return 0;
1444
1445        return -EPERM;
1446}
1447
1448SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1449                const struct rlimit64 __user *, new_rlim,
1450                struct rlimit64 __user *, old_rlim)
1451{
1452        struct rlimit64 old64, new64;
1453        struct rlimit old, new;
1454        struct task_struct *tsk;
1455        int ret;
1456
1457        if (new_rlim) {
1458                if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1459                        return -EFAULT;
1460                rlim64_to_rlim(&new64, &new);
1461        }
1462
1463        rcu_read_lock();
1464        tsk = pid ? find_task_by_vpid(pid) : current;
1465        if (!tsk) {
1466                rcu_read_unlock();
1467                return -ESRCH;
1468        }
1469        ret = check_prlimit_permission(tsk);
1470        if (ret) {
1471                rcu_read_unlock();
1472                return ret;
1473        }
1474        get_task_struct(tsk);
1475        rcu_read_unlock();
1476
1477        ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1478                        old_rlim ? &old : NULL);
1479
1480        if (!ret && old_rlim) {
1481                rlim_to_rlim64(&old, &old64);
1482                if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1483                        ret = -EFAULT;
1484        }
1485
1486        put_task_struct(tsk);
1487        return ret;
1488}
1489
1490SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1491{
1492        struct rlimit new_rlim;
1493
1494        if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1495                return -EFAULT;
1496        return do_prlimit(current, resource, &new_rlim, NULL);
1497}
1498
1499/*
1500 * It would make sense to put struct rusage in the task_struct,
1501 * except that would make the task_struct be *really big*.  After
1502 * task_struct gets moved into malloc'ed memory, it would
1503 * make sense to do this.  It will make moving the rest of the information
1504 * a lot simpler!  (Which we're not doing right now because we're not
1505 * measuring them yet).
1506 *
1507 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1508 * races with threads incrementing their own counters.  But since word
1509 * reads are atomic, we either get new values or old values and we don't
1510 * care which for the sums.  We always take the siglock to protect reading
1511 * the c* fields from p->signal from races with exit.c updating those
1512 * fields when reaping, so a sample either gets all the additions of a
1513 * given child after it's reaped, or none so this sample is before reaping.
1514 *
1515 * Locking:
1516 * We need to take the siglock for CHILDEREN, SELF and BOTH
1517 * for  the cases current multithreaded, non-current single threaded
1518 * non-current multithreaded.  Thread traversal is now safe with
1519 * the siglock held.
1520 * Strictly speaking, we donot need to take the siglock if we are current and
1521 * single threaded,  as no one else can take our signal_struct away, no one
1522 * else can  reap the  children to update signal->c* counters, and no one else
1523 * can race with the signal-> fields. If we do not take any lock, the
1524 * signal-> fields could be read out of order while another thread was just
1525 * exiting. So we should  place a read memory barrier when we avoid the lock.
1526 * On the writer side,  write memory barrier is implied in  __exit_signal
1527 * as __exit_signal releases  the siglock spinlock after updating the signal->
1528 * fields. But we don't do this yet to keep things simple.
1529 *
1530 */
1531
1532static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1533{
1534        r->ru_nvcsw += t->nvcsw;
1535        r->ru_nivcsw += t->nivcsw;
1536        r->ru_minflt += t->min_flt;
1537        r->ru_majflt += t->maj_flt;
1538        r->ru_inblock += task_io_get_inblock(t);
1539        r->ru_oublock += task_io_get_oublock(t);
1540}
1541
1542static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1543{
1544        struct task_struct *t;
1545        unsigned long flags;
1546        cputime_t tgutime, tgstime, utime, stime;
1547        unsigned long maxrss = 0;
1548
1549        memset((char *)r, 0, sizeof (*r));
1550        utime = stime = 0;
1551
1552        if (who == RUSAGE_THREAD) {
1553                task_cputime_adjusted(current, &utime, &stime);
1554                accumulate_thread_rusage(p, r);
1555                maxrss = p->signal->maxrss;
1556                goto out;
1557        }
1558
1559        if (!lock_task_sighand(p, &flags))
1560                return;
1561
1562        switch (who) {
1563        case RUSAGE_BOTH:
1564        case RUSAGE_CHILDREN:
1565                utime = p->signal->cutime;
1566                stime = p->signal->cstime;
1567                r->ru_nvcsw = p->signal->cnvcsw;
1568                r->ru_nivcsw = p->signal->cnivcsw;
1569                r->ru_minflt = p->signal->cmin_flt;
1570                r->ru_majflt = p->signal->cmaj_flt;
1571                r->ru_inblock = p->signal->cinblock;
1572                r->ru_oublock = p->signal->coublock;
1573                maxrss = p->signal->cmaxrss;
1574
1575                if (who == RUSAGE_CHILDREN)
1576                        break;
1577
1578        case RUSAGE_SELF:
1579                thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1580                utime += tgutime;
1581                stime += tgstime;
1582                r->ru_nvcsw += p->signal->nvcsw;
1583                r->ru_nivcsw += p->signal->nivcsw;
1584                r->ru_minflt += p->signal->min_flt;
1585                r->ru_majflt += p->signal->maj_flt;
1586                r->ru_inblock += p->signal->inblock;
1587                r->ru_oublock += p->signal->oublock;
1588                if (maxrss < p->signal->maxrss)
1589                        maxrss = p->signal->maxrss;
1590                t = p;
1591                do {
1592                        accumulate_thread_rusage(t, r);
1593                } while_each_thread(p, t);
1594                break;
1595
1596        default:
1597                BUG();
1598        }
1599        unlock_task_sighand(p, &flags);
1600
1601out:
1602        cputime_to_timeval(utime, &r->ru_utime);
1603        cputime_to_timeval(stime, &r->ru_stime);
1604
1605        if (who != RUSAGE_CHILDREN) {
1606                struct mm_struct *mm = get_task_mm(p);
1607
1608                if (mm) {
1609                        setmax_mm_hiwater_rss(&maxrss, mm);
1610                        mmput(mm);
1611                }
1612        }
1613        r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1614}
1615
1616int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1617{
1618        struct rusage r;
1619
1620        k_getrusage(p, who, &r);
1621        return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1622}
1623
1624SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1625{
1626        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1627            who != RUSAGE_THREAD)
1628                return -EINVAL;
1629        return getrusage(current, who, ru);
1630}
1631
1632#ifdef CONFIG_COMPAT
1633COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1634{
1635        struct rusage r;
1636
1637        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1638            who != RUSAGE_THREAD)
1639                return -EINVAL;
1640
1641        k_getrusage(current, who, &r);
1642        return put_compat_rusage(&r, ru);
1643}
1644#endif
1645
1646SYSCALL_DEFINE1(umask, int, mask)
1647{
1648        mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1649        return mask;
1650}
1651
1652static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1653{
1654        struct fd exe;
1655        struct file *old_exe, *exe_file;
1656        struct inode *inode;
1657        int err;
1658
1659        exe = fdget(fd);
1660        if (!exe.file)
1661                return -EBADF;
1662
1663        inode = file_inode(exe.file);
1664
1665        /*
1666         * Because the original mm->exe_file points to executable file, make
1667         * sure that this one is executable as well, to avoid breaking an
1668         * overall picture.
1669         */
1670        err = -EACCES;
1671        if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1672                goto exit;
1673
1674        err = inode_permission(inode, MAY_EXEC);
1675        if (err)
1676                goto exit;
1677
1678        /*
1679         * Forbid mm->exe_file change if old file still mapped.
1680         */
1681        exe_file = get_mm_exe_file(mm);
1682        err = -EBUSY;
1683        if (exe_file) {
1684                struct vm_area_struct *vma;
1685
1686                down_read(&mm->mmap_sem);
1687                for (vma = mm->mmap; vma; vma = vma->vm_next) {
1688                        if (!vma->vm_file)
1689                                continue;
1690                        if (path_equal(&vma->vm_file->f_path,
1691                                       &exe_file->f_path))
1692                                goto exit_err;
1693                }
1694
1695                up_read(&mm->mmap_sem);
1696                fput(exe_file);
1697        }
1698
1699        /*
1700         * The symlink can be changed only once, just to disallow arbitrary
1701         * transitions malicious software might bring in. This means one
1702         * could make a snapshot over all processes running and monitor
1703         * /proc/pid/exe changes to notice unusual activity if needed.
1704         */
1705        err = -EPERM;
1706        if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1707                goto exit;
1708
1709        err = 0;
1710        /* set the new file, lockless */
1711        get_file(exe.file);
1712        old_exe = xchg(&mm->exe_file, exe.file);
1713        if (old_exe)
1714                fput(old_exe);
1715exit:
1716        fdput(exe);
1717        return err;
1718exit_err:
1719        up_read(&mm->mmap_sem);
1720        fput(exe_file);
1721        goto exit;
1722}
1723
1724/*
1725 * WARNING: we don't require any capability here so be very careful
1726 * in what is allowed for modification from userspace.
1727 */
1728static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1729{
1730        unsigned long mmap_max_addr = TASK_SIZE;
1731        struct mm_struct *mm = current->mm;
1732        int error = -EINVAL, i;
1733
1734        static const unsigned char offsets[] = {
1735                offsetof(struct prctl_mm_map, start_code),
1736                offsetof(struct prctl_mm_map, end_code),
1737                offsetof(struct prctl_mm_map, start_data),
1738                offsetof(struct prctl_mm_map, end_data),
1739                offsetof(struct prctl_mm_map, start_brk),
1740                offsetof(struct prctl_mm_map, brk),
1741                offsetof(struct prctl_mm_map, start_stack),
1742                offsetof(struct prctl_mm_map, arg_start),
1743                offsetof(struct prctl_mm_map, arg_end),
1744                offsetof(struct prctl_mm_map, env_start),
1745                offsetof(struct prctl_mm_map, env_end),
1746        };
1747
1748        /*
1749         * Make sure the members are not somewhere outside
1750         * of allowed address space.
1751         */
1752        for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1753                u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1754
1755                if ((unsigned long)val >= mmap_max_addr ||
1756                    (unsigned long)val < mmap_min_addr)
1757                        goto out;
1758        }
1759
1760        /*
1761         * Make sure the pairs are ordered.
1762         */
1763#define __prctl_check_order(__m1, __op, __m2)                           \
1764        ((unsigned long)prctl_map->__m1 __op                            \
1765         (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1766        error  = __prctl_check_order(start_code, <, end_code);
1767        error |= __prctl_check_order(start_data, <, end_data);
1768        error |= __prctl_check_order(start_brk, <=, brk);
1769        error |= __prctl_check_order(arg_start, <=, arg_end);
1770        error |= __prctl_check_order(env_start, <=, env_end);
1771        if (error)
1772                goto out;
1773#undef __prctl_check_order
1774
1775        error = -EINVAL;
1776
1777        /*
1778         * @brk should be after @end_data in traditional maps.
1779         */
1780        if (prctl_map->start_brk <= prctl_map->end_data ||
1781            prctl_map->brk <= prctl_map->end_data)
1782                goto out;
1783
1784        /*
1785         * Neither we should allow to override limits if they set.
1786         */
1787        if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1788                              prctl_map->start_brk, prctl_map->end_data,
1789                              prctl_map->start_data))
1790                        goto out;
1791
1792        /*
1793         * Someone is trying to cheat the auxv vector.
1794         */
1795        if (prctl_map->auxv_size) {
1796                if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1797                        goto out;
1798        }
1799
1800        /*
1801         * Finally, make sure the caller has the rights to
1802         * change /proc/pid/exe link: only local root should
1803         * be allowed to.
1804         */
1805        if (prctl_map->exe_fd != (u32)-1) {
1806                struct user_namespace *ns = current_user_ns();
1807                const struct cred *cred = current_cred();
1808
1809                if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1810                    !gid_eq(cred->gid, make_kgid(ns, 0)))
1811                        goto out;
1812        }
1813
1814        error = 0;
1815out:
1816        return error;
1817}
1818
1819#ifdef CONFIG_CHECKPOINT_RESTORE
1820static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1821{
1822        struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1823        unsigned long user_auxv[AT_VECTOR_SIZE];
1824        struct mm_struct *mm = current->mm;
1825        int error;
1826
1827        BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1828        BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1829
1830        if (opt == PR_SET_MM_MAP_SIZE)
1831                return put_user((unsigned int)sizeof(prctl_map),
1832                                (unsigned int __user *)addr);
1833
1834        if (data_size != sizeof(prctl_map))
1835                return -EINVAL;
1836
1837        if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1838                return -EFAULT;
1839
1840        error = validate_prctl_map(&prctl_map);
1841        if (error)
1842                return error;
1843
1844        if (prctl_map.auxv_size) {
1845                memset(user_auxv, 0, sizeof(user_auxv));
1846                if (copy_from_user(user_auxv,
1847                                   (const void __user *)prctl_map.auxv,
1848                                   prctl_map.auxv_size))
1849                        return -EFAULT;
1850
1851                /* Last entry must be AT_NULL as specification requires */
1852                user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1853                user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1854        }
1855
1856        if (prctl_map.exe_fd != (u32)-1) {
1857                error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1858                if (error)
1859                        return error;
1860        }
1861
1862        down_write(&mm->mmap_sem);
1863
1864        /*
1865         * We don't validate if these members are pointing to
1866         * real present VMAs because application may have correspond
1867         * VMAs already unmapped and kernel uses these members for statistics
1868         * output in procfs mostly, except
1869         *
1870         *  - @start_brk/@brk which are used in do_brk but kernel lookups
1871         *    for VMAs when updating these memvers so anything wrong written
1872         *    here cause kernel to swear at userspace program but won't lead
1873         *    to any problem in kernel itself
1874         */
1875
1876        mm->start_code  = prctl_map.start_code;
1877        mm->end_code    = prctl_map.end_code;
1878        mm->start_data  = prctl_map.start_data;
1879        mm->end_data    = prctl_map.end_data;
1880        mm->start_brk   = prctl_map.start_brk;
1881        mm->brk         = prctl_map.brk;
1882        mm->start_stack = prctl_map.start_stack;
1883        mm->arg_start   = prctl_map.arg_start;
1884        mm->arg_end     = prctl_map.arg_end;
1885        mm->env_start   = prctl_map.env_start;
1886        mm->env_end     = prctl_map.env_end;
1887
1888        /*
1889         * Note this update of @saved_auxv is lockless thus
1890         * if someone reads this member in procfs while we're
1891         * updating -- it may get partly updated results. It's
1892         * known and acceptable trade off: we leave it as is to
1893         * not introduce additional locks here making the kernel
1894         * more complex.
1895         */
1896        if (prctl_map.auxv_size)
1897                memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1898
1899        up_write(&mm->mmap_sem);
1900        return 0;
1901}
1902#endif /* CONFIG_CHECKPOINT_RESTORE */
1903
1904static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1905                          unsigned long len)
1906{
1907        /*
1908         * This doesn't move the auxiliary vector itself since it's pinned to
1909         * mm_struct, but it permits filling the vector with new values.  It's
1910         * up to the caller to provide sane values here, otherwise userspace
1911         * tools which use this vector might be unhappy.
1912         */
1913        unsigned long user_auxv[AT_VECTOR_SIZE];
1914
1915        if (len > sizeof(user_auxv))
1916                return -EINVAL;
1917
1918        if (copy_from_user(user_auxv, (const void __user *)addr, len))
1919                return -EFAULT;
1920
1921        /* Make sure the last entry is always AT_NULL */
1922        user_auxv[AT_VECTOR_SIZE - 2] = 0;
1923        user_auxv[AT_VECTOR_SIZE - 1] = 0;
1924
1925        BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1926
1927        task_lock(current);
1928        memcpy(mm->saved_auxv, user_auxv, len);
1929        task_unlock(current);
1930
1931        return 0;
1932}
1933
1934static int prctl_set_mm(int opt, unsigned long addr,
1935                        unsigned long arg4, unsigned long arg5)
1936{
1937        struct mm_struct *mm = current->mm;
1938        struct prctl_mm_map prctl_map;
1939        struct vm_area_struct *vma;
1940        int error;
1941
1942        if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1943                              opt != PR_SET_MM_MAP &&
1944                              opt != PR_SET_MM_MAP_SIZE)))
1945                return -EINVAL;
1946
1947#ifdef CONFIG_CHECKPOINT_RESTORE
1948        if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1949                return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1950#endif
1951
1952        if (!capable(CAP_SYS_RESOURCE))
1953                return -EPERM;
1954
1955        if (opt == PR_SET_MM_EXE_FILE)
1956                return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1957
1958        if (opt == PR_SET_MM_AUXV)
1959                return prctl_set_auxv(mm, addr, arg4);
1960
1961        if (addr >= TASK_SIZE || addr < mmap_min_addr)
1962                return -EINVAL;
1963
1964        error = -EINVAL;
1965
1966        down_write(&mm->mmap_sem);
1967        vma = find_vma(mm, addr);
1968
1969        prctl_map.start_code    = mm->start_code;
1970        prctl_map.end_code      = mm->end_code;
1971        prctl_map.start_data    = mm->start_data;
1972        prctl_map.end_data      = mm->end_data;
1973        prctl_map.start_brk     = mm->start_brk;
1974        prctl_map.brk           = mm->brk;
1975        prctl_map.start_stack   = mm->start_stack;
1976        prctl_map.arg_start     = mm->arg_start;
1977        prctl_map.arg_end       = mm->arg_end;
1978        prctl_map.env_start     = mm->env_start;
1979        prctl_map.env_end       = mm->env_end;
1980        prctl_map.auxv          = NULL;
1981        prctl_map.auxv_size     = 0;
1982        prctl_map.exe_fd        = -1;
1983
1984        switch (opt) {
1985        case PR_SET_MM_START_CODE:
1986                prctl_map.start_code = addr;
1987                break;
1988        case PR_SET_MM_END_CODE:
1989                prctl_map.end_code = addr;
1990                break;
1991        case PR_SET_MM_START_DATA:
1992                prctl_map.start_data = addr;
1993                break;
1994        case PR_SET_MM_END_DATA:
1995                prctl_map.end_data = addr;
1996                break;
1997        case PR_SET_MM_START_STACK:
1998                prctl_map.start_stack = addr;
1999                break;
2000        case PR_SET_MM_START_BRK:
2001                prctl_map.start_brk = addr;
2002                break;
2003        case PR_SET_MM_BRK:
2004                prctl_map.brk = addr;
2005                break;
2006        case PR_SET_MM_ARG_START:
2007                prctl_map.arg_start = addr;
2008                break;
2009        case PR_SET_MM_ARG_END:
2010                prctl_map.arg_end = addr;
2011                break;
2012        case PR_SET_MM_ENV_START:
2013                prctl_map.env_start = addr;
2014                break;
2015        case PR_SET_MM_ENV_END:
2016                prctl_map.env_end = addr;
2017                break;
2018        default:
2019                goto out;
2020        }
2021
2022        error = validate_prctl_map(&prctl_map);
2023        if (error)
2024                goto out;
2025
2026        switch (opt) {
2027        /*
2028         * If command line arguments and environment
2029         * are placed somewhere else on stack, we can
2030         * set them up here, ARG_START/END to setup
2031         * command line argumets and ENV_START/END
2032         * for environment.
2033         */
2034        case PR_SET_MM_START_STACK:
2035        case PR_SET_MM_ARG_START:
2036        case PR_SET_MM_ARG_END:
2037        case PR_SET_MM_ENV_START:
2038        case PR_SET_MM_ENV_END:
2039                if (!vma) {
2040                        error = -EFAULT;
2041                        goto out;
2042                }
2043        }
2044
2045        mm->start_code  = prctl_map.start_code;
2046        mm->end_code    = prctl_map.end_code;
2047        mm->start_data  = prctl_map.start_data;
2048        mm->end_data    = prctl_map.end_data;
2049        mm->start_brk   = prctl_map.start_brk;
2050        mm->brk         = prctl_map.brk;
2051        mm->start_stack = prctl_map.start_stack;
2052        mm->arg_start   = prctl_map.arg_start;
2053        mm->arg_end     = prctl_map.arg_end;
2054        mm->env_start   = prctl_map.env_start;
2055        mm->env_end     = prctl_map.env_end;
2056
2057        error = 0;
2058out:
2059        up_write(&mm->mmap_sem);
2060        return error;
2061}
2062
2063#ifdef CONFIG_CHECKPOINT_RESTORE
2064static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2065{
2066        return put_user(me->clear_child_tid, tid_addr);
2067}
2068#else
2069static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2070{
2071        return -EINVAL;
2072}
2073#endif
2074
2075SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2076                unsigned long, arg4, unsigned long, arg5)
2077{
2078        struct task_struct *me = current;
2079        unsigned char comm[sizeof(me->comm)];
2080        long error;
2081
2082        error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2083        if (error != -ENOSYS)
2084                return error;
2085
2086        error = 0;
2087        switch (option) {
2088        case PR_SET_PDEATHSIG:
2089                if (!valid_signal(arg2)) {
2090                        error = -EINVAL;
2091                        break;
2092                }
2093                me->pdeath_signal = arg2;
2094                break;
2095        case PR_GET_PDEATHSIG:
2096                error = put_user(me->pdeath_signal, (int __user *)arg2);
2097                break;
2098        case PR_GET_DUMPABLE:
2099                error = get_dumpable(me->mm);
2100                break;
2101        case PR_SET_DUMPABLE:
2102                if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2103                        error = -EINVAL;
2104                        break;
2105                }
2106                set_dumpable(me->mm, arg2);
2107                break;
2108
2109        case PR_SET_UNALIGN:
2110                error = SET_UNALIGN_CTL(me, arg2);
2111                break;
2112        case PR_GET_UNALIGN:
2113                error = GET_UNALIGN_CTL(me, arg2);
2114                break;
2115        case PR_SET_FPEMU:
2116                error = SET_FPEMU_CTL(me, arg2);
2117                break;
2118        case PR_GET_FPEMU:
2119                error = GET_FPEMU_CTL(me, arg2);
2120                break;
2121        case PR_SET_FPEXC:
2122                error = SET_FPEXC_CTL(me, arg2);
2123                break;
2124        case PR_GET_FPEXC:
2125                error = GET_FPEXC_CTL(me, arg2);
2126                break;
2127        case PR_GET_TIMING:
2128                error = PR_TIMING_STATISTICAL;
2129                break;
2130        case PR_SET_TIMING:
2131                if (arg2 != PR_TIMING_STATISTICAL)
2132                        error = -EINVAL;
2133                break;
2134        case PR_SET_NAME:
2135                comm[sizeof(me->comm) - 1] = 0;
2136                if (strncpy_from_user(comm, (char __user *)arg2,
2137                                      sizeof(me->comm) - 1) < 0)
2138                        return -EFAULT;
2139                set_task_comm(me, comm);
2140                proc_comm_connector(me);
2141                break;
2142        case PR_GET_NAME:
2143                get_task_comm(comm, me);
2144                if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2145                        return -EFAULT;
2146                break;
2147        case PR_GET_ENDIAN:
2148                error = GET_ENDIAN(me, arg2);
2149                break;
2150        case PR_SET_ENDIAN:
2151                error = SET_ENDIAN(me, arg2);
2152                break;
2153        case PR_GET_SECCOMP:
2154                error = prctl_get_seccomp();
2155                break;
2156        case PR_SET_SECCOMP:
2157                error = prctl_set_seccomp(arg2, (char __user *)arg3);
2158                break;
2159        case PR_GET_TSC:
2160                error = GET_TSC_CTL(arg2);
2161                break;
2162        case PR_SET_TSC:
2163                error = SET_TSC_CTL(arg2);
2164                break;
2165        case PR_TASK_PERF_EVENTS_DISABLE:
2166                error = perf_event_task_disable();
2167                break;
2168        case PR_TASK_PERF_EVENTS_ENABLE:
2169                error = perf_event_task_enable();
2170                break;
2171        case PR_GET_TIMERSLACK:
2172                if (current->timer_slack_ns > ULONG_MAX)
2173                        error = ULONG_MAX;
2174                else
2175                        error = current->timer_slack_ns;
2176                break;
2177        case PR_SET_TIMERSLACK:
2178                if (arg2 <= 0)
2179                        current->timer_slack_ns =
2180                                        current->default_timer_slack_ns;
2181                else
2182                        current->timer_slack_ns = arg2;
2183                break;
2184        case PR_MCE_KILL:
2185                if (arg4 | arg5)
2186                        return -EINVAL;
2187                switch (arg2) {
2188                case PR_MCE_KILL_CLEAR:
2189                        if (arg3 != 0)
2190                                return -EINVAL;
2191                        current->flags &= ~PF_MCE_PROCESS;
2192                        break;
2193                case PR_MCE_KILL_SET:
2194                        current->flags |= PF_MCE_PROCESS;
2195                        if (arg3 == PR_MCE_KILL_EARLY)
2196                                current->flags |= PF_MCE_EARLY;
2197                        else if (arg3 == PR_MCE_KILL_LATE)
2198                                current->flags &= ~PF_MCE_EARLY;
2199                        else if (arg3 == PR_MCE_KILL_DEFAULT)
2200                                current->flags &=
2201                                                ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2202                        else
2203                                return -EINVAL;
2204                        break;
2205                default:
2206                        return -EINVAL;
2207                }
2208                break;
2209        case PR_MCE_KILL_GET:
2210                if (arg2 | arg3 | arg4 | arg5)
2211                        return -EINVAL;
2212                if (current->flags & PF_MCE_PROCESS)
2213                        error = (current->flags & PF_MCE_EARLY) ?
2214                                PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2215                else
2216                        error = PR_MCE_KILL_DEFAULT;
2217                break;
2218        case PR_SET_MM:
2219                error = prctl_set_mm(arg2, arg3, arg4, arg5);
2220                break;
2221        case PR_GET_TID_ADDRESS:
2222                error = prctl_get_tid_address(me, (int __user **)arg2);
2223                break;
2224        case PR_SET_CHILD_SUBREAPER:
2225                me->signal->is_child_subreaper = !!arg2;
2226                break;
2227        case PR_GET_CHILD_SUBREAPER:
2228                error = put_user(me->signal->is_child_subreaper,
2229                                 (int __user *)arg2);
2230                break;
2231        case PR_SET_NO_NEW_PRIVS:
2232                if (arg2 != 1 || arg3 || arg4 || arg5)
2233                        return -EINVAL;
2234
2235                task_set_no_new_privs(current);
2236                break;
2237        case PR_GET_NO_NEW_PRIVS:
2238                if (arg2 || arg3 || arg4 || arg5)
2239                        return -EINVAL;
2240                return task_no_new_privs(current) ? 1 : 0;
2241        case PR_GET_THP_DISABLE:
2242                if (arg2 || arg3 || arg4 || arg5)
2243                        return -EINVAL;
2244                error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2245                break;
2246        case PR_SET_THP_DISABLE:
2247                if (arg3 || arg4 || arg5)
2248                        return -EINVAL;
2249                if (down_write_killable(&me->mm->mmap_sem))
2250                        return -EINTR;
2251                if (arg2)
2252                        me->mm->def_flags |= VM_NOHUGEPAGE;
2253                else
2254                        me->mm->def_flags &= ~VM_NOHUGEPAGE;
2255                up_write(&me->mm->mmap_sem);
2256                break;
2257        case PR_MPX_ENABLE_MANAGEMENT:
2258                if (arg2 || arg3 || arg4 || arg5)
2259                        return -EINVAL;
2260                error = MPX_ENABLE_MANAGEMENT();
2261                break;
2262        case PR_MPX_DISABLE_MANAGEMENT:
2263                if (arg2 || arg3 || arg4 || arg5)
2264                        return -EINVAL;
2265                error = MPX_DISABLE_MANAGEMENT();
2266                break;
2267        case PR_SET_FP_MODE:
2268                error = SET_FP_MODE(me, arg2);
2269                break;
2270        case PR_GET_FP_MODE:
2271                error = GET_FP_MODE(me);
2272                break;
2273        default:
2274                error = -EINVAL;
2275                break;
2276        }
2277        return error;
2278}
2279
2280SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2281                struct getcpu_cache __user *, unused)
2282{
2283        int err = 0;
2284        int cpu = raw_smp_processor_id();
2285
2286        if (cpup)
2287                err |= put_user(cpu, cpup);
2288        if (nodep)
2289                err |= put_user(cpu_to_node(cpu), nodep);
2290        return err ? -EFAULT : 0;
2291}
2292
2293/**
2294 * do_sysinfo - fill in sysinfo struct
2295 * @info: pointer to buffer to fill
2296 */
2297static int do_sysinfo(struct sysinfo *info)
2298{
2299        unsigned long mem_total, sav_total;
2300        unsigned int mem_unit, bitcount;
2301        struct timespec tp;
2302
2303        memset(info, 0, sizeof(struct sysinfo));
2304
2305        get_monotonic_boottime(&tp);
2306        info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2307
2308        get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2309
2310        info->procs = nr_threads;
2311
2312        si_meminfo(info);
2313        si_swapinfo(info);
2314
2315        /*
2316         * If the sum of all the available memory (i.e. ram + swap)
2317         * is less than can be stored in a 32 bit unsigned long then
2318         * we can be binary compatible with 2.2.x kernels.  If not,
2319         * well, in that case 2.2.x was broken anyways...
2320         *
2321         *  -Erik Andersen <andersee@debian.org>
2322         */
2323
2324        mem_total = info->totalram + info->totalswap;
2325        if (mem_total < info->totalram || mem_total < info->totalswap)
2326                goto out;
2327        bitcount = 0;
2328        mem_unit = info->mem_unit;
2329        while (mem_unit > 1) {
2330                bitcount++;
2331                mem_unit >>= 1;
2332                sav_total = mem_total;
2333                mem_total <<= 1;
2334                if (mem_total < sav_total)
2335                        goto out;
2336        }
2337
2338        /*
2339         * If mem_total did not overflow, multiply all memory values by
2340         * info->mem_unit and set it to 1.  This leaves things compatible
2341         * with 2.2.x, and also retains compatibility with earlier 2.4.x
2342         * kernels...
2343         */
2344
2345        info->mem_unit = 1;
2346        info->totalram <<= bitcount;
2347        info->freeram <<= bitcount;
2348        info->sharedram <<= bitcount;
2349        info->bufferram <<= bitcount;
2350        info->totalswap <<= bitcount;
2351        info->freeswap <<= bitcount;
2352        info->totalhigh <<= bitcount;
2353        info->freehigh <<= bitcount;
2354
2355out:
2356        return 0;
2357}
2358
2359SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2360{
2361        struct sysinfo val;
2362
2363        do_sysinfo(&val);
2364
2365        if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2366                return -EFAULT;
2367
2368        return 0;
2369}
2370
2371#ifdef CONFIG_COMPAT
2372struct compat_sysinfo {
2373        s32 uptime;
2374        u32 loads[3];
2375        u32 totalram;
2376        u32 freeram;
2377        u32 sharedram;
2378        u32 bufferram;
2379        u32 totalswap;
2380        u32 freeswap;
2381        u16 procs;
2382        u16 pad;
2383        u32 totalhigh;
2384        u32 freehigh;
2385        u32 mem_unit;
2386        char _f[20-2*sizeof(u32)-sizeof(int)];
2387};
2388
2389COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2390{
2391        struct sysinfo s;
2392
2393        do_sysinfo(&s);
2394
2395        /* Check to see if any memory value is too large for 32-bit and scale
2396         *  down if needed
2397         */
2398        if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2399                int bitcount = 0;
2400
2401                while (s.mem_unit < PAGE_SIZE) {
2402                        s.mem_unit <<= 1;
2403                        bitcount++;
2404                }
2405
2406                s.totalram >>= bitcount;
2407                s.freeram >>= bitcount;
2408                s.sharedram >>= bitcount;
2409                s.bufferram >>= bitcount;
2410                s.totalswap >>= bitcount;
2411                s.freeswap >>= bitcount;
2412                s.totalhigh >>= bitcount;
2413                s.freehigh >>= bitcount;
2414        }
2415
2416        if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2417            __put_user(s.uptime, &info->uptime) ||
2418            __put_user(s.loads[0], &info->loads[0]) ||
2419            __put_user(s.loads[1], &info->loads[1]) ||
2420            __put_user(s.loads[2], &info->loads[2]) ||
2421            __put_user(s.totalram, &info->totalram) ||
2422            __put_user(s.freeram, &info->freeram) ||
2423            __put_user(s.sharedram, &info->sharedram) ||
2424            __put_user(s.bufferram, &info->bufferram) ||
2425            __put_user(s.totalswap, &info->totalswap) ||
2426            __put_user(s.freeswap, &info->freeswap) ||
2427            __put_user(s.procs, &info->procs) ||
2428            __put_user(s.totalhigh, &info->totalhigh) ||
2429            __put_user(s.freehigh, &info->freehigh) ||
2430            __put_user(s.mem_unit, &info->mem_unit))
2431                return -EFAULT;
2432
2433        return 0;
2434}
2435#endif /* CONFIG_COMPAT */
2436