linux/kernel/time/ntp.c
<<
>>
Prefs
   1/*
   2 * NTP state machine interfaces and logic.
   3 *
   4 * This code was mainly moved from kernel/timer.c and kernel/time.c
   5 * Please see those files for relevant copyright info and historical
   6 * changelogs.
   7 */
   8#include <linux/capability.h>
   9#include <linux/clocksource.h>
  10#include <linux/workqueue.h>
  11#include <linux/hrtimer.h>
  12#include <linux/jiffies.h>
  13#include <linux/math64.h>
  14#include <linux/timex.h>
  15#include <linux/time.h>
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/rtc.h>
  19#include <linux/math64.h>
  20
  21#include "ntp_internal.h"
  22#include "timekeeping_internal.h"
  23
  24
  25/*
  26 * NTP timekeeping variables:
  27 *
  28 * Note: All of the NTP state is protected by the timekeeping locks.
  29 */
  30
  31
  32/* USER_HZ period (usecs): */
  33unsigned long                   tick_usec = TICK_USEC;
  34
  35/* SHIFTED_HZ period (nsecs): */
  36unsigned long                   tick_nsec;
  37
  38static u64                      tick_length;
  39static u64                      tick_length_base;
  40
  41#define SECS_PER_DAY            86400
  42#define MAX_TICKADJ             500LL           /* usecs */
  43#define MAX_TICKADJ_SCALED \
  44        (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  45
  46/*
  47 * phase-lock loop variables
  48 */
  49
  50/*
  51 * clock synchronization status
  52 *
  53 * (TIME_ERROR prevents overwriting the CMOS clock)
  54 */
  55static int                      time_state = TIME_OK;
  56
  57/* clock status bits:                                                   */
  58static int                      time_status = STA_UNSYNC;
  59
  60/* time adjustment (nsecs):                                             */
  61static s64                      time_offset;
  62
  63/* pll time constant:                                                   */
  64static long                     time_constant = 2;
  65
  66/* maximum error (usecs):                                               */
  67static long                     time_maxerror = NTP_PHASE_LIMIT;
  68
  69/* estimated error (usecs):                                             */
  70static long                     time_esterror = NTP_PHASE_LIMIT;
  71
  72/* frequency offset (scaled nsecs/secs):                                */
  73static s64                      time_freq;
  74
  75/* time at last adjustment (secs):                                      */
  76static time64_t         time_reftime;
  77
  78static long                     time_adjust;
  79
  80/* constant (boot-param configurable) NTP tick adjustment (upscaled)    */
  81static s64                      ntp_tick_adj;
  82
  83/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
  84static time64_t                 ntp_next_leap_sec = TIME64_MAX;
  85
  86#ifdef CONFIG_NTP_PPS
  87
  88/*
  89 * The following variables are used when a pulse-per-second (PPS) signal
  90 * is available. They establish the engineering parameters of the clock
  91 * discipline loop when controlled by the PPS signal.
  92 */
  93#define PPS_VALID       10      /* PPS signal watchdog max (s) */
  94#define PPS_POPCORN     4       /* popcorn spike threshold (shift) */
  95#define PPS_INTMIN      2       /* min freq interval (s) (shift) */
  96#define PPS_INTMAX      8       /* max freq interval (s) (shift) */
  97#define PPS_INTCOUNT    4       /* number of consecutive good intervals to
  98                                   increase pps_shift or consecutive bad
  99                                   intervals to decrease it */
 100#define PPS_MAXWANDER   100000  /* max PPS freq wander (ns/s) */
 101
 102static int pps_valid;           /* signal watchdog counter */
 103static long pps_tf[3];          /* phase median filter */
 104static long pps_jitter;         /* current jitter (ns) */
 105static struct timespec64 pps_fbase; /* beginning of the last freq interval */
 106static int pps_shift;           /* current interval duration (s) (shift) */
 107static int pps_intcnt;          /* interval counter */
 108static s64 pps_freq;            /* frequency offset (scaled ns/s) */
 109static long pps_stabil;         /* current stability (scaled ns/s) */
 110
 111/*
 112 * PPS signal quality monitors
 113 */
 114static long pps_calcnt;         /* calibration intervals */
 115static long pps_jitcnt;         /* jitter limit exceeded */
 116static long pps_stbcnt;         /* stability limit exceeded */
 117static long pps_errcnt;         /* calibration errors */
 118
 119
 120/* PPS kernel consumer compensates the whole phase error immediately.
 121 * Otherwise, reduce the offset by a fixed factor times the time constant.
 122 */
 123static inline s64 ntp_offset_chunk(s64 offset)
 124{
 125        if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
 126                return offset;
 127        else
 128                return shift_right(offset, SHIFT_PLL + time_constant);
 129}
 130
 131static inline void pps_reset_freq_interval(void)
 132{
 133        /* the PPS calibration interval may end
 134           surprisingly early */
 135        pps_shift = PPS_INTMIN;
 136        pps_intcnt = 0;
 137}
 138
 139/**
 140 * pps_clear - Clears the PPS state variables
 141 */
 142static inline void pps_clear(void)
 143{
 144        pps_reset_freq_interval();
 145        pps_tf[0] = 0;
 146        pps_tf[1] = 0;
 147        pps_tf[2] = 0;
 148        pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
 149        pps_freq = 0;
 150}
 151
 152/* Decrease pps_valid to indicate that another second has passed since
 153 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 154 * missing.
 155 */
 156static inline void pps_dec_valid(void)
 157{
 158        if (pps_valid > 0)
 159                pps_valid--;
 160        else {
 161                time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 162                                 STA_PPSWANDER | STA_PPSERROR);
 163                pps_clear();
 164        }
 165}
 166
 167static inline void pps_set_freq(s64 freq)
 168{
 169        pps_freq = freq;
 170}
 171
 172static inline int is_error_status(int status)
 173{
 174        return (status & (STA_UNSYNC|STA_CLOCKERR))
 175                /* PPS signal lost when either PPS time or
 176                 * PPS frequency synchronization requested
 177                 */
 178                || ((status & (STA_PPSFREQ|STA_PPSTIME))
 179                        && !(status & STA_PPSSIGNAL))
 180                /* PPS jitter exceeded when
 181                 * PPS time synchronization requested */
 182                || ((status & (STA_PPSTIME|STA_PPSJITTER))
 183                        == (STA_PPSTIME|STA_PPSJITTER))
 184                /* PPS wander exceeded or calibration error when
 185                 * PPS frequency synchronization requested
 186                 */
 187                || ((status & STA_PPSFREQ)
 188                        && (status & (STA_PPSWANDER|STA_PPSERROR)));
 189}
 190
 191static inline void pps_fill_timex(struct timex *txc)
 192{
 193        txc->ppsfreq       = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
 194                                         PPM_SCALE_INV, NTP_SCALE_SHIFT);
 195        txc->jitter        = pps_jitter;
 196        if (!(time_status & STA_NANO))
 197                txc->jitter /= NSEC_PER_USEC;
 198        txc->shift         = pps_shift;
 199        txc->stabil        = pps_stabil;
 200        txc->jitcnt        = pps_jitcnt;
 201        txc->calcnt        = pps_calcnt;
 202        txc->errcnt        = pps_errcnt;
 203        txc->stbcnt        = pps_stbcnt;
 204}
 205
 206#else /* !CONFIG_NTP_PPS */
 207
 208static inline s64 ntp_offset_chunk(s64 offset)
 209{
 210        return shift_right(offset, SHIFT_PLL + time_constant);
 211}
 212
 213static inline void pps_reset_freq_interval(void) {}
 214static inline void pps_clear(void) {}
 215static inline void pps_dec_valid(void) {}
 216static inline void pps_set_freq(s64 freq) {}
 217
 218static inline int is_error_status(int status)
 219{
 220        return status & (STA_UNSYNC|STA_CLOCKERR);
 221}
 222
 223static inline void pps_fill_timex(struct timex *txc)
 224{
 225        /* PPS is not implemented, so these are zero */
 226        txc->ppsfreq       = 0;
 227        txc->jitter        = 0;
 228        txc->shift         = 0;
 229        txc->stabil        = 0;
 230        txc->jitcnt        = 0;
 231        txc->calcnt        = 0;
 232        txc->errcnt        = 0;
 233        txc->stbcnt        = 0;
 234}
 235
 236#endif /* CONFIG_NTP_PPS */
 237
 238
 239/**
 240 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 241 *
 242 */
 243static inline int ntp_synced(void)
 244{
 245        return !(time_status & STA_UNSYNC);
 246}
 247
 248
 249/*
 250 * NTP methods:
 251 */
 252
 253/*
 254 * Update (tick_length, tick_length_base, tick_nsec), based
 255 * on (tick_usec, ntp_tick_adj, time_freq):
 256 */
 257static void ntp_update_frequency(void)
 258{
 259        u64 second_length;
 260        u64 new_base;
 261
 262        second_length            = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
 263                                                << NTP_SCALE_SHIFT;
 264
 265        second_length           += ntp_tick_adj;
 266        second_length           += time_freq;
 267
 268        tick_nsec                = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
 269        new_base                 = div_u64(second_length, NTP_INTERVAL_FREQ);
 270
 271        /*
 272         * Don't wait for the next second_overflow, apply
 273         * the change to the tick length immediately:
 274         */
 275        tick_length             += new_base - tick_length_base;
 276        tick_length_base         = new_base;
 277}
 278
 279static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
 280{
 281        time_status &= ~STA_MODE;
 282
 283        if (secs < MINSEC)
 284                return 0;
 285
 286        if (!(time_status & STA_FLL) && (secs <= MAXSEC))
 287                return 0;
 288
 289        time_status |= STA_MODE;
 290
 291        return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 292}
 293
 294static void ntp_update_offset(long offset)
 295{
 296        s64 freq_adj;
 297        s64 offset64;
 298        long secs;
 299
 300        if (!(time_status & STA_PLL))
 301                return;
 302
 303        if (!(time_status & STA_NANO)) {
 304                /* Make sure the multiplication below won't overflow */
 305                offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
 306                offset *= NSEC_PER_USEC;
 307        }
 308
 309        /*
 310         * Scale the phase adjustment and
 311         * clamp to the operating range.
 312         */
 313        offset = clamp(offset, -MAXPHASE, MAXPHASE);
 314
 315        /*
 316         * Select how the frequency is to be controlled
 317         * and in which mode (PLL or FLL).
 318         */
 319        secs = (long)(__ktime_get_real_seconds() - time_reftime);
 320        if (unlikely(time_status & STA_FREQHOLD))
 321                secs = 0;
 322
 323        time_reftime = __ktime_get_real_seconds();
 324
 325        offset64    = offset;
 326        freq_adj    = ntp_update_offset_fll(offset64, secs);
 327
 328        /*
 329         * Clamp update interval to reduce PLL gain with low
 330         * sampling rate (e.g. intermittent network connection)
 331         * to avoid instability.
 332         */
 333        if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
 334                secs = 1 << (SHIFT_PLL + 1 + time_constant);
 335
 336        freq_adj    += (offset64 * secs) <<
 337                        (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
 338
 339        freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
 340
 341        time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 342
 343        time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 344}
 345
 346/**
 347 * ntp_clear - Clears the NTP state variables
 348 */
 349void ntp_clear(void)
 350{
 351        time_adjust     = 0;            /* stop active adjtime() */
 352        time_status     |= STA_UNSYNC;
 353        time_maxerror   = NTP_PHASE_LIMIT;
 354        time_esterror   = NTP_PHASE_LIMIT;
 355
 356        ntp_update_frequency();
 357
 358        tick_length     = tick_length_base;
 359        time_offset     = 0;
 360
 361        ntp_next_leap_sec = TIME64_MAX;
 362        /* Clear PPS state variables */
 363        pps_clear();
 364}
 365
 366
 367u64 ntp_tick_length(void)
 368{
 369        return tick_length;
 370}
 371
 372/**
 373 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 374 *
 375 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 376 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 377 */
 378ktime_t ntp_get_next_leap(void)
 379{
 380        ktime_t ret;
 381
 382        if ((time_state == TIME_INS) && (time_status & STA_INS))
 383                return ktime_set(ntp_next_leap_sec, 0);
 384        ret.tv64 = KTIME_MAX;
 385        return ret;
 386}
 387
 388/*
 389 * this routine handles the overflow of the microsecond field
 390 *
 391 * The tricky bits of code to handle the accurate clock support
 392 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 393 * They were originally developed for SUN and DEC kernels.
 394 * All the kudos should go to Dave for this stuff.
 395 *
 396 * Also handles leap second processing, and returns leap offset
 397 */
 398int second_overflow(time64_t secs)
 399{
 400        s64 delta;
 401        int leap = 0;
 402        s32 rem;
 403
 404        /*
 405         * Leap second processing. If in leap-insert state at the end of the
 406         * day, the system clock is set back one second; if in leap-delete
 407         * state, the system clock is set ahead one second.
 408         */
 409        switch (time_state) {
 410        case TIME_OK:
 411                if (time_status & STA_INS) {
 412                        time_state = TIME_INS;
 413                        div_s64_rem(secs, SECS_PER_DAY, &rem);
 414                        ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 415                } else if (time_status & STA_DEL) {
 416                        time_state = TIME_DEL;
 417                        div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
 418                        ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 419                }
 420                break;
 421        case TIME_INS:
 422                if (!(time_status & STA_INS)) {
 423                        ntp_next_leap_sec = TIME64_MAX;
 424                        time_state = TIME_OK;
 425                } else if (secs == ntp_next_leap_sec) {
 426                        leap = -1;
 427                        time_state = TIME_OOP;
 428                        printk(KERN_NOTICE
 429                                "Clock: inserting leap second 23:59:60 UTC\n");
 430                }
 431                break;
 432        case TIME_DEL:
 433                if (!(time_status & STA_DEL)) {
 434                        ntp_next_leap_sec = TIME64_MAX;
 435                        time_state = TIME_OK;
 436                } else if (secs == ntp_next_leap_sec) {
 437                        leap = 1;
 438                        ntp_next_leap_sec = TIME64_MAX;
 439                        time_state = TIME_WAIT;
 440                        printk(KERN_NOTICE
 441                                "Clock: deleting leap second 23:59:59 UTC\n");
 442                }
 443                break;
 444        case TIME_OOP:
 445                ntp_next_leap_sec = TIME64_MAX;
 446                time_state = TIME_WAIT;
 447                break;
 448        case TIME_WAIT:
 449                if (!(time_status & (STA_INS | STA_DEL)))
 450                        time_state = TIME_OK;
 451                break;
 452        }
 453
 454
 455        /* Bump the maxerror field */
 456        time_maxerror += MAXFREQ / NSEC_PER_USEC;
 457        if (time_maxerror > NTP_PHASE_LIMIT) {
 458                time_maxerror = NTP_PHASE_LIMIT;
 459                time_status |= STA_UNSYNC;
 460        }
 461
 462        /* Compute the phase adjustment for the next second */
 463        tick_length      = tick_length_base;
 464
 465        delta            = ntp_offset_chunk(time_offset);
 466        time_offset     -= delta;
 467        tick_length     += delta;
 468
 469        /* Check PPS signal */
 470        pps_dec_valid();
 471
 472        if (!time_adjust)
 473                goto out;
 474
 475        if (time_adjust > MAX_TICKADJ) {
 476                time_adjust -= MAX_TICKADJ;
 477                tick_length += MAX_TICKADJ_SCALED;
 478                goto out;
 479        }
 480
 481        if (time_adjust < -MAX_TICKADJ) {
 482                time_adjust += MAX_TICKADJ;
 483                tick_length -= MAX_TICKADJ_SCALED;
 484                goto out;
 485        }
 486
 487        tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 488                                                         << NTP_SCALE_SHIFT;
 489        time_adjust = 0;
 490
 491out:
 492        return leap;
 493}
 494
 495#ifdef CONFIG_GENERIC_CMOS_UPDATE
 496int __weak update_persistent_clock(struct timespec now)
 497{
 498        return -ENODEV;
 499}
 500
 501int __weak update_persistent_clock64(struct timespec64 now64)
 502{
 503        struct timespec now;
 504
 505        now = timespec64_to_timespec(now64);
 506        return update_persistent_clock(now);
 507}
 508#endif
 509
 510#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
 511static void sync_cmos_clock(struct work_struct *work);
 512
 513static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
 514
 515static void sync_cmos_clock(struct work_struct *work)
 516{
 517        struct timespec64 now;
 518        struct timespec64 next;
 519        int fail = 1;
 520
 521        /*
 522         * If we have an externally synchronized Linux clock, then update
 523         * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
 524         * called as close as possible to 500 ms before the new second starts.
 525         * This code is run on a timer.  If the clock is set, that timer
 526         * may not expire at the correct time.  Thus, we adjust...
 527         * We want the clock to be within a couple of ticks from the target.
 528         */
 529        if (!ntp_synced()) {
 530                /*
 531                 * Not synced, exit, do not restart a timer (if one is
 532                 * running, let it run out).
 533                 */
 534                return;
 535        }
 536
 537        getnstimeofday64(&now);
 538        if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
 539                struct timespec64 adjust = now;
 540
 541                fail = -ENODEV;
 542                if (persistent_clock_is_local)
 543                        adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
 544#ifdef CONFIG_GENERIC_CMOS_UPDATE
 545                fail = update_persistent_clock64(adjust);
 546#endif
 547
 548#ifdef CONFIG_RTC_SYSTOHC
 549                if (fail == -ENODEV)
 550                        fail = rtc_set_ntp_time(adjust);
 551#endif
 552        }
 553
 554        next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
 555        if (next.tv_nsec <= 0)
 556                next.tv_nsec += NSEC_PER_SEC;
 557
 558        if (!fail || fail == -ENODEV)
 559                next.tv_sec = 659;
 560        else
 561                next.tv_sec = 0;
 562
 563        if (next.tv_nsec >= NSEC_PER_SEC) {
 564                next.tv_sec++;
 565                next.tv_nsec -= NSEC_PER_SEC;
 566        }
 567        queue_delayed_work(system_power_efficient_wq,
 568                           &sync_cmos_work, timespec64_to_jiffies(&next));
 569}
 570
 571void ntp_notify_cmos_timer(void)
 572{
 573        queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
 574}
 575
 576#else
 577void ntp_notify_cmos_timer(void) { }
 578#endif
 579
 580
 581/*
 582 * Propagate a new txc->status value into the NTP state:
 583 */
 584static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
 585{
 586        if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 587                time_state = TIME_OK;
 588                time_status = STA_UNSYNC;
 589                ntp_next_leap_sec = TIME64_MAX;
 590                /* restart PPS frequency calibration */
 591                pps_reset_freq_interval();
 592        }
 593
 594        /*
 595         * If we turn on PLL adjustments then reset the
 596         * reference time to current time.
 597         */
 598        if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
 599                time_reftime = __ktime_get_real_seconds();
 600
 601        /* only set allowed bits */
 602        time_status &= STA_RONLY;
 603        time_status |= txc->status & ~STA_RONLY;
 604}
 605
 606
 607static inline void process_adjtimex_modes(struct timex *txc,
 608                                                struct timespec64 *ts,
 609                                                s32 *time_tai)
 610{
 611        if (txc->modes & ADJ_STATUS)
 612                process_adj_status(txc, ts);
 613
 614        if (txc->modes & ADJ_NANO)
 615                time_status |= STA_NANO;
 616
 617        if (txc->modes & ADJ_MICRO)
 618                time_status &= ~STA_NANO;
 619
 620        if (txc->modes & ADJ_FREQUENCY) {
 621                time_freq = txc->freq * PPM_SCALE;
 622                time_freq = min(time_freq, MAXFREQ_SCALED);
 623                time_freq = max(time_freq, -MAXFREQ_SCALED);
 624                /* update pps_freq */
 625                pps_set_freq(time_freq);
 626        }
 627
 628        if (txc->modes & ADJ_MAXERROR)
 629                time_maxerror = txc->maxerror;
 630
 631        if (txc->modes & ADJ_ESTERROR)
 632                time_esterror = txc->esterror;
 633
 634        if (txc->modes & ADJ_TIMECONST) {
 635                time_constant = txc->constant;
 636                if (!(time_status & STA_NANO))
 637                        time_constant += 4;
 638                time_constant = min(time_constant, (long)MAXTC);
 639                time_constant = max(time_constant, 0l);
 640        }
 641
 642        if (txc->modes & ADJ_TAI && txc->constant > 0)
 643                *time_tai = txc->constant;
 644
 645        if (txc->modes & ADJ_OFFSET)
 646                ntp_update_offset(txc->offset);
 647
 648        if (txc->modes & ADJ_TICK)
 649                tick_usec = txc->tick;
 650
 651        if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 652                ntp_update_frequency();
 653}
 654
 655
 656
 657/**
 658 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
 659 */
 660int ntp_validate_timex(struct timex *txc)
 661{
 662        if (txc->modes & ADJ_ADJTIME) {
 663                /* singleshot must not be used with any other mode bits */
 664                if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
 665                        return -EINVAL;
 666                if (!(txc->modes & ADJ_OFFSET_READONLY) &&
 667                    !capable(CAP_SYS_TIME))
 668                        return -EPERM;
 669        } else {
 670                /* In order to modify anything, you gotta be super-user! */
 671                 if (txc->modes && !capable(CAP_SYS_TIME))
 672                        return -EPERM;
 673                /*
 674                 * if the quartz is off by more than 10% then
 675                 * something is VERY wrong!
 676                 */
 677                if (txc->modes & ADJ_TICK &&
 678                    (txc->tick <  900000/USER_HZ ||
 679                     txc->tick > 1100000/USER_HZ))
 680                        return -EINVAL;
 681        }
 682
 683        if (txc->modes & ADJ_SETOFFSET) {
 684                /* In order to inject time, you gotta be super-user! */
 685                if (!capable(CAP_SYS_TIME))
 686                        return -EPERM;
 687
 688                if (txc->modes & ADJ_NANO) {
 689                        struct timespec ts;
 690
 691                        ts.tv_sec = txc->time.tv_sec;
 692                        ts.tv_nsec = txc->time.tv_usec;
 693                        if (!timespec_inject_offset_valid(&ts))
 694                                return -EINVAL;
 695
 696                } else {
 697                        if (!timeval_inject_offset_valid(&txc->time))
 698                                return -EINVAL;
 699                }
 700        }
 701
 702        /*
 703         * Check for potential multiplication overflows that can
 704         * only happen on 64-bit systems:
 705         */
 706        if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
 707                if (LLONG_MIN / PPM_SCALE > txc->freq)
 708                        return -EINVAL;
 709                if (LLONG_MAX / PPM_SCALE < txc->freq)
 710                        return -EINVAL;
 711        }
 712
 713        return 0;
 714}
 715
 716
 717/*
 718 * adjtimex mainly allows reading (and writing, if superuser) of
 719 * kernel time-keeping variables. used by xntpd.
 720 */
 721int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
 722{
 723        int result;
 724
 725        if (txc->modes & ADJ_ADJTIME) {
 726                long save_adjust = time_adjust;
 727
 728                if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 729                        /* adjtime() is independent from ntp_adjtime() */
 730                        time_adjust = txc->offset;
 731                        ntp_update_frequency();
 732                }
 733                txc->offset = save_adjust;
 734        } else {
 735
 736                /* If there are input parameters, then process them: */
 737                if (txc->modes)
 738                        process_adjtimex_modes(txc, ts, time_tai);
 739
 740                txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
 741                                  NTP_SCALE_SHIFT);
 742                if (!(time_status & STA_NANO))
 743                        txc->offset /= NSEC_PER_USEC;
 744        }
 745
 746        result = time_state;    /* mostly `TIME_OK' */
 747        /* check for errors */
 748        if (is_error_status(time_status))
 749                result = TIME_ERROR;
 750
 751        txc->freq          = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
 752                                         PPM_SCALE_INV, NTP_SCALE_SHIFT);
 753        txc->maxerror      = time_maxerror;
 754        txc->esterror      = time_esterror;
 755        txc->status        = time_status;
 756        txc->constant      = time_constant;
 757        txc->precision     = 1;
 758        txc->tolerance     = MAXFREQ_SCALED / PPM_SCALE;
 759        txc->tick          = tick_usec;
 760        txc->tai           = *time_tai;
 761
 762        /* fill PPS status fields */
 763        pps_fill_timex(txc);
 764
 765        txc->time.tv_sec = (time_t)ts->tv_sec;
 766        txc->time.tv_usec = ts->tv_nsec;
 767        if (!(time_status & STA_NANO))
 768                txc->time.tv_usec /= NSEC_PER_USEC;
 769
 770        /* Handle leapsec adjustments */
 771        if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
 772                if ((time_state == TIME_INS) && (time_status & STA_INS)) {
 773                        result = TIME_OOP;
 774                        txc->tai++;
 775                        txc->time.tv_sec--;
 776                }
 777                if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
 778                        result = TIME_WAIT;
 779                        txc->tai--;
 780                        txc->time.tv_sec++;
 781                }
 782                if ((time_state == TIME_OOP) &&
 783                                        (ts->tv_sec == ntp_next_leap_sec)) {
 784                        result = TIME_WAIT;
 785                }
 786        }
 787
 788        return result;
 789}
 790
 791#ifdef  CONFIG_NTP_PPS
 792
 793/* actually struct pps_normtime is good old struct timespec, but it is
 794 * semantically different (and it is the reason why it was invented):
 795 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 796 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
 797struct pps_normtime {
 798        s64             sec;    /* seconds */
 799        long            nsec;   /* nanoseconds */
 800};
 801
 802/* normalize the timestamp so that nsec is in the
 803   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
 804static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
 805{
 806        struct pps_normtime norm = {
 807                .sec = ts.tv_sec,
 808                .nsec = ts.tv_nsec
 809        };
 810
 811        if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 812                norm.nsec -= NSEC_PER_SEC;
 813                norm.sec++;
 814        }
 815
 816        return norm;
 817}
 818
 819/* get current phase correction and jitter */
 820static inline long pps_phase_filter_get(long *jitter)
 821{
 822        *jitter = pps_tf[0] - pps_tf[1];
 823        if (*jitter < 0)
 824                *jitter = -*jitter;
 825
 826        /* TODO: test various filters */
 827        return pps_tf[0];
 828}
 829
 830/* add the sample to the phase filter */
 831static inline void pps_phase_filter_add(long err)
 832{
 833        pps_tf[2] = pps_tf[1];
 834        pps_tf[1] = pps_tf[0];
 835        pps_tf[0] = err;
 836}
 837
 838/* decrease frequency calibration interval length.
 839 * It is halved after four consecutive unstable intervals.
 840 */
 841static inline void pps_dec_freq_interval(void)
 842{
 843        if (--pps_intcnt <= -PPS_INTCOUNT) {
 844                pps_intcnt = -PPS_INTCOUNT;
 845                if (pps_shift > PPS_INTMIN) {
 846                        pps_shift--;
 847                        pps_intcnt = 0;
 848                }
 849        }
 850}
 851
 852/* increase frequency calibration interval length.
 853 * It is doubled after four consecutive stable intervals.
 854 */
 855static inline void pps_inc_freq_interval(void)
 856{
 857        if (++pps_intcnt >= PPS_INTCOUNT) {
 858                pps_intcnt = PPS_INTCOUNT;
 859                if (pps_shift < PPS_INTMAX) {
 860                        pps_shift++;
 861                        pps_intcnt = 0;
 862                }
 863        }
 864}
 865
 866/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 867 * timestamps
 868 *
 869 * At the end of the calibration interval the difference between the
 870 * first and last MONOTONIC_RAW clock timestamps divided by the length
 871 * of the interval becomes the frequency update. If the interval was
 872 * too long, the data are discarded.
 873 * Returns the difference between old and new frequency values.
 874 */
 875static long hardpps_update_freq(struct pps_normtime freq_norm)
 876{
 877        long delta, delta_mod;
 878        s64 ftemp;
 879
 880        /* check if the frequency interval was too long */
 881        if (freq_norm.sec > (2 << pps_shift)) {
 882                time_status |= STA_PPSERROR;
 883                pps_errcnt++;
 884                pps_dec_freq_interval();
 885                printk_deferred(KERN_ERR
 886                        "hardpps: PPSERROR: interval too long - %lld s\n",
 887                        freq_norm.sec);
 888                return 0;
 889        }
 890
 891        /* here the raw frequency offset and wander (stability) is
 892         * calculated. If the wander is less than the wander threshold
 893         * the interval is increased; otherwise it is decreased.
 894         */
 895        ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 896                        freq_norm.sec);
 897        delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
 898        pps_freq = ftemp;
 899        if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 900                printk_deferred(KERN_WARNING
 901                                "hardpps: PPSWANDER: change=%ld\n", delta);
 902                time_status |= STA_PPSWANDER;
 903                pps_stbcnt++;
 904                pps_dec_freq_interval();
 905        } else {        /* good sample */
 906                pps_inc_freq_interval();
 907        }
 908
 909        /* the stability metric is calculated as the average of recent
 910         * frequency changes, but is used only for performance
 911         * monitoring
 912         */
 913        delta_mod = delta;
 914        if (delta_mod < 0)
 915                delta_mod = -delta_mod;
 916        pps_stabil += (div_s64(((s64)delta_mod) <<
 917                                (NTP_SCALE_SHIFT - SHIFT_USEC),
 918                                NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
 919
 920        /* if enabled, the system clock frequency is updated */
 921        if ((time_status & STA_PPSFREQ) != 0 &&
 922            (time_status & STA_FREQHOLD) == 0) {
 923                time_freq = pps_freq;
 924                ntp_update_frequency();
 925        }
 926
 927        return delta;
 928}
 929
 930/* correct REALTIME clock phase error against PPS signal */
 931static void hardpps_update_phase(long error)
 932{
 933        long correction = -error;
 934        long jitter;
 935
 936        /* add the sample to the median filter */
 937        pps_phase_filter_add(correction);
 938        correction = pps_phase_filter_get(&jitter);
 939
 940        /* Nominal jitter is due to PPS signal noise. If it exceeds the
 941         * threshold, the sample is discarded; otherwise, if so enabled,
 942         * the time offset is updated.
 943         */
 944        if (jitter > (pps_jitter << PPS_POPCORN)) {
 945                printk_deferred(KERN_WARNING
 946                                "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
 947                                jitter, (pps_jitter << PPS_POPCORN));
 948                time_status |= STA_PPSJITTER;
 949                pps_jitcnt++;
 950        } else if (time_status & STA_PPSTIME) {
 951                /* correct the time using the phase offset */
 952                time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
 953                                NTP_INTERVAL_FREQ);
 954                /* cancel running adjtime() */
 955                time_adjust = 0;
 956        }
 957        /* update jitter */
 958        pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
 959}
 960
 961/*
 962 * __hardpps() - discipline CPU clock oscillator to external PPS signal
 963 *
 964 * This routine is called at each PPS signal arrival in order to
 965 * discipline the CPU clock oscillator to the PPS signal. It takes two
 966 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 967 * is used to correct clock phase error and the latter is used to
 968 * correct the frequency.
 969 *
 970 * This code is based on David Mills's reference nanokernel
 971 * implementation. It was mostly rewritten but keeps the same idea.
 972 */
 973void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
 974{
 975        struct pps_normtime pts_norm, freq_norm;
 976
 977        pts_norm = pps_normalize_ts(*phase_ts);
 978
 979        /* clear the error bits, they will be set again if needed */
 980        time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
 981
 982        /* indicate signal presence */
 983        time_status |= STA_PPSSIGNAL;
 984        pps_valid = PPS_VALID;
 985
 986        /* when called for the first time,
 987         * just start the frequency interval */
 988        if (unlikely(pps_fbase.tv_sec == 0)) {
 989                pps_fbase = *raw_ts;
 990                return;
 991        }
 992
 993        /* ok, now we have a base for frequency calculation */
 994        freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
 995
 996        /* check that the signal is in the range
 997         * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
 998        if ((freq_norm.sec == 0) ||
 999                        (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1000                        (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1001                time_status |= STA_PPSJITTER;
1002                /* restart the frequency calibration interval */
1003                pps_fbase = *raw_ts;
1004                printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1005                return;
1006        }
1007
1008        /* signal is ok */
1009
1010        /* check if the current frequency interval is finished */
1011        if (freq_norm.sec >= (1 << pps_shift)) {
1012                pps_calcnt++;
1013                /* restart the frequency calibration interval */
1014                pps_fbase = *raw_ts;
1015                hardpps_update_freq(freq_norm);
1016        }
1017
1018        hardpps_update_phase(pts_norm.nsec);
1019
1020}
1021#endif  /* CONFIG_NTP_PPS */
1022
1023static int __init ntp_tick_adj_setup(char *str)
1024{
1025        int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1026
1027        if (rc)
1028                return rc;
1029        ntp_tick_adj <<= NTP_SCALE_SHIFT;
1030
1031        return 1;
1032}
1033
1034__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1035
1036void __init ntp_init(void)
1037{
1038        ntp_clear();
1039}
1040