1
2
3
4
5
6
7
8#include <linux/capability.h>
9#include <linux/clocksource.h>
10#include <linux/workqueue.h>
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/rtc.h>
19#include <linux/math64.h>
20
21#include "ntp_internal.h"
22#include "timekeeping_internal.h"
23
24
25
26
27
28
29
30
31
32
33unsigned long tick_usec = TICK_USEC;
34
35
36unsigned long tick_nsec;
37
38static u64 tick_length;
39static u64 tick_length_base;
40
41#define SECS_PER_DAY 86400
42#define MAX_TICKADJ 500LL
43#define MAX_TICKADJ_SCALED \
44 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
45
46
47
48
49
50
51
52
53
54
55static int time_state = TIME_OK;
56
57
58static int time_status = STA_UNSYNC;
59
60
61static s64 time_offset;
62
63
64static long time_constant = 2;
65
66
67static long time_maxerror = NTP_PHASE_LIMIT;
68
69
70static long time_esterror = NTP_PHASE_LIMIT;
71
72
73static s64 time_freq;
74
75
76static time64_t time_reftime;
77
78static long time_adjust;
79
80
81static s64 ntp_tick_adj;
82
83
84static time64_t ntp_next_leap_sec = TIME64_MAX;
85
86#ifdef CONFIG_NTP_PPS
87
88
89
90
91
92
93#define PPS_VALID 10
94#define PPS_POPCORN 4
95#define PPS_INTMIN 2
96#define PPS_INTMAX 8
97#define PPS_INTCOUNT 4
98
99
100#define PPS_MAXWANDER 100000
101
102static int pps_valid;
103static long pps_tf[3];
104static long pps_jitter;
105static struct timespec64 pps_fbase;
106static int pps_shift;
107static int pps_intcnt;
108static s64 pps_freq;
109static long pps_stabil;
110
111
112
113
114static long pps_calcnt;
115static long pps_jitcnt;
116static long pps_stbcnt;
117static long pps_errcnt;
118
119
120
121
122
123static inline s64 ntp_offset_chunk(s64 offset)
124{
125 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
126 return offset;
127 else
128 return shift_right(offset, SHIFT_PLL + time_constant);
129}
130
131static inline void pps_reset_freq_interval(void)
132{
133
134
135 pps_shift = PPS_INTMIN;
136 pps_intcnt = 0;
137}
138
139
140
141
142static inline void pps_clear(void)
143{
144 pps_reset_freq_interval();
145 pps_tf[0] = 0;
146 pps_tf[1] = 0;
147 pps_tf[2] = 0;
148 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
149 pps_freq = 0;
150}
151
152
153
154
155
156static inline void pps_dec_valid(void)
157{
158 if (pps_valid > 0)
159 pps_valid--;
160 else {
161 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
162 STA_PPSWANDER | STA_PPSERROR);
163 pps_clear();
164 }
165}
166
167static inline void pps_set_freq(s64 freq)
168{
169 pps_freq = freq;
170}
171
172static inline int is_error_status(int status)
173{
174 return (status & (STA_UNSYNC|STA_CLOCKERR))
175
176
177
178 || ((status & (STA_PPSFREQ|STA_PPSTIME))
179 && !(status & STA_PPSSIGNAL))
180
181
182 || ((status & (STA_PPSTIME|STA_PPSJITTER))
183 == (STA_PPSTIME|STA_PPSJITTER))
184
185
186
187 || ((status & STA_PPSFREQ)
188 && (status & (STA_PPSWANDER|STA_PPSERROR)));
189}
190
191static inline void pps_fill_timex(struct timex *txc)
192{
193 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
194 PPM_SCALE_INV, NTP_SCALE_SHIFT);
195 txc->jitter = pps_jitter;
196 if (!(time_status & STA_NANO))
197 txc->jitter /= NSEC_PER_USEC;
198 txc->shift = pps_shift;
199 txc->stabil = pps_stabil;
200 txc->jitcnt = pps_jitcnt;
201 txc->calcnt = pps_calcnt;
202 txc->errcnt = pps_errcnt;
203 txc->stbcnt = pps_stbcnt;
204}
205
206#else
207
208static inline s64 ntp_offset_chunk(s64 offset)
209{
210 return shift_right(offset, SHIFT_PLL + time_constant);
211}
212
213static inline void pps_reset_freq_interval(void) {}
214static inline void pps_clear(void) {}
215static inline void pps_dec_valid(void) {}
216static inline void pps_set_freq(s64 freq) {}
217
218static inline int is_error_status(int status)
219{
220 return status & (STA_UNSYNC|STA_CLOCKERR);
221}
222
223static inline void pps_fill_timex(struct timex *txc)
224{
225
226 txc->ppsfreq = 0;
227 txc->jitter = 0;
228 txc->shift = 0;
229 txc->stabil = 0;
230 txc->jitcnt = 0;
231 txc->calcnt = 0;
232 txc->errcnt = 0;
233 txc->stbcnt = 0;
234}
235
236#endif
237
238
239
240
241
242
243static inline int ntp_synced(void)
244{
245 return !(time_status & STA_UNSYNC);
246}
247
248
249
250
251
252
253
254
255
256
257static void ntp_update_frequency(void)
258{
259 u64 second_length;
260 u64 new_base;
261
262 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
263 << NTP_SCALE_SHIFT;
264
265 second_length += ntp_tick_adj;
266 second_length += time_freq;
267
268 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
269 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
270
271
272
273
274
275 tick_length += new_base - tick_length_base;
276 tick_length_base = new_base;
277}
278
279static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
280{
281 time_status &= ~STA_MODE;
282
283 if (secs < MINSEC)
284 return 0;
285
286 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
287 return 0;
288
289 time_status |= STA_MODE;
290
291 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
292}
293
294static void ntp_update_offset(long offset)
295{
296 s64 freq_adj;
297 s64 offset64;
298 long secs;
299
300 if (!(time_status & STA_PLL))
301 return;
302
303 if (!(time_status & STA_NANO)) {
304
305 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
306 offset *= NSEC_PER_USEC;
307 }
308
309
310
311
312
313 offset = clamp(offset, -MAXPHASE, MAXPHASE);
314
315
316
317
318
319 secs = (long)(__ktime_get_real_seconds() - time_reftime);
320 if (unlikely(time_status & STA_FREQHOLD))
321 secs = 0;
322
323 time_reftime = __ktime_get_real_seconds();
324
325 offset64 = offset;
326 freq_adj = ntp_update_offset_fll(offset64, secs);
327
328
329
330
331
332
333 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
334 secs = 1 << (SHIFT_PLL + 1 + time_constant);
335
336 freq_adj += (offset64 * secs) <<
337 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
338
339 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
340
341 time_freq = max(freq_adj, -MAXFREQ_SCALED);
342
343 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
344}
345
346
347
348
349void ntp_clear(void)
350{
351 time_adjust = 0;
352 time_status |= STA_UNSYNC;
353 time_maxerror = NTP_PHASE_LIMIT;
354 time_esterror = NTP_PHASE_LIMIT;
355
356 ntp_update_frequency();
357
358 tick_length = tick_length_base;
359 time_offset = 0;
360
361 ntp_next_leap_sec = TIME64_MAX;
362
363 pps_clear();
364}
365
366
367u64 ntp_tick_length(void)
368{
369 return tick_length;
370}
371
372
373
374
375
376
377
378ktime_t ntp_get_next_leap(void)
379{
380 ktime_t ret;
381
382 if ((time_state == TIME_INS) && (time_status & STA_INS))
383 return ktime_set(ntp_next_leap_sec, 0);
384 ret.tv64 = KTIME_MAX;
385 return ret;
386}
387
388
389
390
391
392
393
394
395
396
397
398int second_overflow(time64_t secs)
399{
400 s64 delta;
401 int leap = 0;
402 s32 rem;
403
404
405
406
407
408
409 switch (time_state) {
410 case TIME_OK:
411 if (time_status & STA_INS) {
412 time_state = TIME_INS;
413 div_s64_rem(secs, SECS_PER_DAY, &rem);
414 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
415 } else if (time_status & STA_DEL) {
416 time_state = TIME_DEL;
417 div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
418 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
419 }
420 break;
421 case TIME_INS:
422 if (!(time_status & STA_INS)) {
423 ntp_next_leap_sec = TIME64_MAX;
424 time_state = TIME_OK;
425 } else if (secs == ntp_next_leap_sec) {
426 leap = -1;
427 time_state = TIME_OOP;
428 printk(KERN_NOTICE
429 "Clock: inserting leap second 23:59:60 UTC\n");
430 }
431 break;
432 case TIME_DEL:
433 if (!(time_status & STA_DEL)) {
434 ntp_next_leap_sec = TIME64_MAX;
435 time_state = TIME_OK;
436 } else if (secs == ntp_next_leap_sec) {
437 leap = 1;
438 ntp_next_leap_sec = TIME64_MAX;
439 time_state = TIME_WAIT;
440 printk(KERN_NOTICE
441 "Clock: deleting leap second 23:59:59 UTC\n");
442 }
443 break;
444 case TIME_OOP:
445 ntp_next_leap_sec = TIME64_MAX;
446 time_state = TIME_WAIT;
447 break;
448 case TIME_WAIT:
449 if (!(time_status & (STA_INS | STA_DEL)))
450 time_state = TIME_OK;
451 break;
452 }
453
454
455
456 time_maxerror += MAXFREQ / NSEC_PER_USEC;
457 if (time_maxerror > NTP_PHASE_LIMIT) {
458 time_maxerror = NTP_PHASE_LIMIT;
459 time_status |= STA_UNSYNC;
460 }
461
462
463 tick_length = tick_length_base;
464
465 delta = ntp_offset_chunk(time_offset);
466 time_offset -= delta;
467 tick_length += delta;
468
469
470 pps_dec_valid();
471
472 if (!time_adjust)
473 goto out;
474
475 if (time_adjust > MAX_TICKADJ) {
476 time_adjust -= MAX_TICKADJ;
477 tick_length += MAX_TICKADJ_SCALED;
478 goto out;
479 }
480
481 if (time_adjust < -MAX_TICKADJ) {
482 time_adjust += MAX_TICKADJ;
483 tick_length -= MAX_TICKADJ_SCALED;
484 goto out;
485 }
486
487 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
488 << NTP_SCALE_SHIFT;
489 time_adjust = 0;
490
491out:
492 return leap;
493}
494
495#ifdef CONFIG_GENERIC_CMOS_UPDATE
496int __weak update_persistent_clock(struct timespec now)
497{
498 return -ENODEV;
499}
500
501int __weak update_persistent_clock64(struct timespec64 now64)
502{
503 struct timespec now;
504
505 now = timespec64_to_timespec(now64);
506 return update_persistent_clock(now);
507}
508#endif
509
510#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
511static void sync_cmos_clock(struct work_struct *work);
512
513static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
514
515static void sync_cmos_clock(struct work_struct *work)
516{
517 struct timespec64 now;
518 struct timespec64 next;
519 int fail = 1;
520
521
522
523
524
525
526
527
528
529 if (!ntp_synced()) {
530
531
532
533
534 return;
535 }
536
537 getnstimeofday64(&now);
538 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
539 struct timespec64 adjust = now;
540
541 fail = -ENODEV;
542 if (persistent_clock_is_local)
543 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
544#ifdef CONFIG_GENERIC_CMOS_UPDATE
545 fail = update_persistent_clock64(adjust);
546#endif
547
548#ifdef CONFIG_RTC_SYSTOHC
549 if (fail == -ENODEV)
550 fail = rtc_set_ntp_time(adjust);
551#endif
552 }
553
554 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
555 if (next.tv_nsec <= 0)
556 next.tv_nsec += NSEC_PER_SEC;
557
558 if (!fail || fail == -ENODEV)
559 next.tv_sec = 659;
560 else
561 next.tv_sec = 0;
562
563 if (next.tv_nsec >= NSEC_PER_SEC) {
564 next.tv_sec++;
565 next.tv_nsec -= NSEC_PER_SEC;
566 }
567 queue_delayed_work(system_power_efficient_wq,
568 &sync_cmos_work, timespec64_to_jiffies(&next));
569}
570
571void ntp_notify_cmos_timer(void)
572{
573 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
574}
575
576#else
577void ntp_notify_cmos_timer(void) { }
578#endif
579
580
581
582
583
584static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
585{
586 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
587 time_state = TIME_OK;
588 time_status = STA_UNSYNC;
589 ntp_next_leap_sec = TIME64_MAX;
590
591 pps_reset_freq_interval();
592 }
593
594
595
596
597
598 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
599 time_reftime = __ktime_get_real_seconds();
600
601
602 time_status &= STA_RONLY;
603 time_status |= txc->status & ~STA_RONLY;
604}
605
606
607static inline void process_adjtimex_modes(struct timex *txc,
608 struct timespec64 *ts,
609 s32 *time_tai)
610{
611 if (txc->modes & ADJ_STATUS)
612 process_adj_status(txc, ts);
613
614 if (txc->modes & ADJ_NANO)
615 time_status |= STA_NANO;
616
617 if (txc->modes & ADJ_MICRO)
618 time_status &= ~STA_NANO;
619
620 if (txc->modes & ADJ_FREQUENCY) {
621 time_freq = txc->freq * PPM_SCALE;
622 time_freq = min(time_freq, MAXFREQ_SCALED);
623 time_freq = max(time_freq, -MAXFREQ_SCALED);
624
625 pps_set_freq(time_freq);
626 }
627
628 if (txc->modes & ADJ_MAXERROR)
629 time_maxerror = txc->maxerror;
630
631 if (txc->modes & ADJ_ESTERROR)
632 time_esterror = txc->esterror;
633
634 if (txc->modes & ADJ_TIMECONST) {
635 time_constant = txc->constant;
636 if (!(time_status & STA_NANO))
637 time_constant += 4;
638 time_constant = min(time_constant, (long)MAXTC);
639 time_constant = max(time_constant, 0l);
640 }
641
642 if (txc->modes & ADJ_TAI && txc->constant > 0)
643 *time_tai = txc->constant;
644
645 if (txc->modes & ADJ_OFFSET)
646 ntp_update_offset(txc->offset);
647
648 if (txc->modes & ADJ_TICK)
649 tick_usec = txc->tick;
650
651 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
652 ntp_update_frequency();
653}
654
655
656
657
658
659
660int ntp_validate_timex(struct timex *txc)
661{
662 if (txc->modes & ADJ_ADJTIME) {
663
664 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
665 return -EINVAL;
666 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
667 !capable(CAP_SYS_TIME))
668 return -EPERM;
669 } else {
670
671 if (txc->modes && !capable(CAP_SYS_TIME))
672 return -EPERM;
673
674
675
676
677 if (txc->modes & ADJ_TICK &&
678 (txc->tick < 900000/USER_HZ ||
679 txc->tick > 1100000/USER_HZ))
680 return -EINVAL;
681 }
682
683 if (txc->modes & ADJ_SETOFFSET) {
684
685 if (!capable(CAP_SYS_TIME))
686 return -EPERM;
687
688 if (txc->modes & ADJ_NANO) {
689 struct timespec ts;
690
691 ts.tv_sec = txc->time.tv_sec;
692 ts.tv_nsec = txc->time.tv_usec;
693 if (!timespec_inject_offset_valid(&ts))
694 return -EINVAL;
695
696 } else {
697 if (!timeval_inject_offset_valid(&txc->time))
698 return -EINVAL;
699 }
700 }
701
702
703
704
705
706 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
707 if (LLONG_MIN / PPM_SCALE > txc->freq)
708 return -EINVAL;
709 if (LLONG_MAX / PPM_SCALE < txc->freq)
710 return -EINVAL;
711 }
712
713 return 0;
714}
715
716
717
718
719
720
721int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
722{
723 int result;
724
725 if (txc->modes & ADJ_ADJTIME) {
726 long save_adjust = time_adjust;
727
728 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
729
730 time_adjust = txc->offset;
731 ntp_update_frequency();
732 }
733 txc->offset = save_adjust;
734 } else {
735
736
737 if (txc->modes)
738 process_adjtimex_modes(txc, ts, time_tai);
739
740 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
741 NTP_SCALE_SHIFT);
742 if (!(time_status & STA_NANO))
743 txc->offset /= NSEC_PER_USEC;
744 }
745
746 result = time_state;
747
748 if (is_error_status(time_status))
749 result = TIME_ERROR;
750
751 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
752 PPM_SCALE_INV, NTP_SCALE_SHIFT);
753 txc->maxerror = time_maxerror;
754 txc->esterror = time_esterror;
755 txc->status = time_status;
756 txc->constant = time_constant;
757 txc->precision = 1;
758 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
759 txc->tick = tick_usec;
760 txc->tai = *time_tai;
761
762
763 pps_fill_timex(txc);
764
765 txc->time.tv_sec = (time_t)ts->tv_sec;
766 txc->time.tv_usec = ts->tv_nsec;
767 if (!(time_status & STA_NANO))
768 txc->time.tv_usec /= NSEC_PER_USEC;
769
770
771 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
772 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
773 result = TIME_OOP;
774 txc->tai++;
775 txc->time.tv_sec--;
776 }
777 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
778 result = TIME_WAIT;
779 txc->tai--;
780 txc->time.tv_sec++;
781 }
782 if ((time_state == TIME_OOP) &&
783 (ts->tv_sec == ntp_next_leap_sec)) {
784 result = TIME_WAIT;
785 }
786 }
787
788 return result;
789}
790
791#ifdef CONFIG_NTP_PPS
792
793
794
795
796
797struct pps_normtime {
798 s64 sec;
799 long nsec;
800};
801
802
803
804static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
805{
806 struct pps_normtime norm = {
807 .sec = ts.tv_sec,
808 .nsec = ts.tv_nsec
809 };
810
811 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
812 norm.nsec -= NSEC_PER_SEC;
813 norm.sec++;
814 }
815
816 return norm;
817}
818
819
820static inline long pps_phase_filter_get(long *jitter)
821{
822 *jitter = pps_tf[0] - pps_tf[1];
823 if (*jitter < 0)
824 *jitter = -*jitter;
825
826
827 return pps_tf[0];
828}
829
830
831static inline void pps_phase_filter_add(long err)
832{
833 pps_tf[2] = pps_tf[1];
834 pps_tf[1] = pps_tf[0];
835 pps_tf[0] = err;
836}
837
838
839
840
841static inline void pps_dec_freq_interval(void)
842{
843 if (--pps_intcnt <= -PPS_INTCOUNT) {
844 pps_intcnt = -PPS_INTCOUNT;
845 if (pps_shift > PPS_INTMIN) {
846 pps_shift--;
847 pps_intcnt = 0;
848 }
849 }
850}
851
852
853
854
855static inline void pps_inc_freq_interval(void)
856{
857 if (++pps_intcnt >= PPS_INTCOUNT) {
858 pps_intcnt = PPS_INTCOUNT;
859 if (pps_shift < PPS_INTMAX) {
860 pps_shift++;
861 pps_intcnt = 0;
862 }
863 }
864}
865
866
867
868
869
870
871
872
873
874
875static long hardpps_update_freq(struct pps_normtime freq_norm)
876{
877 long delta, delta_mod;
878 s64 ftemp;
879
880
881 if (freq_norm.sec > (2 << pps_shift)) {
882 time_status |= STA_PPSERROR;
883 pps_errcnt++;
884 pps_dec_freq_interval();
885 printk_deferred(KERN_ERR
886 "hardpps: PPSERROR: interval too long - %lld s\n",
887 freq_norm.sec);
888 return 0;
889 }
890
891
892
893
894
895 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
896 freq_norm.sec);
897 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
898 pps_freq = ftemp;
899 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
900 printk_deferred(KERN_WARNING
901 "hardpps: PPSWANDER: change=%ld\n", delta);
902 time_status |= STA_PPSWANDER;
903 pps_stbcnt++;
904 pps_dec_freq_interval();
905 } else {
906 pps_inc_freq_interval();
907 }
908
909
910
911
912
913 delta_mod = delta;
914 if (delta_mod < 0)
915 delta_mod = -delta_mod;
916 pps_stabil += (div_s64(((s64)delta_mod) <<
917 (NTP_SCALE_SHIFT - SHIFT_USEC),
918 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
919
920
921 if ((time_status & STA_PPSFREQ) != 0 &&
922 (time_status & STA_FREQHOLD) == 0) {
923 time_freq = pps_freq;
924 ntp_update_frequency();
925 }
926
927 return delta;
928}
929
930
931static void hardpps_update_phase(long error)
932{
933 long correction = -error;
934 long jitter;
935
936
937 pps_phase_filter_add(correction);
938 correction = pps_phase_filter_get(&jitter);
939
940
941
942
943
944 if (jitter > (pps_jitter << PPS_POPCORN)) {
945 printk_deferred(KERN_WARNING
946 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
947 jitter, (pps_jitter << PPS_POPCORN));
948 time_status |= STA_PPSJITTER;
949 pps_jitcnt++;
950 } else if (time_status & STA_PPSTIME) {
951
952 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
953 NTP_INTERVAL_FREQ);
954
955 time_adjust = 0;
956 }
957
958 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
959}
960
961
962
963
964
965
966
967
968
969
970
971
972
973void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
974{
975 struct pps_normtime pts_norm, freq_norm;
976
977 pts_norm = pps_normalize_ts(*phase_ts);
978
979
980 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
981
982
983 time_status |= STA_PPSSIGNAL;
984 pps_valid = PPS_VALID;
985
986
987
988 if (unlikely(pps_fbase.tv_sec == 0)) {
989 pps_fbase = *raw_ts;
990 return;
991 }
992
993
994 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
995
996
997
998 if ((freq_norm.sec == 0) ||
999 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1000 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1001 time_status |= STA_PPSJITTER;
1002
1003 pps_fbase = *raw_ts;
1004 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1005 return;
1006 }
1007
1008
1009
1010
1011 if (freq_norm.sec >= (1 << pps_shift)) {
1012 pps_calcnt++;
1013
1014 pps_fbase = *raw_ts;
1015 hardpps_update_freq(freq_norm);
1016 }
1017
1018 hardpps_update_phase(pts_norm.nsec);
1019
1020}
1021#endif
1022
1023static int __init ntp_tick_adj_setup(char *str)
1024{
1025 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1026
1027 if (rc)
1028 return rc;
1029 ntp_tick_adj <<= NTP_SCALE_SHIFT;
1030
1031 return 1;
1032}
1033
1034__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1035
1036void __init ntp_init(void)
1037{
1038 ntp_clear();
1039}
1040