linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           anon_vma->rwsem
  29 *             mm->page_table_lock or pte_lock
  30 *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  35 *                     mapping->tree_lock (widely used)
  36 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  37 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  39 *                   mapping->tree_lock (widely used, in set_page_dirty,
  40 *                             in arch-dependent flush_dcache_mmap_lock,
  41 *                             within bdi.wb->list_lock in __sync_single_inode)
  42 *
  43 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  44 *   ->tasklist_lock
  45 *     pte map lock
  46 */
  47
  48#include <linux/mm.h>
  49#include <linux/pagemap.h>
  50#include <linux/swap.h>
  51#include <linux/swapops.h>
  52#include <linux/slab.h>
  53#include <linux/init.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/rcupdate.h>
  57#include <linux/export.h>
  58#include <linux/memcontrol.h>
  59#include <linux/mmu_notifier.h>
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/backing-dev.h>
  63#include <linux/page_idle.h>
  64
  65#include <asm/tlbflush.h>
  66
  67#include <trace/events/tlb.h>
  68
  69#include "internal.h"
  70
  71static struct kmem_cache *anon_vma_cachep;
  72static struct kmem_cache *anon_vma_chain_cachep;
  73
  74static inline struct anon_vma *anon_vma_alloc(void)
  75{
  76        struct anon_vma *anon_vma;
  77
  78        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  79        if (anon_vma) {
  80                atomic_set(&anon_vma->refcount, 1);
  81                anon_vma->degree = 1;   /* Reference for first vma */
  82                anon_vma->parent = anon_vma;
  83                /*
  84                 * Initialise the anon_vma root to point to itself. If called
  85                 * from fork, the root will be reset to the parents anon_vma.
  86                 */
  87                anon_vma->root = anon_vma;
  88        }
  89
  90        return anon_vma;
  91}
  92
  93static inline void anon_vma_free(struct anon_vma *anon_vma)
  94{
  95        VM_BUG_ON(atomic_read(&anon_vma->refcount));
  96
  97        /*
  98         * Synchronize against page_lock_anon_vma_read() such that
  99         * we can safely hold the lock without the anon_vma getting
 100         * freed.
 101         *
 102         * Relies on the full mb implied by the atomic_dec_and_test() from
 103         * put_anon_vma() against the acquire barrier implied by
 104         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 105         *
 106         * page_lock_anon_vma_read()    VS      put_anon_vma()
 107         *   down_read_trylock()                  atomic_dec_and_test()
 108         *   LOCK                                 MB
 109         *   atomic_read()                        rwsem_is_locked()
 110         *
 111         * LOCK should suffice since the actual taking of the lock must
 112         * happen _before_ what follows.
 113         */
 114        might_sleep();
 115        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 116                anon_vma_lock_write(anon_vma);
 117                anon_vma_unlock_write(anon_vma);
 118        }
 119
 120        kmem_cache_free(anon_vma_cachep, anon_vma);
 121}
 122
 123static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 124{
 125        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 126}
 127
 128static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 129{
 130        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 131}
 132
 133static void anon_vma_chain_link(struct vm_area_struct *vma,
 134                                struct anon_vma_chain *avc,
 135                                struct anon_vma *anon_vma)
 136{
 137        avc->vma = vma;
 138        avc->anon_vma = anon_vma;
 139        list_add(&avc->same_vma, &vma->anon_vma_chain);
 140        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 141}
 142
 143/**
 144 * anon_vma_prepare - attach an anon_vma to a memory region
 145 * @vma: the memory region in question
 146 *
 147 * This makes sure the memory mapping described by 'vma' has
 148 * an 'anon_vma' attached to it, so that we can associate the
 149 * anonymous pages mapped into it with that anon_vma.
 150 *
 151 * The common case will be that we already have one, but if
 152 * not we either need to find an adjacent mapping that we
 153 * can re-use the anon_vma from (very common when the only
 154 * reason for splitting a vma has been mprotect()), or we
 155 * allocate a new one.
 156 *
 157 * Anon-vma allocations are very subtle, because we may have
 158 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 159 * and that may actually touch the spinlock even in the newly
 160 * allocated vma (it depends on RCU to make sure that the
 161 * anon_vma isn't actually destroyed).
 162 *
 163 * As a result, we need to do proper anon_vma locking even
 164 * for the new allocation. At the same time, we do not want
 165 * to do any locking for the common case of already having
 166 * an anon_vma.
 167 *
 168 * This must be called with the mmap_sem held for reading.
 169 */
 170int anon_vma_prepare(struct vm_area_struct *vma)
 171{
 172        struct anon_vma *anon_vma = vma->anon_vma;
 173        struct anon_vma_chain *avc;
 174
 175        might_sleep();
 176        if (unlikely(!anon_vma)) {
 177                struct mm_struct *mm = vma->vm_mm;
 178                struct anon_vma *allocated;
 179
 180                avc = anon_vma_chain_alloc(GFP_KERNEL);
 181                if (!avc)
 182                        goto out_enomem;
 183
 184                anon_vma = find_mergeable_anon_vma(vma);
 185                allocated = NULL;
 186                if (!anon_vma) {
 187                        anon_vma = anon_vma_alloc();
 188                        if (unlikely(!anon_vma))
 189                                goto out_enomem_free_avc;
 190                        allocated = anon_vma;
 191                }
 192
 193                anon_vma_lock_write(anon_vma);
 194                /* page_table_lock to protect against threads */
 195                spin_lock(&mm->page_table_lock);
 196                if (likely(!vma->anon_vma)) {
 197                        vma->anon_vma = anon_vma;
 198                        anon_vma_chain_link(vma, avc, anon_vma);
 199                        /* vma reference or self-parent link for new root */
 200                        anon_vma->degree++;
 201                        allocated = NULL;
 202                        avc = NULL;
 203                }
 204                spin_unlock(&mm->page_table_lock);
 205                anon_vma_unlock_write(anon_vma);
 206
 207                if (unlikely(allocated))
 208                        put_anon_vma(allocated);
 209                if (unlikely(avc))
 210                        anon_vma_chain_free(avc);
 211        }
 212        return 0;
 213
 214 out_enomem_free_avc:
 215        anon_vma_chain_free(avc);
 216 out_enomem:
 217        return -ENOMEM;
 218}
 219
 220/*
 221 * This is a useful helper function for locking the anon_vma root as
 222 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 223 * have the same vma.
 224 *
 225 * Such anon_vma's should have the same root, so you'd expect to see
 226 * just a single mutex_lock for the whole traversal.
 227 */
 228static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 229{
 230        struct anon_vma *new_root = anon_vma->root;
 231        if (new_root != root) {
 232                if (WARN_ON_ONCE(root))
 233                        up_write(&root->rwsem);
 234                root = new_root;
 235                down_write(&root->rwsem);
 236        }
 237        return root;
 238}
 239
 240static inline void unlock_anon_vma_root(struct anon_vma *root)
 241{
 242        if (root)
 243                up_write(&root->rwsem);
 244}
 245
 246/*
 247 * Attach the anon_vmas from src to dst.
 248 * Returns 0 on success, -ENOMEM on failure.
 249 *
 250 * If dst->anon_vma is NULL this function tries to find and reuse existing
 251 * anon_vma which has no vmas and only one child anon_vma. This prevents
 252 * degradation of anon_vma hierarchy to endless linear chain in case of
 253 * constantly forking task. On the other hand, an anon_vma with more than one
 254 * child isn't reused even if there was no alive vma, thus rmap walker has a
 255 * good chance of avoiding scanning the whole hierarchy when it searches where
 256 * page is mapped.
 257 */
 258int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 259{
 260        struct anon_vma_chain *avc, *pavc;
 261        struct anon_vma *root = NULL;
 262
 263        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 264                struct anon_vma *anon_vma;
 265
 266                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 267                if (unlikely(!avc)) {
 268                        unlock_anon_vma_root(root);
 269                        root = NULL;
 270                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 271                        if (!avc)
 272                                goto enomem_failure;
 273                }
 274                anon_vma = pavc->anon_vma;
 275                root = lock_anon_vma_root(root, anon_vma);
 276                anon_vma_chain_link(dst, avc, anon_vma);
 277
 278                /*
 279                 * Reuse existing anon_vma if its degree lower than two,
 280                 * that means it has no vma and only one anon_vma child.
 281                 *
 282                 * Do not chose parent anon_vma, otherwise first child
 283                 * will always reuse it. Root anon_vma is never reused:
 284                 * it has self-parent reference and at least one child.
 285                 */
 286                if (!dst->anon_vma && anon_vma != src->anon_vma &&
 287                                anon_vma->degree < 2)
 288                        dst->anon_vma = anon_vma;
 289        }
 290        if (dst->anon_vma)
 291                dst->anon_vma->degree++;
 292        unlock_anon_vma_root(root);
 293        return 0;
 294
 295 enomem_failure:
 296        /*
 297         * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 298         * decremented in unlink_anon_vmas().
 299         * We can safely do this because callers of anon_vma_clone() don't care
 300         * about dst->anon_vma if anon_vma_clone() failed.
 301         */
 302        dst->anon_vma = NULL;
 303        unlink_anon_vmas(dst);
 304        return -ENOMEM;
 305}
 306
 307/*
 308 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 309 * the corresponding VMA in the parent process is attached to.
 310 * Returns 0 on success, non-zero on failure.
 311 */
 312int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 313{
 314        struct anon_vma_chain *avc;
 315        struct anon_vma *anon_vma;
 316        int error;
 317
 318        /* Don't bother if the parent process has no anon_vma here. */
 319        if (!pvma->anon_vma)
 320                return 0;
 321
 322        /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 323        vma->anon_vma = NULL;
 324
 325        /*
 326         * First, attach the new VMA to the parent VMA's anon_vmas,
 327         * so rmap can find non-COWed pages in child processes.
 328         */
 329        error = anon_vma_clone(vma, pvma);
 330        if (error)
 331                return error;
 332
 333        /* An existing anon_vma has been reused, all done then. */
 334        if (vma->anon_vma)
 335                return 0;
 336
 337        /* Then add our own anon_vma. */
 338        anon_vma = anon_vma_alloc();
 339        if (!anon_vma)
 340                goto out_error;
 341        avc = anon_vma_chain_alloc(GFP_KERNEL);
 342        if (!avc)
 343                goto out_error_free_anon_vma;
 344
 345        /*
 346         * The root anon_vma's spinlock is the lock actually used when we
 347         * lock any of the anon_vmas in this anon_vma tree.
 348         */
 349        anon_vma->root = pvma->anon_vma->root;
 350        anon_vma->parent = pvma->anon_vma;
 351        /*
 352         * With refcounts, an anon_vma can stay around longer than the
 353         * process it belongs to. The root anon_vma needs to be pinned until
 354         * this anon_vma is freed, because the lock lives in the root.
 355         */
 356        get_anon_vma(anon_vma->root);
 357        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 358        vma->anon_vma = anon_vma;
 359        anon_vma_lock_write(anon_vma);
 360        anon_vma_chain_link(vma, avc, anon_vma);
 361        anon_vma->parent->degree++;
 362        anon_vma_unlock_write(anon_vma);
 363
 364        return 0;
 365
 366 out_error_free_anon_vma:
 367        put_anon_vma(anon_vma);
 368 out_error:
 369        unlink_anon_vmas(vma);
 370        return -ENOMEM;
 371}
 372
 373void unlink_anon_vmas(struct vm_area_struct *vma)
 374{
 375        struct anon_vma_chain *avc, *next;
 376        struct anon_vma *root = NULL;
 377
 378        /*
 379         * Unlink each anon_vma chained to the VMA.  This list is ordered
 380         * from newest to oldest, ensuring the root anon_vma gets freed last.
 381         */
 382        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 383                struct anon_vma *anon_vma = avc->anon_vma;
 384
 385                root = lock_anon_vma_root(root, anon_vma);
 386                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 387
 388                /*
 389                 * Leave empty anon_vmas on the list - we'll need
 390                 * to free them outside the lock.
 391                 */
 392                if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
 393                        anon_vma->parent->degree--;
 394                        continue;
 395                }
 396
 397                list_del(&avc->same_vma);
 398                anon_vma_chain_free(avc);
 399        }
 400        if (vma->anon_vma)
 401                vma->anon_vma->degree--;
 402        unlock_anon_vma_root(root);
 403
 404        /*
 405         * Iterate the list once more, it now only contains empty and unlinked
 406         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 407         * needing to write-acquire the anon_vma->root->rwsem.
 408         */
 409        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 410                struct anon_vma *anon_vma = avc->anon_vma;
 411
 412                VM_WARN_ON(anon_vma->degree);
 413                put_anon_vma(anon_vma);
 414
 415                list_del(&avc->same_vma);
 416                anon_vma_chain_free(avc);
 417        }
 418}
 419
 420static void anon_vma_ctor(void *data)
 421{
 422        struct anon_vma *anon_vma = data;
 423
 424        init_rwsem(&anon_vma->rwsem);
 425        atomic_set(&anon_vma->refcount, 0);
 426        anon_vma->rb_root = RB_ROOT;
 427}
 428
 429void __init anon_vma_init(void)
 430{
 431        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 432                        0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 433                        anon_vma_ctor);
 434        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 435                        SLAB_PANIC|SLAB_ACCOUNT);
 436}
 437
 438/*
 439 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 440 *
 441 * Since there is no serialization what so ever against page_remove_rmap()
 442 * the best this function can do is return a locked anon_vma that might
 443 * have been relevant to this page.
 444 *
 445 * The page might have been remapped to a different anon_vma or the anon_vma
 446 * returned may already be freed (and even reused).
 447 *
 448 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 449 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 450 * ensure that any anon_vma obtained from the page will still be valid for as
 451 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 452 *
 453 * All users of this function must be very careful when walking the anon_vma
 454 * chain and verify that the page in question is indeed mapped in it
 455 * [ something equivalent to page_mapped_in_vma() ].
 456 *
 457 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 458 * that the anon_vma pointer from page->mapping is valid if there is a
 459 * mapcount, we can dereference the anon_vma after observing those.
 460 */
 461struct anon_vma *page_get_anon_vma(struct page *page)
 462{
 463        struct anon_vma *anon_vma = NULL;
 464        unsigned long anon_mapping;
 465
 466        rcu_read_lock();
 467        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 468        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 469                goto out;
 470        if (!page_mapped(page))
 471                goto out;
 472
 473        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 474        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 475                anon_vma = NULL;
 476                goto out;
 477        }
 478
 479        /*
 480         * If this page is still mapped, then its anon_vma cannot have been
 481         * freed.  But if it has been unmapped, we have no security against the
 482         * anon_vma structure being freed and reused (for another anon_vma:
 483         * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
 484         * above cannot corrupt).
 485         */
 486        if (!page_mapped(page)) {
 487                rcu_read_unlock();
 488                put_anon_vma(anon_vma);
 489                return NULL;
 490        }
 491out:
 492        rcu_read_unlock();
 493
 494        return anon_vma;
 495}
 496
 497/*
 498 * Similar to page_get_anon_vma() except it locks the anon_vma.
 499 *
 500 * Its a little more complex as it tries to keep the fast path to a single
 501 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 502 * reference like with page_get_anon_vma() and then block on the mutex.
 503 */
 504struct anon_vma *page_lock_anon_vma_read(struct page *page)
 505{
 506        struct anon_vma *anon_vma = NULL;
 507        struct anon_vma *root_anon_vma;
 508        unsigned long anon_mapping;
 509
 510        rcu_read_lock();
 511        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 512        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 513                goto out;
 514        if (!page_mapped(page))
 515                goto out;
 516
 517        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 518        root_anon_vma = READ_ONCE(anon_vma->root);
 519        if (down_read_trylock(&root_anon_vma->rwsem)) {
 520                /*
 521                 * If the page is still mapped, then this anon_vma is still
 522                 * its anon_vma, and holding the mutex ensures that it will
 523                 * not go away, see anon_vma_free().
 524                 */
 525                if (!page_mapped(page)) {
 526                        up_read(&root_anon_vma->rwsem);
 527                        anon_vma = NULL;
 528                }
 529                goto out;
 530        }
 531
 532        /* trylock failed, we got to sleep */
 533        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 534                anon_vma = NULL;
 535                goto out;
 536        }
 537
 538        if (!page_mapped(page)) {
 539                rcu_read_unlock();
 540                put_anon_vma(anon_vma);
 541                return NULL;
 542        }
 543
 544        /* we pinned the anon_vma, its safe to sleep */
 545        rcu_read_unlock();
 546        anon_vma_lock_read(anon_vma);
 547
 548        if (atomic_dec_and_test(&anon_vma->refcount)) {
 549                /*
 550                 * Oops, we held the last refcount, release the lock
 551                 * and bail -- can't simply use put_anon_vma() because
 552                 * we'll deadlock on the anon_vma_lock_write() recursion.
 553                 */
 554                anon_vma_unlock_read(anon_vma);
 555                __put_anon_vma(anon_vma);
 556                anon_vma = NULL;
 557        }
 558
 559        return anon_vma;
 560
 561out:
 562        rcu_read_unlock();
 563        return anon_vma;
 564}
 565
 566void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 567{
 568        anon_vma_unlock_read(anon_vma);
 569}
 570
 571#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 572/*
 573 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 574 * important if a PTE was dirty when it was unmapped that it's flushed
 575 * before any IO is initiated on the page to prevent lost writes. Similarly,
 576 * it must be flushed before freeing to prevent data leakage.
 577 */
 578void try_to_unmap_flush(void)
 579{
 580        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 581        int cpu;
 582
 583        if (!tlb_ubc->flush_required)
 584                return;
 585
 586        cpu = get_cpu();
 587
 588        if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
 589                count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 590                local_flush_tlb();
 591                trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
 592        }
 593
 594        if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
 595                flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
 596        cpumask_clear(&tlb_ubc->cpumask);
 597        tlb_ubc->flush_required = false;
 598        tlb_ubc->writable = false;
 599        put_cpu();
 600}
 601
 602/* Flush iff there are potentially writable TLB entries that can race with IO */
 603void try_to_unmap_flush_dirty(void)
 604{
 605        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 606
 607        if (tlb_ubc->writable)
 608                try_to_unmap_flush();
 609}
 610
 611static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
 612                struct page *page, bool writable)
 613{
 614        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 615
 616        cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
 617        tlb_ubc->flush_required = true;
 618
 619        /*
 620         * If the PTE was dirty then it's best to assume it's writable. The
 621         * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 622         * before the page is queued for IO.
 623         */
 624        if (writable)
 625                tlb_ubc->writable = true;
 626}
 627
 628/*
 629 * Returns true if the TLB flush should be deferred to the end of a batch of
 630 * unmap operations to reduce IPIs.
 631 */
 632static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 633{
 634        bool should_defer = false;
 635
 636        if (!(flags & TTU_BATCH_FLUSH))
 637                return false;
 638
 639        /* If remote CPUs need to be flushed then defer batch the flush */
 640        if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 641                should_defer = true;
 642        put_cpu();
 643
 644        return should_defer;
 645}
 646#else
 647static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
 648                struct page *page, bool writable)
 649{
 650}
 651
 652static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 653{
 654        return false;
 655}
 656#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 657
 658/*
 659 * At what user virtual address is page expected in vma?
 660 * Caller should check the page is actually part of the vma.
 661 */
 662unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 663{
 664        unsigned long address;
 665        if (PageAnon(page)) {
 666                struct anon_vma *page__anon_vma = page_anon_vma(page);
 667                /*
 668                 * Note: swapoff's unuse_vma() is more efficient with this
 669                 * check, and needs it to match anon_vma when KSM is active.
 670                 */
 671                if (!vma->anon_vma || !page__anon_vma ||
 672                    vma->anon_vma->root != page__anon_vma->root)
 673                        return -EFAULT;
 674        } else if (page->mapping) {
 675                if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 676                        return -EFAULT;
 677        } else
 678                return -EFAULT;
 679        address = __vma_address(page, vma);
 680        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 681                return -EFAULT;
 682        return address;
 683}
 684
 685pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 686{
 687        pgd_t *pgd;
 688        pud_t *pud;
 689        pmd_t *pmd = NULL;
 690        pmd_t pmde;
 691
 692        pgd = pgd_offset(mm, address);
 693        if (!pgd_present(*pgd))
 694                goto out;
 695
 696        pud = pud_offset(pgd, address);
 697        if (!pud_present(*pud))
 698                goto out;
 699
 700        pmd = pmd_offset(pud, address);
 701        /*
 702         * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 703         * without holding anon_vma lock for write.  So when looking for a
 704         * genuine pmde (in which to find pte), test present and !THP together.
 705         */
 706        pmde = *pmd;
 707        barrier();
 708        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 709                pmd = NULL;
 710out:
 711        return pmd;
 712}
 713
 714/*
 715 * Check that @page is mapped at @address into @mm.
 716 *
 717 * If @sync is false, page_check_address may perform a racy check to avoid
 718 * the page table lock when the pte is not present (helpful when reclaiming
 719 * highly shared pages).
 720 *
 721 * On success returns with pte mapped and locked.
 722 */
 723pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
 724                          unsigned long address, spinlock_t **ptlp, int sync)
 725{
 726        pmd_t *pmd;
 727        pte_t *pte;
 728        spinlock_t *ptl;
 729
 730        if (unlikely(PageHuge(page))) {
 731                /* when pud is not present, pte will be NULL */
 732                pte = huge_pte_offset(mm, address);
 733                if (!pte)
 734                        return NULL;
 735
 736                ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
 737                goto check;
 738        }
 739
 740        pmd = mm_find_pmd(mm, address);
 741        if (!pmd)
 742                return NULL;
 743
 744        pte = pte_offset_map(pmd, address);
 745        /* Make a quick check before getting the lock */
 746        if (!sync && !pte_present(*pte)) {
 747                pte_unmap(pte);
 748                return NULL;
 749        }
 750
 751        ptl = pte_lockptr(mm, pmd);
 752check:
 753        spin_lock(ptl);
 754        if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 755                *ptlp = ptl;
 756                return pte;
 757        }
 758        pte_unmap_unlock(pte, ptl);
 759        return NULL;
 760}
 761
 762/**
 763 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 764 * @page: the page to test
 765 * @vma: the VMA to test
 766 *
 767 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 768 * if the page is not mapped into the page tables of this VMA.  Only
 769 * valid for normal file or anonymous VMAs.
 770 */
 771int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 772{
 773        unsigned long address;
 774        pte_t *pte;
 775        spinlock_t *ptl;
 776
 777        address = __vma_address(page, vma);
 778        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 779                return 0;
 780        pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 781        if (!pte)                       /* the page is not in this mm */
 782                return 0;
 783        pte_unmap_unlock(pte, ptl);
 784
 785        return 1;
 786}
 787
 788#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 789/*
 790 * Check that @page is mapped at @address into @mm. In contrast to
 791 * page_check_address(), this function can handle transparent huge pages.
 792 *
 793 * On success returns true with pte mapped and locked. For PMD-mapped
 794 * transparent huge pages *@ptep is set to NULL.
 795 */
 796bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
 797                                  unsigned long address, pmd_t **pmdp,
 798                                  pte_t **ptep, spinlock_t **ptlp)
 799{
 800        pgd_t *pgd;
 801        pud_t *pud;
 802        pmd_t *pmd;
 803        pte_t *pte;
 804        spinlock_t *ptl;
 805
 806        if (unlikely(PageHuge(page))) {
 807                /* when pud is not present, pte will be NULL */
 808                pte = huge_pte_offset(mm, address);
 809                if (!pte)
 810                        return false;
 811
 812                ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
 813                pmd = NULL;
 814                goto check_pte;
 815        }
 816
 817        pgd = pgd_offset(mm, address);
 818        if (!pgd_present(*pgd))
 819                return false;
 820        pud = pud_offset(pgd, address);
 821        if (!pud_present(*pud))
 822                return false;
 823        pmd = pmd_offset(pud, address);
 824
 825        if (pmd_trans_huge(*pmd)) {
 826                ptl = pmd_lock(mm, pmd);
 827                if (!pmd_present(*pmd))
 828                        goto unlock_pmd;
 829                if (unlikely(!pmd_trans_huge(*pmd))) {
 830                        spin_unlock(ptl);
 831                        goto map_pte;
 832                }
 833
 834                if (pmd_page(*pmd) != page)
 835                        goto unlock_pmd;
 836
 837                pte = NULL;
 838                goto found;
 839unlock_pmd:
 840                spin_unlock(ptl);
 841                return false;
 842        } else {
 843                pmd_t pmde = *pmd;
 844
 845                barrier();
 846                if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 847                        return false;
 848        }
 849map_pte:
 850        pte = pte_offset_map(pmd, address);
 851        if (!pte_present(*pte)) {
 852                pte_unmap(pte);
 853                return false;
 854        }
 855
 856        ptl = pte_lockptr(mm, pmd);
 857check_pte:
 858        spin_lock(ptl);
 859
 860        if (!pte_present(*pte)) {
 861                pte_unmap_unlock(pte, ptl);
 862                return false;
 863        }
 864
 865        /* THP can be referenced by any subpage */
 866        if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
 867                pte_unmap_unlock(pte, ptl);
 868                return false;
 869        }
 870found:
 871        *ptep = pte;
 872        *pmdp = pmd;
 873        *ptlp = ptl;
 874        return true;
 875}
 876#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 877
 878struct page_referenced_arg {
 879        int mapcount;
 880        int referenced;
 881        unsigned long vm_flags;
 882        struct mem_cgroup *memcg;
 883};
 884/*
 885 * arg: page_referenced_arg will be passed
 886 */
 887static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
 888                        unsigned long address, void *arg)
 889{
 890        struct mm_struct *mm = vma->vm_mm;
 891        struct page_referenced_arg *pra = arg;
 892        pmd_t *pmd;
 893        pte_t *pte;
 894        spinlock_t *ptl;
 895        int referenced = 0;
 896
 897        if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
 898                return SWAP_AGAIN;
 899
 900        if (vma->vm_flags & VM_LOCKED) {
 901                if (pte)
 902                        pte_unmap(pte);
 903                spin_unlock(ptl);
 904                pra->vm_flags |= VM_LOCKED;
 905                return SWAP_FAIL; /* To break the loop */
 906        }
 907
 908        if (pte) {
 909                if (ptep_clear_flush_young_notify(vma, address, pte)) {
 910                        /*
 911                         * Don't treat a reference through a sequentially read
 912                         * mapping as such.  If the page has been used in
 913                         * another mapping, we will catch it; if this other
 914                         * mapping is already gone, the unmap path will have
 915                         * set PG_referenced or activated the page.
 916                         */
 917                        if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 918                                referenced++;
 919                }
 920                pte_unmap(pte);
 921        } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 922                if (pmdp_clear_flush_young_notify(vma, address, pmd))
 923                        referenced++;
 924        } else {
 925                /* unexpected pmd-mapped page? */
 926                WARN_ON_ONCE(1);
 927        }
 928        spin_unlock(ptl);
 929
 930        if (referenced)
 931                clear_page_idle(page);
 932        if (test_and_clear_page_young(page))
 933                referenced++;
 934
 935        if (referenced) {
 936                pra->referenced++;
 937                pra->vm_flags |= vma->vm_flags;
 938        }
 939
 940        pra->mapcount--;
 941        if (!pra->mapcount)
 942                return SWAP_SUCCESS; /* To break the loop */
 943
 944        return SWAP_AGAIN;
 945}
 946
 947static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 948{
 949        struct page_referenced_arg *pra = arg;
 950        struct mem_cgroup *memcg = pra->memcg;
 951
 952        if (!mm_match_cgroup(vma->vm_mm, memcg))
 953                return true;
 954
 955        return false;
 956}
 957
 958/**
 959 * page_referenced - test if the page was referenced
 960 * @page: the page to test
 961 * @is_locked: caller holds lock on the page
 962 * @memcg: target memory cgroup
 963 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 964 *
 965 * Quick test_and_clear_referenced for all mappings to a page,
 966 * returns the number of ptes which referenced the page.
 967 */
 968int page_referenced(struct page *page,
 969                    int is_locked,
 970                    struct mem_cgroup *memcg,
 971                    unsigned long *vm_flags)
 972{
 973        int ret;
 974        int we_locked = 0;
 975        struct page_referenced_arg pra = {
 976                .mapcount = total_mapcount(page),
 977                .memcg = memcg,
 978        };
 979        struct rmap_walk_control rwc = {
 980                .rmap_one = page_referenced_one,
 981                .arg = (void *)&pra,
 982                .anon_lock = page_lock_anon_vma_read,
 983        };
 984
 985        *vm_flags = 0;
 986        if (!page_mapped(page))
 987                return 0;
 988
 989        if (!page_rmapping(page))
 990                return 0;
 991
 992        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 993                we_locked = trylock_page(page);
 994                if (!we_locked)
 995                        return 1;
 996        }
 997
 998        /*
 999         * If we are reclaiming on behalf of a cgroup, skip
1000         * counting on behalf of references from different
1001         * cgroups
1002         */
1003        if (memcg) {
1004                rwc.invalid_vma = invalid_page_referenced_vma;
1005        }
1006
1007        ret = rmap_walk(page, &rwc);
1008        *vm_flags = pra.vm_flags;
1009
1010        if (we_locked)
1011                unlock_page(page);
1012
1013        return pra.referenced;
1014}
1015
1016static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1017                            unsigned long address, void *arg)
1018{
1019        struct mm_struct *mm = vma->vm_mm;
1020        pte_t *pte;
1021        spinlock_t *ptl;
1022        int ret = 0;
1023        int *cleaned = arg;
1024
1025        pte = page_check_address(page, mm, address, &ptl, 1);
1026        if (!pte)
1027                goto out;
1028
1029        if (pte_dirty(*pte) || pte_write(*pte)) {
1030                pte_t entry;
1031
1032                flush_cache_page(vma, address, pte_pfn(*pte));
1033                entry = ptep_clear_flush(vma, address, pte);
1034                entry = pte_wrprotect(entry);
1035                entry = pte_mkclean(entry);
1036                set_pte_at(mm, address, pte, entry);
1037                ret = 1;
1038        }
1039
1040        pte_unmap_unlock(pte, ptl);
1041
1042        if (ret) {
1043                mmu_notifier_invalidate_page(mm, address);
1044                (*cleaned)++;
1045        }
1046out:
1047        return SWAP_AGAIN;
1048}
1049
1050static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1051{
1052        if (vma->vm_flags & VM_SHARED)
1053                return false;
1054
1055        return true;
1056}
1057
1058int page_mkclean(struct page *page)
1059{
1060        int cleaned = 0;
1061        struct address_space *mapping;
1062        struct rmap_walk_control rwc = {
1063                .arg = (void *)&cleaned,
1064                .rmap_one = page_mkclean_one,
1065                .invalid_vma = invalid_mkclean_vma,
1066        };
1067
1068        BUG_ON(!PageLocked(page));
1069
1070        if (!page_mapped(page))
1071                return 0;
1072
1073        mapping = page_mapping(page);
1074        if (!mapping)
1075                return 0;
1076
1077        rmap_walk(page, &rwc);
1078
1079        return cleaned;
1080}
1081EXPORT_SYMBOL_GPL(page_mkclean);
1082
1083/**
1084 * page_move_anon_rmap - move a page to our anon_vma
1085 * @page:       the page to move to our anon_vma
1086 * @vma:        the vma the page belongs to
1087 *
1088 * When a page belongs exclusively to one process after a COW event,
1089 * that page can be moved into the anon_vma that belongs to just that
1090 * process, so the rmap code will not search the parent or sibling
1091 * processes.
1092 */
1093void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1094{
1095        struct anon_vma *anon_vma = vma->anon_vma;
1096
1097        page = compound_head(page);
1098
1099        VM_BUG_ON_PAGE(!PageLocked(page), page);
1100        VM_BUG_ON_VMA(!anon_vma, vma);
1101
1102        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1103        /*
1104         * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1105         * simultaneously, so a concurrent reader (eg page_referenced()'s
1106         * PageAnon()) will not see one without the other.
1107         */
1108        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1109}
1110
1111/**
1112 * __page_set_anon_rmap - set up new anonymous rmap
1113 * @page:       Page to add to rmap     
1114 * @vma:        VM area to add page to.
1115 * @address:    User virtual address of the mapping     
1116 * @exclusive:  the page is exclusively owned by the current process
1117 */
1118static void __page_set_anon_rmap(struct page *page,
1119        struct vm_area_struct *vma, unsigned long address, int exclusive)
1120{
1121        struct anon_vma *anon_vma = vma->anon_vma;
1122
1123        BUG_ON(!anon_vma);
1124
1125        if (PageAnon(page))
1126                return;
1127
1128        /*
1129         * If the page isn't exclusively mapped into this vma,
1130         * we must use the _oldest_ possible anon_vma for the
1131         * page mapping!
1132         */
1133        if (!exclusive)
1134                anon_vma = anon_vma->root;
1135
1136        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1137        page->mapping = (struct address_space *) anon_vma;
1138        page->index = linear_page_index(vma, address);
1139}
1140
1141/**
1142 * __page_check_anon_rmap - sanity check anonymous rmap addition
1143 * @page:       the page to add the mapping to
1144 * @vma:        the vm area in which the mapping is added
1145 * @address:    the user virtual address mapped
1146 */
1147static void __page_check_anon_rmap(struct page *page,
1148        struct vm_area_struct *vma, unsigned long address)
1149{
1150#ifdef CONFIG_DEBUG_VM
1151        /*
1152         * The page's anon-rmap details (mapping and index) are guaranteed to
1153         * be set up correctly at this point.
1154         *
1155         * We have exclusion against page_add_anon_rmap because the caller
1156         * always holds the page locked, except if called from page_dup_rmap,
1157         * in which case the page is already known to be setup.
1158         *
1159         * We have exclusion against page_add_new_anon_rmap because those pages
1160         * are initially only visible via the pagetables, and the pte is locked
1161         * over the call to page_add_new_anon_rmap.
1162         */
1163        BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1164        BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1165#endif
1166}
1167
1168/**
1169 * page_add_anon_rmap - add pte mapping to an anonymous page
1170 * @page:       the page to add the mapping to
1171 * @vma:        the vm area in which the mapping is added
1172 * @address:    the user virtual address mapped
1173 * @compound:   charge the page as compound or small page
1174 *
1175 * The caller needs to hold the pte lock, and the page must be locked in
1176 * the anon_vma case: to serialize mapping,index checking after setting,
1177 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1178 * (but PageKsm is never downgraded to PageAnon).
1179 */
1180void page_add_anon_rmap(struct page *page,
1181        struct vm_area_struct *vma, unsigned long address, bool compound)
1182{
1183        do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1184}
1185
1186/*
1187 * Special version of the above for do_swap_page, which often runs
1188 * into pages that are exclusively owned by the current process.
1189 * Everybody else should continue to use page_add_anon_rmap above.
1190 */
1191void do_page_add_anon_rmap(struct page *page,
1192        struct vm_area_struct *vma, unsigned long address, int flags)
1193{
1194        bool compound = flags & RMAP_COMPOUND;
1195        bool first;
1196
1197        if (compound) {
1198                atomic_t *mapcount;
1199                VM_BUG_ON_PAGE(!PageLocked(page), page);
1200                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1201                mapcount = compound_mapcount_ptr(page);
1202                first = atomic_inc_and_test(mapcount);
1203        } else {
1204                first = atomic_inc_and_test(&page->_mapcount);
1205        }
1206
1207        if (first) {
1208                int nr = compound ? hpage_nr_pages(page) : 1;
1209                /*
1210                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1211                 * these counters are not modified in interrupt context, and
1212                 * pte lock(a spinlock) is held, which implies preemption
1213                 * disabled.
1214                 */
1215                if (compound)
1216                        __inc_node_page_state(page, NR_ANON_THPS);
1217                __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1218        }
1219        if (unlikely(PageKsm(page)))
1220                return;
1221
1222        VM_BUG_ON_PAGE(!PageLocked(page), page);
1223
1224        /* address might be in next vma when migration races vma_adjust */
1225        if (first)
1226                __page_set_anon_rmap(page, vma, address,
1227                                flags & RMAP_EXCLUSIVE);
1228        else
1229                __page_check_anon_rmap(page, vma, address);
1230}
1231
1232/**
1233 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1234 * @page:       the page to add the mapping to
1235 * @vma:        the vm area in which the mapping is added
1236 * @address:    the user virtual address mapped
1237 * @compound:   charge the page as compound or small page
1238 *
1239 * Same as page_add_anon_rmap but must only be called on *new* pages.
1240 * This means the inc-and-test can be bypassed.
1241 * Page does not have to be locked.
1242 */
1243void page_add_new_anon_rmap(struct page *page,
1244        struct vm_area_struct *vma, unsigned long address, bool compound)
1245{
1246        int nr = compound ? hpage_nr_pages(page) : 1;
1247
1248        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1249        __SetPageSwapBacked(page);
1250        if (compound) {
1251                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1252                /* increment count (starts at -1) */
1253                atomic_set(compound_mapcount_ptr(page), 0);
1254                __inc_node_page_state(page, NR_ANON_THPS);
1255        } else {
1256                /* Anon THP always mapped first with PMD */
1257                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1258                /* increment count (starts at -1) */
1259                atomic_set(&page->_mapcount, 0);
1260        }
1261        __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1262        __page_set_anon_rmap(page, vma, address, 1);
1263}
1264
1265/**
1266 * page_add_file_rmap - add pte mapping to a file page
1267 * @page: the page to add the mapping to
1268 *
1269 * The caller needs to hold the pte lock.
1270 */
1271void page_add_file_rmap(struct page *page, bool compound)
1272{
1273        int i, nr = 1;
1274
1275        VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1276        lock_page_memcg(page);
1277        if (compound && PageTransHuge(page)) {
1278                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1279                        if (atomic_inc_and_test(&page[i]._mapcount))
1280                                nr++;
1281                }
1282                if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1283                        goto out;
1284                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1285                __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1286        } else {
1287                if (PageTransCompound(page) && page_mapping(page)) {
1288                        VM_WARN_ON_ONCE(!PageLocked(page));
1289
1290                        SetPageDoubleMap(compound_head(page));
1291                        if (PageMlocked(page))
1292                                clear_page_mlock(compound_head(page));
1293                }
1294                if (!atomic_inc_and_test(&page->_mapcount))
1295                        goto out;
1296        }
1297        __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1298        mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1299out:
1300        unlock_page_memcg(page);
1301}
1302
1303static void page_remove_file_rmap(struct page *page, bool compound)
1304{
1305        int i, nr = 1;
1306
1307        VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1308        lock_page_memcg(page);
1309
1310        /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1311        if (unlikely(PageHuge(page))) {
1312                /* hugetlb pages are always mapped with pmds */
1313                atomic_dec(compound_mapcount_ptr(page));
1314                goto out;
1315        }
1316
1317        /* page still mapped by someone else? */
1318        if (compound && PageTransHuge(page)) {
1319                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1320                        if (atomic_add_negative(-1, &page[i]._mapcount))
1321                                nr++;
1322                }
1323                if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1324                        goto out;
1325                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1326                __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1327        } else {
1328                if (!atomic_add_negative(-1, &page->_mapcount))
1329                        goto out;
1330        }
1331
1332        /*
1333         * We use the irq-unsafe __{inc|mod}_zone_page_state because
1334         * these counters are not modified in interrupt context, and
1335         * pte lock(a spinlock) is held, which implies preemption disabled.
1336         */
1337        __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1338        mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1339
1340        if (unlikely(PageMlocked(page)))
1341                clear_page_mlock(page);
1342out:
1343        unlock_page_memcg(page);
1344}
1345
1346static void page_remove_anon_compound_rmap(struct page *page)
1347{
1348        int i, nr;
1349
1350        if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1351                return;
1352
1353        /* Hugepages are not counted in NR_ANON_PAGES for now. */
1354        if (unlikely(PageHuge(page)))
1355                return;
1356
1357        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1358                return;
1359
1360        __dec_node_page_state(page, NR_ANON_THPS);
1361
1362        if (TestClearPageDoubleMap(page)) {
1363                /*
1364                 * Subpages can be mapped with PTEs too. Check how many of
1365                 * themi are still mapped.
1366                 */
1367                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1368                        if (atomic_add_negative(-1, &page[i]._mapcount))
1369                                nr++;
1370                }
1371        } else {
1372                nr = HPAGE_PMD_NR;
1373        }
1374
1375        if (unlikely(PageMlocked(page)))
1376                clear_page_mlock(page);
1377
1378        if (nr) {
1379                __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1380                deferred_split_huge_page(page);
1381        }
1382}
1383
1384/**
1385 * page_remove_rmap - take down pte mapping from a page
1386 * @page:       page to remove mapping from
1387 * @compound:   uncharge the page as compound or small page
1388 *
1389 * The caller needs to hold the pte lock.
1390 */
1391void page_remove_rmap(struct page *page, bool compound)
1392{
1393        if (!PageAnon(page))
1394                return page_remove_file_rmap(page, compound);
1395
1396        if (compound)
1397                return page_remove_anon_compound_rmap(page);
1398
1399        /* page still mapped by someone else? */
1400        if (!atomic_add_negative(-1, &page->_mapcount))
1401                return;
1402
1403        /*
1404         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1405         * these counters are not modified in interrupt context, and
1406         * pte lock(a spinlock) is held, which implies preemption disabled.
1407         */
1408        __dec_node_page_state(page, NR_ANON_MAPPED);
1409
1410        if (unlikely(PageMlocked(page)))
1411                clear_page_mlock(page);
1412
1413        if (PageTransCompound(page))
1414                deferred_split_huge_page(compound_head(page));
1415
1416        /*
1417         * It would be tidy to reset the PageAnon mapping here,
1418         * but that might overwrite a racing page_add_anon_rmap
1419         * which increments mapcount after us but sets mapping
1420         * before us: so leave the reset to free_hot_cold_page,
1421         * and remember that it's only reliable while mapped.
1422         * Leaving it set also helps swapoff to reinstate ptes
1423         * faster for those pages still in swapcache.
1424         */
1425}
1426
1427struct rmap_private {
1428        enum ttu_flags flags;
1429        int lazyfreed;
1430};
1431
1432/*
1433 * @arg: enum ttu_flags will be passed to this argument
1434 */
1435static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1436                     unsigned long address, void *arg)
1437{
1438        struct mm_struct *mm = vma->vm_mm;
1439        pte_t *pte;
1440        pte_t pteval;
1441        spinlock_t *ptl;
1442        int ret = SWAP_AGAIN;
1443        struct rmap_private *rp = arg;
1444        enum ttu_flags flags = rp->flags;
1445
1446        /* munlock has nothing to gain from examining un-locked vmas */
1447        if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1448                goto out;
1449
1450        if (flags & TTU_SPLIT_HUGE_PMD) {
1451                split_huge_pmd_address(vma, address,
1452                                flags & TTU_MIGRATION, page);
1453                /* check if we have anything to do after split */
1454                if (page_mapcount(page) == 0)
1455                        goto out;
1456        }
1457
1458        pte = page_check_address(page, mm, address, &ptl,
1459                                 PageTransCompound(page));
1460        if (!pte)
1461                goto out;
1462
1463        /*
1464         * If the page is mlock()d, we cannot swap it out.
1465         * If it's recently referenced (perhaps page_referenced
1466         * skipped over this mm) then we should reactivate it.
1467         */
1468        if (!(flags & TTU_IGNORE_MLOCK)) {
1469                if (vma->vm_flags & VM_LOCKED) {
1470                        /* PTE-mapped THP are never mlocked */
1471                        if (!PageTransCompound(page)) {
1472                                /*
1473                                 * Holding pte lock, we do *not* need
1474                                 * mmap_sem here
1475                                 */
1476                                mlock_vma_page(page);
1477                        }
1478                        ret = SWAP_MLOCK;
1479                        goto out_unmap;
1480                }
1481                if (flags & TTU_MUNLOCK)
1482                        goto out_unmap;
1483        }
1484        if (!(flags & TTU_IGNORE_ACCESS)) {
1485                if (ptep_clear_flush_young_notify(vma, address, pte)) {
1486                        ret = SWAP_FAIL;
1487                        goto out_unmap;
1488                }
1489        }
1490
1491        /* Nuke the page table entry. */
1492        flush_cache_page(vma, address, page_to_pfn(page));
1493        if (should_defer_flush(mm, flags)) {
1494                /*
1495                 * We clear the PTE but do not flush so potentially a remote
1496                 * CPU could still be writing to the page. If the entry was
1497                 * previously clean then the architecture must guarantee that
1498                 * a clear->dirty transition on a cached TLB entry is written
1499                 * through and traps if the PTE is unmapped.
1500                 */
1501                pteval = ptep_get_and_clear(mm, address, pte);
1502
1503                set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1504        } else {
1505                pteval = ptep_clear_flush(vma, address, pte);
1506        }
1507
1508        /* Move the dirty bit to the physical page now the pte is gone. */
1509        if (pte_dirty(pteval))
1510                set_page_dirty(page);
1511
1512        /* Update high watermark before we lower rss */
1513        update_hiwater_rss(mm);
1514
1515        if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1516                if (PageHuge(page)) {
1517                        hugetlb_count_sub(1 << compound_order(page), mm);
1518                } else {
1519                        dec_mm_counter(mm, mm_counter(page));
1520                }
1521                set_pte_at(mm, address, pte,
1522                           swp_entry_to_pte(make_hwpoison_entry(page)));
1523        } else if (pte_unused(pteval)) {
1524                /*
1525                 * The guest indicated that the page content is of no
1526                 * interest anymore. Simply discard the pte, vmscan
1527                 * will take care of the rest.
1528                 */
1529                dec_mm_counter(mm, mm_counter(page));
1530        } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1531                swp_entry_t entry;
1532                pte_t swp_pte;
1533                /*
1534                 * Store the pfn of the page in a special migration
1535                 * pte. do_swap_page() will wait until the migration
1536                 * pte is removed and then restart fault handling.
1537                 */
1538                entry = make_migration_entry(page, pte_write(pteval));
1539                swp_pte = swp_entry_to_pte(entry);
1540                if (pte_soft_dirty(pteval))
1541                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
1542                set_pte_at(mm, address, pte, swp_pte);
1543        } else if (PageAnon(page)) {
1544                swp_entry_t entry = { .val = page_private(page) };
1545                pte_t swp_pte;
1546                /*
1547                 * Store the swap location in the pte.
1548                 * See handle_pte_fault() ...
1549                 */
1550                VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1551
1552                if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1553                        /* It's a freeable page by MADV_FREE */
1554                        dec_mm_counter(mm, MM_ANONPAGES);
1555                        rp->lazyfreed++;
1556                        goto discard;
1557                }
1558
1559                if (swap_duplicate(entry) < 0) {
1560                        set_pte_at(mm, address, pte, pteval);
1561                        ret = SWAP_FAIL;
1562                        goto out_unmap;
1563                }
1564                if (list_empty(&mm->mmlist)) {
1565                        spin_lock(&mmlist_lock);
1566                        if (list_empty(&mm->mmlist))
1567                                list_add(&mm->mmlist, &init_mm.mmlist);
1568                        spin_unlock(&mmlist_lock);
1569                }
1570                dec_mm_counter(mm, MM_ANONPAGES);
1571                inc_mm_counter(mm, MM_SWAPENTS);
1572                swp_pte = swp_entry_to_pte(entry);
1573                if (pte_soft_dirty(pteval))
1574                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
1575                set_pte_at(mm, address, pte, swp_pte);
1576        } else
1577                dec_mm_counter(mm, mm_counter_file(page));
1578
1579discard:
1580        page_remove_rmap(page, PageHuge(page));
1581        put_page(page);
1582
1583out_unmap:
1584        pte_unmap_unlock(pte, ptl);
1585        if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1586                mmu_notifier_invalidate_page(mm, address);
1587out:
1588        return ret;
1589}
1590
1591bool is_vma_temporary_stack(struct vm_area_struct *vma)
1592{
1593        int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1594
1595        if (!maybe_stack)
1596                return false;
1597
1598        if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1599                                                VM_STACK_INCOMPLETE_SETUP)
1600                return true;
1601
1602        return false;
1603}
1604
1605static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1606{
1607        return is_vma_temporary_stack(vma);
1608}
1609
1610static int page_mapcount_is_zero(struct page *page)
1611{
1612        return !page_mapcount(page);
1613}
1614
1615/**
1616 * try_to_unmap - try to remove all page table mappings to a page
1617 * @page: the page to get unmapped
1618 * @flags: action and flags
1619 *
1620 * Tries to remove all the page table entries which are mapping this
1621 * page, used in the pageout path.  Caller must hold the page lock.
1622 * Return values are:
1623 *
1624 * SWAP_SUCCESS - we succeeded in removing all mappings
1625 * SWAP_AGAIN   - we missed a mapping, try again later
1626 * SWAP_FAIL    - the page is unswappable
1627 * SWAP_MLOCK   - page is mlocked.
1628 */
1629int try_to_unmap(struct page *page, enum ttu_flags flags)
1630{
1631        int ret;
1632        struct rmap_private rp = {
1633                .flags = flags,
1634                .lazyfreed = 0,
1635        };
1636
1637        struct rmap_walk_control rwc = {
1638                .rmap_one = try_to_unmap_one,
1639                .arg = &rp,
1640                .done = page_mapcount_is_zero,
1641                .anon_lock = page_lock_anon_vma_read,
1642        };
1643
1644        /*
1645         * During exec, a temporary VMA is setup and later moved.
1646         * The VMA is moved under the anon_vma lock but not the
1647         * page tables leading to a race where migration cannot
1648         * find the migration ptes. Rather than increasing the
1649         * locking requirements of exec(), migration skips
1650         * temporary VMAs until after exec() completes.
1651         */
1652        if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1653                rwc.invalid_vma = invalid_migration_vma;
1654
1655        if (flags & TTU_RMAP_LOCKED)
1656                ret = rmap_walk_locked(page, &rwc);
1657        else
1658                ret = rmap_walk(page, &rwc);
1659
1660        if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1661                ret = SWAP_SUCCESS;
1662                if (rp.lazyfreed && !PageDirty(page))
1663                        ret = SWAP_LZFREE;
1664        }
1665        return ret;
1666}
1667
1668static int page_not_mapped(struct page *page)
1669{
1670        return !page_mapped(page);
1671};
1672
1673/**
1674 * try_to_munlock - try to munlock a page
1675 * @page: the page to be munlocked
1676 *
1677 * Called from munlock code.  Checks all of the VMAs mapping the page
1678 * to make sure nobody else has this page mlocked. The page will be
1679 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1680 *
1681 * Return values are:
1682 *
1683 * SWAP_AGAIN   - no vma is holding page mlocked, or,
1684 * SWAP_AGAIN   - page mapped in mlocked vma -- couldn't acquire mmap sem
1685 * SWAP_FAIL    - page cannot be located at present
1686 * SWAP_MLOCK   - page is now mlocked.
1687 */
1688int try_to_munlock(struct page *page)
1689{
1690        int ret;
1691        struct rmap_private rp = {
1692                .flags = TTU_MUNLOCK,
1693                .lazyfreed = 0,
1694        };
1695
1696        struct rmap_walk_control rwc = {
1697                .rmap_one = try_to_unmap_one,
1698                .arg = &rp,
1699                .done = page_not_mapped,
1700                .anon_lock = page_lock_anon_vma_read,
1701
1702        };
1703
1704        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1705
1706        ret = rmap_walk(page, &rwc);
1707        return ret;
1708}
1709
1710void __put_anon_vma(struct anon_vma *anon_vma)
1711{
1712        struct anon_vma *root = anon_vma->root;
1713
1714        anon_vma_free(anon_vma);
1715        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1716                anon_vma_free(root);
1717}
1718
1719static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1720                                        struct rmap_walk_control *rwc)
1721{
1722        struct anon_vma *anon_vma;
1723
1724        if (rwc->anon_lock)
1725                return rwc->anon_lock(page);
1726
1727        /*
1728         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1729         * because that depends on page_mapped(); but not all its usages
1730         * are holding mmap_sem. Users without mmap_sem are required to
1731         * take a reference count to prevent the anon_vma disappearing
1732         */
1733        anon_vma = page_anon_vma(page);
1734        if (!anon_vma)
1735                return NULL;
1736
1737        anon_vma_lock_read(anon_vma);
1738        return anon_vma;
1739}
1740
1741/*
1742 * rmap_walk_anon - do something to anonymous page using the object-based
1743 * rmap method
1744 * @page: the page to be handled
1745 * @rwc: control variable according to each walk type
1746 *
1747 * Find all the mappings of a page using the mapping pointer and the vma chains
1748 * contained in the anon_vma struct it points to.
1749 *
1750 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1751 * where the page was found will be held for write.  So, we won't recheck
1752 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1753 * LOCKED.
1754 */
1755static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1756                bool locked)
1757{
1758        struct anon_vma *anon_vma;
1759        pgoff_t pgoff;
1760        struct anon_vma_chain *avc;
1761        int ret = SWAP_AGAIN;
1762
1763        if (locked) {
1764                anon_vma = page_anon_vma(page);
1765                /* anon_vma disappear under us? */
1766                VM_BUG_ON_PAGE(!anon_vma, page);
1767        } else {
1768                anon_vma = rmap_walk_anon_lock(page, rwc);
1769        }
1770        if (!anon_vma)
1771                return ret;
1772
1773        pgoff = page_to_pgoff(page);
1774        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1775                struct vm_area_struct *vma = avc->vma;
1776                unsigned long address = vma_address(page, vma);
1777
1778                cond_resched();
1779
1780                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1781                        continue;
1782
1783                ret = rwc->rmap_one(page, vma, address, rwc->arg);
1784                if (ret != SWAP_AGAIN)
1785                        break;
1786                if (rwc->done && rwc->done(page))
1787                        break;
1788        }
1789
1790        if (!locked)
1791                anon_vma_unlock_read(anon_vma);
1792        return ret;
1793}
1794
1795/*
1796 * rmap_walk_file - do something to file page using the object-based rmap method
1797 * @page: the page to be handled
1798 * @rwc: control variable according to each walk type
1799 *
1800 * Find all the mappings of a page using the mapping pointer and the vma chains
1801 * contained in the address_space struct it points to.
1802 *
1803 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1804 * where the page was found will be held for write.  So, we won't recheck
1805 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1806 * LOCKED.
1807 */
1808static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1809                bool locked)
1810{
1811        struct address_space *mapping = page_mapping(page);
1812        pgoff_t pgoff;
1813        struct vm_area_struct *vma;
1814        int ret = SWAP_AGAIN;
1815
1816        /*
1817         * The page lock not only makes sure that page->mapping cannot
1818         * suddenly be NULLified by truncation, it makes sure that the
1819         * structure at mapping cannot be freed and reused yet,
1820         * so we can safely take mapping->i_mmap_rwsem.
1821         */
1822        VM_BUG_ON_PAGE(!PageLocked(page), page);
1823
1824        if (!mapping)
1825                return ret;
1826
1827        pgoff = page_to_pgoff(page);
1828        if (!locked)
1829                i_mmap_lock_read(mapping);
1830        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1831                unsigned long address = vma_address(page, vma);
1832
1833                cond_resched();
1834
1835                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1836                        continue;
1837
1838                ret = rwc->rmap_one(page, vma, address, rwc->arg);
1839                if (ret != SWAP_AGAIN)
1840                        goto done;
1841                if (rwc->done && rwc->done(page))
1842                        goto done;
1843        }
1844
1845done:
1846        if (!locked)
1847                i_mmap_unlock_read(mapping);
1848        return ret;
1849}
1850
1851int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1852{
1853        if (unlikely(PageKsm(page)))
1854                return rmap_walk_ksm(page, rwc);
1855        else if (PageAnon(page))
1856                return rmap_walk_anon(page, rwc, false);
1857        else
1858                return rmap_walk_file(page, rwc, false);
1859}
1860
1861/* Like rmap_walk, but caller holds relevant rmap lock */
1862int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1863{
1864        /* no ksm support for now */
1865        VM_BUG_ON_PAGE(PageKsm(page), page);
1866        if (PageAnon(page))
1867                return rmap_walk_anon(page, rwc, true);
1868        else
1869                return rmap_walk_file(page, rwc, true);
1870}
1871
1872#ifdef CONFIG_HUGETLB_PAGE
1873/*
1874 * The following three functions are for anonymous (private mapped) hugepages.
1875 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1876 * and no lru code, because we handle hugepages differently from common pages.
1877 */
1878static void __hugepage_set_anon_rmap(struct page *page,
1879        struct vm_area_struct *vma, unsigned long address, int exclusive)
1880{
1881        struct anon_vma *anon_vma = vma->anon_vma;
1882
1883        BUG_ON(!anon_vma);
1884
1885        if (PageAnon(page))
1886                return;
1887        if (!exclusive)
1888                anon_vma = anon_vma->root;
1889
1890        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1891        page->mapping = (struct address_space *) anon_vma;
1892        page->index = linear_page_index(vma, address);
1893}
1894
1895void hugepage_add_anon_rmap(struct page *page,
1896                            struct vm_area_struct *vma, unsigned long address)
1897{
1898        struct anon_vma *anon_vma = vma->anon_vma;
1899        int first;
1900
1901        BUG_ON(!PageLocked(page));
1902        BUG_ON(!anon_vma);
1903        /* address might be in next vma when migration races vma_adjust */
1904        first = atomic_inc_and_test(compound_mapcount_ptr(page));
1905        if (first)
1906                __hugepage_set_anon_rmap(page, vma, address, 0);
1907}
1908
1909void hugepage_add_new_anon_rmap(struct page *page,
1910                        struct vm_area_struct *vma, unsigned long address)
1911{
1912        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1913        atomic_set(compound_mapcount_ptr(page), 0);
1914        __hugepage_set_anon_rmap(page, vma, address, 1);
1915}
1916#endif /* CONFIG_HUGETLB_PAGE */
1917