linux/mm/slab.h
<<
>>
Prefs
   1#ifndef MM_SLAB_H
   2#define MM_SLAB_H
   3/*
   4 * Internal slab definitions
   5 */
   6
   7#ifdef CONFIG_SLOB
   8/*
   9 * Common fields provided in kmem_cache by all slab allocators
  10 * This struct is either used directly by the allocator (SLOB)
  11 * or the allocator must include definitions for all fields
  12 * provided in kmem_cache_common in their definition of kmem_cache.
  13 *
  14 * Once we can do anonymous structs (C11 standard) we could put a
  15 * anonymous struct definition in these allocators so that the
  16 * separate allocations in the kmem_cache structure of SLAB and
  17 * SLUB is no longer needed.
  18 */
  19struct kmem_cache {
  20        unsigned int object_size;/* The original size of the object */
  21        unsigned int size;      /* The aligned/padded/added on size  */
  22        unsigned int align;     /* Alignment as calculated */
  23        unsigned long flags;    /* Active flags on the slab */
  24        const char *name;       /* Slab name for sysfs */
  25        int refcount;           /* Use counter */
  26        void (*ctor)(void *);   /* Called on object slot creation */
  27        struct list_head list;  /* List of all slab caches on the system */
  28};
  29
  30#endif /* CONFIG_SLOB */
  31
  32#ifdef CONFIG_SLAB
  33#include <linux/slab_def.h>
  34#endif
  35
  36#ifdef CONFIG_SLUB
  37#include <linux/slub_def.h>
  38#endif
  39
  40#include <linux/memcontrol.h>
  41#include <linux/fault-inject.h>
  42#include <linux/kmemcheck.h>
  43#include <linux/kasan.h>
  44#include <linux/kmemleak.h>
  45#include <linux/random.h>
  46
  47/*
  48 * State of the slab allocator.
  49 *
  50 * This is used to describe the states of the allocator during bootup.
  51 * Allocators use this to gradually bootstrap themselves. Most allocators
  52 * have the problem that the structures used for managing slab caches are
  53 * allocated from slab caches themselves.
  54 */
  55enum slab_state {
  56        DOWN,                   /* No slab functionality yet */
  57        PARTIAL,                /* SLUB: kmem_cache_node available */
  58        PARTIAL_NODE,           /* SLAB: kmalloc size for node struct available */
  59        UP,                     /* Slab caches usable but not all extras yet */
  60        FULL                    /* Everything is working */
  61};
  62
  63extern enum slab_state slab_state;
  64
  65/* The slab cache mutex protects the management structures during changes */
  66extern struct mutex slab_mutex;
  67
  68/* The list of all slab caches on the system */
  69extern struct list_head slab_caches;
  70
  71/* The slab cache that manages slab cache information */
  72extern struct kmem_cache *kmem_cache;
  73
  74unsigned long calculate_alignment(unsigned long flags,
  75                unsigned long align, unsigned long size);
  76
  77#ifndef CONFIG_SLOB
  78/* Kmalloc array related functions */
  79void setup_kmalloc_cache_index_table(void);
  80void create_kmalloc_caches(unsigned long);
  81
  82/* Find the kmalloc slab corresponding for a certain size */
  83struct kmem_cache *kmalloc_slab(size_t, gfp_t);
  84#endif
  85
  86
  87/* Functions provided by the slab allocators */
  88extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  89
  90extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  91                        unsigned long flags);
  92extern void create_boot_cache(struct kmem_cache *, const char *name,
  93                        size_t size, unsigned long flags);
  94
  95int slab_unmergeable(struct kmem_cache *s);
  96struct kmem_cache *find_mergeable(size_t size, size_t align,
  97                unsigned long flags, const char *name, void (*ctor)(void *));
  98#ifndef CONFIG_SLOB
  99struct kmem_cache *
 100__kmem_cache_alias(const char *name, size_t size, size_t align,
 101                   unsigned long flags, void (*ctor)(void *));
 102
 103unsigned long kmem_cache_flags(unsigned long object_size,
 104        unsigned long flags, const char *name,
 105        void (*ctor)(void *));
 106#else
 107static inline struct kmem_cache *
 108__kmem_cache_alias(const char *name, size_t size, size_t align,
 109                   unsigned long flags, void (*ctor)(void *))
 110{ return NULL; }
 111
 112static inline unsigned long kmem_cache_flags(unsigned long object_size,
 113        unsigned long flags, const char *name,
 114        void (*ctor)(void *))
 115{
 116        return flags;
 117}
 118#endif
 119
 120
 121/* Legal flag mask for kmem_cache_create(), for various configurations */
 122#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
 123                         SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
 124
 125#if defined(CONFIG_DEBUG_SLAB)
 126#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 127#elif defined(CONFIG_SLUB_DEBUG)
 128#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 129                          SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
 130#else
 131#define SLAB_DEBUG_FLAGS (0)
 132#endif
 133
 134#if defined(CONFIG_SLAB)
 135#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
 136                          SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
 137                          SLAB_NOTRACK | SLAB_ACCOUNT)
 138#elif defined(CONFIG_SLUB)
 139#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
 140                          SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
 141#else
 142#define SLAB_CACHE_FLAGS (0)
 143#endif
 144
 145#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
 146
 147int __kmem_cache_shutdown(struct kmem_cache *);
 148void __kmem_cache_release(struct kmem_cache *);
 149int __kmem_cache_shrink(struct kmem_cache *, bool);
 150void slab_kmem_cache_release(struct kmem_cache *);
 151
 152struct seq_file;
 153struct file;
 154
 155struct slabinfo {
 156        unsigned long active_objs;
 157        unsigned long num_objs;
 158        unsigned long active_slabs;
 159        unsigned long num_slabs;
 160        unsigned long shared_avail;
 161        unsigned int limit;
 162        unsigned int batchcount;
 163        unsigned int shared;
 164        unsigned int objects_per_slab;
 165        unsigned int cache_order;
 166};
 167
 168void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
 169void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
 170ssize_t slabinfo_write(struct file *file, const char __user *buffer,
 171                       size_t count, loff_t *ppos);
 172
 173/*
 174 * Generic implementation of bulk operations
 175 * These are useful for situations in which the allocator cannot
 176 * perform optimizations. In that case segments of the object listed
 177 * may be allocated or freed using these operations.
 178 */
 179void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
 180int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
 181
 182#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
 183/*
 184 * Iterate over all memcg caches of the given root cache. The caller must hold
 185 * slab_mutex.
 186 */
 187#define for_each_memcg_cache(iter, root) \
 188        list_for_each_entry(iter, &(root)->memcg_params.list, \
 189                            memcg_params.list)
 190
 191static inline bool is_root_cache(struct kmem_cache *s)
 192{
 193        return s->memcg_params.is_root_cache;
 194}
 195
 196static inline bool slab_equal_or_root(struct kmem_cache *s,
 197                                      struct kmem_cache *p)
 198{
 199        return p == s || p == s->memcg_params.root_cache;
 200}
 201
 202/*
 203 * We use suffixes to the name in memcg because we can't have caches
 204 * created in the system with the same name. But when we print them
 205 * locally, better refer to them with the base name
 206 */
 207static inline const char *cache_name(struct kmem_cache *s)
 208{
 209        if (!is_root_cache(s))
 210                s = s->memcg_params.root_cache;
 211        return s->name;
 212}
 213
 214/*
 215 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
 216 * That said the caller must assure the memcg's cache won't go away by either
 217 * taking a css reference to the owner cgroup, or holding the slab_mutex.
 218 */
 219static inline struct kmem_cache *
 220cache_from_memcg_idx(struct kmem_cache *s, int idx)
 221{
 222        struct kmem_cache *cachep;
 223        struct memcg_cache_array *arr;
 224
 225        rcu_read_lock();
 226        arr = rcu_dereference(s->memcg_params.memcg_caches);
 227
 228        /*
 229         * Make sure we will access the up-to-date value. The code updating
 230         * memcg_caches issues a write barrier to match this (see
 231         * memcg_create_kmem_cache()).
 232         */
 233        cachep = lockless_dereference(arr->entries[idx]);
 234        rcu_read_unlock();
 235
 236        return cachep;
 237}
 238
 239static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
 240{
 241        if (is_root_cache(s))
 242                return s;
 243        return s->memcg_params.root_cache;
 244}
 245
 246static __always_inline int memcg_charge_slab(struct page *page,
 247                                             gfp_t gfp, int order,
 248                                             struct kmem_cache *s)
 249{
 250        int ret;
 251
 252        if (!memcg_kmem_enabled())
 253                return 0;
 254        if (is_root_cache(s))
 255                return 0;
 256
 257        ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
 258        if (ret)
 259                return ret;
 260
 261        memcg_kmem_update_page_stat(page,
 262                        (s->flags & SLAB_RECLAIM_ACCOUNT) ?
 263                        MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
 264                        1 << order);
 265        return 0;
 266}
 267
 268static __always_inline void memcg_uncharge_slab(struct page *page, int order,
 269                                                struct kmem_cache *s)
 270{
 271        if (!memcg_kmem_enabled())
 272                return;
 273
 274        memcg_kmem_update_page_stat(page,
 275                        (s->flags & SLAB_RECLAIM_ACCOUNT) ?
 276                        MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
 277                        -(1 << order));
 278        memcg_kmem_uncharge(page, order);
 279}
 280
 281extern void slab_init_memcg_params(struct kmem_cache *);
 282
 283#else /* CONFIG_MEMCG && !CONFIG_SLOB */
 284
 285#define for_each_memcg_cache(iter, root) \
 286        for ((void)(iter), (void)(root); 0; )
 287
 288static inline bool is_root_cache(struct kmem_cache *s)
 289{
 290        return true;
 291}
 292
 293static inline bool slab_equal_or_root(struct kmem_cache *s,
 294                                      struct kmem_cache *p)
 295{
 296        return true;
 297}
 298
 299static inline const char *cache_name(struct kmem_cache *s)
 300{
 301        return s->name;
 302}
 303
 304static inline struct kmem_cache *
 305cache_from_memcg_idx(struct kmem_cache *s, int idx)
 306{
 307        return NULL;
 308}
 309
 310static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
 311{
 312        return s;
 313}
 314
 315static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
 316                                    struct kmem_cache *s)
 317{
 318        return 0;
 319}
 320
 321static inline void memcg_uncharge_slab(struct page *page, int order,
 322                                       struct kmem_cache *s)
 323{
 324}
 325
 326static inline void slab_init_memcg_params(struct kmem_cache *s)
 327{
 328}
 329#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
 330
 331static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
 332{
 333        struct kmem_cache *cachep;
 334        struct page *page;
 335
 336        /*
 337         * When kmemcg is not being used, both assignments should return the
 338         * same value. but we don't want to pay the assignment price in that
 339         * case. If it is not compiled in, the compiler should be smart enough
 340         * to not do even the assignment. In that case, slab_equal_or_root
 341         * will also be a constant.
 342         */
 343        if (!memcg_kmem_enabled() &&
 344            !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
 345                return s;
 346
 347        page = virt_to_head_page(x);
 348        cachep = page->slab_cache;
 349        if (slab_equal_or_root(cachep, s))
 350                return cachep;
 351
 352        pr_err("%s: Wrong slab cache. %s but object is from %s\n",
 353               __func__, s->name, cachep->name);
 354        WARN_ON_ONCE(1);
 355        return s;
 356}
 357
 358static inline size_t slab_ksize(const struct kmem_cache *s)
 359{
 360#ifndef CONFIG_SLUB
 361        return s->object_size;
 362
 363#else /* CONFIG_SLUB */
 364# ifdef CONFIG_SLUB_DEBUG
 365        /*
 366         * Debugging requires use of the padding between object
 367         * and whatever may come after it.
 368         */
 369        if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 370                return s->object_size;
 371# endif
 372        if (s->flags & SLAB_KASAN)
 373                return s->object_size;
 374        /*
 375         * If we have the need to store the freelist pointer
 376         * back there or track user information then we can
 377         * only use the space before that information.
 378         */
 379        if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 380                return s->inuse;
 381        /*
 382         * Else we can use all the padding etc for the allocation
 383         */
 384        return s->size;
 385#endif
 386}
 387
 388static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
 389                                                     gfp_t flags)
 390{
 391        flags &= gfp_allowed_mask;
 392        lockdep_trace_alloc(flags);
 393        might_sleep_if(gfpflags_allow_blocking(flags));
 394
 395        if (should_failslab(s, flags))
 396                return NULL;
 397
 398        if (memcg_kmem_enabled() &&
 399            ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
 400                return memcg_kmem_get_cache(s);
 401
 402        return s;
 403}
 404
 405static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
 406                                        size_t size, void **p)
 407{
 408        size_t i;
 409
 410        flags &= gfp_allowed_mask;
 411        for (i = 0; i < size; i++) {
 412                void *object = p[i];
 413
 414                kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
 415                kmemleak_alloc_recursive(object, s->object_size, 1,
 416                                         s->flags, flags);
 417                kasan_slab_alloc(s, object, flags);
 418        }
 419
 420        if (memcg_kmem_enabled())
 421                memcg_kmem_put_cache(s);
 422}
 423
 424#ifndef CONFIG_SLOB
 425/*
 426 * The slab lists for all objects.
 427 */
 428struct kmem_cache_node {
 429        spinlock_t list_lock;
 430
 431#ifdef CONFIG_SLAB
 432        struct list_head slabs_partial; /* partial list first, better asm code */
 433        struct list_head slabs_full;
 434        struct list_head slabs_free;
 435        unsigned long num_slabs;
 436        unsigned long free_objects;
 437        unsigned int free_limit;
 438        unsigned int colour_next;       /* Per-node cache coloring */
 439        struct array_cache *shared;     /* shared per node */
 440        struct alien_cache **alien;     /* on other nodes */
 441        unsigned long next_reap;        /* updated without locking */
 442        int free_touched;               /* updated without locking */
 443#endif
 444
 445#ifdef CONFIG_SLUB
 446        unsigned long nr_partial;
 447        struct list_head partial;
 448#ifdef CONFIG_SLUB_DEBUG
 449        atomic_long_t nr_slabs;
 450        atomic_long_t total_objects;
 451        struct list_head full;
 452#endif
 453#endif
 454
 455};
 456
 457static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 458{
 459        return s->node[node];
 460}
 461
 462/*
 463 * Iterator over all nodes. The body will be executed for each node that has
 464 * a kmem_cache_node structure allocated (which is true for all online nodes)
 465 */
 466#define for_each_kmem_cache_node(__s, __node, __n) \
 467        for (__node = 0; __node < nr_node_ids; __node++) \
 468                 if ((__n = get_node(__s, __node)))
 469
 470#endif
 471
 472void *slab_start(struct seq_file *m, loff_t *pos);
 473void *slab_next(struct seq_file *m, void *p, loff_t *pos);
 474void slab_stop(struct seq_file *m, void *p);
 475int memcg_slab_show(struct seq_file *m, void *p);
 476
 477void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
 478
 479#ifdef CONFIG_SLAB_FREELIST_RANDOM
 480int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 481                        gfp_t gfp);
 482void cache_random_seq_destroy(struct kmem_cache *cachep);
 483#else
 484static inline int cache_random_seq_create(struct kmem_cache *cachep,
 485                                        unsigned int count, gfp_t gfp)
 486{
 487        return 0;
 488}
 489static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
 490#endif /* CONFIG_SLAB_FREELIST_RANDOM */
 491
 492#endif /* MM_SLAB_H */
 493