linux/arch/alpha/kernel/sys_eb64p.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *      linux/arch/alpha/kernel/sys_eb64p.c
   4 *
   5 *      Copyright (C) 1995 David A Rusling
   6 *      Copyright (C) 1996 Jay A Estabrook
   7 *      Copyright (C) 1998, 1999 Richard Henderson
   8 *
   9 * Code supporting the EB64+ and EB66.
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/types.h>
  14#include <linux/mm.h>
  15#include <linux/sched.h>
  16#include <linux/pci.h>
  17#include <linux/init.h>
  18#include <linux/bitops.h>
  19
  20#include <asm/ptrace.h>
  21#include <asm/dma.h>
  22#include <asm/irq.h>
  23#include <asm/mmu_context.h>
  24#include <asm/io.h>
  25#include <asm/pgtable.h>
  26#include <asm/core_apecs.h>
  27#include <asm/core_lca.h>
  28#include <asm/hwrpb.h>
  29#include <asm/tlbflush.h>
  30
  31#include "proto.h"
  32#include "irq_impl.h"
  33#include "pci_impl.h"
  34#include "machvec_impl.h"
  35
  36
  37/* Note mask bit is true for DISABLED irqs.  */
  38static unsigned int cached_irq_mask = -1;
  39
  40static inline void
  41eb64p_update_irq_hw(unsigned int irq, unsigned long mask)
  42{
  43        outb(mask >> (irq >= 24 ? 24 : 16), (irq >= 24 ? 0x27 : 0x26));
  44}
  45
  46static inline void
  47eb64p_enable_irq(struct irq_data *d)
  48{
  49        eb64p_update_irq_hw(d->irq, cached_irq_mask &= ~(1 << d->irq));
  50}
  51
  52static void
  53eb64p_disable_irq(struct irq_data *d)
  54{
  55        eb64p_update_irq_hw(d->irq, cached_irq_mask |= 1 << d->irq);
  56}
  57
  58static struct irq_chip eb64p_irq_type = {
  59        .name           = "EB64P",
  60        .irq_unmask     = eb64p_enable_irq,
  61        .irq_mask       = eb64p_disable_irq,
  62        .irq_mask_ack   = eb64p_disable_irq,
  63};
  64
  65static void 
  66eb64p_device_interrupt(unsigned long vector)
  67{
  68        unsigned long pld;
  69        unsigned int i;
  70
  71        /* Read the interrupt summary registers */
  72        pld = inb(0x26) | (inb(0x27) << 8);
  73
  74        /*
  75         * Now, for every possible bit set, work through
  76         * them and call the appropriate interrupt handler.
  77         */
  78        while (pld) {
  79                i = ffz(~pld);
  80                pld &= pld - 1; /* clear least bit set */
  81
  82                if (i == 5) {
  83                        isa_device_interrupt(vector);
  84                } else {
  85                        handle_irq(16 + i);
  86                }
  87        }
  88}
  89
  90static void __init
  91eb64p_init_irq(void)
  92{
  93        long i;
  94
  95#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_CABRIOLET)
  96        /*
  97         * CABRIO SRM may not set variation correctly, so here we test
  98         * the high word of the interrupt summary register for the RAZ
  99         * bits, and hope that a true EB64+ would read all ones...
 100         */
 101        if (inw(0x806) != 0xffff) {
 102                extern struct alpha_machine_vector cabriolet_mv;
 103
 104                printk("Detected Cabriolet: correcting HWRPB.\n");
 105
 106                hwrpb->sys_variation |= 2L << 10;
 107                hwrpb_update_checksum(hwrpb);
 108
 109                alpha_mv = cabriolet_mv;
 110                alpha_mv.init_irq();
 111                return;
 112        }
 113#endif /* GENERIC */
 114
 115        outb(0xff, 0x26);
 116        outb(0xff, 0x27);
 117
 118        init_i8259a_irqs();
 119
 120        for (i = 16; i < 32; ++i) {
 121                irq_set_chip_and_handler(i, &eb64p_irq_type, handle_level_irq);
 122                irq_set_status_flags(i, IRQ_LEVEL);
 123        }
 124
 125        common_init_isa_dma();
 126        setup_irq(16+5, &isa_cascade_irqaction);
 127}
 128
 129/*
 130 * PCI Fixup configuration.
 131 *
 132 * There are two 8 bit external summary registers as follows:
 133 *
 134 * Summary @ 0x26:
 135 * Bit      Meaning
 136 * 0        Interrupt Line A from slot 0
 137 * 1        Interrupt Line A from slot 1
 138 * 2        Interrupt Line B from slot 0
 139 * 3        Interrupt Line B from slot 1
 140 * 4        Interrupt Line C from slot 0
 141 * 5        Interrupt line from the two ISA PICs
 142 * 6        Tulip
 143 * 7        NCR SCSI
 144 *
 145 * Summary @ 0x27
 146 * Bit      Meaning
 147 * 0        Interrupt Line C from slot 1
 148 * 1        Interrupt Line D from slot 0
 149 * 2        Interrupt Line D from slot 1
 150 * 3        RAZ
 151 * 4        RAZ
 152 * 5        RAZ
 153 * 6        RAZ
 154 * 7        RAZ
 155 *
 156 * The device to slot mapping looks like:
 157 *
 158 * Slot     Device
 159 *  5       NCR SCSI controller
 160 *  6       PCI on board slot 0
 161 *  7       PCI on board slot 1
 162 *  8       Intel SIO PCI-ISA bridge chip
 163 *  9       Tulip - DECchip 21040 Ethernet controller
 164 *   
 165 *
 166 * This two layered interrupt approach means that we allocate IRQ 16 and 
 167 * above for PCI interrupts.  The IRQ relates to which bit the interrupt
 168 * comes in on.  This makes interrupt processing much easier.
 169 */
 170
 171static int
 172eb64p_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
 173{
 174        static char irq_tab[5][5] = {
 175                /*INT  INTA  INTB  INTC   INTD */
 176                {16+7, 16+7, 16+7, 16+7,  16+7},  /* IdSel 5,  slot ?, ?? */
 177                {16+0, 16+0, 16+2, 16+4,  16+9},  /* IdSel 6,  slot ?, ?? */
 178                {16+1, 16+1, 16+3, 16+8, 16+10},  /* IdSel 7,  slot ?, ?? */
 179                {  -1,   -1,   -1,   -1,    -1},  /* IdSel 8,  SIO */
 180                {16+6, 16+6, 16+6, 16+6,  16+6},  /* IdSel 9,  TULIP */
 181        };
 182        const long min_idsel = 5, max_idsel = 9, irqs_per_slot = 5;
 183        return COMMON_TABLE_LOOKUP;
 184}
 185
 186
 187/*
 188 * The System Vector
 189 */
 190
 191#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_EB64P)
 192struct alpha_machine_vector eb64p_mv __initmv = {
 193        .vector_name            = "EB64+",
 194        DO_EV4_MMU,
 195        DO_DEFAULT_RTC,
 196        DO_APECS_IO,
 197        .machine_check          = apecs_machine_check,
 198        .max_isa_dma_address    = ALPHA_MAX_ISA_DMA_ADDRESS,
 199        .min_io_address         = DEFAULT_IO_BASE,
 200        .min_mem_address        = APECS_AND_LCA_DEFAULT_MEM_BASE,
 201
 202        .nr_irqs                = 32,
 203        .device_interrupt       = eb64p_device_interrupt,
 204
 205        .init_arch              = apecs_init_arch,
 206        .init_irq               = eb64p_init_irq,
 207        .init_rtc               = common_init_rtc,
 208        .init_pci               = common_init_pci,
 209        .kill_arch              = NULL,
 210        .pci_map_irq            = eb64p_map_irq,
 211        .pci_swizzle            = common_swizzle,
 212};
 213ALIAS_MV(eb64p)
 214#endif
 215
 216#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_EB66)
 217struct alpha_machine_vector eb66_mv __initmv = {
 218        .vector_name            = "EB66",
 219        DO_EV4_MMU,
 220        DO_DEFAULT_RTC,
 221        DO_LCA_IO,
 222        .machine_check          = lca_machine_check,
 223        .max_isa_dma_address    = ALPHA_MAX_ISA_DMA_ADDRESS,
 224        .min_io_address         = DEFAULT_IO_BASE,
 225        .min_mem_address        = APECS_AND_LCA_DEFAULT_MEM_BASE,
 226
 227        .nr_irqs                = 32,
 228        .device_interrupt       = eb64p_device_interrupt,
 229
 230        .init_arch              = lca_init_arch,
 231        .init_irq               = eb64p_init_irq,
 232        .init_rtc               = common_init_rtc,
 233        .init_pci               = common_init_pci,
 234        .pci_map_irq            = eb64p_map_irq,
 235        .pci_swizzle            = common_swizzle,
 236};
 237ALIAS_MV(eb66)
 238#endif
 239