linux/arch/arm/kernel/ptrace.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/kernel/ptrace.c
   3 *
   4 *  By Ross Biro 1/23/92
   5 * edited by Linus Torvalds
   6 * ARM modifications Copyright (C) 2000 Russell King
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12#include <linux/kernel.h>
  13#include <linux/sched/signal.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/mm.h>
  16#include <linux/elf.h>
  17#include <linux/smp.h>
  18#include <linux/ptrace.h>
  19#include <linux/user.h>
  20#include <linux/security.h>
  21#include <linux/init.h>
  22#include <linux/signal.h>
  23#include <linux/uaccess.h>
  24#include <linux/perf_event.h>
  25#include <linux/hw_breakpoint.h>
  26#include <linux/regset.h>
  27#include <linux/audit.h>
  28#include <linux/tracehook.h>
  29#include <linux/unistd.h>
  30
  31#include <asm/pgtable.h>
  32#include <asm/traps.h>
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/syscalls.h>
  36
  37#define REG_PC  15
  38#define REG_PSR 16
  39/*
  40 * does not yet catch signals sent when the child dies.
  41 * in exit.c or in signal.c.
  42 */
  43
  44#if 0
  45/*
  46 * Breakpoint SWI instruction: SWI &9F0001
  47 */
  48#define BREAKINST_ARM   0xef9f0001
  49#define BREAKINST_THUMB 0xdf00          /* fill this in later */
  50#else
  51/*
  52 * New breakpoints - use an undefined instruction.  The ARM architecture
  53 * reference manual guarantees that the following instruction space
  54 * will produce an undefined instruction exception on all CPUs:
  55 *
  56 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
  57 *  Thumb: 1101 1110 xxxx xxxx
  58 */
  59#define BREAKINST_ARM   0xe7f001f0
  60#define BREAKINST_THUMB 0xde01
  61#endif
  62
  63struct pt_regs_offset {
  64        const char *name;
  65        int offset;
  66};
  67
  68#define REG_OFFSET_NAME(r) \
  69        {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
  70#define REG_OFFSET_END {.name = NULL, .offset = 0}
  71
  72static const struct pt_regs_offset regoffset_table[] = {
  73        REG_OFFSET_NAME(r0),
  74        REG_OFFSET_NAME(r1),
  75        REG_OFFSET_NAME(r2),
  76        REG_OFFSET_NAME(r3),
  77        REG_OFFSET_NAME(r4),
  78        REG_OFFSET_NAME(r5),
  79        REG_OFFSET_NAME(r6),
  80        REG_OFFSET_NAME(r7),
  81        REG_OFFSET_NAME(r8),
  82        REG_OFFSET_NAME(r9),
  83        REG_OFFSET_NAME(r10),
  84        REG_OFFSET_NAME(fp),
  85        REG_OFFSET_NAME(ip),
  86        REG_OFFSET_NAME(sp),
  87        REG_OFFSET_NAME(lr),
  88        REG_OFFSET_NAME(pc),
  89        REG_OFFSET_NAME(cpsr),
  90        REG_OFFSET_NAME(ORIG_r0),
  91        REG_OFFSET_END,
  92};
  93
  94/**
  95 * regs_query_register_offset() - query register offset from its name
  96 * @name:       the name of a register
  97 *
  98 * regs_query_register_offset() returns the offset of a register in struct
  99 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 100 */
 101int regs_query_register_offset(const char *name)
 102{
 103        const struct pt_regs_offset *roff;
 104        for (roff = regoffset_table; roff->name != NULL; roff++)
 105                if (!strcmp(roff->name, name))
 106                        return roff->offset;
 107        return -EINVAL;
 108}
 109
 110/**
 111 * regs_query_register_name() - query register name from its offset
 112 * @offset:     the offset of a register in struct pt_regs.
 113 *
 114 * regs_query_register_name() returns the name of a register from its
 115 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
 116 */
 117const char *regs_query_register_name(unsigned int offset)
 118{
 119        const struct pt_regs_offset *roff;
 120        for (roff = regoffset_table; roff->name != NULL; roff++)
 121                if (roff->offset == offset)
 122                        return roff->name;
 123        return NULL;
 124}
 125
 126/**
 127 * regs_within_kernel_stack() - check the address in the stack
 128 * @regs:      pt_regs which contains kernel stack pointer.
 129 * @addr:      address which is checked.
 130 *
 131 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
 132 * If @addr is within the kernel stack, it returns true. If not, returns false.
 133 */
 134bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
 135{
 136        return ((addr & ~(THREAD_SIZE - 1))  ==
 137                (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
 138}
 139
 140/**
 141 * regs_get_kernel_stack_nth() - get Nth entry of the stack
 142 * @regs:       pt_regs which contains kernel stack pointer.
 143 * @n:          stack entry number.
 144 *
 145 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
 146 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
 147 * this returns 0.
 148 */
 149unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
 150{
 151        unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
 152        addr += n;
 153        if (regs_within_kernel_stack(regs, (unsigned long)addr))
 154                return *addr;
 155        else
 156                return 0;
 157}
 158
 159/*
 160 * this routine will get a word off of the processes privileged stack.
 161 * the offset is how far from the base addr as stored in the THREAD.
 162 * this routine assumes that all the privileged stacks are in our
 163 * data space.
 164 */
 165static inline long get_user_reg(struct task_struct *task, int offset)
 166{
 167        return task_pt_regs(task)->uregs[offset];
 168}
 169
 170/*
 171 * this routine will put a word on the processes privileged stack.
 172 * the offset is how far from the base addr as stored in the THREAD.
 173 * this routine assumes that all the privileged stacks are in our
 174 * data space.
 175 */
 176static inline int
 177put_user_reg(struct task_struct *task, int offset, long data)
 178{
 179        struct pt_regs newregs, *regs = task_pt_regs(task);
 180        int ret = -EINVAL;
 181
 182        newregs = *regs;
 183        newregs.uregs[offset] = data;
 184
 185        if (valid_user_regs(&newregs)) {
 186                regs->uregs[offset] = data;
 187                ret = 0;
 188        }
 189
 190        return ret;
 191}
 192
 193/*
 194 * Called by kernel/ptrace.c when detaching..
 195 */
 196void ptrace_disable(struct task_struct *child)
 197{
 198        /* Nothing to do. */
 199}
 200
 201/*
 202 * Handle hitting a breakpoint.
 203 */
 204void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
 205{
 206        siginfo_t info;
 207
 208        info.si_signo = SIGTRAP;
 209        info.si_errno = 0;
 210        info.si_code  = TRAP_BRKPT;
 211        info.si_addr  = (void __user *)instruction_pointer(regs);
 212
 213        force_sig_info(SIGTRAP, &info, tsk);
 214}
 215
 216static int break_trap(struct pt_regs *regs, unsigned int instr)
 217{
 218        ptrace_break(current, regs);
 219        return 0;
 220}
 221
 222static struct undef_hook arm_break_hook = {
 223        .instr_mask     = 0x0fffffff,
 224        .instr_val      = 0x07f001f0,
 225        .cpsr_mask      = PSR_T_BIT,
 226        .cpsr_val       = 0,
 227        .fn             = break_trap,
 228};
 229
 230static struct undef_hook thumb_break_hook = {
 231        .instr_mask     = 0xffff,
 232        .instr_val      = 0xde01,
 233        .cpsr_mask      = PSR_T_BIT,
 234        .cpsr_val       = PSR_T_BIT,
 235        .fn             = break_trap,
 236};
 237
 238static struct undef_hook thumb2_break_hook = {
 239        .instr_mask     = 0xffffffff,
 240        .instr_val      = 0xf7f0a000,
 241        .cpsr_mask      = PSR_T_BIT,
 242        .cpsr_val       = PSR_T_BIT,
 243        .fn             = break_trap,
 244};
 245
 246static int __init ptrace_break_init(void)
 247{
 248        register_undef_hook(&arm_break_hook);
 249        register_undef_hook(&thumb_break_hook);
 250        register_undef_hook(&thumb2_break_hook);
 251        return 0;
 252}
 253
 254core_initcall(ptrace_break_init);
 255
 256/*
 257 * Read the word at offset "off" into the "struct user".  We
 258 * actually access the pt_regs stored on the kernel stack.
 259 */
 260static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
 261                            unsigned long __user *ret)
 262{
 263        unsigned long tmp;
 264
 265        if (off & 3)
 266                return -EIO;
 267
 268        tmp = 0;
 269        if (off == PT_TEXT_ADDR)
 270                tmp = tsk->mm->start_code;
 271        else if (off == PT_DATA_ADDR)
 272                tmp = tsk->mm->start_data;
 273        else if (off == PT_TEXT_END_ADDR)
 274                tmp = tsk->mm->end_code;
 275        else if (off < sizeof(struct pt_regs))
 276                tmp = get_user_reg(tsk, off >> 2);
 277        else if (off >= sizeof(struct user))
 278                return -EIO;
 279
 280        return put_user(tmp, ret);
 281}
 282
 283/*
 284 * Write the word at offset "off" into "struct user".  We
 285 * actually access the pt_regs stored on the kernel stack.
 286 */
 287static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
 288                             unsigned long val)
 289{
 290        if (off & 3 || off >= sizeof(struct user))
 291                return -EIO;
 292
 293        if (off >= sizeof(struct pt_regs))
 294                return 0;
 295
 296        return put_user_reg(tsk, off >> 2, val);
 297}
 298
 299#ifdef CONFIG_IWMMXT
 300
 301/*
 302 * Get the child iWMMXt state.
 303 */
 304static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
 305{
 306        struct thread_info *thread = task_thread_info(tsk);
 307
 308        if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
 309                return -ENODATA;
 310        iwmmxt_task_disable(thread);  /* force it to ram */
 311        return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
 312                ? -EFAULT : 0;
 313}
 314
 315/*
 316 * Set the child iWMMXt state.
 317 */
 318static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
 319{
 320        struct thread_info *thread = task_thread_info(tsk);
 321
 322        if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
 323                return -EACCES;
 324        iwmmxt_task_release(thread);  /* force a reload */
 325        return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
 326                ? -EFAULT : 0;
 327}
 328
 329#endif
 330
 331#ifdef CONFIG_CRUNCH
 332/*
 333 * Get the child Crunch state.
 334 */
 335static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
 336{
 337        struct thread_info *thread = task_thread_info(tsk);
 338
 339        crunch_task_disable(thread);  /* force it to ram */
 340        return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
 341                ? -EFAULT : 0;
 342}
 343
 344/*
 345 * Set the child Crunch state.
 346 */
 347static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
 348{
 349        struct thread_info *thread = task_thread_info(tsk);
 350
 351        crunch_task_release(thread);  /* force a reload */
 352        return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
 353                ? -EFAULT : 0;
 354}
 355#endif
 356
 357#ifdef CONFIG_HAVE_HW_BREAKPOINT
 358/*
 359 * Convert a virtual register number into an index for a thread_info
 360 * breakpoint array. Breakpoints are identified using positive numbers
 361 * whilst watchpoints are negative. The registers are laid out as pairs
 362 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
 363 * Register 0 is reserved for describing resource information.
 364 */
 365static int ptrace_hbp_num_to_idx(long num)
 366{
 367        if (num < 0)
 368                num = (ARM_MAX_BRP << 1) - num;
 369        return (num - 1) >> 1;
 370}
 371
 372/*
 373 * Returns the virtual register number for the address of the
 374 * breakpoint at index idx.
 375 */
 376static long ptrace_hbp_idx_to_num(int idx)
 377{
 378        long mid = ARM_MAX_BRP << 1;
 379        long num = (idx << 1) + 1;
 380        return num > mid ? mid - num : num;
 381}
 382
 383/*
 384 * Handle hitting a HW-breakpoint.
 385 */
 386static void ptrace_hbptriggered(struct perf_event *bp,
 387                                     struct perf_sample_data *data,
 388                                     struct pt_regs *regs)
 389{
 390        struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
 391        long num;
 392        int i;
 393        siginfo_t info;
 394
 395        for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
 396                if (current->thread.debug.hbp[i] == bp)
 397                        break;
 398
 399        num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
 400
 401        info.si_signo   = SIGTRAP;
 402        info.si_errno   = (int)num;
 403        info.si_code    = TRAP_HWBKPT;
 404        info.si_addr    = (void __user *)(bkpt->trigger);
 405
 406        force_sig_info(SIGTRAP, &info, current);
 407}
 408
 409/*
 410 * Set ptrace breakpoint pointers to zero for this task.
 411 * This is required in order to prevent child processes from unregistering
 412 * breakpoints held by their parent.
 413 */
 414void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
 415{
 416        memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
 417}
 418
 419/*
 420 * Unregister breakpoints from this task and reset the pointers in
 421 * the thread_struct.
 422 */
 423void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
 424{
 425        int i;
 426        struct thread_struct *t = &tsk->thread;
 427
 428        for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
 429                if (t->debug.hbp[i]) {
 430                        unregister_hw_breakpoint(t->debug.hbp[i]);
 431                        t->debug.hbp[i] = NULL;
 432                }
 433        }
 434}
 435
 436static u32 ptrace_get_hbp_resource_info(void)
 437{
 438        u8 num_brps, num_wrps, debug_arch, wp_len;
 439        u32 reg = 0;
 440
 441        num_brps        = hw_breakpoint_slots(TYPE_INST);
 442        num_wrps        = hw_breakpoint_slots(TYPE_DATA);
 443        debug_arch      = arch_get_debug_arch();
 444        wp_len          = arch_get_max_wp_len();
 445
 446        reg             |= debug_arch;
 447        reg             <<= 8;
 448        reg             |= wp_len;
 449        reg             <<= 8;
 450        reg             |= num_wrps;
 451        reg             <<= 8;
 452        reg             |= num_brps;
 453
 454        return reg;
 455}
 456
 457static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
 458{
 459        struct perf_event_attr attr;
 460
 461        ptrace_breakpoint_init(&attr);
 462
 463        /* Initialise fields to sane defaults. */
 464        attr.bp_addr    = 0;
 465        attr.bp_len     = HW_BREAKPOINT_LEN_4;
 466        attr.bp_type    = type;
 467        attr.disabled   = 1;
 468
 469        return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
 470                                           tsk);
 471}
 472
 473static int ptrace_gethbpregs(struct task_struct *tsk, long num,
 474                             unsigned long  __user *data)
 475{
 476        u32 reg;
 477        int idx, ret = 0;
 478        struct perf_event *bp;
 479        struct arch_hw_breakpoint_ctrl arch_ctrl;
 480
 481        if (num == 0) {
 482                reg = ptrace_get_hbp_resource_info();
 483        } else {
 484                idx = ptrace_hbp_num_to_idx(num);
 485                if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
 486                        ret = -EINVAL;
 487                        goto out;
 488                }
 489
 490                bp = tsk->thread.debug.hbp[idx];
 491                if (!bp) {
 492                        reg = 0;
 493                        goto put;
 494                }
 495
 496                arch_ctrl = counter_arch_bp(bp)->ctrl;
 497
 498                /*
 499                 * Fix up the len because we may have adjusted it
 500                 * to compensate for an unaligned address.
 501                 */
 502                while (!(arch_ctrl.len & 0x1))
 503                        arch_ctrl.len >>= 1;
 504
 505                if (num & 0x1)
 506                        reg = bp->attr.bp_addr;
 507                else
 508                        reg = encode_ctrl_reg(arch_ctrl);
 509        }
 510
 511put:
 512        if (put_user(reg, data))
 513                ret = -EFAULT;
 514
 515out:
 516        return ret;
 517}
 518
 519static int ptrace_sethbpregs(struct task_struct *tsk, long num,
 520                             unsigned long __user *data)
 521{
 522        int idx, gen_len, gen_type, implied_type, ret = 0;
 523        u32 user_val;
 524        struct perf_event *bp;
 525        struct arch_hw_breakpoint_ctrl ctrl;
 526        struct perf_event_attr attr;
 527
 528        if (num == 0)
 529                goto out;
 530        else if (num < 0)
 531                implied_type = HW_BREAKPOINT_RW;
 532        else
 533                implied_type = HW_BREAKPOINT_X;
 534
 535        idx = ptrace_hbp_num_to_idx(num);
 536        if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
 537                ret = -EINVAL;
 538                goto out;
 539        }
 540
 541        if (get_user(user_val, data)) {
 542                ret = -EFAULT;
 543                goto out;
 544        }
 545
 546        bp = tsk->thread.debug.hbp[idx];
 547        if (!bp) {
 548                bp = ptrace_hbp_create(tsk, implied_type);
 549                if (IS_ERR(bp)) {
 550                        ret = PTR_ERR(bp);
 551                        goto out;
 552                }
 553                tsk->thread.debug.hbp[idx] = bp;
 554        }
 555
 556        attr = bp->attr;
 557
 558        if (num & 0x1) {
 559                /* Address */
 560                attr.bp_addr    = user_val;
 561        } else {
 562                /* Control */
 563                decode_ctrl_reg(user_val, &ctrl);
 564                ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
 565                if (ret)
 566                        goto out;
 567
 568                if ((gen_type & implied_type) != gen_type) {
 569                        ret = -EINVAL;
 570                        goto out;
 571                }
 572
 573                attr.bp_len     = gen_len;
 574                attr.bp_type    = gen_type;
 575                attr.disabled   = !ctrl.enabled;
 576        }
 577
 578        ret = modify_user_hw_breakpoint(bp, &attr);
 579out:
 580        return ret;
 581}
 582#endif
 583
 584/* regset get/set implementations */
 585
 586static int gpr_get(struct task_struct *target,
 587                   const struct user_regset *regset,
 588                   unsigned int pos, unsigned int count,
 589                   void *kbuf, void __user *ubuf)
 590{
 591        struct pt_regs *regs = task_pt_regs(target);
 592
 593        return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 594                                   regs,
 595                                   0, sizeof(*regs));
 596}
 597
 598static int gpr_set(struct task_struct *target,
 599                   const struct user_regset *regset,
 600                   unsigned int pos, unsigned int count,
 601                   const void *kbuf, const void __user *ubuf)
 602{
 603        int ret;
 604        struct pt_regs newregs = *task_pt_regs(target);
 605
 606        ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 607                                 &newregs,
 608                                 0, sizeof(newregs));
 609        if (ret)
 610                return ret;
 611
 612        if (!valid_user_regs(&newregs))
 613                return -EINVAL;
 614
 615        *task_pt_regs(target) = newregs;
 616        return 0;
 617}
 618
 619static int fpa_get(struct task_struct *target,
 620                   const struct user_regset *regset,
 621                   unsigned int pos, unsigned int count,
 622                   void *kbuf, void __user *ubuf)
 623{
 624        return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 625                                   &task_thread_info(target)->fpstate,
 626                                   0, sizeof(struct user_fp));
 627}
 628
 629static int fpa_set(struct task_struct *target,
 630                   const struct user_regset *regset,
 631                   unsigned int pos, unsigned int count,
 632                   const void *kbuf, const void __user *ubuf)
 633{
 634        struct thread_info *thread = task_thread_info(target);
 635
 636        thread->used_cp[1] = thread->used_cp[2] = 1;
 637
 638        return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 639                &thread->fpstate,
 640                0, sizeof(struct user_fp));
 641}
 642
 643#ifdef CONFIG_VFP
 644/*
 645 * VFP register get/set implementations.
 646 *
 647 * With respect to the kernel, struct user_fp is divided into three chunks:
 648 * 16 or 32 real VFP registers (d0-d15 or d0-31)
 649 *      These are transferred to/from the real registers in the task's
 650 *      vfp_hard_struct.  The number of registers depends on the kernel
 651 *      configuration.
 652 *
 653 * 16 or 0 fake VFP registers (d16-d31 or empty)
 654 *      i.e., the user_vfp structure has space for 32 registers even if
 655 *      the kernel doesn't have them all.
 656 *
 657 *      vfp_get() reads this chunk as zero where applicable
 658 *      vfp_set() ignores this chunk
 659 *
 660 * 1 word for the FPSCR
 661 *
 662 * The bounds-checking logic built into user_regset_copyout and friends
 663 * means that we can make a simple sequence of calls to map the relevant data
 664 * to/from the specified slice of the user regset structure.
 665 */
 666static int vfp_get(struct task_struct *target,
 667                   const struct user_regset *regset,
 668                   unsigned int pos, unsigned int count,
 669                   void *kbuf, void __user *ubuf)
 670{
 671        int ret;
 672        struct thread_info *thread = task_thread_info(target);
 673        struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
 674        const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
 675        const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
 676
 677        vfp_sync_hwstate(thread);
 678
 679        ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 680                                  &vfp->fpregs,
 681                                  user_fpregs_offset,
 682                                  user_fpregs_offset + sizeof(vfp->fpregs));
 683        if (ret)
 684                return ret;
 685
 686        ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
 687                                       user_fpregs_offset + sizeof(vfp->fpregs),
 688                                       user_fpscr_offset);
 689        if (ret)
 690                return ret;
 691
 692        return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 693                                   &vfp->fpscr,
 694                                   user_fpscr_offset,
 695                                   user_fpscr_offset + sizeof(vfp->fpscr));
 696}
 697
 698/*
 699 * For vfp_set() a read-modify-write is done on the VFP registers,
 700 * in order to avoid writing back a half-modified set of registers on
 701 * failure.
 702 */
 703static int vfp_set(struct task_struct *target,
 704                          const struct user_regset *regset,
 705                          unsigned int pos, unsigned int count,
 706                          const void *kbuf, const void __user *ubuf)
 707{
 708        int ret;
 709        struct thread_info *thread = task_thread_info(target);
 710        struct vfp_hard_struct new_vfp;
 711        const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
 712        const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
 713
 714        vfp_sync_hwstate(thread);
 715        new_vfp = thread->vfpstate.hard;
 716
 717        ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 718                                  &new_vfp.fpregs,
 719                                  user_fpregs_offset,
 720                                  user_fpregs_offset + sizeof(new_vfp.fpregs));
 721        if (ret)
 722                return ret;
 723
 724        ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
 725                                user_fpregs_offset + sizeof(new_vfp.fpregs),
 726                                user_fpscr_offset);
 727        if (ret)
 728                return ret;
 729
 730        ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 731                                 &new_vfp.fpscr,
 732                                 user_fpscr_offset,
 733                                 user_fpscr_offset + sizeof(new_vfp.fpscr));
 734        if (ret)
 735                return ret;
 736
 737        thread->vfpstate.hard = new_vfp;
 738        vfp_flush_hwstate(thread);
 739
 740        return 0;
 741}
 742#endif /* CONFIG_VFP */
 743
 744enum arm_regset {
 745        REGSET_GPR,
 746        REGSET_FPR,
 747#ifdef CONFIG_VFP
 748        REGSET_VFP,
 749#endif
 750};
 751
 752static const struct user_regset arm_regsets[] = {
 753        [REGSET_GPR] = {
 754                .core_note_type = NT_PRSTATUS,
 755                .n = ELF_NGREG,
 756                .size = sizeof(u32),
 757                .align = sizeof(u32),
 758                .get = gpr_get,
 759                .set = gpr_set
 760        },
 761        [REGSET_FPR] = {
 762                /*
 763                 * For the FPA regs in fpstate, the real fields are a mixture
 764                 * of sizes, so pretend that the registers are word-sized:
 765                 */
 766                .core_note_type = NT_PRFPREG,
 767                .n = sizeof(struct user_fp) / sizeof(u32),
 768                .size = sizeof(u32),
 769                .align = sizeof(u32),
 770                .get = fpa_get,
 771                .set = fpa_set
 772        },
 773#ifdef CONFIG_VFP
 774        [REGSET_VFP] = {
 775                /*
 776                 * Pretend that the VFP regs are word-sized, since the FPSCR is
 777                 * a single word dangling at the end of struct user_vfp:
 778                 */
 779                .core_note_type = NT_ARM_VFP,
 780                .n = ARM_VFPREGS_SIZE / sizeof(u32),
 781                .size = sizeof(u32),
 782                .align = sizeof(u32),
 783                .get = vfp_get,
 784                .set = vfp_set
 785        },
 786#endif /* CONFIG_VFP */
 787};
 788
 789static const struct user_regset_view user_arm_view = {
 790        .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
 791        .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
 792};
 793
 794const struct user_regset_view *task_user_regset_view(struct task_struct *task)
 795{
 796        return &user_arm_view;
 797}
 798
 799long arch_ptrace(struct task_struct *child, long request,
 800                 unsigned long addr, unsigned long data)
 801{
 802        int ret;
 803        unsigned long __user *datap = (unsigned long __user *) data;
 804
 805        switch (request) {
 806                case PTRACE_PEEKUSR:
 807                        ret = ptrace_read_user(child, addr, datap);
 808                        break;
 809
 810                case PTRACE_POKEUSR:
 811                        ret = ptrace_write_user(child, addr, data);
 812                        break;
 813
 814                case PTRACE_GETREGS:
 815                        ret = copy_regset_to_user(child,
 816                                                  &user_arm_view, REGSET_GPR,
 817                                                  0, sizeof(struct pt_regs),
 818                                                  datap);
 819                        break;
 820
 821                case PTRACE_SETREGS:
 822                        ret = copy_regset_from_user(child,
 823                                                    &user_arm_view, REGSET_GPR,
 824                                                    0, sizeof(struct pt_regs),
 825                                                    datap);
 826                        break;
 827
 828                case PTRACE_GETFPREGS:
 829                        ret = copy_regset_to_user(child,
 830                                                  &user_arm_view, REGSET_FPR,
 831                                                  0, sizeof(union fp_state),
 832                                                  datap);
 833                        break;
 834
 835                case PTRACE_SETFPREGS:
 836                        ret = copy_regset_from_user(child,
 837                                                    &user_arm_view, REGSET_FPR,
 838                                                    0, sizeof(union fp_state),
 839                                                    datap);
 840                        break;
 841
 842#ifdef CONFIG_IWMMXT
 843                case PTRACE_GETWMMXREGS:
 844                        ret = ptrace_getwmmxregs(child, datap);
 845                        break;
 846
 847                case PTRACE_SETWMMXREGS:
 848                        ret = ptrace_setwmmxregs(child, datap);
 849                        break;
 850#endif
 851
 852                case PTRACE_GET_THREAD_AREA:
 853                        ret = put_user(task_thread_info(child)->tp_value[0],
 854                                       datap);
 855                        break;
 856
 857                case PTRACE_SET_SYSCALL:
 858                        task_thread_info(child)->syscall = data;
 859                        ret = 0;
 860                        break;
 861
 862#ifdef CONFIG_CRUNCH
 863                case PTRACE_GETCRUNCHREGS:
 864                        ret = ptrace_getcrunchregs(child, datap);
 865                        break;
 866
 867                case PTRACE_SETCRUNCHREGS:
 868                        ret = ptrace_setcrunchregs(child, datap);
 869                        break;
 870#endif
 871
 872#ifdef CONFIG_VFP
 873                case PTRACE_GETVFPREGS:
 874                        ret = copy_regset_to_user(child,
 875                                                  &user_arm_view, REGSET_VFP,
 876                                                  0, ARM_VFPREGS_SIZE,
 877                                                  datap);
 878                        break;
 879
 880                case PTRACE_SETVFPREGS:
 881                        ret = copy_regset_from_user(child,
 882                                                    &user_arm_view, REGSET_VFP,
 883                                                    0, ARM_VFPREGS_SIZE,
 884                                                    datap);
 885                        break;
 886#endif
 887
 888#ifdef CONFIG_HAVE_HW_BREAKPOINT
 889                case PTRACE_GETHBPREGS:
 890                        ret = ptrace_gethbpregs(child, addr,
 891                                                (unsigned long __user *)data);
 892                        break;
 893                case PTRACE_SETHBPREGS:
 894                        ret = ptrace_sethbpregs(child, addr,
 895                                                (unsigned long __user *)data);
 896                        break;
 897#endif
 898
 899                default:
 900                        ret = ptrace_request(child, request, addr, data);
 901                        break;
 902        }
 903
 904        return ret;
 905}
 906
 907enum ptrace_syscall_dir {
 908        PTRACE_SYSCALL_ENTER = 0,
 909        PTRACE_SYSCALL_EXIT,
 910};
 911
 912static void tracehook_report_syscall(struct pt_regs *regs,
 913                                    enum ptrace_syscall_dir dir)
 914{
 915        unsigned long ip;
 916
 917        /*
 918         * IP is used to denote syscall entry/exit:
 919         * IP = 0 -> entry, =1 -> exit
 920         */
 921        ip = regs->ARM_ip;
 922        regs->ARM_ip = dir;
 923
 924        if (dir == PTRACE_SYSCALL_EXIT)
 925                tracehook_report_syscall_exit(regs, 0);
 926        else if (tracehook_report_syscall_entry(regs))
 927                current_thread_info()->syscall = -1;
 928
 929        regs->ARM_ip = ip;
 930}
 931
 932asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
 933{
 934        current_thread_info()->syscall = scno;
 935
 936        if (test_thread_flag(TIF_SYSCALL_TRACE))
 937                tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
 938
 939        /* Do seccomp after ptrace; syscall may have changed. */
 940#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
 941        if (secure_computing(NULL) == -1)
 942                return -1;
 943#else
 944        /* XXX: remove this once OABI gets fixed */
 945        secure_computing_strict(current_thread_info()->syscall);
 946#endif
 947
 948        /* Tracer or seccomp may have changed syscall. */
 949        scno = current_thread_info()->syscall;
 950
 951        if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
 952                trace_sys_enter(regs, scno);
 953
 954        audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
 955                            regs->ARM_r3);
 956
 957        return scno;
 958}
 959
 960asmlinkage void syscall_trace_exit(struct pt_regs *regs)
 961{
 962        /*
 963         * Audit the syscall before anything else, as a debugger may
 964         * come in and change the current registers.
 965         */
 966        audit_syscall_exit(regs);
 967
 968        /*
 969         * Note that we haven't updated the ->syscall field for the
 970         * current thread. This isn't a problem because it will have
 971         * been set on syscall entry and there hasn't been an opportunity
 972         * for a PTRACE_SET_SYSCALL since then.
 973         */
 974        if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
 975                trace_sys_exit(regs, regs_return_value(regs));
 976
 977        if (test_thread_flag(TIF_SYSCALL_TRACE))
 978                tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
 979}
 980