linux/arch/arm/probes/kprobes/core.c
<<
>>
Prefs
   1/*
   2 * arch/arm/kernel/kprobes.c
   3 *
   4 * Kprobes on ARM
   5 *
   6 * Abhishek Sagar <sagar.abhishek@gmail.com>
   7 * Copyright (C) 2006, 2007 Motorola Inc.
   8 *
   9 * Nicolas Pitre <nico@marvell.com>
  10 * Copyright (C) 2007 Marvell Ltd.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19 * General Public License for more details.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/kprobes.h>
  24#include <linux/module.h>
  25#include <linux/slab.h>
  26#include <linux/stop_machine.h>
  27#include <linux/sched/debug.h>
  28#include <linux/stringify.h>
  29#include <asm/traps.h>
  30#include <asm/opcodes.h>
  31#include <asm/cacheflush.h>
  32#include <linux/percpu.h>
  33#include <linux/bug.h>
  34#include <asm/patch.h>
  35
  36#include "../decode-arm.h"
  37#include "../decode-thumb.h"
  38#include "core.h"
  39
  40#define MIN_STACK_SIZE(addr)                            \
  41        min((unsigned long)MAX_STACK_SIZE,              \
  42            (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
  43
  44#define flush_insns(addr, size)                         \
  45        flush_icache_range((unsigned long)(addr),       \
  46                           (unsigned long)(addr) +      \
  47                           (size))
  48
  49/* Used as a marker in ARM_pc to note when we're in a jprobe. */
  50#define JPROBE_MAGIC_ADDR               0xffffffff
  51
  52DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  53DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  54
  55
  56int __kprobes arch_prepare_kprobe(struct kprobe *p)
  57{
  58        kprobe_opcode_t insn;
  59        kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
  60        unsigned long addr = (unsigned long)p->addr;
  61        bool thumb;
  62        kprobe_decode_insn_t *decode_insn;
  63        const union decode_action *actions;
  64        int is;
  65        const struct decode_checker **checkers;
  66
  67        if (in_exception_text(addr))
  68                return -EINVAL;
  69
  70#ifdef CONFIG_THUMB2_KERNEL
  71        thumb = true;
  72        addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
  73        insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
  74        if (is_wide_instruction(insn)) {
  75                u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
  76                insn = __opcode_thumb32_compose(insn, inst2);
  77                decode_insn = thumb32_probes_decode_insn;
  78                actions = kprobes_t32_actions;
  79                checkers = kprobes_t32_checkers;
  80        } else {
  81                decode_insn = thumb16_probes_decode_insn;
  82                actions = kprobes_t16_actions;
  83                checkers = kprobes_t16_checkers;
  84        }
  85#else /* !CONFIG_THUMB2_KERNEL */
  86        thumb = false;
  87        if (addr & 0x3)
  88                return -EINVAL;
  89        insn = __mem_to_opcode_arm(*p->addr);
  90        decode_insn = arm_probes_decode_insn;
  91        actions = kprobes_arm_actions;
  92        checkers = kprobes_arm_checkers;
  93#endif
  94
  95        p->opcode = insn;
  96        p->ainsn.insn = tmp_insn;
  97
  98        switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
  99        case INSN_REJECTED:     /* not supported */
 100                return -EINVAL;
 101
 102        case INSN_GOOD:         /* instruction uses slot */
 103                p->ainsn.insn = get_insn_slot();
 104                if (!p->ainsn.insn)
 105                        return -ENOMEM;
 106                for (is = 0; is < MAX_INSN_SIZE; ++is)
 107                        p->ainsn.insn[is] = tmp_insn[is];
 108                flush_insns(p->ainsn.insn,
 109                                sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
 110                p->ainsn.insn_fn = (probes_insn_fn_t *)
 111                                        ((uintptr_t)p->ainsn.insn | thumb);
 112                break;
 113
 114        case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
 115                p->ainsn.insn = NULL;
 116                break;
 117        }
 118
 119        /*
 120         * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
 121         * 'str r0, [sp, #-68]' should also be prohibited.
 122         * See __und_svc.
 123         */
 124        if ((p->ainsn.stack_space < 0) ||
 125                        (p->ainsn.stack_space > MAX_STACK_SIZE))
 126                return -EINVAL;
 127
 128        return 0;
 129}
 130
 131void __kprobes arch_arm_kprobe(struct kprobe *p)
 132{
 133        unsigned int brkp;
 134        void *addr;
 135
 136        if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 137                /* Remove any Thumb flag */
 138                addr = (void *)((uintptr_t)p->addr & ~1);
 139
 140                if (is_wide_instruction(p->opcode))
 141                        brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
 142                else
 143                        brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
 144        } else {
 145                kprobe_opcode_t insn = p->opcode;
 146
 147                addr = p->addr;
 148                brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
 149
 150                if (insn >= 0xe0000000)
 151                        brkp |= 0xe0000000;  /* Unconditional instruction */
 152                else
 153                        brkp |= insn & 0xf0000000;  /* Copy condition from insn */
 154        }
 155
 156        patch_text(addr, brkp);
 157}
 158
 159/*
 160 * The actual disarming is done here on each CPU and synchronized using
 161 * stop_machine. This synchronization is necessary on SMP to avoid removing
 162 * a probe between the moment the 'Undefined Instruction' exception is raised
 163 * and the moment the exception handler reads the faulting instruction from
 164 * memory. It is also needed to atomically set the two half-words of a 32-bit
 165 * Thumb breakpoint.
 166 */
 167struct patch {
 168        void *addr;
 169        unsigned int insn;
 170};
 171
 172static int __kprobes_remove_breakpoint(void *data)
 173{
 174        struct patch *p = data;
 175        __patch_text(p->addr, p->insn);
 176        return 0;
 177}
 178
 179void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
 180{
 181        struct patch p = {
 182                .addr = addr,
 183                .insn = insn,
 184        };
 185        stop_machine_cpuslocked(__kprobes_remove_breakpoint, &p,
 186                                cpu_online_mask);
 187}
 188
 189void __kprobes arch_disarm_kprobe(struct kprobe *p)
 190{
 191        kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
 192                        p->opcode);
 193}
 194
 195void __kprobes arch_remove_kprobe(struct kprobe *p)
 196{
 197        if (p->ainsn.insn) {
 198                free_insn_slot(p->ainsn.insn, 0);
 199                p->ainsn.insn = NULL;
 200        }
 201}
 202
 203static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 204{
 205        kcb->prev_kprobe.kp = kprobe_running();
 206        kcb->prev_kprobe.status = kcb->kprobe_status;
 207}
 208
 209static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 210{
 211        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 212        kcb->kprobe_status = kcb->prev_kprobe.status;
 213}
 214
 215static void __kprobes set_current_kprobe(struct kprobe *p)
 216{
 217        __this_cpu_write(current_kprobe, p);
 218}
 219
 220static void __kprobes
 221singlestep_skip(struct kprobe *p, struct pt_regs *regs)
 222{
 223#ifdef CONFIG_THUMB2_KERNEL
 224        regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
 225        if (is_wide_instruction(p->opcode))
 226                regs->ARM_pc += 4;
 227        else
 228                regs->ARM_pc += 2;
 229#else
 230        regs->ARM_pc += 4;
 231#endif
 232}
 233
 234static inline void __kprobes
 235singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 236{
 237        p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
 238}
 239
 240/*
 241 * Called with IRQs disabled. IRQs must remain disabled from that point
 242 * all the way until processing this kprobe is complete.  The current
 243 * kprobes implementation cannot process more than one nested level of
 244 * kprobe, and that level is reserved for user kprobe handlers, so we can't
 245 * risk encountering a new kprobe in an interrupt handler.
 246 */
 247void __kprobes kprobe_handler(struct pt_regs *regs)
 248{
 249        struct kprobe *p, *cur;
 250        struct kprobe_ctlblk *kcb;
 251
 252        kcb = get_kprobe_ctlblk();
 253        cur = kprobe_running();
 254
 255#ifdef CONFIG_THUMB2_KERNEL
 256        /*
 257         * First look for a probe which was registered using an address with
 258         * bit 0 set, this is the usual situation for pointers to Thumb code.
 259         * If not found, fallback to looking for one with bit 0 clear.
 260         */
 261        p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
 262        if (!p)
 263                p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
 264
 265#else /* ! CONFIG_THUMB2_KERNEL */
 266        p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
 267#endif
 268
 269        if (p) {
 270                if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
 271                        /*
 272                         * Probe hit but conditional execution check failed,
 273                         * so just skip the instruction and continue as if
 274                         * nothing had happened.
 275                         * In this case, we can skip recursing check too.
 276                         */
 277                        singlestep_skip(p, regs);
 278                } else if (cur) {
 279                        /* Kprobe is pending, so we're recursing. */
 280                        switch (kcb->kprobe_status) {
 281                        case KPROBE_HIT_ACTIVE:
 282                        case KPROBE_HIT_SSDONE:
 283                        case KPROBE_HIT_SS:
 284                                /* A pre- or post-handler probe got us here. */
 285                                kprobes_inc_nmissed_count(p);
 286                                save_previous_kprobe(kcb);
 287                                set_current_kprobe(p);
 288                                kcb->kprobe_status = KPROBE_REENTER;
 289                                singlestep(p, regs, kcb);
 290                                restore_previous_kprobe(kcb);
 291                                break;
 292                        case KPROBE_REENTER:
 293                                /* A nested probe was hit in FIQ, it is a BUG */
 294                                pr_warn("Unrecoverable kprobe detected at %p.\n",
 295                                        p->addr);
 296                                /* fall through */
 297                        default:
 298                                /* impossible cases */
 299                                BUG();
 300                        }
 301                } else {
 302                        /* Probe hit and conditional execution check ok. */
 303                        set_current_kprobe(p);
 304                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 305
 306                        /*
 307                         * If we have no pre-handler or it returned 0, we
 308                         * continue with normal processing.  If we have a
 309                         * pre-handler and it returned non-zero, it prepped
 310                         * for calling the break_handler below on re-entry,
 311                         * so get out doing nothing more here.
 312                         */
 313                        if (!p->pre_handler || !p->pre_handler(p, regs)) {
 314                                kcb->kprobe_status = KPROBE_HIT_SS;
 315                                singlestep(p, regs, kcb);
 316                                if (p->post_handler) {
 317                                        kcb->kprobe_status = KPROBE_HIT_SSDONE;
 318                                        p->post_handler(p, regs, 0);
 319                                }
 320                                reset_current_kprobe();
 321                        }
 322                }
 323        } else if (cur) {
 324                /* We probably hit a jprobe.  Call its break handler. */
 325                if (cur->break_handler && cur->break_handler(cur, regs)) {
 326                        kcb->kprobe_status = KPROBE_HIT_SS;
 327                        singlestep(cur, regs, kcb);
 328                        if (cur->post_handler) {
 329                                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 330                                cur->post_handler(cur, regs, 0);
 331                        }
 332                }
 333                reset_current_kprobe();
 334        } else {
 335                /*
 336                 * The probe was removed and a race is in progress.
 337                 * There is nothing we can do about it.  Let's restart
 338                 * the instruction.  By the time we can restart, the
 339                 * real instruction will be there.
 340                 */
 341        }
 342}
 343
 344static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
 345{
 346        unsigned long flags;
 347        local_irq_save(flags);
 348        kprobe_handler(regs);
 349        local_irq_restore(flags);
 350        return 0;
 351}
 352
 353int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
 354{
 355        struct kprobe *cur = kprobe_running();
 356        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 357
 358        switch (kcb->kprobe_status) {
 359        case KPROBE_HIT_SS:
 360        case KPROBE_REENTER:
 361                /*
 362                 * We are here because the instruction being single
 363                 * stepped caused a page fault. We reset the current
 364                 * kprobe and the PC to point back to the probe address
 365                 * and allow the page fault handler to continue as a
 366                 * normal page fault.
 367                 */
 368                regs->ARM_pc = (long)cur->addr;
 369                if (kcb->kprobe_status == KPROBE_REENTER) {
 370                        restore_previous_kprobe(kcb);
 371                } else {
 372                        reset_current_kprobe();
 373                }
 374                break;
 375
 376        case KPROBE_HIT_ACTIVE:
 377        case KPROBE_HIT_SSDONE:
 378                /*
 379                 * We increment the nmissed count for accounting,
 380                 * we can also use npre/npostfault count for accounting
 381                 * these specific fault cases.
 382                 */
 383                kprobes_inc_nmissed_count(cur);
 384
 385                /*
 386                 * We come here because instructions in the pre/post
 387                 * handler caused the page_fault, this could happen
 388                 * if handler tries to access user space by
 389                 * copy_from_user(), get_user() etc. Let the
 390                 * user-specified handler try to fix it.
 391                 */
 392                if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
 393                        return 1;
 394                break;
 395
 396        default:
 397                break;
 398        }
 399
 400        return 0;
 401}
 402
 403int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 404                                       unsigned long val, void *data)
 405{
 406        /*
 407         * notify_die() is currently never called on ARM,
 408         * so this callback is currently empty.
 409         */
 410        return NOTIFY_DONE;
 411}
 412
 413/*
 414 * When a retprobed function returns, trampoline_handler() is called,
 415 * calling the kretprobe's handler. We construct a struct pt_regs to
 416 * give a view of registers r0-r11 to the user return-handler.  This is
 417 * not a complete pt_regs structure, but that should be plenty sufficient
 418 * for kretprobe handlers which should normally be interested in r0 only
 419 * anyway.
 420 */
 421void __naked __kprobes kretprobe_trampoline(void)
 422{
 423        __asm__ __volatile__ (
 424                "stmdb  sp!, {r0 - r11}         \n\t"
 425                "mov    r0, sp                  \n\t"
 426                "bl     trampoline_handler      \n\t"
 427                "mov    lr, r0                  \n\t"
 428                "ldmia  sp!, {r0 - r11}         \n\t"
 429#ifdef CONFIG_THUMB2_KERNEL
 430                "bx     lr                      \n\t"
 431#else
 432                "mov    pc, lr                  \n\t"
 433#endif
 434                : : : "memory");
 435}
 436
 437/* Called from kretprobe_trampoline */
 438static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
 439{
 440        struct kretprobe_instance *ri = NULL;
 441        struct hlist_head *head, empty_rp;
 442        struct hlist_node *tmp;
 443        unsigned long flags, orig_ret_address = 0;
 444        unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 445        kprobe_opcode_t *correct_ret_addr = NULL;
 446
 447        INIT_HLIST_HEAD(&empty_rp);
 448        kretprobe_hash_lock(current, &head, &flags);
 449
 450        /*
 451         * It is possible to have multiple instances associated with a given
 452         * task either because multiple functions in the call path have
 453         * a return probe installed on them, and/or more than one return
 454         * probe was registered for a target function.
 455         *
 456         * We can handle this because:
 457         *     - instances are always inserted at the head of the list
 458         *     - when multiple return probes are registered for the same
 459         *       function, the first instance's ret_addr will point to the
 460         *       real return address, and all the rest will point to
 461         *       kretprobe_trampoline
 462         */
 463        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 464                if (ri->task != current)
 465                        /* another task is sharing our hash bucket */
 466                        continue;
 467
 468                orig_ret_address = (unsigned long)ri->ret_addr;
 469
 470                if (orig_ret_address != trampoline_address)
 471                        /*
 472                         * This is the real return address. Any other
 473                         * instances associated with this task are for
 474                         * other calls deeper on the call stack
 475                         */
 476                        break;
 477        }
 478
 479        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 480
 481        correct_ret_addr = ri->ret_addr;
 482        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 483                if (ri->task != current)
 484                        /* another task is sharing our hash bucket */
 485                        continue;
 486
 487                orig_ret_address = (unsigned long)ri->ret_addr;
 488                if (ri->rp && ri->rp->handler) {
 489                        __this_cpu_write(current_kprobe, &ri->rp->kp);
 490                        get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 491                        ri->ret_addr = correct_ret_addr;
 492                        ri->rp->handler(ri, regs);
 493                        __this_cpu_write(current_kprobe, NULL);
 494                }
 495
 496                recycle_rp_inst(ri, &empty_rp);
 497
 498                if (orig_ret_address != trampoline_address)
 499                        /*
 500                         * This is the real return address. Any other
 501                         * instances associated with this task are for
 502                         * other calls deeper on the call stack
 503                         */
 504                        break;
 505        }
 506
 507        kretprobe_hash_unlock(current, &flags);
 508
 509        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 510                hlist_del(&ri->hlist);
 511                kfree(ri);
 512        }
 513
 514        return (void *)orig_ret_address;
 515}
 516
 517void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 518                                      struct pt_regs *regs)
 519{
 520        ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
 521
 522        /* Replace the return addr with trampoline addr. */
 523        regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
 524}
 525
 526int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 527{
 528        struct jprobe *jp = container_of(p, struct jprobe, kp);
 529        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 530        long sp_addr = regs->ARM_sp;
 531        long cpsr;
 532
 533        kcb->jprobe_saved_regs = *regs;
 534        memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
 535        regs->ARM_pc = (long)jp->entry;
 536
 537        cpsr = regs->ARM_cpsr | PSR_I_BIT;
 538#ifdef CONFIG_THUMB2_KERNEL
 539        /* Set correct Thumb state in cpsr */
 540        if (regs->ARM_pc & 1)
 541                cpsr |= PSR_T_BIT;
 542        else
 543                cpsr &= ~PSR_T_BIT;
 544#endif
 545        regs->ARM_cpsr = cpsr;
 546
 547        preempt_disable();
 548        return 1;
 549}
 550
 551void __kprobes jprobe_return(void)
 552{
 553        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 554
 555        __asm__ __volatile__ (
 556                /*
 557                 * Setup an empty pt_regs. Fill SP and PC fields as
 558                 * they're needed by longjmp_break_handler.
 559                 *
 560                 * We allocate some slack between the original SP and start of
 561                 * our fabricated regs. To be precise we want to have worst case
 562                 * covered which is STMFD with all 16 regs so we allocate 2 *
 563                 * sizeof(struct_pt_regs)).
 564                 *
 565                 * This is to prevent any simulated instruction from writing
 566                 * over the regs when they are accessing the stack.
 567                 */
 568#ifdef CONFIG_THUMB2_KERNEL
 569                "sub    r0, %0, %1              \n\t"
 570                "mov    sp, r0                  \n\t"
 571#else
 572                "sub    sp, %0, %1              \n\t"
 573#endif
 574                "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
 575                "str    %0, [sp, %2]            \n\t"
 576                "str    r0, [sp, %3]            \n\t"
 577                "mov    r0, sp                  \n\t"
 578                "bl     kprobe_handler          \n\t"
 579
 580                /*
 581                 * Return to the context saved by setjmp_pre_handler
 582                 * and restored by longjmp_break_handler.
 583                 */
 584#ifdef CONFIG_THUMB2_KERNEL
 585                "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
 586                "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
 587                "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
 588                "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
 589                                                      /* rfe context */
 590                "ldmia  sp, {r0 - r12}          \n\t"
 591                "mov    sp, lr                  \n\t"
 592                "ldr    lr, [sp], #4            \n\t"
 593                "rfeia  sp!                     \n\t"
 594#else
 595                "ldr    r0, [sp, %4]            \n\t"
 596                "msr    cpsr_cxsf, r0           \n\t"
 597                "ldmia  sp, {r0 - pc}           \n\t"
 598#endif
 599                :
 600                : "r" (kcb->jprobe_saved_regs.ARM_sp),
 601                  "I" (sizeof(struct pt_regs) * 2),
 602                  "J" (offsetof(struct pt_regs, ARM_sp)),
 603                  "J" (offsetof(struct pt_regs, ARM_pc)),
 604                  "J" (offsetof(struct pt_regs, ARM_cpsr)),
 605                  "J" (offsetof(struct pt_regs, ARM_lr))
 606                : "memory", "cc");
 607}
 608
 609int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 610{
 611        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 612        long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
 613        long orig_sp = regs->ARM_sp;
 614        struct jprobe *jp = container_of(p, struct jprobe, kp);
 615
 616        if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
 617                if (orig_sp != stack_addr) {
 618                        struct pt_regs *saved_regs =
 619                                (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
 620                        printk("current sp %lx does not match saved sp %lx\n",
 621                               orig_sp, stack_addr);
 622                        printk("Saved registers for jprobe %p\n", jp);
 623                        show_regs(saved_regs);
 624                        printk("Current registers\n");
 625                        show_regs(regs);
 626                        BUG();
 627                }
 628                *regs = kcb->jprobe_saved_regs;
 629                memcpy((void *)stack_addr, kcb->jprobes_stack,
 630                       MIN_STACK_SIZE(stack_addr));
 631                preempt_enable_no_resched();
 632                return 1;
 633        }
 634        return 0;
 635}
 636
 637int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 638{
 639        return 0;
 640}
 641
 642#ifdef CONFIG_THUMB2_KERNEL
 643
 644static struct undef_hook kprobes_thumb16_break_hook = {
 645        .instr_mask     = 0xffff,
 646        .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
 647        .cpsr_mask      = MODE_MASK,
 648        .cpsr_val       = SVC_MODE,
 649        .fn             = kprobe_trap_handler,
 650};
 651
 652static struct undef_hook kprobes_thumb32_break_hook = {
 653        .instr_mask     = 0xffffffff,
 654        .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
 655        .cpsr_mask      = MODE_MASK,
 656        .cpsr_val       = SVC_MODE,
 657        .fn             = kprobe_trap_handler,
 658};
 659
 660#else  /* !CONFIG_THUMB2_KERNEL */
 661
 662static struct undef_hook kprobes_arm_break_hook = {
 663        .instr_mask     = 0x0fffffff,
 664        .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
 665        .cpsr_mask      = MODE_MASK,
 666        .cpsr_val       = SVC_MODE,
 667        .fn             = kprobe_trap_handler,
 668};
 669
 670#endif /* !CONFIG_THUMB2_KERNEL */
 671
 672int __init arch_init_kprobes()
 673{
 674        arm_probes_decode_init();
 675#ifdef CONFIG_THUMB2_KERNEL
 676        register_undef_hook(&kprobes_thumb16_break_hook);
 677        register_undef_hook(&kprobes_thumb32_break_hook);
 678#else
 679        register_undef_hook(&kprobes_arm_break_hook);
 680#endif
 681        return 0;
 682}
 683