linux/arch/arm64/crypto/aes-ce-cipher.c
<<
>>
Prefs
   1/*
   2 * aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions
   3 *
   4 * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <asm/neon.h>
  12#include <asm/simd.h>
  13#include <asm/unaligned.h>
  14#include <crypto/aes.h>
  15#include <linux/cpufeature.h>
  16#include <linux/crypto.h>
  17#include <linux/module.h>
  18
  19#include "aes-ce-setkey.h"
  20
  21MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions");
  22MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
  23MODULE_LICENSE("GPL v2");
  24
  25asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
  26asmlinkage void __aes_arm64_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
  27
  28struct aes_block {
  29        u8 b[AES_BLOCK_SIZE];
  30};
  31
  32static int num_rounds(struct crypto_aes_ctx *ctx)
  33{
  34        /*
  35         * # of rounds specified by AES:
  36         * 128 bit key          10 rounds
  37         * 192 bit key          12 rounds
  38         * 256 bit key          14 rounds
  39         * => n byte key        => 6 + (n/4) rounds
  40         */
  41        return 6 + ctx->key_length / 4;
  42}
  43
  44static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
  45{
  46        struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  47        struct aes_block *out = (struct aes_block *)dst;
  48        struct aes_block const *in = (struct aes_block *)src;
  49        void *dummy0;
  50        int dummy1;
  51
  52        if (!may_use_simd()) {
  53                __aes_arm64_encrypt(ctx->key_enc, dst, src, num_rounds(ctx));
  54                return;
  55        }
  56
  57        kernel_neon_begin();
  58
  59        __asm__("       ld1     {v0.16b}, %[in]                 ;"
  60                "       ld1     {v1.4s}, [%[key]], #16          ;"
  61                "       cmp     %w[rounds], #10                 ;"
  62                "       bmi     0f                              ;"
  63                "       bne     3f                              ;"
  64                "       mov     v3.16b, v1.16b                  ;"
  65                "       b       2f                              ;"
  66                "0:     mov     v2.16b, v1.16b                  ;"
  67                "       ld1     {v3.4s}, [%[key]], #16          ;"
  68                "1:     aese    v0.16b, v2.16b                  ;"
  69                "       aesmc   v0.16b, v0.16b                  ;"
  70                "2:     ld1     {v1.4s}, [%[key]], #16          ;"
  71                "       aese    v0.16b, v3.16b                  ;"
  72                "       aesmc   v0.16b, v0.16b                  ;"
  73                "3:     ld1     {v2.4s}, [%[key]], #16          ;"
  74                "       subs    %w[rounds], %w[rounds], #3      ;"
  75                "       aese    v0.16b, v1.16b                  ;"
  76                "       aesmc   v0.16b, v0.16b                  ;"
  77                "       ld1     {v3.4s}, [%[key]], #16          ;"
  78                "       bpl     1b                              ;"
  79                "       aese    v0.16b, v2.16b                  ;"
  80                "       eor     v0.16b, v0.16b, v3.16b          ;"
  81                "       st1     {v0.16b}, %[out]                ;"
  82
  83        :       [out]           "=Q"(*out),
  84                [key]           "=r"(dummy0),
  85                [rounds]        "=r"(dummy1)
  86        :       [in]            "Q"(*in),
  87                                "1"(ctx->key_enc),
  88                                "2"(num_rounds(ctx) - 2)
  89        :       "cc");
  90
  91        kernel_neon_end();
  92}
  93
  94static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
  95{
  96        struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  97        struct aes_block *out = (struct aes_block *)dst;
  98        struct aes_block const *in = (struct aes_block *)src;
  99        void *dummy0;
 100        int dummy1;
 101
 102        if (!may_use_simd()) {
 103                __aes_arm64_decrypt(ctx->key_dec, dst, src, num_rounds(ctx));
 104                return;
 105        }
 106
 107        kernel_neon_begin();
 108
 109        __asm__("       ld1     {v0.16b}, %[in]                 ;"
 110                "       ld1     {v1.4s}, [%[key]], #16          ;"
 111                "       cmp     %w[rounds], #10                 ;"
 112                "       bmi     0f                              ;"
 113                "       bne     3f                              ;"
 114                "       mov     v3.16b, v1.16b                  ;"
 115                "       b       2f                              ;"
 116                "0:     mov     v2.16b, v1.16b                  ;"
 117                "       ld1     {v3.4s}, [%[key]], #16          ;"
 118                "1:     aesd    v0.16b, v2.16b                  ;"
 119                "       aesimc  v0.16b, v0.16b                  ;"
 120                "2:     ld1     {v1.4s}, [%[key]], #16          ;"
 121                "       aesd    v0.16b, v3.16b                  ;"
 122                "       aesimc  v0.16b, v0.16b                  ;"
 123                "3:     ld1     {v2.4s}, [%[key]], #16          ;"
 124                "       subs    %w[rounds], %w[rounds], #3      ;"
 125                "       aesd    v0.16b, v1.16b                  ;"
 126                "       aesimc  v0.16b, v0.16b                  ;"
 127                "       ld1     {v3.4s}, [%[key]], #16          ;"
 128                "       bpl     1b                              ;"
 129                "       aesd    v0.16b, v2.16b                  ;"
 130                "       eor     v0.16b, v0.16b, v3.16b          ;"
 131                "       st1     {v0.16b}, %[out]                ;"
 132
 133        :       [out]           "=Q"(*out),
 134                [key]           "=r"(dummy0),
 135                [rounds]        "=r"(dummy1)
 136        :       [in]            "Q"(*in),
 137                                "1"(ctx->key_dec),
 138                                "2"(num_rounds(ctx) - 2)
 139        :       "cc");
 140
 141        kernel_neon_end();
 142}
 143
 144/*
 145 * aes_sub() - use the aese instruction to perform the AES sbox substitution
 146 *             on each byte in 'input'
 147 */
 148static u32 aes_sub(u32 input)
 149{
 150        u32 ret;
 151
 152        __asm__("dup    v1.4s, %w[in]           ;"
 153                "movi   v0.16b, #0              ;"
 154                "aese   v0.16b, v1.16b          ;"
 155                "umov   %w[out], v0.4s[0]       ;"
 156
 157        :       [out]   "=r"(ret)
 158        :       [in]    "r"(input)
 159        :               "v0","v1");
 160
 161        return ret;
 162}
 163
 164int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
 165                     unsigned int key_len)
 166{
 167        /*
 168         * The AES key schedule round constants
 169         */
 170        static u8 const rcon[] = {
 171                0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
 172        };
 173
 174        u32 kwords = key_len / sizeof(u32);
 175        struct aes_block *key_enc, *key_dec;
 176        int i, j;
 177
 178        if (key_len != AES_KEYSIZE_128 &&
 179            key_len != AES_KEYSIZE_192 &&
 180            key_len != AES_KEYSIZE_256)
 181                return -EINVAL;
 182
 183        ctx->key_length = key_len;
 184        for (i = 0; i < kwords; i++)
 185                ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
 186
 187        kernel_neon_begin();
 188        for (i = 0; i < sizeof(rcon); i++) {
 189                u32 *rki = ctx->key_enc + (i * kwords);
 190                u32 *rko = rki + kwords;
 191
 192                rko[0] = ror32(aes_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0];
 193                rko[1] = rko[0] ^ rki[1];
 194                rko[2] = rko[1] ^ rki[2];
 195                rko[3] = rko[2] ^ rki[3];
 196
 197                if (key_len == AES_KEYSIZE_192) {
 198                        if (i >= 7)
 199                                break;
 200                        rko[4] = rko[3] ^ rki[4];
 201                        rko[5] = rko[4] ^ rki[5];
 202                } else if (key_len == AES_KEYSIZE_256) {
 203                        if (i >= 6)
 204                                break;
 205                        rko[4] = aes_sub(rko[3]) ^ rki[4];
 206                        rko[5] = rko[4] ^ rki[5];
 207                        rko[6] = rko[5] ^ rki[6];
 208                        rko[7] = rko[6] ^ rki[7];
 209                }
 210        }
 211
 212        /*
 213         * Generate the decryption keys for the Equivalent Inverse Cipher.
 214         * This involves reversing the order of the round keys, and applying
 215         * the Inverse Mix Columns transformation on all but the first and
 216         * the last one.
 217         */
 218        key_enc = (struct aes_block *)ctx->key_enc;
 219        key_dec = (struct aes_block *)ctx->key_dec;
 220        j = num_rounds(ctx);
 221
 222        key_dec[0] = key_enc[j];
 223        for (i = 1, j--; j > 0; i++, j--)
 224                __asm__("ld1    {v0.4s}, %[in]          ;"
 225                        "aesimc v1.16b, v0.16b          ;"
 226                        "st1    {v1.4s}, %[out] ;"
 227
 228                :       [out]   "=Q"(key_dec[i])
 229                :       [in]    "Q"(key_enc[j])
 230                :               "v0","v1");
 231        key_dec[i] = key_enc[0];
 232
 233        kernel_neon_end();
 234        return 0;
 235}
 236EXPORT_SYMBOL(ce_aes_expandkey);
 237
 238int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
 239                  unsigned int key_len)
 240{
 241        struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 242        int ret;
 243
 244        ret = ce_aes_expandkey(ctx, in_key, key_len);
 245        if (!ret)
 246                return 0;
 247
 248        tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 249        return -EINVAL;
 250}
 251EXPORT_SYMBOL(ce_aes_setkey);
 252
 253static struct crypto_alg aes_alg = {
 254        .cra_name               = "aes",
 255        .cra_driver_name        = "aes-ce",
 256        .cra_priority           = 250,
 257        .cra_flags              = CRYPTO_ALG_TYPE_CIPHER,
 258        .cra_blocksize          = AES_BLOCK_SIZE,
 259        .cra_ctxsize            = sizeof(struct crypto_aes_ctx),
 260        .cra_module             = THIS_MODULE,
 261        .cra_cipher = {
 262                .cia_min_keysize        = AES_MIN_KEY_SIZE,
 263                .cia_max_keysize        = AES_MAX_KEY_SIZE,
 264                .cia_setkey             = ce_aes_setkey,
 265                .cia_encrypt            = aes_cipher_encrypt,
 266                .cia_decrypt            = aes_cipher_decrypt
 267        }
 268};
 269
 270static int __init aes_mod_init(void)
 271{
 272        return crypto_register_alg(&aes_alg);
 273}
 274
 275static void __exit aes_mod_exit(void)
 276{
 277        crypto_unregister_alg(&aes_alg);
 278}
 279
 280module_cpu_feature_match(AES, aes_mod_init);
 281module_exit(aes_mod_exit);
 282