linux/arch/arm64/mm/fault.c
<<
>>
Prefs
   1/*
   2 * Based on arch/arm/mm/fault.c
   3 *
   4 * Copyright (C) 1995  Linus Torvalds
   5 * Copyright (C) 1995-2004 Russell King
   6 * Copyright (C) 2012 ARM Ltd.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include <linux/extable.h>
  22#include <linux/signal.h>
  23#include <linux/mm.h>
  24#include <linux/hardirq.h>
  25#include <linux/init.h>
  26#include <linux/kprobes.h>
  27#include <linux/uaccess.h>
  28#include <linux/page-flags.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/debug.h>
  31#include <linux/highmem.h>
  32#include <linux/perf_event.h>
  33#include <linux/preempt.h>
  34#include <linux/hugetlb.h>
  35
  36#include <asm/bug.h>
  37#include <asm/cmpxchg.h>
  38#include <asm/cpufeature.h>
  39#include <asm/exception.h>
  40#include <asm/debug-monitors.h>
  41#include <asm/esr.h>
  42#include <asm/sysreg.h>
  43#include <asm/system_misc.h>
  44#include <asm/pgtable.h>
  45#include <asm/tlbflush.h>
  46
  47#include <acpi/ghes.h>
  48
  49struct fault_info {
  50        int     (*fn)(unsigned long addr, unsigned int esr,
  51                      struct pt_regs *regs);
  52        int     sig;
  53        int     code;
  54        const char *name;
  55};
  56
  57static const struct fault_info fault_info[];
  58
  59static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
  60{
  61        return fault_info + (esr & 63);
  62}
  63
  64#ifdef CONFIG_KPROBES
  65static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
  66{
  67        int ret = 0;
  68
  69        /* kprobe_running() needs smp_processor_id() */
  70        if (!user_mode(regs)) {
  71                preempt_disable();
  72                if (kprobe_running() && kprobe_fault_handler(regs, esr))
  73                        ret = 1;
  74                preempt_enable();
  75        }
  76
  77        return ret;
  78}
  79#else
  80static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
  81{
  82        return 0;
  83}
  84#endif
  85
  86static void data_abort_decode(unsigned int esr)
  87{
  88        pr_alert("Data abort info:\n");
  89
  90        if (esr & ESR_ELx_ISV) {
  91                pr_alert("  Access size = %u byte(s)\n",
  92                         1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
  93                pr_alert("  SSE = %lu, SRT = %lu\n",
  94                         (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
  95                         (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
  96                pr_alert("  SF = %lu, AR = %lu\n",
  97                         (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
  98                         (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
  99        } else {
 100                pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
 101        }
 102
 103        pr_alert("  CM = %lu, WnR = %lu\n",
 104                 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
 105                 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
 106}
 107
 108/*
 109 * Decode mem abort information
 110 */
 111static void mem_abort_decode(unsigned int esr)
 112{
 113        pr_alert("Mem abort info:\n");
 114
 115        pr_alert("  Exception class = %s, IL = %u bits\n",
 116                 esr_get_class_string(esr),
 117                 (esr & ESR_ELx_IL) ? 32 : 16);
 118        pr_alert("  SET = %lu, FnV = %lu\n",
 119                 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
 120                 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
 121        pr_alert("  EA = %lu, S1PTW = %lu\n",
 122                 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
 123                 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
 124
 125        if (esr_is_data_abort(esr))
 126                data_abort_decode(esr);
 127}
 128
 129/*
 130 * Dump out the page tables associated with 'addr' in the currently active mm.
 131 */
 132void show_pte(unsigned long addr)
 133{
 134        struct mm_struct *mm;
 135        pgd_t *pgd;
 136
 137        if (addr < TASK_SIZE) {
 138                /* TTBR0 */
 139                mm = current->active_mm;
 140                if (mm == &init_mm) {
 141                        pr_alert("[%016lx] user address but active_mm is swapper\n",
 142                                 addr);
 143                        return;
 144                }
 145        } else if (addr >= VA_START) {
 146                /* TTBR1 */
 147                mm = &init_mm;
 148        } else {
 149                pr_alert("[%016lx] address between user and kernel address ranges\n",
 150                         addr);
 151                return;
 152        }
 153
 154        pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
 155                 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
 156                 VA_BITS, mm->pgd);
 157        pgd = pgd_offset(mm, addr);
 158        pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
 159
 160        do {
 161                pud_t *pud;
 162                pmd_t *pmd;
 163                pte_t *pte;
 164
 165                if (pgd_none(*pgd) || pgd_bad(*pgd))
 166                        break;
 167
 168                pud = pud_offset(pgd, addr);
 169                pr_cont(", *pud=%016llx", pud_val(*pud));
 170                if (pud_none(*pud) || pud_bad(*pud))
 171                        break;
 172
 173                pmd = pmd_offset(pud, addr);
 174                pr_cont(", *pmd=%016llx", pmd_val(*pmd));
 175                if (pmd_none(*pmd) || pmd_bad(*pmd))
 176                        break;
 177
 178                pte = pte_offset_map(pmd, addr);
 179                pr_cont(", *pte=%016llx", pte_val(*pte));
 180                pte_unmap(pte);
 181        } while(0);
 182
 183        pr_cont("\n");
 184}
 185
 186/*
 187 * This function sets the access flags (dirty, accessed), as well as write
 188 * permission, and only to a more permissive setting.
 189 *
 190 * It needs to cope with hardware update of the accessed/dirty state by other
 191 * agents in the system and can safely skip the __sync_icache_dcache() call as,
 192 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
 193 *
 194 * Returns whether or not the PTE actually changed.
 195 */
 196int ptep_set_access_flags(struct vm_area_struct *vma,
 197                          unsigned long address, pte_t *ptep,
 198                          pte_t entry, int dirty)
 199{
 200        pteval_t old_pteval, pteval;
 201
 202        if (pte_same(*ptep, entry))
 203                return 0;
 204
 205        /* only preserve the access flags and write permission */
 206        pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
 207
 208        /*
 209         * Setting the flags must be done atomically to avoid racing with the
 210         * hardware update of the access/dirty state. The PTE_RDONLY bit must
 211         * be set to the most permissive (lowest value) of *ptep and entry
 212         * (calculated as: a & b == ~(~a | ~b)).
 213         */
 214        pte_val(entry) ^= PTE_RDONLY;
 215        pteval = READ_ONCE(pte_val(*ptep));
 216        do {
 217                old_pteval = pteval;
 218                pteval ^= PTE_RDONLY;
 219                pteval |= pte_val(entry);
 220                pteval ^= PTE_RDONLY;
 221                pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
 222        } while (pteval != old_pteval);
 223
 224        flush_tlb_fix_spurious_fault(vma, address);
 225        return 1;
 226}
 227
 228static bool is_el1_instruction_abort(unsigned int esr)
 229{
 230        return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
 231}
 232
 233static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
 234                                       unsigned long addr)
 235{
 236        unsigned int ec       = ESR_ELx_EC(esr);
 237        unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
 238
 239        if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
 240                return false;
 241
 242        if (fsc_type == ESR_ELx_FSC_PERM)
 243                return true;
 244
 245        if (addr < USER_DS && system_uses_ttbr0_pan())
 246                return fsc_type == ESR_ELx_FSC_FAULT &&
 247                        (regs->pstate & PSR_PAN_BIT);
 248
 249        return false;
 250}
 251
 252/*
 253 * The kernel tried to access some page that wasn't present.
 254 */
 255static void __do_kernel_fault(unsigned long addr, unsigned int esr,
 256                              struct pt_regs *regs)
 257{
 258        const char *msg;
 259
 260        /*
 261         * Are we prepared to handle this kernel fault?
 262         * We are almost certainly not prepared to handle instruction faults.
 263         */
 264        if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
 265                return;
 266
 267        /*
 268         * No handler, we'll have to terminate things with extreme prejudice.
 269         */
 270        bust_spinlocks(1);
 271
 272        if (is_permission_fault(esr, regs, addr)) {
 273                if (esr & ESR_ELx_WNR)
 274                        msg = "write to read-only memory";
 275                else
 276                        msg = "read from unreadable memory";
 277        } else if (addr < PAGE_SIZE) {
 278                msg = "NULL pointer dereference";
 279        } else {
 280                msg = "paging request";
 281        }
 282
 283        pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
 284                 addr);
 285
 286        mem_abort_decode(esr);
 287
 288        show_pte(addr);
 289        die("Oops", regs, esr);
 290        bust_spinlocks(0);
 291        do_exit(SIGKILL);
 292}
 293
 294/*
 295 * Something tried to access memory that isn't in our memory map. User mode
 296 * accesses just cause a SIGSEGV
 297 */
 298static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
 299                            unsigned int esr, unsigned int sig, int code,
 300                            struct pt_regs *regs, int fault)
 301{
 302        struct siginfo si;
 303        const struct fault_info *inf;
 304        unsigned int lsb = 0;
 305
 306        if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
 307                inf = esr_to_fault_info(esr);
 308                pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
 309                        tsk->comm, task_pid_nr(tsk), inf->name, sig,
 310                        addr, esr);
 311                print_vma_addr(KERN_CONT ", in ", regs->pc);
 312                pr_cont("\n");
 313                __show_regs(regs);
 314        }
 315
 316        tsk->thread.fault_address = addr;
 317        tsk->thread.fault_code = esr;
 318        si.si_signo = sig;
 319        si.si_errno = 0;
 320        si.si_code = code;
 321        si.si_addr = (void __user *)addr;
 322        /*
 323         * Either small page or large page may be poisoned.
 324         * In other words, VM_FAULT_HWPOISON_LARGE and
 325         * VM_FAULT_HWPOISON are mutually exclusive.
 326         */
 327        if (fault & VM_FAULT_HWPOISON_LARGE)
 328                lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 329        else if (fault & VM_FAULT_HWPOISON)
 330                lsb = PAGE_SHIFT;
 331        si.si_addr_lsb = lsb;
 332
 333        force_sig_info(sig, &si, tsk);
 334}
 335
 336static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 337{
 338        struct task_struct *tsk = current;
 339        const struct fault_info *inf;
 340
 341        /*
 342         * If we are in kernel mode at this point, we have no context to
 343         * handle this fault with.
 344         */
 345        if (user_mode(regs)) {
 346                inf = esr_to_fault_info(esr);
 347                __do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
 348        } else
 349                __do_kernel_fault(addr, esr, regs);
 350}
 351
 352#define VM_FAULT_BADMAP         0x010000
 353#define VM_FAULT_BADACCESS      0x020000
 354
 355static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
 356                           unsigned int mm_flags, unsigned long vm_flags,
 357                           struct task_struct *tsk)
 358{
 359        struct vm_area_struct *vma;
 360        int fault;
 361
 362        vma = find_vma(mm, addr);
 363        fault = VM_FAULT_BADMAP;
 364        if (unlikely(!vma))
 365                goto out;
 366        if (unlikely(vma->vm_start > addr))
 367                goto check_stack;
 368
 369        /*
 370         * Ok, we have a good vm_area for this memory access, so we can handle
 371         * it.
 372         */
 373good_area:
 374        /*
 375         * Check that the permissions on the VMA allow for the fault which
 376         * occurred.
 377         */
 378        if (!(vma->vm_flags & vm_flags)) {
 379                fault = VM_FAULT_BADACCESS;
 380                goto out;
 381        }
 382
 383        return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
 384
 385check_stack:
 386        if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
 387                goto good_area;
 388out:
 389        return fault;
 390}
 391
 392static bool is_el0_instruction_abort(unsigned int esr)
 393{
 394        return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
 395}
 396
 397static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
 398                                   struct pt_regs *regs)
 399{
 400        struct task_struct *tsk;
 401        struct mm_struct *mm;
 402        int fault, sig, code, major = 0;
 403        unsigned long vm_flags = VM_READ | VM_WRITE;
 404        unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 405
 406        if (notify_page_fault(regs, esr))
 407                return 0;
 408
 409        tsk = current;
 410        mm  = tsk->mm;
 411
 412        /*
 413         * If we're in an interrupt or have no user context, we must not take
 414         * the fault.
 415         */
 416        if (faulthandler_disabled() || !mm)
 417                goto no_context;
 418
 419        if (user_mode(regs))
 420                mm_flags |= FAULT_FLAG_USER;
 421
 422        if (is_el0_instruction_abort(esr)) {
 423                vm_flags = VM_EXEC;
 424        } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
 425                vm_flags = VM_WRITE;
 426                mm_flags |= FAULT_FLAG_WRITE;
 427        }
 428
 429        if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
 430                /* regs->orig_addr_limit may be 0 if we entered from EL0 */
 431                if (regs->orig_addr_limit == KERNEL_DS)
 432                        die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
 433
 434                if (is_el1_instruction_abort(esr))
 435                        die("Attempting to execute userspace memory", regs, esr);
 436
 437                if (!search_exception_tables(regs->pc))
 438                        die("Accessing user space memory outside uaccess.h routines", regs, esr);
 439        }
 440
 441        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
 442
 443        /*
 444         * As per x86, we may deadlock here. However, since the kernel only
 445         * validly references user space from well defined areas of the code,
 446         * we can bug out early if this is from code which shouldn't.
 447         */
 448        if (!down_read_trylock(&mm->mmap_sem)) {
 449                if (!user_mode(regs) && !search_exception_tables(regs->pc))
 450                        goto no_context;
 451retry:
 452                down_read(&mm->mmap_sem);
 453        } else {
 454                /*
 455                 * The above down_read_trylock() might have succeeded in which
 456                 * case, we'll have missed the might_sleep() from down_read().
 457                 */
 458                might_sleep();
 459#ifdef CONFIG_DEBUG_VM
 460                if (!user_mode(regs) && !search_exception_tables(regs->pc))
 461                        goto no_context;
 462#endif
 463        }
 464
 465        fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
 466        major |= fault & VM_FAULT_MAJOR;
 467
 468        if (fault & VM_FAULT_RETRY) {
 469                /*
 470                 * If we need to retry but a fatal signal is pending,
 471                 * handle the signal first. We do not need to release
 472                 * the mmap_sem because it would already be released
 473                 * in __lock_page_or_retry in mm/filemap.c.
 474                 */
 475                if (fatal_signal_pending(current)) {
 476                        if (!user_mode(regs))
 477                                goto no_context;
 478                        return 0;
 479                }
 480
 481                /*
 482                 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
 483                 * starvation.
 484                 */
 485                if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
 486                        mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
 487                        mm_flags |= FAULT_FLAG_TRIED;
 488                        goto retry;
 489                }
 490        }
 491        up_read(&mm->mmap_sem);
 492
 493        /*
 494         * Handle the "normal" (no error) case first.
 495         */
 496        if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
 497                              VM_FAULT_BADACCESS)))) {
 498                /*
 499                 * Major/minor page fault accounting is only done
 500                 * once. If we go through a retry, it is extremely
 501                 * likely that the page will be found in page cache at
 502                 * that point.
 503                 */
 504                if (major) {
 505                        tsk->maj_flt++;
 506                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
 507                                      addr);
 508                } else {
 509                        tsk->min_flt++;
 510                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
 511                                      addr);
 512                }
 513
 514                return 0;
 515        }
 516
 517        /*
 518         * If we are in kernel mode at this point, we have no context to
 519         * handle this fault with.
 520         */
 521        if (!user_mode(regs))
 522                goto no_context;
 523
 524        if (fault & VM_FAULT_OOM) {
 525                /*
 526                 * We ran out of memory, call the OOM killer, and return to
 527                 * userspace (which will retry the fault, or kill us if we got
 528                 * oom-killed).
 529                 */
 530                pagefault_out_of_memory();
 531                return 0;
 532        }
 533
 534        if (fault & VM_FAULT_SIGBUS) {
 535                /*
 536                 * We had some memory, but were unable to successfully fix up
 537                 * this page fault.
 538                 */
 539                sig = SIGBUS;
 540                code = BUS_ADRERR;
 541        } else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
 542                sig = SIGBUS;
 543                code = BUS_MCEERR_AR;
 544        } else {
 545                /*
 546                 * Something tried to access memory that isn't in our memory
 547                 * map.
 548                 */
 549                sig = SIGSEGV;
 550                code = fault == VM_FAULT_BADACCESS ?
 551                        SEGV_ACCERR : SEGV_MAPERR;
 552        }
 553
 554        __do_user_fault(tsk, addr, esr, sig, code, regs, fault);
 555        return 0;
 556
 557no_context:
 558        __do_kernel_fault(addr, esr, regs);
 559        return 0;
 560}
 561
 562/*
 563 * First Level Translation Fault Handler
 564 *
 565 * We enter here because the first level page table doesn't contain a valid
 566 * entry for the address.
 567 *
 568 * If the address is in kernel space (>= TASK_SIZE), then we are probably
 569 * faulting in the vmalloc() area.
 570 *
 571 * If the init_task's first level page tables contains the relevant entry, we
 572 * copy the it to this task.  If not, we send the process a signal, fixup the
 573 * exception, or oops the kernel.
 574 *
 575 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
 576 * or a critical region, and should only copy the information from the master
 577 * page table, nothing more.
 578 */
 579static int __kprobes do_translation_fault(unsigned long addr,
 580                                          unsigned int esr,
 581                                          struct pt_regs *regs)
 582{
 583        if (addr < TASK_SIZE)
 584                return do_page_fault(addr, esr, regs);
 585
 586        do_bad_area(addr, esr, regs);
 587        return 0;
 588}
 589
 590static int do_alignment_fault(unsigned long addr, unsigned int esr,
 591                              struct pt_regs *regs)
 592{
 593        do_bad_area(addr, esr, regs);
 594        return 0;
 595}
 596
 597/*
 598 * This abort handler always returns "fault".
 599 */
 600static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 601{
 602        return 1;
 603}
 604
 605/*
 606 * This abort handler deals with Synchronous External Abort.
 607 * It calls notifiers, and then returns "fault".
 608 */
 609static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 610{
 611        struct siginfo info;
 612        const struct fault_info *inf;
 613        int ret = 0;
 614
 615        inf = esr_to_fault_info(esr);
 616        pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
 617                inf->name, esr, addr);
 618
 619        /*
 620         * Synchronous aborts may interrupt code which had interrupts masked.
 621         * Before calling out into the wider kernel tell the interested
 622         * subsystems.
 623         */
 624        if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
 625                if (interrupts_enabled(regs))
 626                        nmi_enter();
 627
 628                ret = ghes_notify_sea();
 629
 630                if (interrupts_enabled(regs))
 631                        nmi_exit();
 632        }
 633
 634        info.si_signo = SIGBUS;
 635        info.si_errno = 0;
 636        info.si_code  = 0;
 637        if (esr & ESR_ELx_FnV)
 638                info.si_addr = NULL;
 639        else
 640                info.si_addr  = (void __user *)addr;
 641        arm64_notify_die("", regs, &info, esr);
 642
 643        return ret;
 644}
 645
 646static const struct fault_info fault_info[] = {
 647        { do_bad,               SIGBUS,  0,             "ttbr address size fault"       },
 648        { do_bad,               SIGBUS,  0,             "level 1 address size fault"    },
 649        { do_bad,               SIGBUS,  0,             "level 2 address size fault"    },
 650        { do_bad,               SIGBUS,  0,             "level 3 address size fault"    },
 651        { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 0 translation fault"     },
 652        { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 1 translation fault"     },
 653        { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 2 translation fault"     },
 654        { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 3 translation fault"     },
 655        { do_bad,               SIGBUS,  0,             "unknown 8"                     },
 656        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 1 access flag fault"     },
 657        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 2 access flag fault"     },
 658        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 3 access flag fault"     },
 659        { do_bad,               SIGBUS,  0,             "unknown 12"                    },
 660        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 1 permission fault"      },
 661        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 2 permission fault"      },
 662        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 3 permission fault"      },
 663        { do_sea,               SIGBUS,  0,             "synchronous external abort"    },
 664        { do_bad,               SIGBUS,  0,             "unknown 17"                    },
 665        { do_bad,               SIGBUS,  0,             "unknown 18"                    },
 666        { do_bad,               SIGBUS,  0,             "unknown 19"                    },
 667        { do_sea,               SIGBUS,  0,             "level 0 (translation table walk)"      },
 668        { do_sea,               SIGBUS,  0,             "level 1 (translation table walk)"      },
 669        { do_sea,               SIGBUS,  0,             "level 2 (translation table walk)"      },
 670        { do_sea,               SIGBUS,  0,             "level 3 (translation table walk)"      },
 671        { do_sea,               SIGBUS,  0,             "synchronous parity or ECC error" },
 672        { do_bad,               SIGBUS,  0,             "unknown 25"                    },
 673        { do_bad,               SIGBUS,  0,             "unknown 26"                    },
 674        { do_bad,               SIGBUS,  0,             "unknown 27"                    },
 675        { do_sea,               SIGBUS,  0,             "level 0 synchronous parity error (translation table walk)"     },
 676        { do_sea,               SIGBUS,  0,             "level 1 synchronous parity error (translation table walk)"     },
 677        { do_sea,               SIGBUS,  0,             "level 2 synchronous parity error (translation table walk)"     },
 678        { do_sea,               SIGBUS,  0,             "level 3 synchronous parity error (translation table walk)"     },
 679        { do_bad,               SIGBUS,  0,             "unknown 32"                    },
 680        { do_alignment_fault,   SIGBUS,  BUS_ADRALN,    "alignment fault"               },
 681        { do_bad,               SIGBUS,  0,             "unknown 34"                    },
 682        { do_bad,               SIGBUS,  0,             "unknown 35"                    },
 683        { do_bad,               SIGBUS,  0,             "unknown 36"                    },
 684        { do_bad,               SIGBUS,  0,             "unknown 37"                    },
 685        { do_bad,               SIGBUS,  0,             "unknown 38"                    },
 686        { do_bad,               SIGBUS,  0,             "unknown 39"                    },
 687        { do_bad,               SIGBUS,  0,             "unknown 40"                    },
 688        { do_bad,               SIGBUS,  0,             "unknown 41"                    },
 689        { do_bad,               SIGBUS,  0,             "unknown 42"                    },
 690        { do_bad,               SIGBUS,  0,             "unknown 43"                    },
 691        { do_bad,               SIGBUS,  0,             "unknown 44"                    },
 692        { do_bad,               SIGBUS,  0,             "unknown 45"                    },
 693        { do_bad,               SIGBUS,  0,             "unknown 46"                    },
 694        { do_bad,               SIGBUS,  0,             "unknown 47"                    },
 695        { do_bad,               SIGBUS,  0,             "TLB conflict abort"            },
 696        { do_bad,               SIGBUS,  0,             "unknown 49"                    },
 697        { do_bad,               SIGBUS,  0,             "unknown 50"                    },
 698        { do_bad,               SIGBUS,  0,             "unknown 51"                    },
 699        { do_bad,               SIGBUS,  0,             "implementation fault (lockdown abort)" },
 700        { do_bad,               SIGBUS,  0,             "implementation fault (unsupported exclusive)" },
 701        { do_bad,               SIGBUS,  0,             "unknown 54"                    },
 702        { do_bad,               SIGBUS,  0,             "unknown 55"                    },
 703        { do_bad,               SIGBUS,  0,             "unknown 56"                    },
 704        { do_bad,               SIGBUS,  0,             "unknown 57"                    },
 705        { do_bad,               SIGBUS,  0,             "unknown 58"                    },
 706        { do_bad,               SIGBUS,  0,             "unknown 59"                    },
 707        { do_bad,               SIGBUS,  0,             "unknown 60"                    },
 708        { do_bad,               SIGBUS,  0,             "section domain fault"          },
 709        { do_bad,               SIGBUS,  0,             "page domain fault"             },
 710        { do_bad,               SIGBUS,  0,             "unknown 63"                    },
 711};
 712
 713/*
 714 * Handle Synchronous External Aborts that occur in a guest kernel.
 715 *
 716 * The return value will be zero if the SEA was successfully handled
 717 * and non-zero if there was an error processing the error or there was
 718 * no error to process.
 719 */
 720int handle_guest_sea(phys_addr_t addr, unsigned int esr)
 721{
 722        int ret = -ENOENT;
 723
 724        if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
 725                ret = ghes_notify_sea();
 726
 727        return ret;
 728}
 729
 730/*
 731 * Dispatch a data abort to the relevant handler.
 732 */
 733asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
 734                                         struct pt_regs *regs)
 735{
 736        const struct fault_info *inf = esr_to_fault_info(esr);
 737        struct siginfo info;
 738
 739        if (!inf->fn(addr, esr, regs))
 740                return;
 741
 742        pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
 743                 inf->name, esr, addr);
 744
 745        mem_abort_decode(esr);
 746
 747        info.si_signo = inf->sig;
 748        info.si_errno = 0;
 749        info.si_code  = inf->code;
 750        info.si_addr  = (void __user *)addr;
 751        arm64_notify_die("", regs, &info, esr);
 752}
 753
 754/*
 755 * Handle stack alignment exceptions.
 756 */
 757asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
 758                                           unsigned int esr,
 759                                           struct pt_regs *regs)
 760{
 761        struct siginfo info;
 762        struct task_struct *tsk = current;
 763
 764        if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
 765                pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
 766                                    tsk->comm, task_pid_nr(tsk),
 767                                    esr_get_class_string(esr), (void *)regs->pc,
 768                                    (void *)regs->sp);
 769
 770        info.si_signo = SIGBUS;
 771        info.si_errno = 0;
 772        info.si_code  = BUS_ADRALN;
 773        info.si_addr  = (void __user *)addr;
 774        arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
 775}
 776
 777int __init early_brk64(unsigned long addr, unsigned int esr,
 778                       struct pt_regs *regs);
 779
 780/*
 781 * __refdata because early_brk64 is __init, but the reference to it is
 782 * clobbered at arch_initcall time.
 783 * See traps.c and debug-monitors.c:debug_traps_init().
 784 */
 785static struct fault_info __refdata debug_fault_info[] = {
 786        { do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware breakpoint"   },
 787        { do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware single-step"  },
 788        { do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware watchpoint"   },
 789        { do_bad,       SIGBUS,         0,              "unknown 3"             },
 790        { do_bad,       SIGTRAP,        TRAP_BRKPT,     "aarch32 BKPT"          },
 791        { do_bad,       SIGTRAP,        0,              "aarch32 vector catch"  },
 792        { early_brk64,  SIGTRAP,        TRAP_BRKPT,     "aarch64 BRK"           },
 793        { do_bad,       SIGBUS,         0,              "unknown 7"             },
 794};
 795
 796void __init hook_debug_fault_code(int nr,
 797                                  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 798                                  int sig, int code, const char *name)
 799{
 800        BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
 801
 802        debug_fault_info[nr].fn         = fn;
 803        debug_fault_info[nr].sig        = sig;
 804        debug_fault_info[nr].code       = code;
 805        debug_fault_info[nr].name       = name;
 806}
 807
 808asmlinkage int __exception do_debug_exception(unsigned long addr,
 809                                              unsigned int esr,
 810                                              struct pt_regs *regs)
 811{
 812        const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
 813        struct siginfo info;
 814        int rv;
 815
 816        /*
 817         * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
 818         * already disabled to preserve the last enabled/disabled addresses.
 819         */
 820        if (interrupts_enabled(regs))
 821                trace_hardirqs_off();
 822
 823        if (!inf->fn(addr, esr, regs)) {
 824                rv = 1;
 825        } else {
 826                pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
 827                         inf->name, esr, addr);
 828
 829                info.si_signo = inf->sig;
 830                info.si_errno = 0;
 831                info.si_code  = inf->code;
 832                info.si_addr  = (void __user *)addr;
 833                arm64_notify_die("", regs, &info, 0);
 834                rv = 0;
 835        }
 836
 837        if (interrupts_enabled(regs))
 838                trace_hardirqs_on();
 839
 840        return rv;
 841}
 842NOKPROBE_SYMBOL(do_debug_exception);
 843
 844#ifdef CONFIG_ARM64_PAN
 845int cpu_enable_pan(void *__unused)
 846{
 847        /*
 848         * We modify PSTATE. This won't work from irq context as the PSTATE
 849         * is discarded once we return from the exception.
 850         */
 851        WARN_ON_ONCE(in_interrupt());
 852
 853        config_sctlr_el1(SCTLR_EL1_SPAN, 0);
 854        asm(SET_PSTATE_PAN(1));
 855        return 0;
 856}
 857#endif /* CONFIG_ARM64_PAN */
 858