linux/arch/mips/kernel/elf.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2014 Imagination Technologies
   3 * Author: Paul Burton <paul.burton@mips.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License as published by the
   7 * Free Software Foundation;  either version 2 of the  License, or (at your
   8 * option) any later version.
   9 */
  10
  11#include <linux/binfmts.h>
  12#include <linux/elf.h>
  13#include <linux/export.h>
  14#include <linux/sched.h>
  15
  16#include <asm/cpu-features.h>
  17#include <asm/cpu-info.h>
  18
  19/* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
  20bool mips_use_nan_legacy;
  21bool mips_use_nan_2008;
  22
  23/* FPU modes */
  24enum {
  25        FP_FRE,
  26        FP_FR0,
  27        FP_FR1,
  28};
  29
  30/**
  31 * struct mode_req - ABI FPU mode requirements
  32 * @single:     The program being loaded needs an FPU but it will only issue
  33 *              single precision instructions meaning that it can execute in
  34 *              either FR0 or FR1.
  35 * @soft:       The soft(-float) requirement means that the program being
  36 *              loaded needs has no FPU dependency at all (i.e. it has no
  37 *              FPU instructions).
  38 * @fr1:        The program being loaded depends on FPU being in FR=1 mode.
  39 * @frdefault:  The program being loaded depends on the default FPU mode.
  40 *              That is FR0 for O32 and FR1 for N32/N64.
  41 * @fre:        The program being loaded depends on FPU with FRE=1. This mode is
  42 *              a bridge which uses FR=1 whilst still being able to maintain
  43 *              full compatibility with pre-existing code using the O32 FP32
  44 *              ABI.
  45 *
  46 * More information about the FP ABIs can be found here:
  47 *
  48 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
  49 *
  50 */
  51
  52struct mode_req {
  53        bool single;
  54        bool soft;
  55        bool fr1;
  56        bool frdefault;
  57        bool fre;
  58};
  59
  60static const struct mode_req fpu_reqs[] = {
  61        [MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
  62        [MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
  63        [MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
  64        [MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
  65        [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
  66        [MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
  67        [MIPS_ABI_FP_64]     = { false, false, true,  false, false },
  68        [MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
  69};
  70
  71/*
  72 * Mode requirements when .MIPS.abiflags is not present in the ELF.
  73 * Not present means that everything is acceptable except FR1.
  74 */
  75static struct mode_req none_req = { true, true, false, true, true };
  76
  77int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
  78                     bool is_interp, struct arch_elf_state *state)
  79{
  80        union {
  81                struct elf32_hdr e32;
  82                struct elf64_hdr e64;
  83        } *ehdr = _ehdr;
  84        struct elf32_phdr *phdr32 = _phdr;
  85        struct elf64_phdr *phdr64 = _phdr;
  86        struct mips_elf_abiflags_v0 abiflags;
  87        bool elf32;
  88        u32 flags;
  89        int ret;
  90        loff_t pos;
  91
  92        elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
  93        flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
  94
  95        /* Let's see if this is an O32 ELF */
  96        if (elf32) {
  97                if (flags & EF_MIPS_FP64) {
  98                        /*
  99                         * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
 100                         * later if needed
 101                         */
 102                        if (is_interp)
 103                                state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
 104                        else
 105                                state->fp_abi = MIPS_ABI_FP_OLD_64;
 106                }
 107                if (phdr32->p_type != PT_MIPS_ABIFLAGS)
 108                        return 0;
 109
 110                if (phdr32->p_filesz < sizeof(abiflags))
 111                        return -EINVAL;
 112                pos = phdr32->p_offset;
 113        } else {
 114                if (phdr64->p_type != PT_MIPS_ABIFLAGS)
 115                        return 0;
 116                if (phdr64->p_filesz < sizeof(abiflags))
 117                        return -EINVAL;
 118                pos = phdr64->p_offset;
 119        }
 120
 121        ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
 122        if (ret < 0)
 123                return ret;
 124        if (ret != sizeof(abiflags))
 125                return -EIO;
 126
 127        /* Record the required FP ABIs for use by mips_check_elf */
 128        if (is_interp)
 129                state->interp_fp_abi = abiflags.fp_abi;
 130        else
 131                state->fp_abi = abiflags.fp_abi;
 132
 133        return 0;
 134}
 135
 136int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
 137                   struct arch_elf_state *state)
 138{
 139        union {
 140                struct elf32_hdr e32;
 141                struct elf64_hdr e64;
 142        } *ehdr = _ehdr;
 143        union {
 144                struct elf32_hdr e32;
 145                struct elf64_hdr e64;
 146        } *iehdr = _interp_ehdr;
 147        struct mode_req prog_req, interp_req;
 148        int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
 149        bool elf32;
 150        u32 flags;
 151
 152        elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
 153        flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
 154
 155        /*
 156         * Determine the NaN personality, reject the binary if not allowed.
 157         * Also ensure that any interpreter matches the executable.
 158         */
 159        if (flags & EF_MIPS_NAN2008) {
 160                if (mips_use_nan_2008)
 161                        state->nan_2008 = 1;
 162                else
 163                        return -ENOEXEC;
 164        } else {
 165                if (mips_use_nan_legacy)
 166                        state->nan_2008 = 0;
 167                else
 168                        return -ENOEXEC;
 169        }
 170        if (has_interpreter) {
 171                bool ielf32;
 172                u32 iflags;
 173
 174                ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
 175                iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
 176
 177                if ((flags ^ iflags) & EF_MIPS_NAN2008)
 178                        return -ELIBBAD;
 179        }
 180
 181        if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
 182                return 0;
 183
 184        fp_abi = state->fp_abi;
 185
 186        if (has_interpreter) {
 187                interp_fp_abi = state->interp_fp_abi;
 188
 189                abi0 = min(fp_abi, interp_fp_abi);
 190                abi1 = max(fp_abi, interp_fp_abi);
 191        } else {
 192                abi0 = abi1 = fp_abi;
 193        }
 194
 195        if (elf32 && !(flags & EF_MIPS_ABI2)) {
 196                /* Default to a mode capable of running code expecting FR=0 */
 197                state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
 198
 199                /* Allow all ABIs we know about */
 200                max_abi = MIPS_ABI_FP_64A;
 201        } else {
 202                /* MIPS64 code always uses FR=1, thus the default is easy */
 203                state->overall_fp_mode = FP_FR1;
 204
 205                /* Disallow access to the various FPXX & FP64 ABIs */
 206                max_abi = MIPS_ABI_FP_SOFT;
 207        }
 208
 209        if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
 210            (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
 211                return -ELIBBAD;
 212
 213        /* It's time to determine the FPU mode requirements */
 214        prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
 215        interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
 216
 217        /*
 218         * Check whether the program's and interp's ABIs have a matching FPU
 219         * mode requirement.
 220         */
 221        prog_req.single = interp_req.single && prog_req.single;
 222        prog_req.soft = interp_req.soft && prog_req.soft;
 223        prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
 224        prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
 225        prog_req.fre = interp_req.fre && prog_req.fre;
 226
 227        /*
 228         * Determine the desired FPU mode
 229         *
 230         * Decision making:
 231         *
 232         * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
 233         *   means that we have a combination of program and interpreter
 234         *   that inherently require the hybrid FP mode.
 235         * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
 236         *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
 237         *   instructions so we don't care about the mode. We will simply use
 238         *   the one preferred by the hardware. In fpxx case, that ABI can
 239         *   handle both FR=1 and FR=0, so, again, we simply choose the one
 240         *   preferred by the hardware. Next, if we only use single-precision
 241         *   FPU instructions, and the default ABI FPU mode is not good
 242         *   (ie single + any ABI combination), we set again the FPU mode to the
 243         *   one is preferred by the hardware. Next, if we know that the code
 244         *   will only use single-precision instructions, shown by single being
 245         *   true but frdefault being false, then we again set the FPU mode to
 246         *   the one that is preferred by the hardware.
 247         * - We want FP_FR1 if that's the only matching mode and the default one
 248         *   is not good.
 249         * - Return with -ELIBADD if we can't find a matching FPU mode.
 250         */
 251        if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
 252                state->overall_fp_mode = FP_FRE;
 253        else if ((prog_req.fr1 && prog_req.frdefault) ||
 254                 (prog_req.single && !prog_req.frdefault))
 255                /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
 256                state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
 257                                          cpu_has_mips_r2_r6) ?
 258                                          FP_FR1 : FP_FR0;
 259        else if (prog_req.fr1)
 260                state->overall_fp_mode = FP_FR1;
 261        else  if (!prog_req.fre && !prog_req.frdefault &&
 262                  !prog_req.fr1 && !prog_req.single && !prog_req.soft)
 263                return -ELIBBAD;
 264
 265        return 0;
 266}
 267
 268static inline void set_thread_fp_mode(int hybrid, int regs32)
 269{
 270        if (hybrid)
 271                set_thread_flag(TIF_HYBRID_FPREGS);
 272        else
 273                clear_thread_flag(TIF_HYBRID_FPREGS);
 274        if (regs32)
 275                set_thread_flag(TIF_32BIT_FPREGS);
 276        else
 277                clear_thread_flag(TIF_32BIT_FPREGS);
 278}
 279
 280void mips_set_personality_fp(struct arch_elf_state *state)
 281{
 282        /*
 283         * This function is only ever called for O32 ELFs so we should
 284         * not be worried about N32/N64 binaries.
 285         */
 286
 287        if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
 288                return;
 289
 290        switch (state->overall_fp_mode) {
 291        case FP_FRE:
 292                set_thread_fp_mode(1, 0);
 293                break;
 294        case FP_FR0:
 295                set_thread_fp_mode(0, 1);
 296                break;
 297        case FP_FR1:
 298                set_thread_fp_mode(0, 0);
 299                break;
 300        default:
 301                BUG();
 302        }
 303}
 304
 305/*
 306 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
 307 * in FCSR according to the ELF NaN personality.
 308 */
 309void mips_set_personality_nan(struct arch_elf_state *state)
 310{
 311        struct cpuinfo_mips *c = &boot_cpu_data;
 312        struct task_struct *t = current;
 313
 314        t->thread.fpu.fcr31 = c->fpu_csr31;
 315        switch (state->nan_2008) {
 316        case 0:
 317                break;
 318        case 1:
 319                if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
 320                        t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
 321                if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
 322                        t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
 323                break;
 324        default:
 325                BUG();
 326        }
 327}
 328
 329int mips_elf_read_implies_exec(void *elf_ex, int exstack)
 330{
 331        if (exstack != EXSTACK_DISABLE_X) {
 332                /* The binary doesn't request a non-executable stack */
 333                return 1;
 334        }
 335
 336        if (!cpu_has_rixi) {
 337                /* The CPU doesn't support non-executable memory */
 338                return 1;
 339        }
 340
 341        return 0;
 342}
 343EXPORT_SYMBOL(mips_elf_read_implies_exec);
 344