linux/arch/parisc/kernel/firmware.c
<<
>>
Prefs
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *      PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*      I think it would be in everyone's best interest to follow this
  24 *      guidelines when writing PDC wrappers:
  25 *
  26 *       - the name of the pdc wrapper should match one of the macros
  27 *         used for the first two arguments
  28 *       - don't use caps for random parts of the name
  29 *       - use the static PDC result buffers and "copyout" to structs
  30 *         supplied by the caller to encapsulate alignment restrictions
  31 *       - hold pdc_lock while in PDC or using static result buffers
  32 *       - use __pa() to convert virtual (kernel) pointers to physical
  33 *         ones.
  34 *       - the name of the struct used for pdc return values should equal
  35 *         one of the macros used for the first two arguments to the
  36 *         corresponding PDC call
  37 *       - keep the order of arguments
  38 *       - don't be smart (setting trailing NUL bytes for strings, return
  39 *         something useful even if the call failed) unless you are sure
  40 *         it's not going to affect functionality or performance
  41 *
  42 *      Example:
  43 *      int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *      {
  45 *              int retval;
  46 *
  47 *              spin_lock_irq(&pdc_lock);
  48 *              retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *              convert_to_wide(pdc_result);
  50 *              memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *              spin_unlock_irq(&pdc_lock);
  52 *
  53 *              return retval;
  54 *      }
  55 *                                      prumpf  991016  
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/processor.h>      /* for boot_cpu_data */
  71
  72#if defined(BOOTLOADER)
  73# undef  spin_lock_irqsave
  74# define spin_lock_irqsave(a, b) { b = 1; }
  75# undef  spin_unlock_irqrestore
  76# define spin_unlock_irqrestore(a, b)
  77#else
  78static DEFINE_SPINLOCK(pdc_lock);
  79#endif
  80
  81extern unsigned long pdc_result[NUM_PDC_RESULT];
  82extern unsigned long pdc_result2[NUM_PDC_RESULT];
  83
  84#ifdef CONFIG_64BIT
  85#define WIDE_FIRMWARE 0x1
  86#define NARROW_FIRMWARE 0x2
  87
  88/* Firmware needs to be initially set to narrow to determine the 
  89 * actual firmware width. */
  90int parisc_narrow_firmware __read_mostly = 1;
  91#endif
  92
  93/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  94 * and MEM_PDC calls are always the same width as the OS.
  95 * Some PAT boxes may have 64-bit IODC I/O.
  96 *
  97 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  98 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  99 * This allowed wide kernels to run on Cxxx boxes.
 100 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
 101 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
 102 */
 103
 104#ifdef CONFIG_64BIT
 105long real64_call(unsigned long function, ...);
 106#endif
 107long real32_call(unsigned long function, ...);
 108
 109#ifdef CONFIG_64BIT
 110#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 111#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 112#else
 113#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 114#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 115#endif
 116
 117
 118/**
 119 * f_extend - Convert PDC addresses to kernel addresses.
 120 * @address: Address returned from PDC.
 121 *
 122 * This function is used to convert PDC addresses into kernel addresses
 123 * when the PDC address size and kernel address size are different.
 124 */
 125static unsigned long f_extend(unsigned long address)
 126{
 127#ifdef CONFIG_64BIT
 128        if(unlikely(parisc_narrow_firmware)) {
 129                if((address & 0xff000000) == 0xf0000000)
 130                        return 0xf0f0f0f000000000UL | (u32)address;
 131
 132                if((address & 0xf0000000) == 0xf0000000)
 133                        return 0xffffffff00000000UL | (u32)address;
 134        }
 135#endif
 136        return address;
 137}
 138
 139/**
 140 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 141 * @address: The return buffer from PDC.
 142 *
 143 * This function is used to convert the return buffer addresses retrieved from PDC
 144 * into kernel addresses when the PDC address size and kernel address size are
 145 * different.
 146 */
 147static void convert_to_wide(unsigned long *addr)
 148{
 149#ifdef CONFIG_64BIT
 150        int i;
 151        unsigned int *p = (unsigned int *)addr;
 152
 153        if (unlikely(parisc_narrow_firmware)) {
 154                for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 155                        addr[i] = p[i];
 156        }
 157#endif
 158}
 159
 160#ifdef CONFIG_64BIT
 161void set_firmware_width_unlocked(void)
 162{
 163        int ret;
 164
 165        ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 166                __pa(pdc_result), 0);
 167        convert_to_wide(pdc_result);
 168        if (pdc_result[0] != NARROW_FIRMWARE)
 169                parisc_narrow_firmware = 0;
 170}
 171        
 172/**
 173 * set_firmware_width - Determine if the firmware is wide or narrow.
 174 * 
 175 * This function must be called before any pdc_* function that uses the
 176 * convert_to_wide function.
 177 */
 178void set_firmware_width(void)
 179{
 180        unsigned long flags;
 181        spin_lock_irqsave(&pdc_lock, flags);
 182        set_firmware_width_unlocked();
 183        spin_unlock_irqrestore(&pdc_lock, flags);
 184}
 185#else
 186void set_firmware_width_unlocked(void)
 187{
 188        return;
 189}
 190
 191void set_firmware_width(void)
 192{
 193        return;
 194}
 195#endif /*CONFIG_64BIT*/
 196
 197
 198#if !defined(BOOTLOADER)
 199/**
 200 * pdc_emergency_unlock - Unlock the linux pdc lock
 201 *
 202 * This call unlocks the linux pdc lock in case we need some PDC functions
 203 * (like pdc_add_valid) during kernel stack dump.
 204 */
 205void pdc_emergency_unlock(void)
 206{
 207        /* Spinlock DEBUG code freaks out if we unconditionally unlock */
 208        if (spin_is_locked(&pdc_lock))
 209                spin_unlock(&pdc_lock);
 210}
 211
 212
 213/**
 214 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 215 * @address: Address to be verified.
 216 *
 217 * This PDC call attempts to read from the specified address and verifies
 218 * if the address is valid.
 219 * 
 220 * The return value is PDC_OK (0) in case accessing this address is valid.
 221 */
 222int pdc_add_valid(unsigned long address)
 223{
 224        int retval;
 225        unsigned long flags;
 226
 227        spin_lock_irqsave(&pdc_lock, flags);
 228        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 229        spin_unlock_irqrestore(&pdc_lock, flags);
 230
 231        return retval;
 232}
 233EXPORT_SYMBOL(pdc_add_valid);
 234
 235/**
 236 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 237 * @instr: Pointer to variable which will get instruction opcode.
 238 *
 239 * The return value is PDC_OK (0) in case call succeeded.
 240 */
 241int __init pdc_instr(unsigned int *instr)
 242{
 243        int retval;
 244        unsigned long flags;
 245
 246        spin_lock_irqsave(&pdc_lock, flags);
 247        retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 248        convert_to_wide(pdc_result);
 249        *instr = pdc_result[0];
 250        spin_unlock_irqrestore(&pdc_lock, flags);
 251
 252        return retval;
 253}
 254
 255/**
 256 * pdc_chassis_info - Return chassis information.
 257 * @result: The return buffer.
 258 * @chassis_info: The memory buffer address.
 259 * @len: The size of the memory buffer address.
 260 *
 261 * An HVERSION dependent call for returning the chassis information.
 262 */
 263int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 264{
 265        int retval;
 266        unsigned long flags;
 267
 268        spin_lock_irqsave(&pdc_lock, flags);
 269        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 270        memcpy(&pdc_result2, led_info, len);
 271        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 272                              __pa(pdc_result), __pa(pdc_result2), len);
 273        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 274        memcpy(led_info, pdc_result2, len);
 275        spin_unlock_irqrestore(&pdc_lock, flags);
 276
 277        return retval;
 278}
 279
 280/**
 281 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 282 * @retval: -1 on error, 0 on success. Other value are PDC errors
 283 * 
 284 * Must be correctly formatted or expect system crash
 285 */
 286#ifdef CONFIG_64BIT
 287int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 288{
 289        int retval = 0;
 290        unsigned long flags;
 291        
 292        if (!is_pdc_pat())
 293                return -1;
 294
 295        spin_lock_irqsave(&pdc_lock, flags);
 296        retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 297        spin_unlock_irqrestore(&pdc_lock, flags);
 298
 299        return retval;
 300}
 301#endif
 302
 303/**
 304 * pdc_chassis_disp - Updates chassis code
 305 * @retval: -1 on error, 0 on success
 306 */
 307int pdc_chassis_disp(unsigned long disp)
 308{
 309        int retval = 0;
 310        unsigned long flags;
 311
 312        spin_lock_irqsave(&pdc_lock, flags);
 313        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 314        spin_unlock_irqrestore(&pdc_lock, flags);
 315
 316        return retval;
 317}
 318
 319/**
 320 * pdc_chassis_warn - Fetches chassis warnings
 321 * @retval: -1 on error, 0 on success
 322 */
 323int pdc_chassis_warn(unsigned long *warn)
 324{
 325        int retval = 0;
 326        unsigned long flags;
 327
 328        spin_lock_irqsave(&pdc_lock, flags);
 329        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 330        *warn = pdc_result[0];
 331        spin_unlock_irqrestore(&pdc_lock, flags);
 332
 333        return retval;
 334}
 335
 336int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 337{
 338        int ret;
 339
 340        ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 341        convert_to_wide(pdc_result);
 342        pdc_coproc_info->ccr_functional = pdc_result[0];
 343        pdc_coproc_info->ccr_present = pdc_result[1];
 344        pdc_coproc_info->revision = pdc_result[17];
 345        pdc_coproc_info->model = pdc_result[18];
 346
 347        return ret;
 348}
 349
 350/**
 351 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 352 * @pdc_coproc_info: Return buffer address.
 353 *
 354 * This PDC call returns the presence and status of all the coprocessors
 355 * attached to the processor.
 356 */
 357int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 358{
 359        int ret;
 360        unsigned long flags;
 361
 362        spin_lock_irqsave(&pdc_lock, flags);
 363        ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 364        spin_unlock_irqrestore(&pdc_lock, flags);
 365
 366        return ret;
 367}
 368
 369/**
 370 * pdc_iodc_read - Read data from the modules IODC.
 371 * @actcnt: The actual number of bytes.
 372 * @hpa: The HPA of the module for the iodc read.
 373 * @index: The iodc entry point.
 374 * @iodc_data: A buffer memory for the iodc options.
 375 * @iodc_data_size: Size of the memory buffer.
 376 *
 377 * This PDC call reads from the IODC of the module specified by the hpa
 378 * argument.
 379 */
 380int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 381                  void *iodc_data, unsigned int iodc_data_size)
 382{
 383        int retval;
 384        unsigned long flags;
 385
 386        spin_lock_irqsave(&pdc_lock, flags);
 387        retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 388                              index, __pa(pdc_result2), iodc_data_size);
 389        convert_to_wide(pdc_result);
 390        *actcnt = pdc_result[0];
 391        memcpy(iodc_data, pdc_result2, iodc_data_size);
 392        spin_unlock_irqrestore(&pdc_lock, flags);
 393
 394        return retval;
 395}
 396EXPORT_SYMBOL(pdc_iodc_read);
 397
 398/**
 399 * pdc_system_map_find_mods - Locate unarchitected modules.
 400 * @pdc_mod_info: Return buffer address.
 401 * @mod_path: pointer to dev path structure.
 402 * @mod_index: fixed address module index.
 403 *
 404 * To locate and identify modules which reside at fixed I/O addresses, which
 405 * do not self-identify via architected bus walks.
 406 */
 407int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 408                             struct pdc_module_path *mod_path, long mod_index)
 409{
 410        int retval;
 411        unsigned long flags;
 412
 413        spin_lock_irqsave(&pdc_lock, flags);
 414        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 415                              __pa(pdc_result2), mod_index);
 416        convert_to_wide(pdc_result);
 417        memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 418        memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 419        spin_unlock_irqrestore(&pdc_lock, flags);
 420
 421        pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 422        return retval;
 423}
 424
 425/**
 426 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 427 * @pdc_addr_info: Return buffer address.
 428 * @mod_index: Fixed address module index.
 429 * @addr_index: Address range index.
 430 * 
 431 * Retrieve additional information about subsequent address ranges for modules
 432 * with multiple address ranges.  
 433 */
 434int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 435                              long mod_index, long addr_index)
 436{
 437        int retval;
 438        unsigned long flags;
 439
 440        spin_lock_irqsave(&pdc_lock, flags);
 441        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 442                              mod_index, addr_index);
 443        convert_to_wide(pdc_result);
 444        memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 445        spin_unlock_irqrestore(&pdc_lock, flags);
 446
 447        pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 448        return retval;
 449}
 450
 451/**
 452 * pdc_model_info - Return model information about the processor.
 453 * @model: The return buffer.
 454 *
 455 * Returns the version numbers, identifiers, and capabilities from the processor module.
 456 */
 457int pdc_model_info(struct pdc_model *model) 
 458{
 459        int retval;
 460        unsigned long flags;
 461
 462        spin_lock_irqsave(&pdc_lock, flags);
 463        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 464        convert_to_wide(pdc_result);
 465        memcpy(model, pdc_result, sizeof(*model));
 466        spin_unlock_irqrestore(&pdc_lock, flags);
 467
 468        return retval;
 469}
 470
 471/**
 472 * pdc_model_sysmodel - Get the system model name.
 473 * @name: A char array of at least 81 characters.
 474 *
 475 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 476 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 477 * on HP/UX.
 478 */
 479int pdc_model_sysmodel(char *name)
 480{
 481        int retval;
 482        unsigned long flags;
 483
 484        spin_lock_irqsave(&pdc_lock, flags);
 485        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 486                              OS_ID_HPUX, __pa(name));
 487        convert_to_wide(pdc_result);
 488
 489        if (retval == PDC_OK) {
 490                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 491        } else {
 492                name[0] = 0;
 493        }
 494        spin_unlock_irqrestore(&pdc_lock, flags);
 495
 496        return retval;
 497}
 498
 499/**
 500 * pdc_model_versions - Identify the version number of each processor.
 501 * @cpu_id: The return buffer.
 502 * @id: The id of the processor to check.
 503 *
 504 * Returns the version number for each processor component.
 505 *
 506 * This comment was here before, but I do not know what it means :( -RB
 507 * id: 0 = cpu revision, 1 = boot-rom-version
 508 */
 509int pdc_model_versions(unsigned long *versions, int id)
 510{
 511        int retval;
 512        unsigned long flags;
 513
 514        spin_lock_irqsave(&pdc_lock, flags);
 515        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 516        convert_to_wide(pdc_result);
 517        *versions = pdc_result[0];
 518        spin_unlock_irqrestore(&pdc_lock, flags);
 519
 520        return retval;
 521}
 522
 523/**
 524 * pdc_model_cpuid - Returns the CPU_ID.
 525 * @cpu_id: The return buffer.
 526 *
 527 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 528 * the processor module.
 529 */
 530int pdc_model_cpuid(unsigned long *cpu_id)
 531{
 532        int retval;
 533        unsigned long flags;
 534
 535        spin_lock_irqsave(&pdc_lock, flags);
 536        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 537        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 538        convert_to_wide(pdc_result);
 539        *cpu_id = pdc_result[0];
 540        spin_unlock_irqrestore(&pdc_lock, flags);
 541
 542        return retval;
 543}
 544
 545/**
 546 * pdc_model_capabilities - Returns the platform capabilities.
 547 * @capabilities: The return buffer.
 548 *
 549 * Returns information about platform support for 32- and/or 64-bit
 550 * OSes, IO-PDIR coherency, and virtual aliasing.
 551 */
 552int pdc_model_capabilities(unsigned long *capabilities)
 553{
 554        int retval;
 555        unsigned long flags;
 556
 557        spin_lock_irqsave(&pdc_lock, flags);
 558        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 559        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 560        convert_to_wide(pdc_result);
 561        if (retval == PDC_OK) {
 562                *capabilities = pdc_result[0];
 563        } else {
 564                *capabilities = PDC_MODEL_OS32;
 565        }
 566        spin_unlock_irqrestore(&pdc_lock, flags);
 567
 568        return retval;
 569}
 570
 571/**
 572 * pdc_cache_info - Return cache and TLB information.
 573 * @cache_info: The return buffer.
 574 *
 575 * Returns information about the processor's cache and TLB.
 576 */
 577int pdc_cache_info(struct pdc_cache_info *cache_info)
 578{
 579        int retval;
 580        unsigned long flags;
 581
 582        spin_lock_irqsave(&pdc_lock, flags);
 583        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 584        convert_to_wide(pdc_result);
 585        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 586        spin_unlock_irqrestore(&pdc_lock, flags);
 587
 588        return retval;
 589}
 590
 591/**
 592 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 593 * @space_bits: Should be 0, if not, bad mojo!
 594 *
 595 * Returns information about Space ID hashing.
 596 */
 597int pdc_spaceid_bits(unsigned long *space_bits)
 598{
 599        int retval;
 600        unsigned long flags;
 601
 602        spin_lock_irqsave(&pdc_lock, flags);
 603        pdc_result[0] = 0;
 604        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 605        convert_to_wide(pdc_result);
 606        *space_bits = pdc_result[0];
 607        spin_unlock_irqrestore(&pdc_lock, flags);
 608
 609        return retval;
 610}
 611
 612#ifndef CONFIG_PA20
 613/**
 614 * pdc_btlb_info - Return block TLB information.
 615 * @btlb: The return buffer.
 616 *
 617 * Returns information about the hardware Block TLB.
 618 */
 619int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 620{
 621        int retval;
 622        unsigned long flags;
 623
 624        spin_lock_irqsave(&pdc_lock, flags);
 625        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 626        memcpy(btlb, pdc_result, sizeof(*btlb));
 627        spin_unlock_irqrestore(&pdc_lock, flags);
 628
 629        if(retval < 0) {
 630                btlb->max_size = 0;
 631        }
 632        return retval;
 633}
 634
 635/**
 636 * pdc_mem_map_hpa - Find fixed module information.  
 637 * @address: The return buffer
 638 * @mod_path: pointer to dev path structure.
 639 *
 640 * This call was developed for S700 workstations to allow the kernel to find
 641 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 642 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 643 * call.
 644 *
 645 * This call is supported by all existing S700 workstations (up to  Gecko).
 646 */
 647int pdc_mem_map_hpa(struct pdc_memory_map *address,
 648                struct pdc_module_path *mod_path)
 649{
 650        int retval;
 651        unsigned long flags;
 652
 653        spin_lock_irqsave(&pdc_lock, flags);
 654        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 655        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 656                                __pa(pdc_result2));
 657        memcpy(address, pdc_result, sizeof(*address));
 658        spin_unlock_irqrestore(&pdc_lock, flags);
 659
 660        return retval;
 661}
 662#endif  /* !CONFIG_PA20 */
 663
 664/**
 665 * pdc_lan_station_id - Get the LAN address.
 666 * @lan_addr: The return buffer.
 667 * @hpa: The network device HPA.
 668 *
 669 * Get the LAN station address when it is not directly available from the LAN hardware.
 670 */
 671int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 672{
 673        int retval;
 674        unsigned long flags;
 675
 676        spin_lock_irqsave(&pdc_lock, flags);
 677        retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 678                        __pa(pdc_result), hpa);
 679        if (retval < 0) {
 680                /* FIXME: else read MAC from NVRAM */
 681                memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 682        } else {
 683                memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 684        }
 685        spin_unlock_irqrestore(&pdc_lock, flags);
 686
 687        return retval;
 688}
 689EXPORT_SYMBOL(pdc_lan_station_id);
 690
 691/**
 692 * pdc_stable_read - Read data from Stable Storage.
 693 * @staddr: Stable Storage address to access.
 694 * @memaddr: The memory address where Stable Storage data shall be copied.
 695 * @count: number of bytes to transfer. count is multiple of 4.
 696 *
 697 * This PDC call reads from the Stable Storage address supplied in staddr
 698 * and copies count bytes to the memory address memaddr.
 699 * The call will fail if staddr+count > PDC_STABLE size.
 700 */
 701int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 702{
 703       int retval;
 704        unsigned long flags;
 705
 706       spin_lock_irqsave(&pdc_lock, flags);
 707       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 708               __pa(pdc_result), count);
 709       convert_to_wide(pdc_result);
 710       memcpy(memaddr, pdc_result, count);
 711       spin_unlock_irqrestore(&pdc_lock, flags);
 712
 713       return retval;
 714}
 715EXPORT_SYMBOL(pdc_stable_read);
 716
 717/**
 718 * pdc_stable_write - Write data to Stable Storage.
 719 * @staddr: Stable Storage address to access.
 720 * @memaddr: The memory address where Stable Storage data shall be read from.
 721 * @count: number of bytes to transfer. count is multiple of 4.
 722 *
 723 * This PDC call reads count bytes from the supplied memaddr address,
 724 * and copies count bytes to the Stable Storage address staddr.
 725 * The call will fail if staddr+count > PDC_STABLE size.
 726 */
 727int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 728{
 729       int retval;
 730        unsigned long flags;
 731
 732       spin_lock_irqsave(&pdc_lock, flags);
 733       memcpy(pdc_result, memaddr, count);
 734       convert_to_wide(pdc_result);
 735       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 736               __pa(pdc_result), count);
 737       spin_unlock_irqrestore(&pdc_lock, flags);
 738
 739       return retval;
 740}
 741EXPORT_SYMBOL(pdc_stable_write);
 742
 743/**
 744 * pdc_stable_get_size - Get Stable Storage size in bytes.
 745 * @size: pointer where the size will be stored.
 746 *
 747 * This PDC call returns the number of bytes in the processor's Stable
 748 * Storage, which is the number of contiguous bytes implemented in Stable
 749 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 750 * which is a multiple of four.
 751 */
 752int pdc_stable_get_size(unsigned long *size)
 753{
 754       int retval;
 755        unsigned long flags;
 756
 757       spin_lock_irqsave(&pdc_lock, flags);
 758       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 759       *size = pdc_result[0];
 760       spin_unlock_irqrestore(&pdc_lock, flags);
 761
 762       return retval;
 763}
 764EXPORT_SYMBOL(pdc_stable_get_size);
 765
 766/**
 767 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 768 *
 769 * This PDC call is meant to be used to check the integrity of the current
 770 * contents of Stable Storage.
 771 */
 772int pdc_stable_verify_contents(void)
 773{
 774       int retval;
 775        unsigned long flags;
 776
 777       spin_lock_irqsave(&pdc_lock, flags);
 778       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 779       spin_unlock_irqrestore(&pdc_lock, flags);
 780
 781       return retval;
 782}
 783EXPORT_SYMBOL(pdc_stable_verify_contents);
 784
 785/**
 786 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 787 * the validity indicator.
 788 *
 789 * This PDC call will erase all contents of Stable Storage. Use with care!
 790 */
 791int pdc_stable_initialize(void)
 792{
 793       int retval;
 794        unsigned long flags;
 795
 796       spin_lock_irqsave(&pdc_lock, flags);
 797       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 798       spin_unlock_irqrestore(&pdc_lock, flags);
 799
 800       return retval;
 801}
 802EXPORT_SYMBOL(pdc_stable_initialize);
 803
 804/**
 805 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 806 * @hwpath: fully bc.mod style path to the device.
 807 * @initiator: the array to return the result into
 808 *
 809 * Get the SCSI operational parameters from PDC.
 810 * Needed since HPUX never used BIOS or symbios card NVRAM.
 811 * Most ncr/sym cards won't have an entry and just use whatever
 812 * capabilities of the card are (eg Ultra, LVD). But there are
 813 * several cases where it's useful:
 814 *    o set SCSI id for Multi-initiator clusters,
 815 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 816 *    o bus width exported is less than what the interface chip supports.
 817 */
 818int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 819{
 820        int retval;
 821        unsigned long flags;
 822
 823        spin_lock_irqsave(&pdc_lock, flags);
 824
 825/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 826#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 827        strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 828
 829        retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 830                              __pa(pdc_result), __pa(hwpath));
 831        if (retval < PDC_OK)
 832                goto out;
 833
 834        if (pdc_result[0] < 16) {
 835                initiator->host_id = pdc_result[0];
 836        } else {
 837                initiator->host_id = -1;
 838        }
 839
 840        /*
 841         * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 842         * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 843         */
 844        switch (pdc_result[1]) {
 845                case  1: initiator->factor = 50; break;
 846                case  2: initiator->factor = 25; break;
 847                case  5: initiator->factor = 12; break;
 848                case 25: initiator->factor = 10; break;
 849                case 20: initiator->factor = 12; break;
 850                case 40: initiator->factor = 10; break;
 851                default: initiator->factor = -1; break;
 852        }
 853
 854        if (IS_SPROCKETS()) {
 855                initiator->width = pdc_result[4];
 856                initiator->mode = pdc_result[5];
 857        } else {
 858                initiator->width = -1;
 859                initiator->mode = -1;
 860        }
 861
 862 out:
 863        spin_unlock_irqrestore(&pdc_lock, flags);
 864
 865        return (retval >= PDC_OK);
 866}
 867EXPORT_SYMBOL(pdc_get_initiator);
 868
 869
 870/**
 871 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 872 * @num_entries: The return value.
 873 * @hpa: The HPA for the device.
 874 *
 875 * This PDC function returns the number of entries in the specified cell's
 876 * interrupt table.
 877 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 878 */ 
 879int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 880{
 881        int retval;
 882        unsigned long flags;
 883
 884        spin_lock_irqsave(&pdc_lock, flags);
 885        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 886                              __pa(pdc_result), hpa);
 887        convert_to_wide(pdc_result);
 888        *num_entries = pdc_result[0];
 889        spin_unlock_irqrestore(&pdc_lock, flags);
 890
 891        return retval;
 892}
 893
 894/** 
 895 * pdc_pci_irt - Get the PCI interrupt routing table.
 896 * @num_entries: The number of entries in the table.
 897 * @hpa: The Hard Physical Address of the device.
 898 * @tbl: 
 899 *
 900 * Get the PCI interrupt routing table for the device at the given HPA.
 901 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 902 */
 903int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 904{
 905        int retval;
 906        unsigned long flags;
 907
 908        BUG_ON((unsigned long)tbl & 0x7);
 909
 910        spin_lock_irqsave(&pdc_lock, flags);
 911        pdc_result[0] = num_entries;
 912        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 913                              __pa(pdc_result), hpa, __pa(tbl));
 914        spin_unlock_irqrestore(&pdc_lock, flags);
 915
 916        return retval;
 917}
 918
 919
 920#if 0   /* UNTEST CODE - left here in case someone needs it */
 921
 922/** 
 923 * pdc_pci_config_read - read PCI config space.
 924 * @hpa         token from PDC to indicate which PCI device
 925 * @pci_addr    configuration space address to read from
 926 *
 927 * Read PCI Configuration space *before* linux PCI subsystem is running.
 928 */
 929unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 930{
 931        int retval;
 932        unsigned long flags;
 933
 934        spin_lock_irqsave(&pdc_lock, flags);
 935        pdc_result[0] = 0;
 936        pdc_result[1] = 0;
 937        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 938                              __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 939        spin_unlock_irqrestore(&pdc_lock, flags);
 940
 941        return retval ? ~0 : (unsigned int) pdc_result[0];
 942}
 943
 944
 945/** 
 946 * pdc_pci_config_write - read PCI config space.
 947 * @hpa         token from PDC to indicate which PCI device
 948 * @pci_addr    configuration space address to write
 949 * @val         value we want in the 32-bit register
 950 *
 951 * Write PCI Configuration space *before* linux PCI subsystem is running.
 952 */
 953void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 954{
 955        int retval;
 956        unsigned long flags;
 957
 958        spin_lock_irqsave(&pdc_lock, flags);
 959        pdc_result[0] = 0;
 960        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 961                              __pa(pdc_result), hpa,
 962                              cfg_addr&~3UL, 4UL, (unsigned long) val);
 963        spin_unlock_irqrestore(&pdc_lock, flags);
 964
 965        return retval;
 966}
 967#endif /* UNTESTED CODE */
 968
 969/**
 970 * pdc_tod_read - Read the Time-Of-Day clock.
 971 * @tod: The return buffer:
 972 *
 973 * Read the Time-Of-Day clock
 974 */
 975int pdc_tod_read(struct pdc_tod *tod)
 976{
 977        int retval;
 978        unsigned long flags;
 979
 980        spin_lock_irqsave(&pdc_lock, flags);
 981        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 982        convert_to_wide(pdc_result);
 983        memcpy(tod, pdc_result, sizeof(*tod));
 984        spin_unlock_irqrestore(&pdc_lock, flags);
 985
 986        return retval;
 987}
 988EXPORT_SYMBOL(pdc_tod_read);
 989
 990int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
 991{
 992        int retval;
 993        unsigned long flags;
 994
 995        spin_lock_irqsave(&pdc_lock, flags);
 996        retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
 997        convert_to_wide(pdc_result);
 998        memcpy(rinfo, pdc_result, sizeof(*rinfo));
 999        spin_unlock_irqrestore(&pdc_lock, flags);
1000
1001        return retval;
1002}
1003
1004int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1005                unsigned long *pdt_entries_ptr)
1006{
1007        int retval;
1008        unsigned long flags;
1009
1010        spin_lock_irqsave(&pdc_lock, flags);
1011        retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1012                        __pa(pdt_entries_ptr));
1013        if (retval == PDC_OK) {
1014                convert_to_wide(pdc_result);
1015                memcpy(pret, pdc_result, sizeof(*pret));
1016        }
1017        spin_unlock_irqrestore(&pdc_lock, flags);
1018
1019#ifdef CONFIG_64BIT
1020        /*
1021         * 64-bit kernels should not call this PDT function in narrow mode.
1022         * The pdt_entries_ptr array above will now contain 32-bit values
1023         */
1024        if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1025                return PDC_ERROR;
1026#endif
1027
1028        return retval;
1029}
1030
1031/**
1032 * pdc_tod_set - Set the Time-Of-Day clock.
1033 * @sec: The number of seconds since epoch.
1034 * @usec: The number of micro seconds.
1035 *
1036 * Set the Time-Of-Day clock.
1037 */ 
1038int pdc_tod_set(unsigned long sec, unsigned long usec)
1039{
1040        int retval;
1041        unsigned long flags;
1042
1043        spin_lock_irqsave(&pdc_lock, flags);
1044        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1045        spin_unlock_irqrestore(&pdc_lock, flags);
1046
1047        return retval;
1048}
1049EXPORT_SYMBOL(pdc_tod_set);
1050
1051#ifdef CONFIG_64BIT
1052int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1053                struct pdc_memory_table *tbl, unsigned long entries)
1054{
1055        int retval;
1056        unsigned long flags;
1057
1058        spin_lock_irqsave(&pdc_lock, flags);
1059        retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1060        convert_to_wide(pdc_result);
1061        memcpy(r_addr, pdc_result, sizeof(*r_addr));
1062        memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1063        spin_unlock_irqrestore(&pdc_lock, flags);
1064
1065        return retval;
1066}
1067#endif /* CONFIG_64BIT */
1068
1069/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1070 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1071 * it later. :)
1072 */
1073int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1074{
1075        int retval;
1076        unsigned long flags;
1077
1078        spin_lock_irqsave(&pdc_lock, flags);
1079        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1080                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1081        spin_unlock_irqrestore(&pdc_lock, flags);
1082
1083        return retval;
1084}
1085
1086/*
1087 * pdc_do_reset - Reset the system.
1088 *
1089 * Reset the system.
1090 */
1091int pdc_do_reset(void)
1092{
1093        int retval;
1094        unsigned long flags;
1095
1096        spin_lock_irqsave(&pdc_lock, flags);
1097        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1098        spin_unlock_irqrestore(&pdc_lock, flags);
1099
1100        return retval;
1101}
1102
1103/*
1104 * pdc_soft_power_info - Enable soft power switch.
1105 * @power_reg: address of soft power register
1106 *
1107 * Return the absolute address of the soft power switch register
1108 */
1109int __init pdc_soft_power_info(unsigned long *power_reg)
1110{
1111        int retval;
1112        unsigned long flags;
1113
1114        *power_reg = (unsigned long) (-1);
1115        
1116        spin_lock_irqsave(&pdc_lock, flags);
1117        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1118        if (retval == PDC_OK) {
1119                convert_to_wide(pdc_result);
1120                *power_reg = f_extend(pdc_result[0]);
1121        }
1122        spin_unlock_irqrestore(&pdc_lock, flags);
1123
1124        return retval;
1125}
1126
1127/*
1128 * pdc_soft_power_button - Control the soft power button behaviour
1129 * @sw_control: 0 for hardware control, 1 for software control 
1130 *
1131 *
1132 * This PDC function places the soft power button under software or
1133 * hardware control.
1134 * Under software control the OS may control to when to allow to shut 
1135 * down the system. Under hardware control pressing the power button 
1136 * powers off the system immediately.
1137 */
1138int pdc_soft_power_button(int sw_control)
1139{
1140        int retval;
1141        unsigned long flags;
1142
1143        spin_lock_irqsave(&pdc_lock, flags);
1144        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1145        spin_unlock_irqrestore(&pdc_lock, flags);
1146
1147        return retval;
1148}
1149
1150/*
1151 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1152 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1153 * who knows what other platform firmware might do with this OS "hook".
1154 */
1155void pdc_io_reset(void)
1156{
1157        unsigned long flags;
1158
1159        spin_lock_irqsave(&pdc_lock, flags);
1160        mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1161        spin_unlock_irqrestore(&pdc_lock, flags);
1162}
1163
1164/*
1165 * pdc_io_reset_devices - Hack to Stop USB controller
1166 *
1167 * If PDC used the usb controller, the usb controller
1168 * is still running and will crash the machines during iommu 
1169 * setup, because of still running DMA. This PDC call
1170 * stops the USB controller.
1171 * Normally called after calling pdc_io_reset().
1172 */
1173void pdc_io_reset_devices(void)
1174{
1175        unsigned long flags;
1176
1177        spin_lock_irqsave(&pdc_lock, flags);
1178        mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1179        spin_unlock_irqrestore(&pdc_lock, flags);
1180}
1181
1182#endif /* defined(BOOTLOADER) */
1183
1184/* locked by pdc_console_lock */
1185static int __attribute__((aligned(8)))   iodc_retbuf[32];
1186static char __attribute__((aligned(64))) iodc_dbuf[4096];
1187
1188/**
1189 * pdc_iodc_print - Console print using IODC.
1190 * @str: the string to output.
1191 * @count: length of str
1192 *
1193 * Note that only these special chars are architected for console IODC io:
1194 * BEL, BS, CR, and LF. Others are passed through.
1195 * Since the HP console requires CR+LF to perform a 'newline', we translate
1196 * "\n" to "\r\n".
1197 */
1198int pdc_iodc_print(const unsigned char *str, unsigned count)
1199{
1200        unsigned int i;
1201        unsigned long flags;
1202
1203        for (i = 0; i < count;) {
1204                switch(str[i]) {
1205                case '\n':
1206                        iodc_dbuf[i+0] = '\r';
1207                        iodc_dbuf[i+1] = '\n';
1208                        i += 2;
1209                        goto print;
1210                default:
1211                        iodc_dbuf[i] = str[i];
1212                        i++;
1213                        break;
1214                }
1215        }
1216
1217print:
1218        spin_lock_irqsave(&pdc_lock, flags);
1219        real32_call(PAGE0->mem_cons.iodc_io,
1220                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1221                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1222                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1223        spin_unlock_irqrestore(&pdc_lock, flags);
1224
1225        return i;
1226}
1227
1228#if !defined(BOOTLOADER)
1229/**
1230 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1231 *
1232 * Read a character (non-blocking) from the PDC console, returns -1 if
1233 * key is not present.
1234 */
1235int pdc_iodc_getc(void)
1236{
1237        int ch;
1238        int status;
1239        unsigned long flags;
1240
1241        /* Bail if no console input device. */
1242        if (!PAGE0->mem_kbd.iodc_io)
1243                return 0;
1244        
1245        /* wait for a keyboard (rs232)-input */
1246        spin_lock_irqsave(&pdc_lock, flags);
1247        real32_call(PAGE0->mem_kbd.iodc_io,
1248                    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1249                    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1250                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1251
1252        ch = *iodc_dbuf;
1253        status = *iodc_retbuf;
1254        spin_unlock_irqrestore(&pdc_lock, flags);
1255
1256        if (status == 0)
1257            return -1;
1258        
1259        return ch;
1260}
1261
1262int pdc_sti_call(unsigned long func, unsigned long flags,
1263                 unsigned long inptr, unsigned long outputr,
1264                 unsigned long glob_cfg)
1265{
1266        int retval;
1267        unsigned long irqflags;
1268
1269        spin_lock_irqsave(&pdc_lock, irqflags);  
1270        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1271        spin_unlock_irqrestore(&pdc_lock, irqflags);
1272
1273        return retval;
1274}
1275EXPORT_SYMBOL(pdc_sti_call);
1276
1277#ifdef CONFIG_64BIT
1278/**
1279 * pdc_pat_cell_get_number - Returns the cell number.
1280 * @cell_info: The return buffer.
1281 *
1282 * This PDC call returns the cell number of the cell from which the call
1283 * is made.
1284 */
1285int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1286{
1287        int retval;
1288        unsigned long flags;
1289
1290        spin_lock_irqsave(&pdc_lock, flags);
1291        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1292        memcpy(cell_info, pdc_result, sizeof(*cell_info));
1293        spin_unlock_irqrestore(&pdc_lock, flags);
1294
1295        return retval;
1296}
1297
1298/**
1299 * pdc_pat_cell_module - Retrieve the cell's module information.
1300 * @actcnt: The number of bytes written to mem_addr.
1301 * @ploc: The physical location.
1302 * @mod: The module index.
1303 * @view_type: The view of the address type.
1304 * @mem_addr: The return buffer.
1305 *
1306 * This PDC call returns information about each module attached to the cell
1307 * at the specified location.
1308 */
1309int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1310                        unsigned long view_type, void *mem_addr)
1311{
1312        int retval;
1313        unsigned long flags;
1314        static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1315
1316        spin_lock_irqsave(&pdc_lock, flags);
1317        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1318                              ploc, mod, view_type, __pa(&result));
1319        if(!retval) {
1320                *actcnt = pdc_result[0];
1321                memcpy(mem_addr, &result, *actcnt);
1322        }
1323        spin_unlock_irqrestore(&pdc_lock, flags);
1324
1325        return retval;
1326}
1327
1328/**
1329 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1330 * @cpu_info: The return buffer.
1331 * @hpa: The Hard Physical Address of the CPU.
1332 *
1333 * Retrieve the cpu number for the cpu at the specified HPA.
1334 */
1335int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1336{
1337        int retval;
1338        unsigned long flags;
1339
1340        spin_lock_irqsave(&pdc_lock, flags);
1341        retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1342                              __pa(&pdc_result), hpa);
1343        memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1344        spin_unlock_irqrestore(&pdc_lock, flags);
1345
1346        return retval;
1347}
1348
1349/**
1350 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1351 * @num_entries: The return value.
1352 * @cell_num: The target cell.
1353 *
1354 * This PDC function returns the number of entries in the specified cell's
1355 * interrupt table.
1356 */
1357int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1358{
1359        int retval;
1360        unsigned long flags;
1361
1362        spin_lock_irqsave(&pdc_lock, flags);
1363        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1364                              __pa(pdc_result), cell_num);
1365        *num_entries = pdc_result[0];
1366        spin_unlock_irqrestore(&pdc_lock, flags);
1367
1368        return retval;
1369}
1370
1371/**
1372 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1373 * @r_addr: The return buffer.
1374 * @cell_num: The target cell.
1375 *
1376 * This PDC function returns the actual interrupt table for the specified cell.
1377 */
1378int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1379{
1380        int retval;
1381        unsigned long flags;
1382
1383        spin_lock_irqsave(&pdc_lock, flags);
1384        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1385                              __pa(r_addr), cell_num);
1386        spin_unlock_irqrestore(&pdc_lock, flags);
1387
1388        return retval;
1389}
1390
1391/**
1392 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1393 * @actlen: The return buffer.
1394 * @mem_addr: Pointer to the memory buffer.
1395 * @count: The number of bytes to read from the buffer.
1396 * @offset: The offset with respect to the beginning of the buffer.
1397 *
1398 */
1399int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1400                            unsigned long count, unsigned long offset)
1401{
1402        int retval;
1403        unsigned long flags;
1404
1405        spin_lock_irqsave(&pdc_lock, flags);
1406        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1407                              __pa(pdc_result2), count, offset);
1408        *actual_len = pdc_result[0];
1409        memcpy(mem_addr, pdc_result2, *actual_len);
1410        spin_unlock_irqrestore(&pdc_lock, flags);
1411
1412        return retval;
1413}
1414
1415/**
1416 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1417 * @pci_addr: PCI configuration space address for which the read request is being made.
1418 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1419 * @mem_addr: Pointer to return memory buffer.
1420 *
1421 */
1422int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1423{
1424        int retval;
1425        unsigned long flags;
1426
1427        spin_lock_irqsave(&pdc_lock, flags);
1428        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1429                                        __pa(pdc_result), pci_addr, pci_size);
1430        switch(pci_size) {
1431                case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1432                case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1433                case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1434        }
1435        spin_unlock_irqrestore(&pdc_lock, flags);
1436
1437        return retval;
1438}
1439
1440/**
1441 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1442 * @pci_addr: PCI configuration space address for which the write  request is being made.
1443 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1444 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1445 *         written to PCI Config space.
1446 *
1447 */
1448int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1449{
1450        int retval;
1451        unsigned long flags;
1452
1453        spin_lock_irqsave(&pdc_lock, flags);
1454        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1455                                pci_addr, pci_size, val);
1456        spin_unlock_irqrestore(&pdc_lock, flags);
1457
1458        return retval;
1459}
1460
1461/**
1462 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1463 * @rinfo: memory pdt information
1464 *
1465 */
1466int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1467{
1468        int retval;
1469        unsigned long flags;
1470
1471        spin_lock_irqsave(&pdc_lock, flags);
1472        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1473                        __pa(&pdc_result));
1474        if (retval == PDC_OK)
1475                memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1476        spin_unlock_irqrestore(&pdc_lock, flags);
1477
1478        return retval;
1479}
1480
1481/**
1482 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1483 *                              table of a cell
1484 * @rinfo: memory pdt information
1485 * @cell: cell number
1486 *
1487 */
1488int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1489                unsigned long cell)
1490{
1491        int retval;
1492        unsigned long flags;
1493
1494        spin_lock_irqsave(&pdc_lock, flags);
1495        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1496                        __pa(&pdc_result), cell);
1497        if (retval == PDC_OK)
1498                memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1499        spin_unlock_irqrestore(&pdc_lock, flags);
1500
1501        return retval;
1502}
1503
1504/**
1505 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1506 * @pret: array of PDT entries
1507 * @pdt_entries_ptr: ptr to hold number of PDT entries
1508 * @max_entries: maximum number of entries to be read
1509 *
1510 */
1511int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1512                unsigned long *pdt_entries_ptr, unsigned long max_entries)
1513{
1514        int retval;
1515        unsigned long flags, entries;
1516
1517        spin_lock_irqsave(&pdc_lock, flags);
1518        /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1519        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1520                        __pa(&pdc_result), parisc_cell_num,
1521                        __pa(pdt_entries_ptr));
1522
1523        if (retval == PDC_OK) {
1524                /* build up return value as for PDC_PAT_MEM_PD_READ */
1525                entries = min(pdc_result[0], max_entries);
1526                pret->pdt_entries = entries;
1527                pret->actual_count_bytes = entries * sizeof(unsigned long);
1528        }
1529
1530        spin_unlock_irqrestore(&pdc_lock, flags);
1531        WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1532
1533        return retval;
1534}
1535/**
1536 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1537 * @pret: array of PDT entries
1538 * @pdt_entries_ptr: ptr to hold number of PDT entries
1539 * @count: number of bytes to read
1540 * @offset: offset to start (in bytes)
1541 *
1542 */
1543int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1544                unsigned long *pdt_entries_ptr, unsigned long count,
1545                unsigned long offset)
1546{
1547        int retval;
1548        unsigned long flags, entries;
1549
1550        spin_lock_irqsave(&pdc_lock, flags);
1551        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1552                __pa(&pdc_result), __pa(pdt_entries_ptr),
1553                count, offset);
1554
1555        if (retval == PDC_OK) {
1556                entries = min(pdc_result[0], count);
1557                pret->actual_count_bytes = entries;
1558                pret->pdt_entries = entries / sizeof(unsigned long);
1559        }
1560
1561        spin_unlock_irqrestore(&pdc_lock, flags);
1562
1563        return retval;
1564}
1565
1566/**
1567 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1568 * @pret: ptr to hold returned information
1569 * @phys_addr: physical address to examine
1570 *
1571 */
1572int pdc_pat_mem_get_dimm_phys_location(
1573                struct pdc_pat_mem_phys_mem_location *pret,
1574                unsigned long phys_addr)
1575{
1576        int retval;
1577        unsigned long flags;
1578
1579        spin_lock_irqsave(&pdc_lock, flags);
1580        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1581                __pa(&pdc_result), phys_addr);
1582
1583        if (retval == PDC_OK)
1584                memcpy(pret, &pdc_result, sizeof(*pret));
1585
1586        spin_unlock_irqrestore(&pdc_lock, flags);
1587
1588        return retval;
1589}
1590#endif /* CONFIG_64BIT */
1591#endif /* defined(BOOTLOADER) */
1592
1593
1594/***************** 32-bit real-mode calls ***********/
1595/* The struct below is used
1596 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1597 * real32_call_asm() then uses this stack in narrow real mode
1598 */
1599
1600struct narrow_stack {
1601        /* use int, not long which is 64 bits */
1602        unsigned int arg13;
1603        unsigned int arg12;
1604        unsigned int arg11;
1605        unsigned int arg10;
1606        unsigned int arg9;
1607        unsigned int arg8;
1608        unsigned int arg7;
1609        unsigned int arg6;
1610        unsigned int arg5;
1611        unsigned int arg4;
1612        unsigned int arg3;
1613        unsigned int arg2;
1614        unsigned int arg1;
1615        unsigned int arg0;
1616        unsigned int frame_marker[8];
1617        unsigned int sp;
1618        /* in reality, there's nearly 8k of stack after this */
1619};
1620
1621long real32_call(unsigned long fn, ...)
1622{
1623        va_list args;
1624        extern struct narrow_stack real_stack;
1625        extern unsigned long real32_call_asm(unsigned int *,
1626                                             unsigned int *, 
1627                                             unsigned int);
1628        
1629        va_start(args, fn);
1630        real_stack.arg0 = va_arg(args, unsigned int);
1631        real_stack.arg1 = va_arg(args, unsigned int);
1632        real_stack.arg2 = va_arg(args, unsigned int);
1633        real_stack.arg3 = va_arg(args, unsigned int);
1634        real_stack.arg4 = va_arg(args, unsigned int);
1635        real_stack.arg5 = va_arg(args, unsigned int);
1636        real_stack.arg6 = va_arg(args, unsigned int);
1637        real_stack.arg7 = va_arg(args, unsigned int);
1638        real_stack.arg8 = va_arg(args, unsigned int);
1639        real_stack.arg9 = va_arg(args, unsigned int);
1640        real_stack.arg10 = va_arg(args, unsigned int);
1641        real_stack.arg11 = va_arg(args, unsigned int);
1642        real_stack.arg12 = va_arg(args, unsigned int);
1643        real_stack.arg13 = va_arg(args, unsigned int);
1644        va_end(args);
1645        
1646        return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1647}
1648
1649#ifdef CONFIG_64BIT
1650/***************** 64-bit real-mode calls ***********/
1651
1652struct wide_stack {
1653        unsigned long arg0;
1654        unsigned long arg1;
1655        unsigned long arg2;
1656        unsigned long arg3;
1657        unsigned long arg4;
1658        unsigned long arg5;
1659        unsigned long arg6;
1660        unsigned long arg7;
1661        unsigned long arg8;
1662        unsigned long arg9;
1663        unsigned long arg10;
1664        unsigned long arg11;
1665        unsigned long arg12;
1666        unsigned long arg13;
1667        unsigned long frame_marker[2];  /* rp, previous sp */
1668        unsigned long sp;
1669        /* in reality, there's nearly 8k of stack after this */
1670};
1671
1672long real64_call(unsigned long fn, ...)
1673{
1674        va_list args;
1675        extern struct wide_stack real64_stack;
1676        extern unsigned long real64_call_asm(unsigned long *,
1677                                             unsigned long *, 
1678                                             unsigned long);
1679    
1680        va_start(args, fn);
1681        real64_stack.arg0 = va_arg(args, unsigned long);
1682        real64_stack.arg1 = va_arg(args, unsigned long);
1683        real64_stack.arg2 = va_arg(args, unsigned long);
1684        real64_stack.arg3 = va_arg(args, unsigned long);
1685        real64_stack.arg4 = va_arg(args, unsigned long);
1686        real64_stack.arg5 = va_arg(args, unsigned long);
1687        real64_stack.arg6 = va_arg(args, unsigned long);
1688        real64_stack.arg7 = va_arg(args, unsigned long);
1689        real64_stack.arg8 = va_arg(args, unsigned long);
1690        real64_stack.arg9 = va_arg(args, unsigned long);
1691        real64_stack.arg10 = va_arg(args, unsigned long);
1692        real64_stack.arg11 = va_arg(args, unsigned long);
1693        real64_stack.arg12 = va_arg(args, unsigned long);
1694        real64_stack.arg13 = va_arg(args, unsigned long);
1695        va_end(args);
1696        
1697        return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1698}
1699
1700#endif /* CONFIG_64BIT */
1701