linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Amit Shah    <amit.shah@qumranet.com>
  15 *   Ben-Ami Yassour <benami@il.ibm.com>
  16 *
  17 * This work is licensed under the terms of the GNU GPL, version 2.  See
  18 * the COPYING file in the top-level directory.
  19 *
  20 */
  21
  22#include <linux/kvm_host.h>
  23#include "irq.h"
  24#include "mmu.h"
  25#include "i8254.h"
  26#include "tss.h"
  27#include "kvm_cache_regs.h"
  28#include "x86.h"
  29#include "cpuid.h"
  30#include "pmu.h"
  31#include "hyperv.h"
  32
  33#include <linux/clocksource.h>
  34#include <linux/interrupt.h>
  35#include <linux/kvm.h>
  36#include <linux/fs.h>
  37#include <linux/vmalloc.h>
  38#include <linux/export.h>
  39#include <linux/moduleparam.h>
  40#include <linux/mman.h>
  41#include <linux/highmem.h>
  42#include <linux/iommu.h>
  43#include <linux/intel-iommu.h>
  44#include <linux/cpufreq.h>
  45#include <linux/user-return-notifier.h>
  46#include <linux/srcu.h>
  47#include <linux/slab.h>
  48#include <linux/perf_event.h>
  49#include <linux/uaccess.h>
  50#include <linux/hash.h>
  51#include <linux/pci.h>
  52#include <linux/timekeeper_internal.h>
  53#include <linux/pvclock_gtod.h>
  54#include <linux/kvm_irqfd.h>
  55#include <linux/irqbypass.h>
  56#include <linux/sched/stat.h>
  57#include <linux/mem_encrypt.h>
  58
  59#include <trace/events/kvm.h>
  60
  61#include <asm/debugreg.h>
  62#include <asm/msr.h>
  63#include <asm/desc.h>
  64#include <asm/mce.h>
  65#include <linux/kernel_stat.h>
  66#include <asm/fpu/internal.h> /* Ugh! */
  67#include <asm/pvclock.h>
  68#include <asm/div64.h>
  69#include <asm/irq_remapping.h>
  70
  71#define CREATE_TRACE_POINTS
  72#include "trace.h"
  73
  74#define MAX_IO_MSRS 256
  75#define KVM_MAX_MCE_BANKS 32
  76u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
  77EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
  78
  79#define emul_to_vcpu(ctxt) \
  80        container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  81
  82/* EFER defaults:
  83 * - enable syscall per default because its emulated by KVM
  84 * - enable LME and LMA per default on 64 bit KVM
  85 */
  86#ifdef CONFIG_X86_64
  87static
  88u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  89#else
  90static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  91#endif
  92
  93#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  94#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  95
  96#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
  97                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
  98
  99static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 100static void process_nmi(struct kvm_vcpu *vcpu);
 101static void enter_smm(struct kvm_vcpu *vcpu);
 102static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 103
 104struct kvm_x86_ops *kvm_x86_ops __read_mostly;
 105EXPORT_SYMBOL_GPL(kvm_x86_ops);
 106
 107static bool __read_mostly ignore_msrs = 0;
 108module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 109
 110unsigned int min_timer_period_us = 500;
 111module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 112
 113static bool __read_mostly kvmclock_periodic_sync = true;
 114module_param(kvmclock_periodic_sync, bool, S_IRUGO);
 115
 116bool __read_mostly kvm_has_tsc_control;
 117EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 118u32  __read_mostly kvm_max_guest_tsc_khz;
 119EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 120u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
 121EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
 122u64  __read_mostly kvm_max_tsc_scaling_ratio;
 123EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
 124u64 __read_mostly kvm_default_tsc_scaling_ratio;
 125EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
 126
 127/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 128static u32 __read_mostly tsc_tolerance_ppm = 250;
 129module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 130
 131/* lapic timer advance (tscdeadline mode only) in nanoseconds */
 132unsigned int __read_mostly lapic_timer_advance_ns = 0;
 133module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
 134
 135static bool __read_mostly vector_hashing = true;
 136module_param(vector_hashing, bool, S_IRUGO);
 137
 138#define KVM_NR_SHARED_MSRS 16
 139
 140struct kvm_shared_msrs_global {
 141        int nr;
 142        u32 msrs[KVM_NR_SHARED_MSRS];
 143};
 144
 145struct kvm_shared_msrs {
 146        struct user_return_notifier urn;
 147        bool registered;
 148        struct kvm_shared_msr_values {
 149                u64 host;
 150                u64 curr;
 151        } values[KVM_NR_SHARED_MSRS];
 152};
 153
 154static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 155static struct kvm_shared_msrs __percpu *shared_msrs;
 156
 157struct kvm_stats_debugfs_item debugfs_entries[] = {
 158        { "pf_fixed", VCPU_STAT(pf_fixed) },
 159        { "pf_guest", VCPU_STAT(pf_guest) },
 160        { "tlb_flush", VCPU_STAT(tlb_flush) },
 161        { "invlpg", VCPU_STAT(invlpg) },
 162        { "exits", VCPU_STAT(exits) },
 163        { "io_exits", VCPU_STAT(io_exits) },
 164        { "mmio_exits", VCPU_STAT(mmio_exits) },
 165        { "signal_exits", VCPU_STAT(signal_exits) },
 166        { "irq_window", VCPU_STAT(irq_window_exits) },
 167        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 168        { "halt_exits", VCPU_STAT(halt_exits) },
 169        { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
 170        { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
 171        { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
 172        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 173        { "hypercalls", VCPU_STAT(hypercalls) },
 174        { "request_irq", VCPU_STAT(request_irq_exits) },
 175        { "irq_exits", VCPU_STAT(irq_exits) },
 176        { "host_state_reload", VCPU_STAT(host_state_reload) },
 177        { "efer_reload", VCPU_STAT(efer_reload) },
 178        { "fpu_reload", VCPU_STAT(fpu_reload) },
 179        { "insn_emulation", VCPU_STAT(insn_emulation) },
 180        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 181        { "irq_injections", VCPU_STAT(irq_injections) },
 182        { "nmi_injections", VCPU_STAT(nmi_injections) },
 183        { "req_event", VCPU_STAT(req_event) },
 184        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 185        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 186        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 187        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 188        { "mmu_flooded", VM_STAT(mmu_flooded) },
 189        { "mmu_recycled", VM_STAT(mmu_recycled) },
 190        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 191        { "mmu_unsync", VM_STAT(mmu_unsync) },
 192        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 193        { "largepages", VM_STAT(lpages) },
 194        { "max_mmu_page_hash_collisions",
 195                VM_STAT(max_mmu_page_hash_collisions) },
 196        { NULL }
 197};
 198
 199u64 __read_mostly host_xcr0;
 200
 201static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 202
 203static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 204{
 205        int i;
 206        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 207                vcpu->arch.apf.gfns[i] = ~0;
 208}
 209
 210static void kvm_on_user_return(struct user_return_notifier *urn)
 211{
 212        unsigned slot;
 213        struct kvm_shared_msrs *locals
 214                = container_of(urn, struct kvm_shared_msrs, urn);
 215        struct kvm_shared_msr_values *values;
 216        unsigned long flags;
 217
 218        /*
 219         * Disabling irqs at this point since the following code could be
 220         * interrupted and executed through kvm_arch_hardware_disable()
 221         */
 222        local_irq_save(flags);
 223        if (locals->registered) {
 224                locals->registered = false;
 225                user_return_notifier_unregister(urn);
 226        }
 227        local_irq_restore(flags);
 228        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 229                values = &locals->values[slot];
 230                if (values->host != values->curr) {
 231                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 232                        values->curr = values->host;
 233                }
 234        }
 235}
 236
 237static void shared_msr_update(unsigned slot, u32 msr)
 238{
 239        u64 value;
 240        unsigned int cpu = smp_processor_id();
 241        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 242
 243        /* only read, and nobody should modify it at this time,
 244         * so don't need lock */
 245        if (slot >= shared_msrs_global.nr) {
 246                printk(KERN_ERR "kvm: invalid MSR slot!");
 247                return;
 248        }
 249        rdmsrl_safe(msr, &value);
 250        smsr->values[slot].host = value;
 251        smsr->values[slot].curr = value;
 252}
 253
 254void kvm_define_shared_msr(unsigned slot, u32 msr)
 255{
 256        BUG_ON(slot >= KVM_NR_SHARED_MSRS);
 257        shared_msrs_global.msrs[slot] = msr;
 258        if (slot >= shared_msrs_global.nr)
 259                shared_msrs_global.nr = slot + 1;
 260}
 261EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 262
 263static void kvm_shared_msr_cpu_online(void)
 264{
 265        unsigned i;
 266
 267        for (i = 0; i < shared_msrs_global.nr; ++i)
 268                shared_msr_update(i, shared_msrs_global.msrs[i]);
 269}
 270
 271int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 272{
 273        unsigned int cpu = smp_processor_id();
 274        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 275        int err;
 276
 277        if (((value ^ smsr->values[slot].curr) & mask) == 0)
 278                return 0;
 279        smsr->values[slot].curr = value;
 280        err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
 281        if (err)
 282                return 1;
 283
 284        if (!smsr->registered) {
 285                smsr->urn.on_user_return = kvm_on_user_return;
 286                user_return_notifier_register(&smsr->urn);
 287                smsr->registered = true;
 288        }
 289        return 0;
 290}
 291EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 292
 293static void drop_user_return_notifiers(void)
 294{
 295        unsigned int cpu = smp_processor_id();
 296        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 297
 298        if (smsr->registered)
 299                kvm_on_user_return(&smsr->urn);
 300}
 301
 302u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 303{
 304        return vcpu->arch.apic_base;
 305}
 306EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 307
 308int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 309{
 310        u64 old_state = vcpu->arch.apic_base &
 311                (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
 312        u64 new_state = msr_info->data &
 313                (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
 314        u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
 315                (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
 316
 317        if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
 318                return 1;
 319        if (!msr_info->host_initiated &&
 320            ((new_state == MSR_IA32_APICBASE_ENABLE &&
 321              old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
 322             (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
 323              old_state == 0)))
 324                return 1;
 325
 326        kvm_lapic_set_base(vcpu, msr_info->data);
 327        return 0;
 328}
 329EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 330
 331asmlinkage __visible void kvm_spurious_fault(void)
 332{
 333        /* Fault while not rebooting.  We want the trace. */
 334        BUG();
 335}
 336EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 337
 338#define EXCPT_BENIGN            0
 339#define EXCPT_CONTRIBUTORY      1
 340#define EXCPT_PF                2
 341
 342static int exception_class(int vector)
 343{
 344        switch (vector) {
 345        case PF_VECTOR:
 346                return EXCPT_PF;
 347        case DE_VECTOR:
 348        case TS_VECTOR:
 349        case NP_VECTOR:
 350        case SS_VECTOR:
 351        case GP_VECTOR:
 352                return EXCPT_CONTRIBUTORY;
 353        default:
 354                break;
 355        }
 356        return EXCPT_BENIGN;
 357}
 358
 359#define EXCPT_FAULT             0
 360#define EXCPT_TRAP              1
 361#define EXCPT_ABORT             2
 362#define EXCPT_INTERRUPT         3
 363
 364static int exception_type(int vector)
 365{
 366        unsigned int mask;
 367
 368        if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 369                return EXCPT_INTERRUPT;
 370
 371        mask = 1 << vector;
 372
 373        /* #DB is trap, as instruction watchpoints are handled elsewhere */
 374        if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 375                return EXCPT_TRAP;
 376
 377        if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 378                return EXCPT_ABORT;
 379
 380        /* Reserved exceptions will result in fault */
 381        return EXCPT_FAULT;
 382}
 383
 384static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 385                unsigned nr, bool has_error, u32 error_code,
 386                bool reinject)
 387{
 388        u32 prev_nr;
 389        int class1, class2;
 390
 391        kvm_make_request(KVM_REQ_EVENT, vcpu);
 392
 393        if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
 394        queue:
 395                if (has_error && !is_protmode(vcpu))
 396                        has_error = false;
 397                if (reinject) {
 398                        /*
 399                         * On vmentry, vcpu->arch.exception.pending is only
 400                         * true if an event injection was blocked by
 401                         * nested_run_pending.  In that case, however,
 402                         * vcpu_enter_guest requests an immediate exit,
 403                         * and the guest shouldn't proceed far enough to
 404                         * need reinjection.
 405                         */
 406                        WARN_ON_ONCE(vcpu->arch.exception.pending);
 407                        vcpu->arch.exception.injected = true;
 408                } else {
 409                        vcpu->arch.exception.pending = true;
 410                        vcpu->arch.exception.injected = false;
 411                }
 412                vcpu->arch.exception.has_error_code = has_error;
 413                vcpu->arch.exception.nr = nr;
 414                vcpu->arch.exception.error_code = error_code;
 415                return;
 416        }
 417
 418        /* to check exception */
 419        prev_nr = vcpu->arch.exception.nr;
 420        if (prev_nr == DF_VECTOR) {
 421                /* triple fault -> shutdown */
 422                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 423                return;
 424        }
 425        class1 = exception_class(prev_nr);
 426        class2 = exception_class(nr);
 427        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 428                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 429                /*
 430                 * Generate double fault per SDM Table 5-5.  Set
 431                 * exception.pending = true so that the double fault
 432                 * can trigger a nested vmexit.
 433                 */
 434                vcpu->arch.exception.pending = true;
 435                vcpu->arch.exception.injected = false;
 436                vcpu->arch.exception.has_error_code = true;
 437                vcpu->arch.exception.nr = DF_VECTOR;
 438                vcpu->arch.exception.error_code = 0;
 439        } else
 440                /* replace previous exception with a new one in a hope
 441                   that instruction re-execution will regenerate lost
 442                   exception */
 443                goto queue;
 444}
 445
 446void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 447{
 448        kvm_multiple_exception(vcpu, nr, false, 0, false);
 449}
 450EXPORT_SYMBOL_GPL(kvm_queue_exception);
 451
 452void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 453{
 454        kvm_multiple_exception(vcpu, nr, false, 0, true);
 455}
 456EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 457
 458int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 459{
 460        if (err)
 461                kvm_inject_gp(vcpu, 0);
 462        else
 463                return kvm_skip_emulated_instruction(vcpu);
 464
 465        return 1;
 466}
 467EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 468
 469void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 470{
 471        ++vcpu->stat.pf_guest;
 472        vcpu->arch.exception.nested_apf =
 473                is_guest_mode(vcpu) && fault->async_page_fault;
 474        if (vcpu->arch.exception.nested_apf)
 475                vcpu->arch.apf.nested_apf_token = fault->address;
 476        else
 477                vcpu->arch.cr2 = fault->address;
 478        kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 479}
 480EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 481
 482static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 483{
 484        if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 485                vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 486        else
 487                vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 488
 489        return fault->nested_page_fault;
 490}
 491
 492void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 493{
 494        atomic_inc(&vcpu->arch.nmi_queued);
 495        kvm_make_request(KVM_REQ_NMI, vcpu);
 496}
 497EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 498
 499void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 500{
 501        kvm_multiple_exception(vcpu, nr, true, error_code, false);
 502}
 503EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 504
 505void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 506{
 507        kvm_multiple_exception(vcpu, nr, true, error_code, true);
 508}
 509EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 510
 511/*
 512 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 513 * a #GP and return false.
 514 */
 515bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 516{
 517        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 518                return true;
 519        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 520        return false;
 521}
 522EXPORT_SYMBOL_GPL(kvm_require_cpl);
 523
 524bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
 525{
 526        if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 527                return true;
 528
 529        kvm_queue_exception(vcpu, UD_VECTOR);
 530        return false;
 531}
 532EXPORT_SYMBOL_GPL(kvm_require_dr);
 533
 534/*
 535 * This function will be used to read from the physical memory of the currently
 536 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
 537 * can read from guest physical or from the guest's guest physical memory.
 538 */
 539int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 540                            gfn_t ngfn, void *data, int offset, int len,
 541                            u32 access)
 542{
 543        struct x86_exception exception;
 544        gfn_t real_gfn;
 545        gpa_t ngpa;
 546
 547        ngpa     = gfn_to_gpa(ngfn);
 548        real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
 549        if (real_gfn == UNMAPPED_GVA)
 550                return -EFAULT;
 551
 552        real_gfn = gpa_to_gfn(real_gfn);
 553
 554        return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
 555}
 556EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 557
 558static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 559                               void *data, int offset, int len, u32 access)
 560{
 561        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 562                                       data, offset, len, access);
 563}
 564
 565/*
 566 * Load the pae pdptrs.  Return true is they are all valid.
 567 */
 568int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 569{
 570        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 571        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 572        int i;
 573        int ret;
 574        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 575
 576        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 577                                      offset * sizeof(u64), sizeof(pdpte),
 578                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 579        if (ret < 0) {
 580                ret = 0;
 581                goto out;
 582        }
 583        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 584                if ((pdpte[i] & PT_PRESENT_MASK) &&
 585                    (pdpte[i] &
 586                     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
 587                        ret = 0;
 588                        goto out;
 589                }
 590        }
 591        ret = 1;
 592
 593        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 594        __set_bit(VCPU_EXREG_PDPTR,
 595                  (unsigned long *)&vcpu->arch.regs_avail);
 596        __set_bit(VCPU_EXREG_PDPTR,
 597                  (unsigned long *)&vcpu->arch.regs_dirty);
 598out:
 599
 600        return ret;
 601}
 602EXPORT_SYMBOL_GPL(load_pdptrs);
 603
 604bool pdptrs_changed(struct kvm_vcpu *vcpu)
 605{
 606        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 607        bool changed = true;
 608        int offset;
 609        gfn_t gfn;
 610        int r;
 611
 612        if (is_long_mode(vcpu) || !is_pae(vcpu))
 613                return false;
 614
 615        if (!test_bit(VCPU_EXREG_PDPTR,
 616                      (unsigned long *)&vcpu->arch.regs_avail))
 617                return true;
 618
 619        gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
 620        offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
 621        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 622                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 623        if (r < 0)
 624                goto out;
 625        changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 626out:
 627
 628        return changed;
 629}
 630EXPORT_SYMBOL_GPL(pdptrs_changed);
 631
 632int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 633{
 634        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 635        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
 636
 637        cr0 |= X86_CR0_ET;
 638
 639#ifdef CONFIG_X86_64
 640        if (cr0 & 0xffffffff00000000UL)
 641                return 1;
 642#endif
 643
 644        cr0 &= ~CR0_RESERVED_BITS;
 645
 646        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 647                return 1;
 648
 649        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 650                return 1;
 651
 652        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 653#ifdef CONFIG_X86_64
 654                if ((vcpu->arch.efer & EFER_LME)) {
 655                        int cs_db, cs_l;
 656
 657                        if (!is_pae(vcpu))
 658                                return 1;
 659                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 660                        if (cs_l)
 661                                return 1;
 662                } else
 663#endif
 664                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 665                                                 kvm_read_cr3(vcpu)))
 666                        return 1;
 667        }
 668
 669        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 670                return 1;
 671
 672        kvm_x86_ops->set_cr0(vcpu, cr0);
 673
 674        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 675                kvm_clear_async_pf_completion_queue(vcpu);
 676                kvm_async_pf_hash_reset(vcpu);
 677        }
 678
 679        if ((cr0 ^ old_cr0) & update_bits)
 680                kvm_mmu_reset_context(vcpu);
 681
 682        if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
 683            kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
 684            !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 685                kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
 686
 687        return 0;
 688}
 689EXPORT_SYMBOL_GPL(kvm_set_cr0);
 690
 691void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 692{
 693        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 694}
 695EXPORT_SYMBOL_GPL(kvm_lmsw);
 696
 697static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
 698{
 699        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
 700                        !vcpu->guest_xcr0_loaded) {
 701                /* kvm_set_xcr() also depends on this */
 702                xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 703                vcpu->guest_xcr0_loaded = 1;
 704        }
 705}
 706
 707static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
 708{
 709        if (vcpu->guest_xcr0_loaded) {
 710                if (vcpu->arch.xcr0 != host_xcr0)
 711                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 712                vcpu->guest_xcr0_loaded = 0;
 713        }
 714}
 715
 716static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 717{
 718        u64 xcr0 = xcr;
 719        u64 old_xcr0 = vcpu->arch.xcr0;
 720        u64 valid_bits;
 721
 722        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 723        if (index != XCR_XFEATURE_ENABLED_MASK)
 724                return 1;
 725        if (!(xcr0 & XFEATURE_MASK_FP))
 726                return 1;
 727        if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
 728                return 1;
 729
 730        /*
 731         * Do not allow the guest to set bits that we do not support
 732         * saving.  However, xcr0 bit 0 is always set, even if the
 733         * emulated CPU does not support XSAVE (see fx_init).
 734         */
 735        valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
 736        if (xcr0 & ~valid_bits)
 737                return 1;
 738
 739        if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
 740            (!(xcr0 & XFEATURE_MASK_BNDCSR)))
 741                return 1;
 742
 743        if (xcr0 & XFEATURE_MASK_AVX512) {
 744                if (!(xcr0 & XFEATURE_MASK_YMM))
 745                        return 1;
 746                if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
 747                        return 1;
 748        }
 749        vcpu->arch.xcr0 = xcr0;
 750
 751        if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
 752                kvm_update_cpuid(vcpu);
 753        return 0;
 754}
 755
 756int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 757{
 758        if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
 759            __kvm_set_xcr(vcpu, index, xcr)) {
 760                kvm_inject_gp(vcpu, 0);
 761                return 1;
 762        }
 763        return 0;
 764}
 765EXPORT_SYMBOL_GPL(kvm_set_xcr);
 766
 767int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 768{
 769        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 770        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
 771                                   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
 772
 773        if (cr4 & CR4_RESERVED_BITS)
 774                return 1;
 775
 776        if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
 777                return 1;
 778
 779        if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
 780                return 1;
 781
 782        if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
 783                return 1;
 784
 785        if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
 786                return 1;
 787
 788        if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
 789                return 1;
 790
 791        if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
 792                return 1;
 793
 794        if (is_long_mode(vcpu)) {
 795                if (!(cr4 & X86_CR4_PAE))
 796                        return 1;
 797        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 798                   && ((cr4 ^ old_cr4) & pdptr_bits)
 799                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 800                                   kvm_read_cr3(vcpu)))
 801                return 1;
 802
 803        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 804                if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
 805                        return 1;
 806
 807                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 808                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 809                        return 1;
 810        }
 811
 812        if (kvm_x86_ops->set_cr4(vcpu, cr4))
 813                return 1;
 814
 815        if (((cr4 ^ old_cr4) & pdptr_bits) ||
 816            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 817                kvm_mmu_reset_context(vcpu);
 818
 819        if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
 820                kvm_update_cpuid(vcpu);
 821
 822        return 0;
 823}
 824EXPORT_SYMBOL_GPL(kvm_set_cr4);
 825
 826int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 827{
 828#ifdef CONFIG_X86_64
 829        cr3 &= ~CR3_PCID_INVD;
 830#endif
 831
 832        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 833                kvm_mmu_sync_roots(vcpu);
 834                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 835                return 0;
 836        }
 837
 838        if (is_long_mode(vcpu) &&
 839            (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
 840                return 1;
 841        else if (is_pae(vcpu) && is_paging(vcpu) &&
 842                   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 843                return 1;
 844
 845        vcpu->arch.cr3 = cr3;
 846        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 847        kvm_mmu_new_cr3(vcpu);
 848        return 0;
 849}
 850EXPORT_SYMBOL_GPL(kvm_set_cr3);
 851
 852int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 853{
 854        if (cr8 & CR8_RESERVED_BITS)
 855                return 1;
 856        if (lapic_in_kernel(vcpu))
 857                kvm_lapic_set_tpr(vcpu, cr8);
 858        else
 859                vcpu->arch.cr8 = cr8;
 860        return 0;
 861}
 862EXPORT_SYMBOL_GPL(kvm_set_cr8);
 863
 864unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 865{
 866        if (lapic_in_kernel(vcpu))
 867                return kvm_lapic_get_cr8(vcpu);
 868        else
 869                return vcpu->arch.cr8;
 870}
 871EXPORT_SYMBOL_GPL(kvm_get_cr8);
 872
 873static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
 874{
 875        int i;
 876
 877        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
 878                for (i = 0; i < KVM_NR_DB_REGS; i++)
 879                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
 880                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
 881        }
 882}
 883
 884static void kvm_update_dr6(struct kvm_vcpu *vcpu)
 885{
 886        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 887                kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
 888}
 889
 890static void kvm_update_dr7(struct kvm_vcpu *vcpu)
 891{
 892        unsigned long dr7;
 893
 894        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 895                dr7 = vcpu->arch.guest_debug_dr7;
 896        else
 897                dr7 = vcpu->arch.dr7;
 898        kvm_x86_ops->set_dr7(vcpu, dr7);
 899        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
 900        if (dr7 & DR7_BP_EN_MASK)
 901                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
 902}
 903
 904static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
 905{
 906        u64 fixed = DR6_FIXED_1;
 907
 908        if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
 909                fixed |= DR6_RTM;
 910        return fixed;
 911}
 912
 913static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 914{
 915        switch (dr) {
 916        case 0 ... 3:
 917                vcpu->arch.db[dr] = val;
 918                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 919                        vcpu->arch.eff_db[dr] = val;
 920                break;
 921        case 4:
 922                /* fall through */
 923        case 6:
 924                if (val & 0xffffffff00000000ULL)
 925                        return -1; /* #GP */
 926                vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
 927                kvm_update_dr6(vcpu);
 928                break;
 929        case 5:
 930                /* fall through */
 931        default: /* 7 */
 932                if (val & 0xffffffff00000000ULL)
 933                        return -1; /* #GP */
 934                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 935                kvm_update_dr7(vcpu);
 936                break;
 937        }
 938
 939        return 0;
 940}
 941
 942int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 943{
 944        if (__kvm_set_dr(vcpu, dr, val)) {
 945                kvm_inject_gp(vcpu, 0);
 946                return 1;
 947        }
 948        return 0;
 949}
 950EXPORT_SYMBOL_GPL(kvm_set_dr);
 951
 952int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 953{
 954        switch (dr) {
 955        case 0 ... 3:
 956                *val = vcpu->arch.db[dr];
 957                break;
 958        case 4:
 959                /* fall through */
 960        case 6:
 961                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 962                        *val = vcpu->arch.dr6;
 963                else
 964                        *val = kvm_x86_ops->get_dr6(vcpu);
 965                break;
 966        case 5:
 967                /* fall through */
 968        default: /* 7 */
 969                *val = vcpu->arch.dr7;
 970                break;
 971        }
 972        return 0;
 973}
 974EXPORT_SYMBOL_GPL(kvm_get_dr);
 975
 976bool kvm_rdpmc(struct kvm_vcpu *vcpu)
 977{
 978        u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 979        u64 data;
 980        int err;
 981
 982        err = kvm_pmu_rdpmc(vcpu, ecx, &data);
 983        if (err)
 984                return err;
 985        kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
 986        kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
 987        return err;
 988}
 989EXPORT_SYMBOL_GPL(kvm_rdpmc);
 990
 991/*
 992 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 993 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 994 *
 995 * This list is modified at module load time to reflect the
 996 * capabilities of the host cpu. This capabilities test skips MSRs that are
 997 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
 998 * may depend on host virtualization features rather than host cpu features.
 999 */
1000
1001static u32 msrs_to_save[] = {
1002        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1003        MSR_STAR,
1004#ifdef CONFIG_X86_64
1005        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1006#endif
1007        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1008        MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1009};
1010
1011static unsigned num_msrs_to_save;
1012
1013static u32 emulated_msrs[] = {
1014        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1015        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1016        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1017        HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1018        HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1019        HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1020        HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1021        HV_X64_MSR_RESET,
1022        HV_X64_MSR_VP_INDEX,
1023        HV_X64_MSR_VP_RUNTIME,
1024        HV_X64_MSR_SCONTROL,
1025        HV_X64_MSR_STIMER0_CONFIG,
1026        HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1027        MSR_KVM_PV_EOI_EN,
1028
1029        MSR_IA32_TSC_ADJUST,
1030        MSR_IA32_TSCDEADLINE,
1031        MSR_IA32_MISC_ENABLE,
1032        MSR_IA32_MCG_STATUS,
1033        MSR_IA32_MCG_CTL,
1034        MSR_IA32_MCG_EXT_CTL,
1035        MSR_IA32_SMBASE,
1036        MSR_PLATFORM_INFO,
1037        MSR_MISC_FEATURES_ENABLES,
1038};
1039
1040static unsigned num_emulated_msrs;
1041
1042bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1043{
1044        if (efer & efer_reserved_bits)
1045                return false;
1046
1047        if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1048                        return false;
1049
1050        if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1051                        return false;
1052
1053        return true;
1054}
1055EXPORT_SYMBOL_GPL(kvm_valid_efer);
1056
1057static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1058{
1059        u64 old_efer = vcpu->arch.efer;
1060
1061        if (!kvm_valid_efer(vcpu, efer))
1062                return 1;
1063
1064        if (is_paging(vcpu)
1065            && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1066                return 1;
1067
1068        efer &= ~EFER_LMA;
1069        efer |= vcpu->arch.efer & EFER_LMA;
1070
1071        kvm_x86_ops->set_efer(vcpu, efer);
1072
1073        /* Update reserved bits */
1074        if ((efer ^ old_efer) & EFER_NX)
1075                kvm_mmu_reset_context(vcpu);
1076
1077        return 0;
1078}
1079
1080void kvm_enable_efer_bits(u64 mask)
1081{
1082       efer_reserved_bits &= ~mask;
1083}
1084EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1085
1086/*
1087 * Writes msr value into into the appropriate "register".
1088 * Returns 0 on success, non-0 otherwise.
1089 * Assumes vcpu_load() was already called.
1090 */
1091int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1092{
1093        switch (msr->index) {
1094        case MSR_FS_BASE:
1095        case MSR_GS_BASE:
1096        case MSR_KERNEL_GS_BASE:
1097        case MSR_CSTAR:
1098        case MSR_LSTAR:
1099                if (is_noncanonical_address(msr->data, vcpu))
1100                        return 1;
1101                break;
1102        case MSR_IA32_SYSENTER_EIP:
1103        case MSR_IA32_SYSENTER_ESP:
1104                /*
1105                 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1106                 * non-canonical address is written on Intel but not on
1107                 * AMD (which ignores the top 32-bits, because it does
1108                 * not implement 64-bit SYSENTER).
1109                 *
1110                 * 64-bit code should hence be able to write a non-canonical
1111                 * value on AMD.  Making the address canonical ensures that
1112                 * vmentry does not fail on Intel after writing a non-canonical
1113                 * value, and that something deterministic happens if the guest
1114                 * invokes 64-bit SYSENTER.
1115                 */
1116                msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1117        }
1118        return kvm_x86_ops->set_msr(vcpu, msr);
1119}
1120EXPORT_SYMBOL_GPL(kvm_set_msr);
1121
1122/*
1123 * Adapt set_msr() to msr_io()'s calling convention
1124 */
1125static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1126{
1127        struct msr_data msr;
1128        int r;
1129
1130        msr.index = index;
1131        msr.host_initiated = true;
1132        r = kvm_get_msr(vcpu, &msr);
1133        if (r)
1134                return r;
1135
1136        *data = msr.data;
1137        return 0;
1138}
1139
1140static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1141{
1142        struct msr_data msr;
1143
1144        msr.data = *data;
1145        msr.index = index;
1146        msr.host_initiated = true;
1147        return kvm_set_msr(vcpu, &msr);
1148}
1149
1150#ifdef CONFIG_X86_64
1151struct pvclock_gtod_data {
1152        seqcount_t      seq;
1153
1154        struct { /* extract of a clocksource struct */
1155                int vclock_mode;
1156                u64     cycle_last;
1157                u64     mask;
1158                u32     mult;
1159                u32     shift;
1160        } clock;
1161
1162        u64             boot_ns;
1163        u64             nsec_base;
1164        u64             wall_time_sec;
1165};
1166
1167static struct pvclock_gtod_data pvclock_gtod_data;
1168
1169static void update_pvclock_gtod(struct timekeeper *tk)
1170{
1171        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1172        u64 boot_ns;
1173
1174        boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1175
1176        write_seqcount_begin(&vdata->seq);
1177
1178        /* copy pvclock gtod data */
1179        vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1180        vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1181        vdata->clock.mask               = tk->tkr_mono.mask;
1182        vdata->clock.mult               = tk->tkr_mono.mult;
1183        vdata->clock.shift              = tk->tkr_mono.shift;
1184
1185        vdata->boot_ns                  = boot_ns;
1186        vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1187
1188        vdata->wall_time_sec            = tk->xtime_sec;
1189
1190        write_seqcount_end(&vdata->seq);
1191}
1192#endif
1193
1194void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1195{
1196        /*
1197         * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1198         * vcpu_enter_guest.  This function is only called from
1199         * the physical CPU that is running vcpu.
1200         */
1201        kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1202}
1203
1204static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1205{
1206        int version;
1207        int r;
1208        struct pvclock_wall_clock wc;
1209        struct timespec64 boot;
1210
1211        if (!wall_clock)
1212                return;
1213
1214        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1215        if (r)
1216                return;
1217
1218        if (version & 1)
1219                ++version;  /* first time write, random junk */
1220
1221        ++version;
1222
1223        if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1224                return;
1225
1226        /*
1227         * The guest calculates current wall clock time by adding
1228         * system time (updated by kvm_guest_time_update below) to the
1229         * wall clock specified here.  guest system time equals host
1230         * system time for us, thus we must fill in host boot time here.
1231         */
1232        getboottime64(&boot);
1233
1234        if (kvm->arch.kvmclock_offset) {
1235                struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1236                boot = timespec64_sub(boot, ts);
1237        }
1238        wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1239        wc.nsec = boot.tv_nsec;
1240        wc.version = version;
1241
1242        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1243
1244        version++;
1245        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1246}
1247
1248static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1249{
1250        do_shl32_div32(dividend, divisor);
1251        return dividend;
1252}
1253
1254static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1255                               s8 *pshift, u32 *pmultiplier)
1256{
1257        uint64_t scaled64;
1258        int32_t  shift = 0;
1259        uint64_t tps64;
1260        uint32_t tps32;
1261
1262        tps64 = base_hz;
1263        scaled64 = scaled_hz;
1264        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1265                tps64 >>= 1;
1266                shift--;
1267        }
1268
1269        tps32 = (uint32_t)tps64;
1270        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1271                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1272                        scaled64 >>= 1;
1273                else
1274                        tps32 <<= 1;
1275                shift++;
1276        }
1277
1278        *pshift = shift;
1279        *pmultiplier = div_frac(scaled64, tps32);
1280
1281        pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1282                 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1283}
1284
1285#ifdef CONFIG_X86_64
1286static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1287#endif
1288
1289static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1290static unsigned long max_tsc_khz;
1291
1292static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1293{
1294        u64 v = (u64)khz * (1000000 + ppm);
1295        do_div(v, 1000000);
1296        return v;
1297}
1298
1299static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1300{
1301        u64 ratio;
1302
1303        /* Guest TSC same frequency as host TSC? */
1304        if (!scale) {
1305                vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1306                return 0;
1307        }
1308
1309        /* TSC scaling supported? */
1310        if (!kvm_has_tsc_control) {
1311                if (user_tsc_khz > tsc_khz) {
1312                        vcpu->arch.tsc_catchup = 1;
1313                        vcpu->arch.tsc_always_catchup = 1;
1314                        return 0;
1315                } else {
1316                        WARN(1, "user requested TSC rate below hardware speed\n");
1317                        return -1;
1318                }
1319        }
1320
1321        /* TSC scaling required  - calculate ratio */
1322        ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1323                                user_tsc_khz, tsc_khz);
1324
1325        if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1326                WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1327                          user_tsc_khz);
1328                return -1;
1329        }
1330
1331        vcpu->arch.tsc_scaling_ratio = ratio;
1332        return 0;
1333}
1334
1335static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1336{
1337        u32 thresh_lo, thresh_hi;
1338        int use_scaling = 0;
1339
1340        /* tsc_khz can be zero if TSC calibration fails */
1341        if (user_tsc_khz == 0) {
1342                /* set tsc_scaling_ratio to a safe value */
1343                vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1344                return -1;
1345        }
1346
1347        /* Compute a scale to convert nanoseconds in TSC cycles */
1348        kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1349                           &vcpu->arch.virtual_tsc_shift,
1350                           &vcpu->arch.virtual_tsc_mult);
1351        vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1352
1353        /*
1354         * Compute the variation in TSC rate which is acceptable
1355         * within the range of tolerance and decide if the
1356         * rate being applied is within that bounds of the hardware
1357         * rate.  If so, no scaling or compensation need be done.
1358         */
1359        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1360        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1361        if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1362                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1363                use_scaling = 1;
1364        }
1365        return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1366}
1367
1368static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1369{
1370        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1371                                      vcpu->arch.virtual_tsc_mult,
1372                                      vcpu->arch.virtual_tsc_shift);
1373        tsc += vcpu->arch.this_tsc_write;
1374        return tsc;
1375}
1376
1377static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1378{
1379#ifdef CONFIG_X86_64
1380        bool vcpus_matched;
1381        struct kvm_arch *ka = &vcpu->kvm->arch;
1382        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1383
1384        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1385                         atomic_read(&vcpu->kvm->online_vcpus));
1386
1387        /*
1388         * Once the masterclock is enabled, always perform request in
1389         * order to update it.
1390         *
1391         * In order to enable masterclock, the host clocksource must be TSC
1392         * and the vcpus need to have matched TSCs.  When that happens,
1393         * perform request to enable masterclock.
1394         */
1395        if (ka->use_master_clock ||
1396            (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1397                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1398
1399        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1400                            atomic_read(&vcpu->kvm->online_vcpus),
1401                            ka->use_master_clock, gtod->clock.vclock_mode);
1402#endif
1403}
1404
1405static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1406{
1407        u64 curr_offset = vcpu->arch.tsc_offset;
1408        vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1409}
1410
1411/*
1412 * Multiply tsc by a fixed point number represented by ratio.
1413 *
1414 * The most significant 64-N bits (mult) of ratio represent the
1415 * integral part of the fixed point number; the remaining N bits
1416 * (frac) represent the fractional part, ie. ratio represents a fixed
1417 * point number (mult + frac * 2^(-N)).
1418 *
1419 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1420 */
1421static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1422{
1423        return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1424}
1425
1426u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1427{
1428        u64 _tsc = tsc;
1429        u64 ratio = vcpu->arch.tsc_scaling_ratio;
1430
1431        if (ratio != kvm_default_tsc_scaling_ratio)
1432                _tsc = __scale_tsc(ratio, tsc);
1433
1434        return _tsc;
1435}
1436EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1437
1438static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1439{
1440        u64 tsc;
1441
1442        tsc = kvm_scale_tsc(vcpu, rdtsc());
1443
1444        return target_tsc - tsc;
1445}
1446
1447u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1448{
1449        return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1450}
1451EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1452
1453static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1454{
1455        kvm_x86_ops->write_tsc_offset(vcpu, offset);
1456        vcpu->arch.tsc_offset = offset;
1457}
1458
1459void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1460{
1461        struct kvm *kvm = vcpu->kvm;
1462        u64 offset, ns, elapsed;
1463        unsigned long flags;
1464        bool matched;
1465        bool already_matched;
1466        u64 data = msr->data;
1467        bool synchronizing = false;
1468
1469        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1470        offset = kvm_compute_tsc_offset(vcpu, data);
1471        ns = ktime_get_boot_ns();
1472        elapsed = ns - kvm->arch.last_tsc_nsec;
1473
1474        if (vcpu->arch.virtual_tsc_khz) {
1475                if (data == 0 && msr->host_initiated) {
1476                        /*
1477                         * detection of vcpu initialization -- need to sync
1478                         * with other vCPUs. This particularly helps to keep
1479                         * kvm_clock stable after CPU hotplug
1480                         */
1481                        synchronizing = true;
1482                } else {
1483                        u64 tsc_exp = kvm->arch.last_tsc_write +
1484                                                nsec_to_cycles(vcpu, elapsed);
1485                        u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1486                        /*
1487                         * Special case: TSC write with a small delta (1 second)
1488                         * of virtual cycle time against real time is
1489                         * interpreted as an attempt to synchronize the CPU.
1490                         */
1491                        synchronizing = data < tsc_exp + tsc_hz &&
1492                                        data + tsc_hz > tsc_exp;
1493                }
1494        }
1495
1496        /*
1497         * For a reliable TSC, we can match TSC offsets, and for an unstable
1498         * TSC, we add elapsed time in this computation.  We could let the
1499         * compensation code attempt to catch up if we fall behind, but
1500         * it's better to try to match offsets from the beginning.
1501         */
1502        if (synchronizing &&
1503            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1504                if (!check_tsc_unstable()) {
1505                        offset = kvm->arch.cur_tsc_offset;
1506                        pr_debug("kvm: matched tsc offset for %llu\n", data);
1507                } else {
1508                        u64 delta = nsec_to_cycles(vcpu, elapsed);
1509                        data += delta;
1510                        offset = kvm_compute_tsc_offset(vcpu, data);
1511                        pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1512                }
1513                matched = true;
1514                already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1515        } else {
1516                /*
1517                 * We split periods of matched TSC writes into generations.
1518                 * For each generation, we track the original measured
1519                 * nanosecond time, offset, and write, so if TSCs are in
1520                 * sync, we can match exact offset, and if not, we can match
1521                 * exact software computation in compute_guest_tsc()
1522                 *
1523                 * These values are tracked in kvm->arch.cur_xxx variables.
1524                 */
1525                kvm->arch.cur_tsc_generation++;
1526                kvm->arch.cur_tsc_nsec = ns;
1527                kvm->arch.cur_tsc_write = data;
1528                kvm->arch.cur_tsc_offset = offset;
1529                matched = false;
1530                pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1531                         kvm->arch.cur_tsc_generation, data);
1532        }
1533
1534        /*
1535         * We also track th most recent recorded KHZ, write and time to
1536         * allow the matching interval to be extended at each write.
1537         */
1538        kvm->arch.last_tsc_nsec = ns;
1539        kvm->arch.last_tsc_write = data;
1540        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1541
1542        vcpu->arch.last_guest_tsc = data;
1543
1544        /* Keep track of which generation this VCPU has synchronized to */
1545        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1546        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1547        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1548
1549        if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1550                update_ia32_tsc_adjust_msr(vcpu, offset);
1551
1552        kvm_vcpu_write_tsc_offset(vcpu, offset);
1553        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1554
1555        spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1556        if (!matched) {
1557                kvm->arch.nr_vcpus_matched_tsc = 0;
1558        } else if (!already_matched) {
1559                kvm->arch.nr_vcpus_matched_tsc++;
1560        }
1561
1562        kvm_track_tsc_matching(vcpu);
1563        spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1564}
1565
1566EXPORT_SYMBOL_GPL(kvm_write_tsc);
1567
1568static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1569                                           s64 adjustment)
1570{
1571        kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1572}
1573
1574static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1575{
1576        if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1577                WARN_ON(adjustment < 0);
1578        adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1579        adjust_tsc_offset_guest(vcpu, adjustment);
1580}
1581
1582#ifdef CONFIG_X86_64
1583
1584static u64 read_tsc(void)
1585{
1586        u64 ret = (u64)rdtsc_ordered();
1587        u64 last = pvclock_gtod_data.clock.cycle_last;
1588
1589        if (likely(ret >= last))
1590                return ret;
1591
1592        /*
1593         * GCC likes to generate cmov here, but this branch is extremely
1594         * predictable (it's just a function of time and the likely is
1595         * very likely) and there's a data dependence, so force GCC
1596         * to generate a branch instead.  I don't barrier() because
1597         * we don't actually need a barrier, and if this function
1598         * ever gets inlined it will generate worse code.
1599         */
1600        asm volatile ("");
1601        return last;
1602}
1603
1604static inline u64 vgettsc(u64 *cycle_now)
1605{
1606        long v;
1607        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1608
1609        *cycle_now = read_tsc();
1610
1611        v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1612        return v * gtod->clock.mult;
1613}
1614
1615static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1616{
1617        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1618        unsigned long seq;
1619        int mode;
1620        u64 ns;
1621
1622        do {
1623                seq = read_seqcount_begin(&gtod->seq);
1624                mode = gtod->clock.vclock_mode;
1625                ns = gtod->nsec_base;
1626                ns += vgettsc(cycle_now);
1627                ns >>= gtod->clock.shift;
1628                ns += gtod->boot_ns;
1629        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1630        *t = ns;
1631
1632        return mode;
1633}
1634
1635static int do_realtime(struct timespec *ts, u64 *cycle_now)
1636{
1637        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1638        unsigned long seq;
1639        int mode;
1640        u64 ns;
1641
1642        do {
1643                seq = read_seqcount_begin(&gtod->seq);
1644                mode = gtod->clock.vclock_mode;
1645                ts->tv_sec = gtod->wall_time_sec;
1646                ns = gtod->nsec_base;
1647                ns += vgettsc(cycle_now);
1648                ns >>= gtod->clock.shift;
1649        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1650
1651        ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1652        ts->tv_nsec = ns;
1653
1654        return mode;
1655}
1656
1657/* returns true if host is using tsc clocksource */
1658static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1659{
1660        /* checked again under seqlock below */
1661        if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1662                return false;
1663
1664        return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1665}
1666
1667/* returns true if host is using tsc clocksource */
1668static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1669                                           u64 *cycle_now)
1670{
1671        /* checked again under seqlock below */
1672        if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1673                return false;
1674
1675        return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1676}
1677#endif
1678
1679/*
1680 *
1681 * Assuming a stable TSC across physical CPUS, and a stable TSC
1682 * across virtual CPUs, the following condition is possible.
1683 * Each numbered line represents an event visible to both
1684 * CPUs at the next numbered event.
1685 *
1686 * "timespecX" represents host monotonic time. "tscX" represents
1687 * RDTSC value.
1688 *
1689 *              VCPU0 on CPU0           |       VCPU1 on CPU1
1690 *
1691 * 1.  read timespec0,tsc0
1692 * 2.                                   | timespec1 = timespec0 + N
1693 *                                      | tsc1 = tsc0 + M
1694 * 3. transition to guest               | transition to guest
1695 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1696 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1697 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1698 *
1699 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1700 *
1701 *      - ret0 < ret1
1702 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1703 *              ...
1704 *      - 0 < N - M => M < N
1705 *
1706 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1707 * always the case (the difference between two distinct xtime instances
1708 * might be smaller then the difference between corresponding TSC reads,
1709 * when updating guest vcpus pvclock areas).
1710 *
1711 * To avoid that problem, do not allow visibility of distinct
1712 * system_timestamp/tsc_timestamp values simultaneously: use a master
1713 * copy of host monotonic time values. Update that master copy
1714 * in lockstep.
1715 *
1716 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1717 *
1718 */
1719
1720static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1721{
1722#ifdef CONFIG_X86_64
1723        struct kvm_arch *ka = &kvm->arch;
1724        int vclock_mode;
1725        bool host_tsc_clocksource, vcpus_matched;
1726
1727        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1728                        atomic_read(&kvm->online_vcpus));
1729
1730        /*
1731         * If the host uses TSC clock, then passthrough TSC as stable
1732         * to the guest.
1733         */
1734        host_tsc_clocksource = kvm_get_time_and_clockread(
1735                                        &ka->master_kernel_ns,
1736                                        &ka->master_cycle_now);
1737
1738        ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1739                                && !ka->backwards_tsc_observed
1740                                && !ka->boot_vcpu_runs_old_kvmclock;
1741
1742        if (ka->use_master_clock)
1743                atomic_set(&kvm_guest_has_master_clock, 1);
1744
1745        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1746        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1747                                        vcpus_matched);
1748#endif
1749}
1750
1751void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1752{
1753        kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1754}
1755
1756static void kvm_gen_update_masterclock(struct kvm *kvm)
1757{
1758#ifdef CONFIG_X86_64
1759        int i;
1760        struct kvm_vcpu *vcpu;
1761        struct kvm_arch *ka = &kvm->arch;
1762
1763        spin_lock(&ka->pvclock_gtod_sync_lock);
1764        kvm_make_mclock_inprogress_request(kvm);
1765        /* no guest entries from this point */
1766        pvclock_update_vm_gtod_copy(kvm);
1767
1768        kvm_for_each_vcpu(i, vcpu, kvm)
1769                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1770
1771        /* guest entries allowed */
1772        kvm_for_each_vcpu(i, vcpu, kvm)
1773                kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1774
1775        spin_unlock(&ka->pvclock_gtod_sync_lock);
1776#endif
1777}
1778
1779u64 get_kvmclock_ns(struct kvm *kvm)
1780{
1781        struct kvm_arch *ka = &kvm->arch;
1782        struct pvclock_vcpu_time_info hv_clock;
1783        u64 ret;
1784
1785        spin_lock(&ka->pvclock_gtod_sync_lock);
1786        if (!ka->use_master_clock) {
1787                spin_unlock(&ka->pvclock_gtod_sync_lock);
1788                return ktime_get_boot_ns() + ka->kvmclock_offset;
1789        }
1790
1791        hv_clock.tsc_timestamp = ka->master_cycle_now;
1792        hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1793        spin_unlock(&ka->pvclock_gtod_sync_lock);
1794
1795        /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1796        get_cpu();
1797
1798        kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1799                           &hv_clock.tsc_shift,
1800                           &hv_clock.tsc_to_system_mul);
1801        ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1802
1803        put_cpu();
1804
1805        return ret;
1806}
1807
1808static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1809{
1810        struct kvm_vcpu_arch *vcpu = &v->arch;
1811        struct pvclock_vcpu_time_info guest_hv_clock;
1812
1813        if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1814                &guest_hv_clock, sizeof(guest_hv_clock))))
1815                return;
1816
1817        /* This VCPU is paused, but it's legal for a guest to read another
1818         * VCPU's kvmclock, so we really have to follow the specification where
1819         * it says that version is odd if data is being modified, and even after
1820         * it is consistent.
1821         *
1822         * Version field updates must be kept separate.  This is because
1823         * kvm_write_guest_cached might use a "rep movs" instruction, and
1824         * writes within a string instruction are weakly ordered.  So there
1825         * are three writes overall.
1826         *
1827         * As a small optimization, only write the version field in the first
1828         * and third write.  The vcpu->pv_time cache is still valid, because the
1829         * version field is the first in the struct.
1830         */
1831        BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1832
1833        vcpu->hv_clock.version = guest_hv_clock.version + 1;
1834        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1835                                &vcpu->hv_clock,
1836                                sizeof(vcpu->hv_clock.version));
1837
1838        smp_wmb();
1839
1840        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1841        vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1842
1843        if (vcpu->pvclock_set_guest_stopped_request) {
1844                vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1845                vcpu->pvclock_set_guest_stopped_request = false;
1846        }
1847
1848        trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1849
1850        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1851                                &vcpu->hv_clock,
1852                                sizeof(vcpu->hv_clock));
1853
1854        smp_wmb();
1855
1856        vcpu->hv_clock.version++;
1857        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1858                                &vcpu->hv_clock,
1859                                sizeof(vcpu->hv_clock.version));
1860}
1861
1862static int kvm_guest_time_update(struct kvm_vcpu *v)
1863{
1864        unsigned long flags, tgt_tsc_khz;
1865        struct kvm_vcpu_arch *vcpu = &v->arch;
1866        struct kvm_arch *ka = &v->kvm->arch;
1867        s64 kernel_ns;
1868        u64 tsc_timestamp, host_tsc;
1869        u8 pvclock_flags;
1870        bool use_master_clock;
1871
1872        kernel_ns = 0;
1873        host_tsc = 0;
1874
1875        /*
1876         * If the host uses TSC clock, then passthrough TSC as stable
1877         * to the guest.
1878         */
1879        spin_lock(&ka->pvclock_gtod_sync_lock);
1880        use_master_clock = ka->use_master_clock;
1881        if (use_master_clock) {
1882                host_tsc = ka->master_cycle_now;
1883                kernel_ns = ka->master_kernel_ns;
1884        }
1885        spin_unlock(&ka->pvclock_gtod_sync_lock);
1886
1887        /* Keep irq disabled to prevent changes to the clock */
1888        local_irq_save(flags);
1889        tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1890        if (unlikely(tgt_tsc_khz == 0)) {
1891                local_irq_restore(flags);
1892                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1893                return 1;
1894        }
1895        if (!use_master_clock) {
1896                host_tsc = rdtsc();
1897                kernel_ns = ktime_get_boot_ns();
1898        }
1899
1900        tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1901
1902        /*
1903         * We may have to catch up the TSC to match elapsed wall clock
1904         * time for two reasons, even if kvmclock is used.
1905         *   1) CPU could have been running below the maximum TSC rate
1906         *   2) Broken TSC compensation resets the base at each VCPU
1907         *      entry to avoid unknown leaps of TSC even when running
1908         *      again on the same CPU.  This may cause apparent elapsed
1909         *      time to disappear, and the guest to stand still or run
1910         *      very slowly.
1911         */
1912        if (vcpu->tsc_catchup) {
1913                u64 tsc = compute_guest_tsc(v, kernel_ns);
1914                if (tsc > tsc_timestamp) {
1915                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1916                        tsc_timestamp = tsc;
1917                }
1918        }
1919
1920        local_irq_restore(flags);
1921
1922        /* With all the info we got, fill in the values */
1923
1924        if (kvm_has_tsc_control)
1925                tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1926
1927        if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1928                kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1929                                   &vcpu->hv_clock.tsc_shift,
1930                                   &vcpu->hv_clock.tsc_to_system_mul);
1931                vcpu->hw_tsc_khz = tgt_tsc_khz;
1932        }
1933
1934        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1935        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1936        vcpu->last_guest_tsc = tsc_timestamp;
1937
1938        /* If the host uses TSC clocksource, then it is stable */
1939        pvclock_flags = 0;
1940        if (use_master_clock)
1941                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1942
1943        vcpu->hv_clock.flags = pvclock_flags;
1944
1945        if (vcpu->pv_time_enabled)
1946                kvm_setup_pvclock_page(v);
1947        if (v == kvm_get_vcpu(v->kvm, 0))
1948                kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1949        return 0;
1950}
1951
1952/*
1953 * kvmclock updates which are isolated to a given vcpu, such as
1954 * vcpu->cpu migration, should not allow system_timestamp from
1955 * the rest of the vcpus to remain static. Otherwise ntp frequency
1956 * correction applies to one vcpu's system_timestamp but not
1957 * the others.
1958 *
1959 * So in those cases, request a kvmclock update for all vcpus.
1960 * We need to rate-limit these requests though, as they can
1961 * considerably slow guests that have a large number of vcpus.
1962 * The time for a remote vcpu to update its kvmclock is bound
1963 * by the delay we use to rate-limit the updates.
1964 */
1965
1966#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1967
1968static void kvmclock_update_fn(struct work_struct *work)
1969{
1970        int i;
1971        struct delayed_work *dwork = to_delayed_work(work);
1972        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1973                                           kvmclock_update_work);
1974        struct kvm *kvm = container_of(ka, struct kvm, arch);
1975        struct kvm_vcpu *vcpu;
1976
1977        kvm_for_each_vcpu(i, vcpu, kvm) {
1978                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1979                kvm_vcpu_kick(vcpu);
1980        }
1981}
1982
1983static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1984{
1985        struct kvm *kvm = v->kvm;
1986
1987        kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1988        schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1989                                        KVMCLOCK_UPDATE_DELAY);
1990}
1991
1992#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1993
1994static void kvmclock_sync_fn(struct work_struct *work)
1995{
1996        struct delayed_work *dwork = to_delayed_work(work);
1997        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1998                                           kvmclock_sync_work);
1999        struct kvm *kvm = container_of(ka, struct kvm, arch);
2000
2001        if (!kvmclock_periodic_sync)
2002                return;
2003
2004        schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2005        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2006                                        KVMCLOCK_SYNC_PERIOD);
2007}
2008
2009static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2010{
2011        u64 mcg_cap = vcpu->arch.mcg_cap;
2012        unsigned bank_num = mcg_cap & 0xff;
2013
2014        switch (msr) {
2015        case MSR_IA32_MCG_STATUS:
2016                vcpu->arch.mcg_status = data;
2017                break;
2018        case MSR_IA32_MCG_CTL:
2019                if (!(mcg_cap & MCG_CTL_P))
2020                        return 1;
2021                if (data != 0 && data != ~(u64)0)
2022                        return -1;
2023                vcpu->arch.mcg_ctl = data;
2024                break;
2025        default:
2026                if (msr >= MSR_IA32_MC0_CTL &&
2027                    msr < MSR_IA32_MCx_CTL(bank_num)) {
2028                        u32 offset = msr - MSR_IA32_MC0_CTL;
2029                        /* only 0 or all 1s can be written to IA32_MCi_CTL
2030                         * some Linux kernels though clear bit 10 in bank 4 to
2031                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2032                         * this to avoid an uncatched #GP in the guest
2033                         */
2034                        if ((offset & 0x3) == 0 &&
2035                            data != 0 && (data | (1 << 10)) != ~(u64)0)
2036                                return -1;
2037                        vcpu->arch.mce_banks[offset] = data;
2038                        break;
2039                }
2040                return 1;
2041        }
2042        return 0;
2043}
2044
2045static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2046{
2047        struct kvm *kvm = vcpu->kvm;
2048        int lm = is_long_mode(vcpu);
2049        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2050                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2051        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2052                : kvm->arch.xen_hvm_config.blob_size_32;
2053        u32 page_num = data & ~PAGE_MASK;
2054        u64 page_addr = data & PAGE_MASK;
2055        u8 *page;
2056        int r;
2057
2058        r = -E2BIG;
2059        if (page_num >= blob_size)
2060                goto out;
2061        r = -ENOMEM;
2062        page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2063        if (IS_ERR(page)) {
2064                r = PTR_ERR(page);
2065                goto out;
2066        }
2067        if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2068                goto out_free;
2069        r = 0;
2070out_free:
2071        kfree(page);
2072out:
2073        return r;
2074}
2075
2076static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2077{
2078        gpa_t gpa = data & ~0x3f;
2079
2080        /* Bits 3:5 are reserved, Should be zero */
2081        if (data & 0x38)
2082                return 1;
2083
2084        vcpu->arch.apf.msr_val = data;
2085
2086        if (!(data & KVM_ASYNC_PF_ENABLED)) {
2087                kvm_clear_async_pf_completion_queue(vcpu);
2088                kvm_async_pf_hash_reset(vcpu);
2089                return 0;
2090        }
2091
2092        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2093                                        sizeof(u32)))
2094                return 1;
2095
2096        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2097        vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2098        kvm_async_pf_wakeup_all(vcpu);
2099        return 0;
2100}
2101
2102static void kvmclock_reset(struct kvm_vcpu *vcpu)
2103{
2104        vcpu->arch.pv_time_enabled = false;
2105}
2106
2107static void record_steal_time(struct kvm_vcpu *vcpu)
2108{
2109        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2110                return;
2111
2112        if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2113                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2114                return;
2115
2116        vcpu->arch.st.steal.preempted = 0;
2117
2118        if (vcpu->arch.st.steal.version & 1)
2119                vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2120
2121        vcpu->arch.st.steal.version += 1;
2122
2123        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2124                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2125
2126        smp_wmb();
2127
2128        vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2129                vcpu->arch.st.last_steal;
2130        vcpu->arch.st.last_steal = current->sched_info.run_delay;
2131
2132        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2133                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2134
2135        smp_wmb();
2136
2137        vcpu->arch.st.steal.version += 1;
2138
2139        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2140                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2141}
2142
2143int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2144{
2145        bool pr = false;
2146        u32 msr = msr_info->index;
2147        u64 data = msr_info->data;
2148
2149        switch (msr) {
2150        case MSR_AMD64_NB_CFG:
2151        case MSR_IA32_UCODE_REV:
2152        case MSR_IA32_UCODE_WRITE:
2153        case MSR_VM_HSAVE_PA:
2154        case MSR_AMD64_PATCH_LOADER:
2155        case MSR_AMD64_BU_CFG2:
2156        case MSR_AMD64_DC_CFG:
2157                break;
2158
2159        case MSR_EFER:
2160                return set_efer(vcpu, data);
2161        case MSR_K7_HWCR:
2162                data &= ~(u64)0x40;     /* ignore flush filter disable */
2163                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2164                data &= ~(u64)0x8;      /* ignore TLB cache disable */
2165                data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2166                if (data != 0) {
2167                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2168                                    data);
2169                        return 1;
2170                }
2171                break;
2172        case MSR_FAM10H_MMIO_CONF_BASE:
2173                if (data != 0) {
2174                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2175                                    "0x%llx\n", data);
2176                        return 1;
2177                }
2178                break;
2179        case MSR_IA32_DEBUGCTLMSR:
2180                if (!data) {
2181                        /* We support the non-activated case already */
2182                        break;
2183                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2184                        /* Values other than LBR and BTF are vendor-specific,
2185                           thus reserved and should throw a #GP */
2186                        return 1;
2187                }
2188                vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2189                            __func__, data);
2190                break;
2191        case 0x200 ... 0x2ff:
2192                return kvm_mtrr_set_msr(vcpu, msr, data);
2193        case MSR_IA32_APICBASE:
2194                return kvm_set_apic_base(vcpu, msr_info);
2195        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2196                return kvm_x2apic_msr_write(vcpu, msr, data);
2197        case MSR_IA32_TSCDEADLINE:
2198                kvm_set_lapic_tscdeadline_msr(vcpu, data);
2199                break;
2200        case MSR_IA32_TSC_ADJUST:
2201                if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2202                        if (!msr_info->host_initiated) {
2203                                s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2204                                adjust_tsc_offset_guest(vcpu, adj);
2205                        }
2206                        vcpu->arch.ia32_tsc_adjust_msr = data;
2207                }
2208                break;
2209        case MSR_IA32_MISC_ENABLE:
2210                vcpu->arch.ia32_misc_enable_msr = data;
2211                break;
2212        case MSR_IA32_SMBASE:
2213                if (!msr_info->host_initiated)
2214                        return 1;
2215                vcpu->arch.smbase = data;
2216                break;
2217        case MSR_KVM_WALL_CLOCK_NEW:
2218        case MSR_KVM_WALL_CLOCK:
2219                vcpu->kvm->arch.wall_clock = data;
2220                kvm_write_wall_clock(vcpu->kvm, data);
2221                break;
2222        case MSR_KVM_SYSTEM_TIME_NEW:
2223        case MSR_KVM_SYSTEM_TIME: {
2224                struct kvm_arch *ka = &vcpu->kvm->arch;
2225
2226                kvmclock_reset(vcpu);
2227
2228                if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2229                        bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2230
2231                        if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2232                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2233
2234                        ka->boot_vcpu_runs_old_kvmclock = tmp;
2235                }
2236
2237                vcpu->arch.time = data;
2238                kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2239
2240                /* we verify if the enable bit is set... */
2241                if (!(data & 1))
2242                        break;
2243
2244                if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2245                     &vcpu->arch.pv_time, data & ~1ULL,
2246                     sizeof(struct pvclock_vcpu_time_info)))
2247                        vcpu->arch.pv_time_enabled = false;
2248                else
2249                        vcpu->arch.pv_time_enabled = true;
2250
2251                break;
2252        }
2253        case MSR_KVM_ASYNC_PF_EN:
2254                if (kvm_pv_enable_async_pf(vcpu, data))
2255                        return 1;
2256                break;
2257        case MSR_KVM_STEAL_TIME:
2258
2259                if (unlikely(!sched_info_on()))
2260                        return 1;
2261
2262                if (data & KVM_STEAL_RESERVED_MASK)
2263                        return 1;
2264
2265                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2266                                                data & KVM_STEAL_VALID_BITS,
2267                                                sizeof(struct kvm_steal_time)))
2268                        return 1;
2269
2270                vcpu->arch.st.msr_val = data;
2271
2272                if (!(data & KVM_MSR_ENABLED))
2273                        break;
2274
2275                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2276
2277                break;
2278        case MSR_KVM_PV_EOI_EN:
2279                if (kvm_lapic_enable_pv_eoi(vcpu, data))
2280                        return 1;
2281                break;
2282
2283        case MSR_IA32_MCG_CTL:
2284        case MSR_IA32_MCG_STATUS:
2285        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2286                return set_msr_mce(vcpu, msr, data);
2287
2288        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2289        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2290                pr = true; /* fall through */
2291        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2292        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2293                if (kvm_pmu_is_valid_msr(vcpu, msr))
2294                        return kvm_pmu_set_msr(vcpu, msr_info);
2295
2296                if (pr || data != 0)
2297                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2298                                    "0x%x data 0x%llx\n", msr, data);
2299                break;
2300        case MSR_K7_CLK_CTL:
2301                /*
2302                 * Ignore all writes to this no longer documented MSR.
2303                 * Writes are only relevant for old K7 processors,
2304                 * all pre-dating SVM, but a recommended workaround from
2305                 * AMD for these chips. It is possible to specify the
2306                 * affected processor models on the command line, hence
2307                 * the need to ignore the workaround.
2308                 */
2309                break;
2310        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2311        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2312        case HV_X64_MSR_CRASH_CTL:
2313        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2314                return kvm_hv_set_msr_common(vcpu, msr, data,
2315                                             msr_info->host_initiated);
2316        case MSR_IA32_BBL_CR_CTL3:
2317                /* Drop writes to this legacy MSR -- see rdmsr
2318                 * counterpart for further detail.
2319                 */
2320                vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2321                break;
2322        case MSR_AMD64_OSVW_ID_LENGTH:
2323                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2324                        return 1;
2325                vcpu->arch.osvw.length = data;
2326                break;
2327        case MSR_AMD64_OSVW_STATUS:
2328                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2329                        return 1;
2330                vcpu->arch.osvw.status = data;
2331                break;
2332        case MSR_PLATFORM_INFO:
2333                if (!msr_info->host_initiated ||
2334                    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2335                    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2336                     cpuid_fault_enabled(vcpu)))
2337                        return 1;
2338                vcpu->arch.msr_platform_info = data;
2339                break;
2340        case MSR_MISC_FEATURES_ENABLES:
2341                if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2342                    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2343                     !supports_cpuid_fault(vcpu)))
2344                        return 1;
2345                vcpu->arch.msr_misc_features_enables = data;
2346                break;
2347        default:
2348                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2349                        return xen_hvm_config(vcpu, data);
2350                if (kvm_pmu_is_valid_msr(vcpu, msr))
2351                        return kvm_pmu_set_msr(vcpu, msr_info);
2352                if (!ignore_msrs) {
2353                        vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2354                                    msr, data);
2355                        return 1;
2356                } else {
2357                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2358                                    msr, data);
2359                        break;
2360                }
2361        }
2362        return 0;
2363}
2364EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2365
2366
2367/*
2368 * Reads an msr value (of 'msr_index') into 'pdata'.
2369 * Returns 0 on success, non-0 otherwise.
2370 * Assumes vcpu_load() was already called.
2371 */
2372int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2373{
2374        return kvm_x86_ops->get_msr(vcpu, msr);
2375}
2376EXPORT_SYMBOL_GPL(kvm_get_msr);
2377
2378static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2379{
2380        u64 data;
2381        u64 mcg_cap = vcpu->arch.mcg_cap;
2382        unsigned bank_num = mcg_cap & 0xff;
2383
2384        switch (msr) {
2385        case MSR_IA32_P5_MC_ADDR:
2386        case MSR_IA32_P5_MC_TYPE:
2387                data = 0;
2388                break;
2389        case MSR_IA32_MCG_CAP:
2390                data = vcpu->arch.mcg_cap;
2391                break;
2392        case MSR_IA32_MCG_CTL:
2393                if (!(mcg_cap & MCG_CTL_P))
2394                        return 1;
2395                data = vcpu->arch.mcg_ctl;
2396                break;
2397        case MSR_IA32_MCG_STATUS:
2398                data = vcpu->arch.mcg_status;
2399                break;
2400        default:
2401                if (msr >= MSR_IA32_MC0_CTL &&
2402                    msr < MSR_IA32_MCx_CTL(bank_num)) {
2403                        u32 offset = msr - MSR_IA32_MC0_CTL;
2404                        data = vcpu->arch.mce_banks[offset];
2405                        break;
2406                }
2407                return 1;
2408        }
2409        *pdata = data;
2410        return 0;
2411}
2412
2413int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2414{
2415        switch (msr_info->index) {
2416        case MSR_IA32_PLATFORM_ID:
2417        case MSR_IA32_EBL_CR_POWERON:
2418        case MSR_IA32_DEBUGCTLMSR:
2419        case MSR_IA32_LASTBRANCHFROMIP:
2420        case MSR_IA32_LASTBRANCHTOIP:
2421        case MSR_IA32_LASTINTFROMIP:
2422        case MSR_IA32_LASTINTTOIP:
2423        case MSR_K8_SYSCFG:
2424        case MSR_K8_TSEG_ADDR:
2425        case MSR_K8_TSEG_MASK:
2426        case MSR_K7_HWCR:
2427        case MSR_VM_HSAVE_PA:
2428        case MSR_K8_INT_PENDING_MSG:
2429        case MSR_AMD64_NB_CFG:
2430        case MSR_FAM10H_MMIO_CONF_BASE:
2431        case MSR_AMD64_BU_CFG2:
2432        case MSR_IA32_PERF_CTL:
2433        case MSR_AMD64_DC_CFG:
2434                msr_info->data = 0;
2435                break;
2436        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2437        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2438        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2439        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2440                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2441                        return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2442                msr_info->data = 0;
2443                break;
2444        case MSR_IA32_UCODE_REV:
2445                msr_info->data = 0x100000000ULL;
2446                break;
2447        case MSR_MTRRcap:
2448        case 0x200 ... 0x2ff:
2449                return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2450        case 0xcd: /* fsb frequency */
2451                msr_info->data = 3;
2452                break;
2453                /*
2454                 * MSR_EBC_FREQUENCY_ID
2455                 * Conservative value valid for even the basic CPU models.
2456                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2457                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2458                 * and 266MHz for model 3, or 4. Set Core Clock
2459                 * Frequency to System Bus Frequency Ratio to 1 (bits
2460                 * 31:24) even though these are only valid for CPU
2461                 * models > 2, however guests may end up dividing or
2462                 * multiplying by zero otherwise.
2463                 */
2464        case MSR_EBC_FREQUENCY_ID:
2465                msr_info->data = 1 << 24;
2466                break;
2467        case MSR_IA32_APICBASE:
2468                msr_info->data = kvm_get_apic_base(vcpu);
2469                break;
2470        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2471                return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2472                break;
2473        case MSR_IA32_TSCDEADLINE:
2474                msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2475                break;
2476        case MSR_IA32_TSC_ADJUST:
2477                msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2478                break;
2479        case MSR_IA32_MISC_ENABLE:
2480                msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2481                break;
2482        case MSR_IA32_SMBASE:
2483                if (!msr_info->host_initiated)
2484                        return 1;
2485                msr_info->data = vcpu->arch.smbase;
2486                break;
2487        case MSR_IA32_PERF_STATUS:
2488                /* TSC increment by tick */
2489                msr_info->data = 1000ULL;
2490                /* CPU multiplier */
2491                msr_info->data |= (((uint64_t)4ULL) << 40);
2492                break;
2493        case MSR_EFER:
2494                msr_info->data = vcpu->arch.efer;
2495                break;
2496        case MSR_KVM_WALL_CLOCK:
2497        case MSR_KVM_WALL_CLOCK_NEW:
2498                msr_info->data = vcpu->kvm->arch.wall_clock;
2499                break;
2500        case MSR_KVM_SYSTEM_TIME:
2501        case MSR_KVM_SYSTEM_TIME_NEW:
2502                msr_info->data = vcpu->arch.time;
2503                break;
2504        case MSR_KVM_ASYNC_PF_EN:
2505                msr_info->data = vcpu->arch.apf.msr_val;
2506                break;
2507        case MSR_KVM_STEAL_TIME:
2508                msr_info->data = vcpu->arch.st.msr_val;
2509                break;
2510        case MSR_KVM_PV_EOI_EN:
2511                msr_info->data = vcpu->arch.pv_eoi.msr_val;
2512                break;
2513        case MSR_IA32_P5_MC_ADDR:
2514        case MSR_IA32_P5_MC_TYPE:
2515        case MSR_IA32_MCG_CAP:
2516        case MSR_IA32_MCG_CTL:
2517        case MSR_IA32_MCG_STATUS:
2518        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2519                return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2520        case MSR_K7_CLK_CTL:
2521                /*
2522                 * Provide expected ramp-up count for K7. All other
2523                 * are set to zero, indicating minimum divisors for
2524                 * every field.
2525                 *
2526                 * This prevents guest kernels on AMD host with CPU
2527                 * type 6, model 8 and higher from exploding due to
2528                 * the rdmsr failing.
2529                 */
2530                msr_info->data = 0x20000000;
2531                break;
2532        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2533        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2534        case HV_X64_MSR_CRASH_CTL:
2535        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2536                return kvm_hv_get_msr_common(vcpu,
2537                                             msr_info->index, &msr_info->data);
2538                break;
2539        case MSR_IA32_BBL_CR_CTL3:
2540                /* This legacy MSR exists but isn't fully documented in current
2541                 * silicon.  It is however accessed by winxp in very narrow
2542                 * scenarios where it sets bit #19, itself documented as
2543                 * a "reserved" bit.  Best effort attempt to source coherent
2544                 * read data here should the balance of the register be
2545                 * interpreted by the guest:
2546                 *
2547                 * L2 cache control register 3: 64GB range, 256KB size,
2548                 * enabled, latency 0x1, configured
2549                 */
2550                msr_info->data = 0xbe702111;
2551                break;
2552        case MSR_AMD64_OSVW_ID_LENGTH:
2553                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2554                        return 1;
2555                msr_info->data = vcpu->arch.osvw.length;
2556                break;
2557        case MSR_AMD64_OSVW_STATUS:
2558                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2559                        return 1;
2560                msr_info->data = vcpu->arch.osvw.status;
2561                break;
2562        case MSR_PLATFORM_INFO:
2563                msr_info->data = vcpu->arch.msr_platform_info;
2564                break;
2565        case MSR_MISC_FEATURES_ENABLES:
2566                msr_info->data = vcpu->arch.msr_misc_features_enables;
2567                break;
2568        default:
2569                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2570                        return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2571                if (!ignore_msrs) {
2572                        vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2573                                               msr_info->index);
2574                        return 1;
2575                } else {
2576                        vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2577                        msr_info->data = 0;
2578                }
2579                break;
2580        }
2581        return 0;
2582}
2583EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2584
2585/*
2586 * Read or write a bunch of msrs. All parameters are kernel addresses.
2587 *
2588 * @return number of msrs set successfully.
2589 */
2590static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2591                    struct kvm_msr_entry *entries,
2592                    int (*do_msr)(struct kvm_vcpu *vcpu,
2593                                  unsigned index, u64 *data))
2594{
2595        int i, idx;
2596
2597        idx = srcu_read_lock(&vcpu->kvm->srcu);
2598        for (i = 0; i < msrs->nmsrs; ++i)
2599                if (do_msr(vcpu, entries[i].index, &entries[i].data))
2600                        break;
2601        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2602
2603        return i;
2604}
2605
2606/*
2607 * Read or write a bunch of msrs. Parameters are user addresses.
2608 *
2609 * @return number of msrs set successfully.
2610 */
2611static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2612                  int (*do_msr)(struct kvm_vcpu *vcpu,
2613                                unsigned index, u64 *data),
2614                  int writeback)
2615{
2616        struct kvm_msrs msrs;
2617        struct kvm_msr_entry *entries;
2618        int r, n;
2619        unsigned size;
2620
2621        r = -EFAULT;
2622        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2623                goto out;
2624
2625        r = -E2BIG;
2626        if (msrs.nmsrs >= MAX_IO_MSRS)
2627                goto out;
2628
2629        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2630        entries = memdup_user(user_msrs->entries, size);
2631        if (IS_ERR(entries)) {
2632                r = PTR_ERR(entries);
2633                goto out;
2634        }
2635
2636        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2637        if (r < 0)
2638                goto out_free;
2639
2640        r = -EFAULT;
2641        if (writeback && copy_to_user(user_msrs->entries, entries, size))
2642                goto out_free;
2643
2644        r = n;
2645
2646out_free:
2647        kfree(entries);
2648out:
2649        return r;
2650}
2651
2652int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2653{
2654        int r;
2655
2656        switch (ext) {
2657        case KVM_CAP_IRQCHIP:
2658        case KVM_CAP_HLT:
2659        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2660        case KVM_CAP_SET_TSS_ADDR:
2661        case KVM_CAP_EXT_CPUID:
2662        case KVM_CAP_EXT_EMUL_CPUID:
2663        case KVM_CAP_CLOCKSOURCE:
2664        case KVM_CAP_PIT:
2665        case KVM_CAP_NOP_IO_DELAY:
2666        case KVM_CAP_MP_STATE:
2667        case KVM_CAP_SYNC_MMU:
2668        case KVM_CAP_USER_NMI:
2669        case KVM_CAP_REINJECT_CONTROL:
2670        case KVM_CAP_IRQ_INJECT_STATUS:
2671        case KVM_CAP_IOEVENTFD:
2672        case KVM_CAP_IOEVENTFD_NO_LENGTH:
2673        case KVM_CAP_PIT2:
2674        case KVM_CAP_PIT_STATE2:
2675        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2676        case KVM_CAP_XEN_HVM:
2677        case KVM_CAP_VCPU_EVENTS:
2678        case KVM_CAP_HYPERV:
2679        case KVM_CAP_HYPERV_VAPIC:
2680        case KVM_CAP_HYPERV_SPIN:
2681        case KVM_CAP_HYPERV_SYNIC:
2682        case KVM_CAP_HYPERV_SYNIC2:
2683        case KVM_CAP_HYPERV_VP_INDEX:
2684        case KVM_CAP_PCI_SEGMENT:
2685        case KVM_CAP_DEBUGREGS:
2686        case KVM_CAP_X86_ROBUST_SINGLESTEP:
2687        case KVM_CAP_XSAVE:
2688        case KVM_CAP_ASYNC_PF:
2689        case KVM_CAP_GET_TSC_KHZ:
2690        case KVM_CAP_KVMCLOCK_CTRL:
2691        case KVM_CAP_READONLY_MEM:
2692        case KVM_CAP_HYPERV_TIME:
2693        case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2694        case KVM_CAP_TSC_DEADLINE_TIMER:
2695        case KVM_CAP_ENABLE_CAP_VM:
2696        case KVM_CAP_DISABLE_QUIRKS:
2697        case KVM_CAP_SET_BOOT_CPU_ID:
2698        case KVM_CAP_SPLIT_IRQCHIP:
2699        case KVM_CAP_IMMEDIATE_EXIT:
2700                r = 1;
2701                break;
2702        case KVM_CAP_ADJUST_CLOCK:
2703                r = KVM_CLOCK_TSC_STABLE;
2704                break;
2705        case KVM_CAP_X86_GUEST_MWAIT:
2706                r = kvm_mwait_in_guest();
2707                break;
2708        case KVM_CAP_X86_SMM:
2709                /* SMBASE is usually relocated above 1M on modern chipsets,
2710                 * and SMM handlers might indeed rely on 4G segment limits,
2711                 * so do not report SMM to be available if real mode is
2712                 * emulated via vm86 mode.  Still, do not go to great lengths
2713                 * to avoid userspace's usage of the feature, because it is a
2714                 * fringe case that is not enabled except via specific settings
2715                 * of the module parameters.
2716                 */
2717                r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2718                break;
2719        case KVM_CAP_VAPIC:
2720                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2721                break;
2722        case KVM_CAP_NR_VCPUS:
2723                r = KVM_SOFT_MAX_VCPUS;
2724                break;
2725        case KVM_CAP_MAX_VCPUS:
2726                r = KVM_MAX_VCPUS;
2727                break;
2728        case KVM_CAP_NR_MEMSLOTS:
2729                r = KVM_USER_MEM_SLOTS;
2730                break;
2731        case KVM_CAP_PV_MMU:    /* obsolete */
2732                r = 0;
2733                break;
2734        case KVM_CAP_MCE:
2735                r = KVM_MAX_MCE_BANKS;
2736                break;
2737        case KVM_CAP_XCRS:
2738                r = boot_cpu_has(X86_FEATURE_XSAVE);
2739                break;
2740        case KVM_CAP_TSC_CONTROL:
2741                r = kvm_has_tsc_control;
2742                break;
2743        case KVM_CAP_X2APIC_API:
2744                r = KVM_X2APIC_API_VALID_FLAGS;
2745                break;
2746        default:
2747                r = 0;
2748                break;
2749        }
2750        return r;
2751
2752}
2753
2754long kvm_arch_dev_ioctl(struct file *filp,
2755                        unsigned int ioctl, unsigned long arg)
2756{
2757        void __user *argp = (void __user *)arg;
2758        long r;
2759
2760        switch (ioctl) {
2761        case KVM_GET_MSR_INDEX_LIST: {
2762                struct kvm_msr_list __user *user_msr_list = argp;
2763                struct kvm_msr_list msr_list;
2764                unsigned n;
2765
2766                r = -EFAULT;
2767                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2768                        goto out;
2769                n = msr_list.nmsrs;
2770                msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2771                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2772                        goto out;
2773                r = -E2BIG;
2774                if (n < msr_list.nmsrs)
2775                        goto out;
2776                r = -EFAULT;
2777                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2778                                 num_msrs_to_save * sizeof(u32)))
2779                        goto out;
2780                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2781                                 &emulated_msrs,
2782                                 num_emulated_msrs * sizeof(u32)))
2783                        goto out;
2784                r = 0;
2785                break;
2786        }
2787        case KVM_GET_SUPPORTED_CPUID:
2788        case KVM_GET_EMULATED_CPUID: {
2789                struct kvm_cpuid2 __user *cpuid_arg = argp;
2790                struct kvm_cpuid2 cpuid;
2791
2792                r = -EFAULT;
2793                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2794                        goto out;
2795
2796                r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2797                                            ioctl);
2798                if (r)
2799                        goto out;
2800
2801                r = -EFAULT;
2802                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2803                        goto out;
2804                r = 0;
2805                break;
2806        }
2807        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2808                r = -EFAULT;
2809                if (copy_to_user(argp, &kvm_mce_cap_supported,
2810                                 sizeof(kvm_mce_cap_supported)))
2811                        goto out;
2812                r = 0;
2813                break;
2814        }
2815        default:
2816                r = -EINVAL;
2817        }
2818out:
2819        return r;
2820}
2821
2822static void wbinvd_ipi(void *garbage)
2823{
2824        wbinvd();
2825}
2826
2827static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2828{
2829        return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2830}
2831
2832void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2833{
2834        /* Address WBINVD may be executed by guest */
2835        if (need_emulate_wbinvd(vcpu)) {
2836                if (kvm_x86_ops->has_wbinvd_exit())
2837                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2838                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2839                        smp_call_function_single(vcpu->cpu,
2840                                        wbinvd_ipi, NULL, 1);
2841        }
2842
2843        kvm_x86_ops->vcpu_load(vcpu, cpu);
2844
2845        /* Apply any externally detected TSC adjustments (due to suspend) */
2846        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2847                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2848                vcpu->arch.tsc_offset_adjustment = 0;
2849                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2850        }
2851
2852        if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2853                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2854                                rdtsc() - vcpu->arch.last_host_tsc;
2855                if (tsc_delta < 0)
2856                        mark_tsc_unstable("KVM discovered backwards TSC");
2857
2858                if (check_tsc_unstable()) {
2859                        u64 offset = kvm_compute_tsc_offset(vcpu,
2860                                                vcpu->arch.last_guest_tsc);
2861                        kvm_vcpu_write_tsc_offset(vcpu, offset);
2862                        vcpu->arch.tsc_catchup = 1;
2863                }
2864
2865                if (kvm_lapic_hv_timer_in_use(vcpu))
2866                        kvm_lapic_restart_hv_timer(vcpu);
2867
2868                /*
2869                 * On a host with synchronized TSC, there is no need to update
2870                 * kvmclock on vcpu->cpu migration
2871                 */
2872                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2873                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2874                if (vcpu->cpu != cpu)
2875                        kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2876                vcpu->cpu = cpu;
2877        }
2878
2879        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2880}
2881
2882static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2883{
2884        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2885                return;
2886
2887        vcpu->arch.st.steal.preempted = 1;
2888
2889        kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2890                        &vcpu->arch.st.steal.preempted,
2891                        offsetof(struct kvm_steal_time, preempted),
2892                        sizeof(vcpu->arch.st.steal.preempted));
2893}
2894
2895void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2896{
2897        int idx;
2898
2899        if (vcpu->preempted)
2900                vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2901
2902        /*
2903         * Disable page faults because we're in atomic context here.
2904         * kvm_write_guest_offset_cached() would call might_fault()
2905         * that relies on pagefault_disable() to tell if there's a
2906         * bug. NOTE: the write to guest memory may not go through if
2907         * during postcopy live migration or if there's heavy guest
2908         * paging.
2909         */
2910        pagefault_disable();
2911        /*
2912         * kvm_memslots() will be called by
2913         * kvm_write_guest_offset_cached() so take the srcu lock.
2914         */
2915        idx = srcu_read_lock(&vcpu->kvm->srcu);
2916        kvm_steal_time_set_preempted(vcpu);
2917        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2918        pagefault_enable();
2919        kvm_x86_ops->vcpu_put(vcpu);
2920        kvm_put_guest_fpu(vcpu);
2921        vcpu->arch.last_host_tsc = rdtsc();
2922}
2923
2924static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2925                                    struct kvm_lapic_state *s)
2926{
2927        if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2928                kvm_x86_ops->sync_pir_to_irr(vcpu);
2929
2930        return kvm_apic_get_state(vcpu, s);
2931}
2932
2933static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2934                                    struct kvm_lapic_state *s)
2935{
2936        int r;
2937
2938        r = kvm_apic_set_state(vcpu, s);
2939        if (r)
2940                return r;
2941        update_cr8_intercept(vcpu);
2942
2943        return 0;
2944}
2945
2946static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2947{
2948        return (!lapic_in_kernel(vcpu) ||
2949                kvm_apic_accept_pic_intr(vcpu));
2950}
2951
2952/*
2953 * if userspace requested an interrupt window, check that the
2954 * interrupt window is open.
2955 *
2956 * No need to exit to userspace if we already have an interrupt queued.
2957 */
2958static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2959{
2960        return kvm_arch_interrupt_allowed(vcpu) &&
2961                !kvm_cpu_has_interrupt(vcpu) &&
2962                !kvm_event_needs_reinjection(vcpu) &&
2963                kvm_cpu_accept_dm_intr(vcpu);
2964}
2965
2966static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2967                                    struct kvm_interrupt *irq)
2968{
2969        if (irq->irq >= KVM_NR_INTERRUPTS)
2970                return -EINVAL;
2971
2972        if (!irqchip_in_kernel(vcpu->kvm)) {
2973                kvm_queue_interrupt(vcpu, irq->irq, false);
2974                kvm_make_request(KVM_REQ_EVENT, vcpu);
2975                return 0;
2976        }
2977
2978        /*
2979         * With in-kernel LAPIC, we only use this to inject EXTINT, so
2980         * fail for in-kernel 8259.
2981         */
2982        if (pic_in_kernel(vcpu->kvm))
2983                return -ENXIO;
2984
2985        if (vcpu->arch.pending_external_vector != -1)
2986                return -EEXIST;
2987
2988        vcpu->arch.pending_external_vector = irq->irq;
2989        kvm_make_request(KVM_REQ_EVENT, vcpu);
2990        return 0;
2991}
2992
2993static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2994{
2995        kvm_inject_nmi(vcpu);
2996
2997        return 0;
2998}
2999
3000static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3001{
3002        kvm_make_request(KVM_REQ_SMI, vcpu);
3003
3004        return 0;
3005}
3006
3007static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3008                                           struct kvm_tpr_access_ctl *tac)
3009{
3010        if (tac->flags)
3011                return -EINVAL;
3012        vcpu->arch.tpr_access_reporting = !!tac->enabled;
3013        return 0;
3014}
3015
3016static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3017                                        u64 mcg_cap)
3018{
3019        int r;
3020        unsigned bank_num = mcg_cap & 0xff, bank;
3021
3022        r = -EINVAL;
3023        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3024                goto out;
3025        if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3026                goto out;
3027        r = 0;
3028        vcpu->arch.mcg_cap = mcg_cap;
3029        /* Init IA32_MCG_CTL to all 1s */
3030        if (mcg_cap & MCG_CTL_P)
3031                vcpu->arch.mcg_ctl = ~(u64)0;
3032        /* Init IA32_MCi_CTL to all 1s */
3033        for (bank = 0; bank < bank_num; bank++)
3034                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3035
3036        if (kvm_x86_ops->setup_mce)
3037                kvm_x86_ops->setup_mce(vcpu);
3038out:
3039        return r;
3040}
3041
3042static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3043                                      struct kvm_x86_mce *mce)
3044{
3045        u64 mcg_cap = vcpu->arch.mcg_cap;
3046        unsigned bank_num = mcg_cap & 0xff;
3047        u64 *banks = vcpu->arch.mce_banks;
3048
3049        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3050                return -EINVAL;
3051        /*
3052         * if IA32_MCG_CTL is not all 1s, the uncorrected error
3053         * reporting is disabled
3054         */
3055        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3056            vcpu->arch.mcg_ctl != ~(u64)0)
3057                return 0;
3058        banks += 4 * mce->bank;
3059        /*
3060         * if IA32_MCi_CTL is not all 1s, the uncorrected error
3061         * reporting is disabled for the bank
3062         */
3063        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3064                return 0;
3065        if (mce->status & MCI_STATUS_UC) {
3066                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3067                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3068                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3069                        return 0;
3070                }
3071                if (banks[1] & MCI_STATUS_VAL)
3072                        mce->status |= MCI_STATUS_OVER;
3073                banks[2] = mce->addr;
3074                banks[3] = mce->misc;
3075                vcpu->arch.mcg_status = mce->mcg_status;
3076                banks[1] = mce->status;
3077                kvm_queue_exception(vcpu, MC_VECTOR);
3078        } else if (!(banks[1] & MCI_STATUS_VAL)
3079                   || !(banks[1] & MCI_STATUS_UC)) {
3080                if (banks[1] & MCI_STATUS_VAL)
3081                        mce->status |= MCI_STATUS_OVER;
3082                banks[2] = mce->addr;
3083                banks[3] = mce->misc;
3084                banks[1] = mce->status;
3085        } else
3086                banks[1] |= MCI_STATUS_OVER;
3087        return 0;
3088}
3089
3090static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3091                                               struct kvm_vcpu_events *events)
3092{
3093        process_nmi(vcpu);
3094        /*
3095         * FIXME: pass injected and pending separately.  This is only
3096         * needed for nested virtualization, whose state cannot be
3097         * migrated yet.  For now we can combine them.
3098         */
3099        events->exception.injected =
3100                (vcpu->arch.exception.pending ||
3101                 vcpu->arch.exception.injected) &&
3102                !kvm_exception_is_soft(vcpu->arch.exception.nr);
3103        events->exception.nr = vcpu->arch.exception.nr;
3104        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3105        events->exception.pad = 0;
3106        events->exception.error_code = vcpu->arch.exception.error_code;
3107
3108        events->interrupt.injected =
3109                vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3110        events->interrupt.nr = vcpu->arch.interrupt.nr;
3111        events->interrupt.soft = 0;
3112        events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3113
3114        events->nmi.injected = vcpu->arch.nmi_injected;
3115        events->nmi.pending = vcpu->arch.nmi_pending != 0;
3116        events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3117        events->nmi.pad = 0;
3118
3119        events->sipi_vector = 0; /* never valid when reporting to user space */
3120
3121        events->smi.smm = is_smm(vcpu);
3122        events->smi.pending = vcpu->arch.smi_pending;
3123        events->smi.smm_inside_nmi =
3124                !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3125        events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3126
3127        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3128                         | KVM_VCPUEVENT_VALID_SHADOW
3129                         | KVM_VCPUEVENT_VALID_SMM);
3130        memset(&events->reserved, 0, sizeof(events->reserved));
3131}
3132
3133static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3134
3135static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3136                                              struct kvm_vcpu_events *events)
3137{
3138        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3139                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3140                              | KVM_VCPUEVENT_VALID_SHADOW
3141                              | KVM_VCPUEVENT_VALID_SMM))
3142                return -EINVAL;
3143
3144        if (events->exception.injected &&
3145            (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3146             is_guest_mode(vcpu)))
3147                return -EINVAL;
3148
3149        /* INITs are latched while in SMM */
3150        if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3151            (events->smi.smm || events->smi.pending) &&
3152            vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3153                return -EINVAL;
3154
3155        process_nmi(vcpu);
3156        vcpu->arch.exception.injected = false;
3157        vcpu->arch.exception.pending = events->exception.injected;
3158        vcpu->arch.exception.nr = events->exception.nr;
3159        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3160        vcpu->arch.exception.error_code = events->exception.error_code;
3161
3162        vcpu->arch.interrupt.pending = events->interrupt.injected;
3163        vcpu->arch.interrupt.nr = events->interrupt.nr;
3164        vcpu->arch.interrupt.soft = events->interrupt.soft;
3165        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3166                kvm_x86_ops->set_interrupt_shadow(vcpu,
3167                                                  events->interrupt.shadow);
3168
3169        vcpu->arch.nmi_injected = events->nmi.injected;
3170        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3171                vcpu->arch.nmi_pending = events->nmi.pending;
3172        kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3173
3174        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3175            lapic_in_kernel(vcpu))
3176                vcpu->arch.apic->sipi_vector = events->sipi_vector;
3177
3178        if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3179                u32 hflags = vcpu->arch.hflags;
3180                if (events->smi.smm)
3181                        hflags |= HF_SMM_MASK;
3182                else
3183                        hflags &= ~HF_SMM_MASK;
3184                kvm_set_hflags(vcpu, hflags);
3185
3186                vcpu->arch.smi_pending = events->smi.pending;
3187
3188                if (events->smi.smm) {
3189                        if (events->smi.smm_inside_nmi)
3190                                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3191                        else
3192                                vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3193                        if (lapic_in_kernel(vcpu)) {
3194                                if (events->smi.latched_init)
3195                                        set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3196                                else
3197                                        clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3198                        }
3199                }
3200        }
3201
3202        kvm_make_request(KVM_REQ_EVENT, vcpu);
3203
3204        return 0;
3205}
3206
3207static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3208                                             struct kvm_debugregs *dbgregs)
3209{
3210        unsigned long val;
3211
3212        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3213        kvm_get_dr(vcpu, 6, &val);
3214        dbgregs->dr6 = val;
3215        dbgregs->dr7 = vcpu->arch.dr7;
3216        dbgregs->flags = 0;
3217        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3218}
3219
3220static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3221                                            struct kvm_debugregs *dbgregs)
3222{
3223        if (dbgregs->flags)
3224                return -EINVAL;
3225
3226        if (dbgregs->dr6 & ~0xffffffffull)
3227                return -EINVAL;
3228        if (dbgregs->dr7 & ~0xffffffffull)
3229                return -EINVAL;
3230
3231        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3232        kvm_update_dr0123(vcpu);
3233        vcpu->arch.dr6 = dbgregs->dr6;
3234        kvm_update_dr6(vcpu);
3235        vcpu->arch.dr7 = dbgregs->dr7;
3236        kvm_update_dr7(vcpu);
3237
3238        return 0;
3239}
3240
3241#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3242
3243static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3244{
3245        struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3246        u64 xstate_bv = xsave->header.xfeatures;
3247        u64 valid;
3248
3249        /*
3250         * Copy legacy XSAVE area, to avoid complications with CPUID
3251         * leaves 0 and 1 in the loop below.
3252         */
3253        memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3254
3255        /* Set XSTATE_BV */
3256        xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3257        *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3258
3259        /*
3260         * Copy each region from the possibly compacted offset to the
3261         * non-compacted offset.
3262         */
3263        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3264        while (valid) {
3265                u64 feature = valid & -valid;
3266                int index = fls64(feature) - 1;
3267                void *src = get_xsave_addr(xsave, feature);
3268
3269                if (src) {
3270                        u32 size, offset, ecx, edx;
3271                        cpuid_count(XSTATE_CPUID, index,
3272                                    &size, &offset, &ecx, &edx);
3273                        if (feature == XFEATURE_MASK_PKRU)
3274                                memcpy(dest + offset, &vcpu->arch.pkru,
3275                                       sizeof(vcpu->arch.pkru));
3276                        else
3277                                memcpy(dest + offset, src, size);
3278
3279                }
3280
3281                valid -= feature;
3282        }
3283}
3284
3285static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3286{
3287        struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3288        u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3289        u64 valid;
3290
3291        /*
3292         * Copy legacy XSAVE area, to avoid complications with CPUID
3293         * leaves 0 and 1 in the loop below.
3294         */
3295        memcpy(xsave, src, XSAVE_HDR_OFFSET);
3296
3297        /* Set XSTATE_BV and possibly XCOMP_BV.  */
3298        xsave->header.xfeatures = xstate_bv;
3299        if (boot_cpu_has(X86_FEATURE_XSAVES))
3300                xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3301
3302        /*
3303         * Copy each region from the non-compacted offset to the
3304         * possibly compacted offset.
3305         */
3306        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3307        while (valid) {
3308                u64 feature = valid & -valid;
3309                int index = fls64(feature) - 1;
3310                void *dest = get_xsave_addr(xsave, feature);
3311
3312                if (dest) {
3313                        u32 size, offset, ecx, edx;
3314                        cpuid_count(XSTATE_CPUID, index,
3315                                    &size, &offset, &ecx, &edx);
3316                        if (feature == XFEATURE_MASK_PKRU)
3317                                memcpy(&vcpu->arch.pkru, src + offset,
3318                                       sizeof(vcpu->arch.pkru));
3319                        else
3320                                memcpy(dest, src + offset, size);
3321                }
3322
3323                valid -= feature;
3324        }
3325}
3326
3327static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3328                                         struct kvm_xsave *guest_xsave)
3329{
3330        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3331                memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3332                fill_xsave((u8 *) guest_xsave->region, vcpu);
3333        } else {
3334                memcpy(guest_xsave->region,
3335                        &vcpu->arch.guest_fpu.state.fxsave,
3336                        sizeof(struct fxregs_state));
3337                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3338                        XFEATURE_MASK_FPSSE;
3339        }
3340}
3341
3342#define XSAVE_MXCSR_OFFSET 24
3343
3344static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3345                                        struct kvm_xsave *guest_xsave)
3346{
3347        u64 xstate_bv =
3348                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3349        u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3350
3351        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3352                /*
3353                 * Here we allow setting states that are not present in
3354                 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3355                 * with old userspace.
3356                 */
3357                if (xstate_bv & ~kvm_supported_xcr0() ||
3358                        mxcsr & ~mxcsr_feature_mask)
3359                        return -EINVAL;
3360                load_xsave(vcpu, (u8 *)guest_xsave->region);
3361        } else {
3362                if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3363                        mxcsr & ~mxcsr_feature_mask)
3364                        return -EINVAL;
3365                memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3366                        guest_xsave->region, sizeof(struct fxregs_state));
3367        }
3368        return 0;
3369}
3370
3371static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3372                                        struct kvm_xcrs *guest_xcrs)
3373{
3374        if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3375                guest_xcrs->nr_xcrs = 0;
3376                return;
3377        }
3378
3379        guest_xcrs->nr_xcrs = 1;
3380        guest_xcrs->flags = 0;
3381        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3382        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3383}
3384
3385static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3386                                       struct kvm_xcrs *guest_xcrs)
3387{
3388        int i, r = 0;
3389
3390        if (!boot_cpu_has(X86_FEATURE_XSAVE))
3391                return -EINVAL;
3392
3393        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3394                return -EINVAL;
3395
3396        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3397                /* Only support XCR0 currently */
3398                if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3399                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3400                                guest_xcrs->xcrs[i].value);
3401                        break;
3402                }
3403        if (r)
3404                r = -EINVAL;
3405        return r;
3406}
3407
3408/*
3409 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3410 * stopped by the hypervisor.  This function will be called from the host only.
3411 * EINVAL is returned when the host attempts to set the flag for a guest that
3412 * does not support pv clocks.
3413 */
3414static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3415{
3416        if (!vcpu->arch.pv_time_enabled)
3417                return -EINVAL;
3418        vcpu->arch.pvclock_set_guest_stopped_request = true;
3419        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3420        return 0;
3421}
3422
3423static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3424                                     struct kvm_enable_cap *cap)
3425{
3426        if (cap->flags)
3427                return -EINVAL;
3428
3429        switch (cap->cap) {
3430        case KVM_CAP_HYPERV_SYNIC2:
3431                if (cap->args[0])
3432                        return -EINVAL;
3433        case KVM_CAP_HYPERV_SYNIC:
3434                if (!irqchip_in_kernel(vcpu->kvm))
3435                        return -EINVAL;
3436                return kvm_hv_activate_synic(vcpu, cap->cap ==
3437                                             KVM_CAP_HYPERV_SYNIC2);
3438        default:
3439                return -EINVAL;
3440        }
3441}
3442
3443long kvm_arch_vcpu_ioctl(struct file *filp,
3444                         unsigned int ioctl, unsigned long arg)
3445{
3446        struct kvm_vcpu *vcpu = filp->private_data;
3447        void __user *argp = (void __user *)arg;
3448        int r;
3449        union {
3450                struct kvm_lapic_state *lapic;
3451                struct kvm_xsave *xsave;
3452                struct kvm_xcrs *xcrs;
3453                void *buffer;
3454        } u;
3455
3456        u.buffer = NULL;
3457        switch (ioctl) {
3458        case KVM_GET_LAPIC: {
3459                r = -EINVAL;
3460                if (!lapic_in_kernel(vcpu))
3461                        goto out;
3462                u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3463
3464                r = -ENOMEM;
3465                if (!u.lapic)
3466                        goto out;
3467                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3468                if (r)
3469                        goto out;
3470                r = -EFAULT;
3471                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3472                        goto out;
3473                r = 0;
3474                break;
3475        }
3476        case KVM_SET_LAPIC: {
3477                r = -EINVAL;
3478                if (!lapic_in_kernel(vcpu))
3479                        goto out;
3480                u.lapic = memdup_user(argp, sizeof(*u.lapic));
3481                if (IS_ERR(u.lapic))
3482                        return PTR_ERR(u.lapic);
3483
3484                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3485                break;
3486        }
3487        case KVM_INTERRUPT: {
3488                struct kvm_interrupt irq;
3489
3490                r = -EFAULT;
3491                if (copy_from_user(&irq, argp, sizeof irq))
3492                        goto out;
3493                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3494                break;
3495        }
3496        case KVM_NMI: {
3497                r = kvm_vcpu_ioctl_nmi(vcpu);
3498                break;
3499        }
3500        case KVM_SMI: {
3501                r = kvm_vcpu_ioctl_smi(vcpu);
3502                break;
3503        }
3504        case KVM_SET_CPUID: {
3505                struct kvm_cpuid __user *cpuid_arg = argp;
3506                struct kvm_cpuid cpuid;
3507
3508                r = -EFAULT;
3509                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3510                        goto out;
3511                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3512                break;
3513        }
3514        case KVM_SET_CPUID2: {
3515                struct kvm_cpuid2 __user *cpuid_arg = argp;
3516                struct kvm_cpuid2 cpuid;
3517
3518                r = -EFAULT;
3519                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3520                        goto out;
3521                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3522                                              cpuid_arg->entries);
3523                break;
3524        }
3525        case KVM_GET_CPUID2: {
3526                struct kvm_cpuid2 __user *cpuid_arg = argp;
3527                struct kvm_cpuid2 cpuid;
3528
3529                r = -EFAULT;
3530                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3531                        goto out;
3532                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3533                                              cpuid_arg->entries);
3534                if (r)
3535                        goto out;
3536                r = -EFAULT;
3537                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3538                        goto out;
3539                r = 0;
3540                break;
3541        }
3542        case KVM_GET_MSRS:
3543                r = msr_io(vcpu, argp, do_get_msr, 1);
3544                break;
3545        case KVM_SET_MSRS:
3546                r = msr_io(vcpu, argp, do_set_msr, 0);
3547                break;
3548        case KVM_TPR_ACCESS_REPORTING: {
3549                struct kvm_tpr_access_ctl tac;
3550
3551                r = -EFAULT;
3552                if (copy_from_user(&tac, argp, sizeof tac))
3553                        goto out;
3554                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3555                if (r)
3556                        goto out;
3557                r = -EFAULT;
3558                if (copy_to_user(argp, &tac, sizeof tac))
3559                        goto out;
3560                r = 0;
3561                break;
3562        };
3563        case KVM_SET_VAPIC_ADDR: {
3564                struct kvm_vapic_addr va;
3565                int idx;
3566
3567                r = -EINVAL;
3568                if (!lapic_in_kernel(vcpu))
3569                        goto out;
3570                r = -EFAULT;
3571                if (copy_from_user(&va, argp, sizeof va))
3572                        goto out;
3573                idx = srcu_read_lock(&vcpu->kvm->srcu);
3574                r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3575                srcu_read_unlock(&vcpu->kvm->srcu, idx);
3576                break;
3577        }
3578        case KVM_X86_SETUP_MCE: {
3579                u64 mcg_cap;
3580
3581                r = -EFAULT;
3582                if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3583                        goto out;
3584                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3585                break;
3586        }
3587        case KVM_X86_SET_MCE: {
3588                struct kvm_x86_mce mce;
3589
3590                r = -EFAULT;
3591                if (copy_from_user(&mce, argp, sizeof mce))
3592                        goto out;
3593                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3594                break;
3595        }
3596        case KVM_GET_VCPU_EVENTS: {
3597                struct kvm_vcpu_events events;
3598
3599                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3600
3601                r = -EFAULT;
3602                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3603                        break;
3604                r = 0;
3605                break;
3606        }
3607        case KVM_SET_VCPU_EVENTS: {
3608                struct kvm_vcpu_events events;
3609
3610                r = -EFAULT;
3611                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3612                        break;
3613
3614                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3615                break;
3616        }
3617        case KVM_GET_DEBUGREGS: {
3618                struct kvm_debugregs dbgregs;
3619
3620                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3621
3622                r = -EFAULT;
3623                if (copy_to_user(argp, &dbgregs,
3624                                 sizeof(struct kvm_debugregs)))
3625                        break;
3626                r = 0;
3627                break;
3628        }
3629        case KVM_SET_DEBUGREGS: {
3630                struct kvm_debugregs dbgregs;
3631
3632                r = -EFAULT;
3633                if (copy_from_user(&dbgregs, argp,
3634                                   sizeof(struct kvm_debugregs)))
3635                        break;
3636
3637                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3638                break;
3639        }
3640        case KVM_GET_XSAVE: {
3641                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3642                r = -ENOMEM;
3643                if (!u.xsave)
3644                        break;
3645
3646                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3647
3648                r = -EFAULT;
3649                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3650                        break;
3651                r = 0;
3652                break;
3653        }
3654        case KVM_SET_XSAVE: {
3655                u.xsave = memdup_user(argp, sizeof(*u.xsave));
3656                if (IS_ERR(u.xsave))
3657                        return PTR_ERR(u.xsave);
3658
3659                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3660                break;
3661        }
3662        case KVM_GET_XCRS: {
3663                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3664                r = -ENOMEM;
3665                if (!u.xcrs)
3666                        break;
3667
3668                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3669
3670                r = -EFAULT;
3671                if (copy_to_user(argp, u.xcrs,
3672                                 sizeof(struct kvm_xcrs)))
3673                        break;
3674                r = 0;
3675                break;
3676        }
3677        case KVM_SET_XCRS: {
3678                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3679                if (IS_ERR(u.xcrs))
3680                        return PTR_ERR(u.xcrs);
3681
3682                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3683                break;
3684        }
3685        case KVM_SET_TSC_KHZ: {
3686                u32 user_tsc_khz;
3687
3688                r = -EINVAL;
3689                user_tsc_khz = (u32)arg;
3690
3691                if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3692                        goto out;
3693
3694                if (user_tsc_khz == 0)
3695                        user_tsc_khz = tsc_khz;
3696
3697                if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3698                        r = 0;
3699
3700                goto out;
3701        }
3702        case KVM_GET_TSC_KHZ: {
3703                r = vcpu->arch.virtual_tsc_khz;
3704                goto out;
3705        }
3706        case KVM_KVMCLOCK_CTRL: {
3707                r = kvm_set_guest_paused(vcpu);
3708                goto out;
3709        }
3710        case KVM_ENABLE_CAP: {
3711                struct kvm_enable_cap cap;
3712
3713                r = -EFAULT;
3714                if (copy_from_user(&cap, argp, sizeof(cap)))
3715                        goto out;
3716                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3717                break;
3718        }
3719        default:
3720                r = -EINVAL;
3721        }
3722out:
3723        kfree(u.buffer);
3724        return r;
3725}
3726
3727int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3728{
3729        return VM_FAULT_SIGBUS;
3730}
3731
3732static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3733{
3734        int ret;
3735
3736        if (addr > (unsigned int)(-3 * PAGE_SIZE))
3737                return -EINVAL;
3738        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3739        return ret;
3740}
3741
3742static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3743                                              u64 ident_addr)
3744{
3745        kvm->arch.ept_identity_map_addr = ident_addr;
3746        return 0;
3747}
3748
3749static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3750                                          u32 kvm_nr_mmu_pages)
3751{
3752        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3753                return -EINVAL;
3754
3755        mutex_lock(&kvm->slots_lock);
3756
3757        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3758        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3759
3760        mutex_unlock(&kvm->slots_lock);
3761        return 0;
3762}
3763
3764static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3765{
3766        return kvm->arch.n_max_mmu_pages;
3767}
3768
3769static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3770{
3771        struct kvm_pic *pic = kvm->arch.vpic;
3772        int r;
3773
3774        r = 0;
3775        switch (chip->chip_id) {
3776        case KVM_IRQCHIP_PIC_MASTER:
3777                memcpy(&chip->chip.pic, &pic->pics[0],
3778                        sizeof(struct kvm_pic_state));
3779                break;
3780        case KVM_IRQCHIP_PIC_SLAVE:
3781                memcpy(&chip->chip.pic, &pic->pics[1],
3782                        sizeof(struct kvm_pic_state));
3783                break;
3784        case KVM_IRQCHIP_IOAPIC:
3785                kvm_get_ioapic(kvm, &chip->chip.ioapic);
3786                break;
3787        default:
3788                r = -EINVAL;
3789                break;
3790        }
3791        return r;
3792}
3793
3794static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3795{
3796        struct kvm_pic *pic = kvm->arch.vpic;
3797        int r;
3798
3799        r = 0;
3800        switch (chip->chip_id) {
3801        case KVM_IRQCHIP_PIC_MASTER:
3802                spin_lock(&pic->lock);
3803                memcpy(&pic->pics[0], &chip->chip.pic,
3804                        sizeof(struct kvm_pic_state));
3805                spin_unlock(&pic->lock);
3806                break;
3807        case KVM_IRQCHIP_PIC_SLAVE:
3808                spin_lock(&pic->lock);
3809                memcpy(&pic->pics[1], &chip->chip.pic,
3810                        sizeof(struct kvm_pic_state));
3811                spin_unlock(&pic->lock);
3812                break;
3813        case KVM_IRQCHIP_IOAPIC:
3814                kvm_set_ioapic(kvm, &chip->chip.ioapic);
3815                break;
3816        default:
3817                r = -EINVAL;
3818                break;
3819        }
3820        kvm_pic_update_irq(pic);
3821        return r;
3822}
3823
3824static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3825{
3826        struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3827
3828        BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3829
3830        mutex_lock(&kps->lock);
3831        memcpy(ps, &kps->channels, sizeof(*ps));
3832        mutex_unlock(&kps->lock);
3833        return 0;
3834}
3835
3836static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3837{
3838        int i;
3839        struct kvm_pit *pit = kvm->arch.vpit;
3840
3841        mutex_lock(&pit->pit_state.lock);
3842        memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3843        for (i = 0; i < 3; i++)
3844                kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3845        mutex_unlock(&pit->pit_state.lock);
3846        return 0;
3847}
3848
3849static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3850{
3851        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3852        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3853                sizeof(ps->channels));
3854        ps->flags = kvm->arch.vpit->pit_state.flags;
3855        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3856        memset(&ps->reserved, 0, sizeof(ps->reserved));
3857        return 0;
3858}
3859
3860static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3861{
3862        int start = 0;
3863        int i;
3864        u32 prev_legacy, cur_legacy;
3865        struct kvm_pit *pit = kvm->arch.vpit;
3866
3867        mutex_lock(&pit->pit_state.lock);
3868        prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3869        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3870        if (!prev_legacy && cur_legacy)
3871                start = 1;
3872        memcpy(&pit->pit_state.channels, &ps->channels,
3873               sizeof(pit->pit_state.channels));
3874        pit->pit_state.flags = ps->flags;
3875        for (i = 0; i < 3; i++)
3876                kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3877                                   start && i == 0);
3878        mutex_unlock(&pit->pit_state.lock);
3879        return 0;
3880}
3881
3882static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3883                                 struct kvm_reinject_control *control)
3884{
3885        struct kvm_pit *pit = kvm->arch.vpit;
3886
3887        if (!pit)
3888                return -ENXIO;
3889
3890        /* pit->pit_state.lock was overloaded to prevent userspace from getting
3891         * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3892         * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3893         */
3894        mutex_lock(&pit->pit_state.lock);
3895        kvm_pit_set_reinject(pit, control->pit_reinject);
3896        mutex_unlock(&pit->pit_state.lock);
3897
3898        return 0;
3899}
3900
3901/**
3902 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3903 * @kvm: kvm instance
3904 * @log: slot id and address to which we copy the log
3905 *
3906 * Steps 1-4 below provide general overview of dirty page logging. See
3907 * kvm_get_dirty_log_protect() function description for additional details.
3908 *
3909 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3910 * always flush the TLB (step 4) even if previous step failed  and the dirty
3911 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3912 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3913 * writes will be marked dirty for next log read.
3914 *
3915 *   1. Take a snapshot of the bit and clear it if needed.
3916 *   2. Write protect the corresponding page.
3917 *   3. Copy the snapshot to the userspace.
3918 *   4. Flush TLB's if needed.
3919 */
3920int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3921{
3922        bool is_dirty = false;
3923        int r;
3924
3925        mutex_lock(&kvm->slots_lock);
3926
3927        /*
3928         * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3929         */
3930        if (kvm_x86_ops->flush_log_dirty)
3931                kvm_x86_ops->flush_log_dirty(kvm);
3932
3933        r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3934
3935        /*
3936         * All the TLBs can be flushed out of mmu lock, see the comments in
3937         * kvm_mmu_slot_remove_write_access().
3938         */
3939        lockdep_assert_held(&kvm->slots_lock);
3940        if (is_dirty)
3941                kvm_flush_remote_tlbs(kvm);
3942
3943        mutex_unlock(&kvm->slots_lock);
3944        return r;
3945}
3946
3947int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3948                        bool line_status)
3949{
3950        if (!irqchip_in_kernel(kvm))
3951                return -ENXIO;
3952
3953        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3954                                        irq_event->irq, irq_event->level,
3955                                        line_status);
3956        return 0;
3957}
3958
3959static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3960                                   struct kvm_enable_cap *cap)
3961{
3962        int r;
3963
3964        if (cap->flags)
3965                return -EINVAL;
3966
3967        switch (cap->cap) {
3968        case KVM_CAP_DISABLE_QUIRKS:
3969                kvm->arch.disabled_quirks = cap->args[0];
3970                r = 0;
3971                break;
3972        case KVM_CAP_SPLIT_IRQCHIP: {
3973                mutex_lock(&kvm->lock);
3974                r = -EINVAL;
3975                if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3976                        goto split_irqchip_unlock;
3977                r = -EEXIST;
3978                if (irqchip_in_kernel(kvm))
3979                        goto split_irqchip_unlock;
3980                if (kvm->created_vcpus)
3981                        goto split_irqchip_unlock;
3982                r = kvm_setup_empty_irq_routing(kvm);
3983                if (r)
3984                        goto split_irqchip_unlock;
3985                /* Pairs with irqchip_in_kernel. */
3986                smp_wmb();
3987                kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3988                kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3989                r = 0;
3990split_irqchip_unlock:
3991                mutex_unlock(&kvm->lock);
3992                break;
3993        }
3994        case KVM_CAP_X2APIC_API:
3995                r = -EINVAL;
3996                if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3997                        break;
3998
3999                if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4000                        kvm->arch.x2apic_format = true;
4001                if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4002                        kvm->arch.x2apic_broadcast_quirk_disabled = true;
4003
4004                r = 0;
4005                break;
4006        default:
4007                r = -EINVAL;
4008                break;
4009        }
4010        return r;
4011}
4012
4013long kvm_arch_vm_ioctl(struct file *filp,
4014                       unsigned int ioctl, unsigned long arg)
4015{
4016        struct kvm *kvm = filp->private_data;
4017        void __user *argp = (void __user *)arg;
4018        int r = -ENOTTY;
4019        /*
4020         * This union makes it completely explicit to gcc-3.x
4021         * that these two variables' stack usage should be
4022         * combined, not added together.
4023         */
4024        union {
4025                struct kvm_pit_state ps;
4026                struct kvm_pit_state2 ps2;
4027                struct kvm_pit_config pit_config;
4028        } u;
4029
4030        switch (ioctl) {
4031        case KVM_SET_TSS_ADDR:
4032                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4033                break;
4034        case KVM_SET_IDENTITY_MAP_ADDR: {
4035                u64 ident_addr;
4036
4037                r = -EFAULT;
4038                if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4039                        goto out;
4040                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4041                break;
4042        }
4043        case KVM_SET_NR_MMU_PAGES:
4044                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4045                break;
4046        case KVM_GET_NR_MMU_PAGES:
4047                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4048                break;
4049        case KVM_CREATE_IRQCHIP: {
4050                mutex_lock(&kvm->lock);
4051
4052                r = -EEXIST;
4053                if (irqchip_in_kernel(kvm))
4054                        goto create_irqchip_unlock;
4055
4056                r = -EINVAL;
4057                if (kvm->created_vcpus)
4058                        goto create_irqchip_unlock;
4059
4060                r = kvm_pic_init(kvm);
4061                if (r)
4062                        goto create_irqchip_unlock;
4063
4064                r = kvm_ioapic_init(kvm);
4065                if (r) {
4066                        kvm_pic_destroy(kvm);
4067                        goto create_irqchip_unlock;
4068                }
4069
4070                r = kvm_setup_default_irq_routing(kvm);
4071                if (r) {
4072                        kvm_ioapic_destroy(kvm);
4073                        kvm_pic_destroy(kvm);
4074                        goto create_irqchip_unlock;
4075                }
4076                /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4077                smp_wmb();
4078                kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4079        create_irqchip_unlock:
4080                mutex_unlock(&kvm->lock);
4081                break;
4082        }
4083        case KVM_CREATE_PIT:
4084                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4085                goto create_pit;
4086        case KVM_CREATE_PIT2:
4087                r = -EFAULT;
4088                if (copy_from_user(&u.pit_config, argp,
4089                                   sizeof(struct kvm_pit_config)))
4090                        goto out;
4091        create_pit:
4092                mutex_lock(&kvm->lock);
4093                r = -EEXIST;
4094                if (kvm->arch.vpit)
4095                        goto create_pit_unlock;
4096                r = -ENOMEM;
4097                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4098                if (kvm->arch.vpit)
4099                        r = 0;
4100        create_pit_unlock:
4101                mutex_unlock(&kvm->lock);
4102                break;
4103        case KVM_GET_IRQCHIP: {
4104                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4105                struct kvm_irqchip *chip;
4106
4107                chip = memdup_user(argp, sizeof(*chip));
4108                if (IS_ERR(chip)) {
4109                        r = PTR_ERR(chip);
4110                        goto out;
4111                }
4112
4113                r = -ENXIO;
4114                if (!irqchip_kernel(kvm))
4115                        goto get_irqchip_out;
4116                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4117                if (r)
4118                        goto get_irqchip_out;
4119                r = -EFAULT;
4120                if (copy_to_user(argp, chip, sizeof *chip))
4121                        goto get_irqchip_out;
4122                r = 0;
4123        get_irqchip_out:
4124                kfree(chip);
4125                break;
4126        }
4127        case KVM_SET_IRQCHIP: {
4128                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4129                struct kvm_irqchip *chip;
4130
4131                chip = memdup_user(argp, sizeof(*chip));
4132                if (IS_ERR(chip)) {
4133                        r = PTR_ERR(chip);
4134                        goto out;
4135                }
4136
4137                r = -ENXIO;
4138                if (!irqchip_kernel(kvm))
4139                        goto set_irqchip_out;
4140                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4141                if (r)
4142                        goto set_irqchip_out;
4143                r = 0;
4144        set_irqchip_out:
4145                kfree(chip);
4146                break;
4147        }
4148        case KVM_GET_PIT: {
4149                r = -EFAULT;
4150                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4151                        goto out;
4152                r = -ENXIO;
4153                if (!kvm->arch.vpit)
4154                        goto out;
4155                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4156                if (r)
4157                        goto out;
4158                r = -EFAULT;
4159                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4160                        goto out;
4161                r = 0;
4162                break;
4163        }
4164        case KVM_SET_PIT: {
4165                r = -EFAULT;
4166                if (copy_from_user(&u.ps, argp, sizeof u.ps))
4167                        goto out;
4168                r = -ENXIO;
4169                if (!kvm->arch.vpit)
4170                        goto out;
4171                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4172                break;
4173        }
4174        case KVM_GET_PIT2: {
4175                r = -ENXIO;
4176                if (!kvm->arch.vpit)
4177                        goto out;
4178                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4179                if (r)
4180                        goto out;
4181                r = -EFAULT;
4182                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4183                        goto out;
4184                r = 0;
4185                break;
4186        }
4187        case KVM_SET_PIT2: {
4188                r = -EFAULT;
4189                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4190                        goto out;
4191                r = -ENXIO;
4192                if (!kvm->arch.vpit)
4193                        goto out;
4194                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4195                break;
4196        }
4197        case KVM_REINJECT_CONTROL: {
4198                struct kvm_reinject_control control;
4199                r =  -EFAULT;
4200                if (copy_from_user(&control, argp, sizeof(control)))
4201                        goto out;
4202                r = kvm_vm_ioctl_reinject(kvm, &control);
4203                break;
4204        }
4205        case KVM_SET_BOOT_CPU_ID:
4206                r = 0;
4207                mutex_lock(&kvm->lock);
4208                if (kvm->created_vcpus)
4209                        r = -EBUSY;
4210                else
4211                        kvm->arch.bsp_vcpu_id = arg;
4212                mutex_unlock(&kvm->lock);
4213                break;
4214        case KVM_XEN_HVM_CONFIG: {
4215                r = -EFAULT;
4216                if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4217                                   sizeof(struct kvm_xen_hvm_config)))
4218                        goto out;
4219                r = -EINVAL;
4220                if (kvm->arch.xen_hvm_config.flags)
4221                        goto out;
4222                r = 0;
4223                break;
4224        }
4225        case KVM_SET_CLOCK: {
4226                struct kvm_clock_data user_ns;
4227                u64 now_ns;
4228
4229                r = -EFAULT;
4230                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4231                        goto out;
4232
4233                r = -EINVAL;
4234                if (user_ns.flags)
4235                        goto out;
4236
4237                r = 0;
4238                /*
4239                 * TODO: userspace has to take care of races with VCPU_RUN, so
4240                 * kvm_gen_update_masterclock() can be cut down to locked
4241                 * pvclock_update_vm_gtod_copy().
4242                 */
4243                kvm_gen_update_masterclock(kvm);
4244                now_ns = get_kvmclock_ns(kvm);
4245                kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4246                kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4247                break;
4248        }
4249        case KVM_GET_CLOCK: {
4250                struct kvm_clock_data user_ns;
4251                u64 now_ns;
4252
4253                now_ns = get_kvmclock_ns(kvm);
4254                user_ns.clock = now_ns;
4255                user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4256                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4257
4258                r = -EFAULT;
4259                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4260                        goto out;
4261                r = 0;
4262                break;
4263        }
4264        case KVM_ENABLE_CAP: {
4265                struct kvm_enable_cap cap;
4266
4267                r = -EFAULT;
4268                if (copy_from_user(&cap, argp, sizeof(cap)))
4269                        goto out;
4270                r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4271                break;
4272        }
4273        default:
4274                r = -ENOTTY;
4275        }
4276out:
4277        return r;
4278}
4279
4280static void kvm_init_msr_list(void)
4281{
4282        u32 dummy[2];
4283        unsigned i, j;
4284
4285        for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4286                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4287                        continue;
4288
4289                /*
4290                 * Even MSRs that are valid in the host may not be exposed
4291                 * to the guests in some cases.
4292                 */
4293                switch (msrs_to_save[i]) {
4294                case MSR_IA32_BNDCFGS:
4295                        if (!kvm_x86_ops->mpx_supported())
4296                                continue;
4297                        break;
4298                case MSR_TSC_AUX:
4299                        if (!kvm_x86_ops->rdtscp_supported())
4300                                continue;
4301                        break;
4302                default:
4303                        break;
4304                }
4305
4306                if (j < i)
4307                        msrs_to_save[j] = msrs_to_save[i];
4308                j++;
4309        }
4310        num_msrs_to_save = j;
4311
4312        for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4313                switch (emulated_msrs[i]) {
4314                case MSR_IA32_SMBASE:
4315                        if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4316                                continue;
4317                        break;
4318                default:
4319                        break;
4320                }
4321
4322                if (j < i)
4323                        emulated_msrs[j] = emulated_msrs[i];
4324                j++;
4325        }
4326        num_emulated_msrs = j;
4327}
4328
4329static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4330                           const void *v)
4331{
4332        int handled = 0;
4333        int n;
4334
4335        do {
4336                n = min(len, 8);
4337                if (!(lapic_in_kernel(vcpu) &&
4338                      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4339                    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4340                        break;
4341                handled += n;
4342                addr += n;
4343                len -= n;
4344                v += n;
4345        } while (len);
4346
4347        return handled;
4348}
4349
4350static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4351{
4352        int handled = 0;
4353        int n;
4354
4355        do {
4356                n = min(len, 8);
4357                if (!(lapic_in_kernel(vcpu) &&
4358                      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4359                                         addr, n, v))
4360                    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4361                        break;
4362                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4363                handled += n;
4364                addr += n;
4365                len -= n;
4366                v += n;
4367        } while (len);
4368
4369        return handled;
4370}
4371
4372static void kvm_set_segment(struct kvm_vcpu *vcpu,
4373                        struct kvm_segment *var, int seg)
4374{
4375        kvm_x86_ops->set_segment(vcpu, var, seg);
4376}
4377
4378void kvm_get_segment(struct kvm_vcpu *vcpu,
4379                     struct kvm_segment *var, int seg)
4380{
4381        kvm_x86_ops->get_segment(vcpu, var, seg);
4382}
4383
4384gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4385                           struct x86_exception *exception)
4386{
4387        gpa_t t_gpa;
4388
4389        BUG_ON(!mmu_is_nested(vcpu));
4390
4391        /* NPT walks are always user-walks */
4392        access |= PFERR_USER_MASK;
4393        t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4394
4395        return t_gpa;
4396}
4397
4398gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4399                              struct x86_exception *exception)
4400{
4401        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4402        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4403}
4404
4405 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4406                                struct x86_exception *exception)
4407{
4408        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4409        access |= PFERR_FETCH_MASK;
4410        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4411}
4412
4413gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4414                               struct x86_exception *exception)
4415{
4416        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4417        access |= PFERR_WRITE_MASK;
4418        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4419}
4420
4421/* uses this to access any guest's mapped memory without checking CPL */
4422gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4423                                struct x86_exception *exception)
4424{
4425        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4426}
4427
4428static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4429                                      struct kvm_vcpu *vcpu, u32 access,
4430                                      struct x86_exception *exception)
4431{
4432        void *data = val;
4433        int r = X86EMUL_CONTINUE;
4434
4435        while (bytes) {
4436                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4437                                                            exception);
4438                unsigned offset = addr & (PAGE_SIZE-1);
4439                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4440                int ret;
4441
4442                if (gpa == UNMAPPED_GVA)
4443                        return X86EMUL_PROPAGATE_FAULT;
4444                ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4445                                               offset, toread);
4446                if (ret < 0) {
4447                        r = X86EMUL_IO_NEEDED;
4448                        goto out;
4449                }
4450
4451                bytes -= toread;
4452                data += toread;
4453                addr += toread;
4454        }
4455out:
4456        return r;
4457}
4458
4459/* used for instruction fetching */
4460static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4461                                gva_t addr, void *val, unsigned int bytes,
4462                                struct x86_exception *exception)
4463{
4464        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4465        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4466        unsigned offset;
4467        int ret;
4468
4469        /* Inline kvm_read_guest_virt_helper for speed.  */
4470        gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4471                                                    exception);
4472        if (unlikely(gpa == UNMAPPED_GVA))
4473                return X86EMUL_PROPAGATE_FAULT;
4474
4475        offset = addr & (PAGE_SIZE-1);
4476        if (WARN_ON(offset + bytes > PAGE_SIZE))
4477                bytes = (unsigned)PAGE_SIZE - offset;
4478        ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4479                                       offset, bytes);
4480        if (unlikely(ret < 0))
4481                return X86EMUL_IO_NEEDED;
4482
4483        return X86EMUL_CONTINUE;
4484}
4485
4486int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4487                               gva_t addr, void *val, unsigned int bytes,
4488                               struct x86_exception *exception)
4489{
4490        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4491        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4492
4493        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4494                                          exception);
4495}
4496EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4497
4498static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4499                                      gva_t addr, void *val, unsigned int bytes,
4500                                      struct x86_exception *exception)
4501{
4502        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4503        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4504}
4505
4506static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4507                unsigned long addr, void *val, unsigned int bytes)
4508{
4509        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4510        int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4511
4512        return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4513}
4514
4515int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4516                                       gva_t addr, void *val,
4517                                       unsigned int bytes,
4518                                       struct x86_exception *exception)
4519{
4520        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4521        void *data = val;
4522        int r = X86EMUL_CONTINUE;
4523
4524        while (bytes) {
4525                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4526                                                             PFERR_WRITE_MASK,
4527                                                             exception);
4528                unsigned offset = addr & (PAGE_SIZE-1);
4529                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4530                int ret;
4531
4532                if (gpa == UNMAPPED_GVA)
4533                        return X86EMUL_PROPAGATE_FAULT;
4534                ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4535                if (ret < 0) {
4536                        r = X86EMUL_IO_NEEDED;
4537                        goto out;
4538                }
4539
4540                bytes -= towrite;
4541                data += towrite;
4542                addr += towrite;
4543        }
4544out:
4545        return r;
4546}
4547EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4548
4549static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4550                            gpa_t gpa, bool write)
4551{
4552        /* For APIC access vmexit */
4553        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4554                return 1;
4555
4556        if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4557                trace_vcpu_match_mmio(gva, gpa, write, true);
4558                return 1;
4559        }
4560
4561        return 0;
4562}
4563
4564static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4565                                gpa_t *gpa, struct x86_exception *exception,
4566                                bool write)
4567{
4568        u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4569                | (write ? PFERR_WRITE_MASK : 0);
4570
4571        /*
4572         * currently PKRU is only applied to ept enabled guest so
4573         * there is no pkey in EPT page table for L1 guest or EPT
4574         * shadow page table for L2 guest.
4575         */
4576        if (vcpu_match_mmio_gva(vcpu, gva)
4577            && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4578                                 vcpu->arch.access, 0, access)) {
4579                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4580                                        (gva & (PAGE_SIZE - 1));
4581                trace_vcpu_match_mmio(gva, *gpa, write, false);
4582                return 1;
4583        }
4584
4585        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4586
4587        if (*gpa == UNMAPPED_GVA)
4588                return -1;
4589
4590        return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4591}
4592
4593int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4594                        const void *val, int bytes)
4595{
4596        int ret;
4597
4598        ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4599        if (ret < 0)
4600                return 0;
4601        kvm_page_track_write(vcpu, gpa, val, bytes);
4602        return 1;
4603}
4604
4605struct read_write_emulator_ops {
4606        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4607                                  int bytes);
4608        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4609                                  void *val, int bytes);
4610        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4611                               int bytes, void *val);
4612        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4613                                    void *val, int bytes);
4614        bool write;
4615};
4616
4617static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4618{
4619        if (vcpu->mmio_read_completed) {
4620                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4621                               vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4622                vcpu->mmio_read_completed = 0;
4623                return 1;
4624        }
4625
4626        return 0;
4627}
4628
4629static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4630                        void *val, int bytes)
4631{
4632        return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4633}
4634
4635static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4636                         void *val, int bytes)
4637{
4638        return emulator_write_phys(vcpu, gpa, val, bytes);
4639}
4640
4641static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4642{
4643        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4644        return vcpu_mmio_write(vcpu, gpa, bytes, val);
4645}
4646
4647static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4648                          void *val, int bytes)
4649{
4650        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4651        return X86EMUL_IO_NEEDED;
4652}
4653
4654static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4655                           void *val, int bytes)
4656{
4657        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4658
4659        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4660        return X86EMUL_CONTINUE;
4661}
4662
4663static const struct read_write_emulator_ops read_emultor = {
4664        .read_write_prepare = read_prepare,
4665        .read_write_emulate = read_emulate,
4666        .read_write_mmio = vcpu_mmio_read,
4667        .read_write_exit_mmio = read_exit_mmio,
4668};
4669
4670static const struct read_write_emulator_ops write_emultor = {
4671        .read_write_emulate = write_emulate,
4672        .read_write_mmio = write_mmio,
4673        .read_write_exit_mmio = write_exit_mmio,
4674        .write = true,
4675};
4676
4677static int emulator_read_write_onepage(unsigned long addr, void *val,
4678                                       unsigned int bytes,
4679                                       struct x86_exception *exception,
4680                                       struct kvm_vcpu *vcpu,
4681                                       const struct read_write_emulator_ops *ops)
4682{
4683        gpa_t gpa;
4684        int handled, ret;
4685        bool write = ops->write;
4686        struct kvm_mmio_fragment *frag;
4687        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4688
4689        /*
4690         * If the exit was due to a NPF we may already have a GPA.
4691         * If the GPA is present, use it to avoid the GVA to GPA table walk.
4692         * Note, this cannot be used on string operations since string
4693         * operation using rep will only have the initial GPA from the NPF
4694         * occurred.
4695         */
4696        if (vcpu->arch.gpa_available &&
4697            emulator_can_use_gpa(ctxt) &&
4698            (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4699                gpa = vcpu->arch.gpa_val;
4700                ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4701        } else {
4702                ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4703                if (ret < 0)
4704                        return X86EMUL_PROPAGATE_FAULT;
4705        }
4706
4707        if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4708                return X86EMUL_CONTINUE;
4709
4710        /*
4711         * Is this MMIO handled locally?
4712         */
4713        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4714        if (handled == bytes)
4715                return X86EMUL_CONTINUE;
4716
4717        gpa += handled;
4718        bytes -= handled;
4719        val += handled;
4720
4721        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4722        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4723        frag->gpa = gpa;
4724        frag->data = val;
4725        frag->len = bytes;
4726        return X86EMUL_CONTINUE;
4727}
4728
4729static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4730                        unsigned long addr,
4731                        void *val, unsigned int bytes,
4732                        struct x86_exception *exception,
4733                        const struct read_write_emulator_ops *ops)
4734{
4735        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4736        gpa_t gpa;
4737        int rc;
4738
4739        if (ops->read_write_prepare &&
4740                  ops->read_write_prepare(vcpu, val, bytes))
4741                return X86EMUL_CONTINUE;
4742
4743        vcpu->mmio_nr_fragments = 0;
4744
4745        /* Crossing a page boundary? */
4746        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4747                int now;
4748
4749                now = -addr & ~PAGE_MASK;
4750                rc = emulator_read_write_onepage(addr, val, now, exception,
4751                                                 vcpu, ops);
4752
4753                if (rc != X86EMUL_CONTINUE)
4754                        return rc;
4755                addr += now;
4756                if (ctxt->mode != X86EMUL_MODE_PROT64)
4757                        addr = (u32)addr;
4758                val += now;
4759                bytes -= now;
4760        }
4761
4762        rc = emulator_read_write_onepage(addr, val, bytes, exception,
4763                                         vcpu, ops);
4764        if (rc != X86EMUL_CONTINUE)
4765                return rc;
4766
4767        if (!vcpu->mmio_nr_fragments)
4768                return rc;
4769
4770        gpa = vcpu->mmio_fragments[0].gpa;
4771
4772        vcpu->mmio_needed = 1;
4773        vcpu->mmio_cur_fragment = 0;
4774
4775        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4776        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4777        vcpu->run->exit_reason = KVM_EXIT_MMIO;
4778        vcpu->run->mmio.phys_addr = gpa;
4779
4780        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4781}
4782
4783static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4784                                  unsigned long addr,
4785                                  void *val,
4786                                  unsigned int bytes,
4787                                  struct x86_exception *exception)
4788{
4789        return emulator_read_write(ctxt, addr, val, bytes,
4790                                   exception, &read_emultor);
4791}
4792
4793static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4794                            unsigned long addr,
4795                            const void *val,
4796                            unsigned int bytes,
4797                            struct x86_exception *exception)
4798{
4799        return emulator_read_write(ctxt, addr, (void *)val, bytes,
4800                                   exception, &write_emultor);
4801}
4802
4803#define CMPXCHG_TYPE(t, ptr, old, new) \
4804        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4805
4806#ifdef CONFIG_X86_64
4807#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4808#else
4809#  define CMPXCHG64(ptr, old, new) \
4810        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4811#endif
4812
4813static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4814                                     unsigned long addr,
4815                                     const void *old,
4816                                     const void *new,
4817                                     unsigned int bytes,
4818                                     struct x86_exception *exception)
4819{
4820        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4821        gpa_t gpa;
4822        struct page *page;
4823        char *kaddr;
4824        bool exchanged;
4825
4826        /* guests cmpxchg8b have to be emulated atomically */
4827        if (bytes > 8 || (bytes & (bytes - 1)))
4828                goto emul_write;
4829
4830        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4831
4832        if (gpa == UNMAPPED_GVA ||
4833            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4834                goto emul_write;
4835
4836        if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4837                goto emul_write;
4838
4839        page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4840        if (is_error_page(page))
4841                goto emul_write;
4842
4843        kaddr = kmap_atomic(page);
4844        kaddr += offset_in_page(gpa);
4845        switch (bytes) {
4846        case 1:
4847                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4848                break;
4849        case 2:
4850                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4851                break;
4852        case 4:
4853                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4854                break;
4855        case 8:
4856                exchanged = CMPXCHG64(kaddr, old, new);
4857                break;
4858        default:
4859                BUG();
4860        }
4861        kunmap_atomic(kaddr);
4862        kvm_release_page_dirty(page);
4863
4864        if (!exchanged)
4865                return X86EMUL_CMPXCHG_FAILED;
4866
4867        kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4868        kvm_page_track_write(vcpu, gpa, new, bytes);
4869
4870        return X86EMUL_CONTINUE;
4871
4872emul_write:
4873        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4874
4875        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4876}
4877
4878static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4879{
4880        int r = 0, i;
4881
4882        for (i = 0; i < vcpu->arch.pio.count; i++) {
4883                if (vcpu->arch.pio.in)
4884                        r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4885                                            vcpu->arch.pio.size, pd);
4886                else
4887                        r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4888                                             vcpu->arch.pio.port, vcpu->arch.pio.size,
4889                                             pd);
4890                if (r)
4891                        break;
4892                pd += vcpu->arch.pio.size;
4893        }
4894        return r;
4895}
4896
4897static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4898                               unsigned short port, void *val,
4899                               unsigned int count, bool in)
4900{
4901        vcpu->arch.pio.port = port;
4902        vcpu->arch.pio.in = in;
4903        vcpu->arch.pio.count  = count;
4904        vcpu->arch.pio.size = size;
4905
4906        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4907                vcpu->arch.pio.count = 0;
4908                return 1;
4909        }
4910
4911        vcpu->run->exit_reason = KVM_EXIT_IO;
4912        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4913        vcpu->run->io.size = size;
4914        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4915        vcpu->run->io.count = count;
4916        vcpu->run->io.port = port;
4917
4918        return 0;
4919}
4920
4921static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4922                                    int size, unsigned short port, void *val,
4923                                    unsigned int count)
4924{
4925        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4926        int ret;
4927
4928        if (vcpu->arch.pio.count)
4929                goto data_avail;
4930
4931        memset(vcpu->arch.pio_data, 0, size * count);
4932
4933        ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4934        if (ret) {
4935data_avail:
4936                memcpy(val, vcpu->arch.pio_data, size * count);
4937                trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4938                vcpu->arch.pio.count = 0;
4939                return 1;
4940        }
4941
4942        return 0;
4943}
4944
4945static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4946                                     int size, unsigned short port,
4947                                     const void *val, unsigned int count)
4948{
4949        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4950
4951        memcpy(vcpu->arch.pio_data, val, size * count);
4952        trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4953        return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4954}
4955
4956static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4957{
4958        return kvm_x86_ops->get_segment_base(vcpu, seg);
4959}
4960
4961static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4962{
4963        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4964}
4965
4966static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4967{
4968        if (!need_emulate_wbinvd(vcpu))
4969                return X86EMUL_CONTINUE;
4970
4971        if (kvm_x86_ops->has_wbinvd_exit()) {
4972                int cpu = get_cpu();
4973
4974                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4975                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4976                                wbinvd_ipi, NULL, 1);
4977                put_cpu();
4978                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4979        } else
4980                wbinvd();
4981        return X86EMUL_CONTINUE;
4982}
4983
4984int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4985{
4986        kvm_emulate_wbinvd_noskip(vcpu);
4987        return kvm_skip_emulated_instruction(vcpu);
4988}
4989EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4990
4991
4992
4993static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4994{
4995        kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4996}
4997
4998static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4999                           unsigned long *dest)
5000{
5001        return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5002}
5003
5004static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5005                           unsigned long value)
5006{
5007
5008        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5009}
5010
5011static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5012{
5013        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5014}
5015
5016static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5017{
5018        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5019        unsigned long value;
5020
5021        switch (cr) {
5022        case 0:
5023                value = kvm_read_cr0(vcpu);
5024                break;
5025        case 2:
5026                value = vcpu->arch.cr2;
5027                break;
5028        case 3:
5029                value = kvm_read_cr3(vcpu);
5030                break;
5031        case 4:
5032                value = kvm_read_cr4(vcpu);
5033                break;
5034        case 8:
5035                value = kvm_get_cr8(vcpu);
5036                break;
5037        default:
5038                kvm_err("%s: unexpected cr %u\n", __func__, cr);
5039                return 0;
5040        }
5041
5042        return value;
5043}
5044
5045static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5046{
5047        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5048        int res = 0;
5049
5050        switch (cr) {
5051        case 0:
5052                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5053                break;
5054        case 2:
5055                vcpu->arch.cr2 = val;
5056                break;
5057        case 3:
5058                res = kvm_set_cr3(vcpu, val);
5059                break;
5060        case 4:
5061                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5062                break;
5063        case 8:
5064                res = kvm_set_cr8(vcpu, val);
5065                break;
5066        default:
5067                kvm_err("%s: unexpected cr %u\n", __func__, cr);
5068                res = -1;
5069        }
5070
5071        return res;
5072}
5073
5074static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5075{
5076        return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5077}
5078
5079static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5080{
5081        kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5082}
5083
5084static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5085{
5086        kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5087}
5088
5089static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5090{
5091        kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5092}
5093
5094static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5095{
5096        kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5097}
5098
5099static unsigned long emulator_get_cached_segment_base(
5100        struct x86_emulate_ctxt *ctxt, int seg)
5101{
5102        return get_segment_base(emul_to_vcpu(ctxt), seg);
5103}
5104
5105static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5106                                 struct desc_struct *desc, u32 *base3,
5107                                 int seg)
5108{
5109        struct kvm_segment var;
5110
5111        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5112        *selector = var.selector;
5113
5114        if (var.unusable) {
5115                memset(desc, 0, sizeof(*desc));
5116                if (base3)
5117                        *base3 = 0;
5118                return false;
5119        }
5120
5121        if (var.g)
5122                var.limit >>= 12;
5123        set_desc_limit(desc, var.limit);
5124        set_desc_base(desc, (unsigned long)var.base);
5125#ifdef CONFIG_X86_64
5126        if (base3)
5127                *base3 = var.base >> 32;
5128#endif
5129        desc->type = var.type;
5130        desc->s = var.s;
5131        desc->dpl = var.dpl;
5132        desc->p = var.present;
5133        desc->avl = var.avl;
5134        desc->l = var.l;
5135        desc->d = var.db;
5136        desc->g = var.g;
5137
5138        return true;
5139}
5140
5141static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5142                                 struct desc_struct *desc, u32 base3,
5143                                 int seg)
5144{
5145        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5146        struct kvm_segment var;
5147
5148        var.selector = selector;
5149        var.base = get_desc_base(desc);
5150#ifdef CONFIG_X86_64
5151        var.base |= ((u64)base3) << 32;
5152#endif
5153        var.limit = get_desc_limit(desc);
5154        if (desc->g)
5155                var.limit = (var.limit << 12) | 0xfff;
5156        var.type = desc->type;
5157        var.dpl = desc->dpl;
5158        var.db = desc->d;
5159        var.s = desc->s;
5160        var.l = desc->l;
5161        var.g = desc->g;
5162        var.avl = desc->avl;
5163        var.present = desc->p;
5164        var.unusable = !var.present;
5165        var.padding = 0;
5166
5167        kvm_set_segment(vcpu, &var, seg);
5168        return;
5169}
5170
5171static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5172                            u32 msr_index, u64 *pdata)
5173{
5174        struct msr_data msr;
5175        int r;
5176
5177        msr.index = msr_index;
5178        msr.host_initiated = false;
5179        r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5180        if (r)
5181                return r;
5182
5183        *pdata = msr.data;
5184        return 0;
5185}
5186
5187static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5188                            u32 msr_index, u64 data)
5189{
5190        struct msr_data msr;
5191
5192        msr.data = data;
5193        msr.index = msr_index;
5194        msr.host_initiated = false;
5195        return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5196}
5197
5198static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5199{
5200        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5201
5202        return vcpu->arch.smbase;
5203}
5204
5205static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5206{
5207        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5208
5209        vcpu->arch.smbase = smbase;
5210}
5211
5212static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5213                              u32 pmc)
5214{
5215        return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5216}
5217
5218static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5219                             u32 pmc, u64 *pdata)
5220{
5221        return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5222}
5223
5224static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5225{
5226        emul_to_vcpu(ctxt)->arch.halt_request = 1;
5227}
5228
5229static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5230{
5231        preempt_disable();
5232        kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5233}
5234
5235static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5236{
5237        preempt_enable();
5238}
5239
5240static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5241                              struct x86_instruction_info *info,
5242                              enum x86_intercept_stage stage)
5243{
5244        return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5245}
5246
5247static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5248                        u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5249{
5250        return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5251}
5252
5253static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5254{
5255        return kvm_register_read(emul_to_vcpu(ctxt), reg);
5256}
5257
5258static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5259{
5260        kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5261}
5262
5263static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5264{
5265        kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5266}
5267
5268static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5269{
5270        return emul_to_vcpu(ctxt)->arch.hflags;
5271}
5272
5273static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5274{
5275        kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5276}
5277
5278static const struct x86_emulate_ops emulate_ops = {
5279        .read_gpr            = emulator_read_gpr,
5280        .write_gpr           = emulator_write_gpr,
5281        .read_std            = kvm_read_guest_virt_system,
5282        .write_std           = kvm_write_guest_virt_system,
5283        .read_phys           = kvm_read_guest_phys_system,
5284        .fetch               = kvm_fetch_guest_virt,
5285        .read_emulated       = emulator_read_emulated,
5286        .write_emulated      = emulator_write_emulated,
5287        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5288        .invlpg              = emulator_invlpg,
5289        .pio_in_emulated     = emulator_pio_in_emulated,
5290        .pio_out_emulated    = emulator_pio_out_emulated,
5291        .get_segment         = emulator_get_segment,
5292        .set_segment         = emulator_set_segment,
5293        .get_cached_segment_base = emulator_get_cached_segment_base,
5294        .get_gdt             = emulator_get_gdt,
5295        .get_idt             = emulator_get_idt,
5296        .set_gdt             = emulator_set_gdt,
5297        .set_idt             = emulator_set_idt,
5298        .get_cr              = emulator_get_cr,
5299        .set_cr              = emulator_set_cr,
5300        .cpl                 = emulator_get_cpl,
5301        .get_dr              = emulator_get_dr,
5302        .set_dr              = emulator_set_dr,
5303        .get_smbase          = emulator_get_smbase,
5304        .set_smbase          = emulator_set_smbase,
5305        .set_msr             = emulator_set_msr,
5306        .get_msr             = emulator_get_msr,
5307        .check_pmc           = emulator_check_pmc,
5308        .read_pmc            = emulator_read_pmc,
5309        .halt                = emulator_halt,
5310        .wbinvd              = emulator_wbinvd,
5311        .fix_hypercall       = emulator_fix_hypercall,
5312        .get_fpu             = emulator_get_fpu,
5313        .put_fpu             = emulator_put_fpu,
5314        .intercept           = emulator_intercept,
5315        .get_cpuid           = emulator_get_cpuid,
5316        .set_nmi_mask        = emulator_set_nmi_mask,
5317        .get_hflags          = emulator_get_hflags,
5318        .set_hflags          = emulator_set_hflags,
5319};
5320
5321static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5322{
5323        u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5324        /*
5325         * an sti; sti; sequence only disable interrupts for the first
5326         * instruction. So, if the last instruction, be it emulated or
5327         * not, left the system with the INT_STI flag enabled, it
5328         * means that the last instruction is an sti. We should not
5329         * leave the flag on in this case. The same goes for mov ss
5330         */
5331        if (int_shadow & mask)
5332                mask = 0;
5333        if (unlikely(int_shadow || mask)) {
5334                kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5335                if (!mask)
5336                        kvm_make_request(KVM_REQ_EVENT, vcpu);
5337        }
5338}
5339
5340static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5341{
5342        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5343        if (ctxt->exception.vector == PF_VECTOR)
5344                return kvm_propagate_fault(vcpu, &ctxt->exception);
5345
5346        if (ctxt->exception.error_code_valid)
5347                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5348                                      ctxt->exception.error_code);
5349        else
5350                kvm_queue_exception(vcpu, ctxt->exception.vector);
5351        return false;
5352}
5353
5354static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5355{
5356        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5357        int cs_db, cs_l;
5358
5359        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5360
5361        ctxt->eflags = kvm_get_rflags(vcpu);
5362        ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5363
5364        ctxt->eip = kvm_rip_read(vcpu);
5365        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5366                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5367                     (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5368                     cs_db                              ? X86EMUL_MODE_PROT32 :
5369                                                          X86EMUL_MODE_PROT16;
5370        BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5371        BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5372        BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5373
5374        init_decode_cache(ctxt);
5375        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5376}
5377
5378int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5379{
5380        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5381        int ret;
5382
5383        init_emulate_ctxt(vcpu);
5384
5385        ctxt->op_bytes = 2;
5386        ctxt->ad_bytes = 2;
5387        ctxt->_eip = ctxt->eip + inc_eip;
5388        ret = emulate_int_real(ctxt, irq);
5389
5390        if (ret != X86EMUL_CONTINUE)
5391                return EMULATE_FAIL;
5392
5393        ctxt->eip = ctxt->_eip;
5394        kvm_rip_write(vcpu, ctxt->eip);
5395        kvm_set_rflags(vcpu, ctxt->eflags);
5396
5397        if (irq == NMI_VECTOR)
5398                vcpu->arch.nmi_pending = 0;
5399        else
5400                vcpu->arch.interrupt.pending = false;
5401
5402        return EMULATE_DONE;
5403}
5404EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5405
5406static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5407{
5408        int r = EMULATE_DONE;
5409
5410        ++vcpu->stat.insn_emulation_fail;
5411        trace_kvm_emulate_insn_failed(vcpu);
5412        if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5413                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5414                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5415                vcpu->run->internal.ndata = 0;
5416                r = EMULATE_FAIL;
5417        }
5418        kvm_queue_exception(vcpu, UD_VECTOR);
5419
5420        return r;
5421}
5422
5423static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5424                                  bool write_fault_to_shadow_pgtable,
5425                                  int emulation_type)
5426{
5427        gpa_t gpa = cr2;
5428        kvm_pfn_t pfn;
5429
5430        if (emulation_type & EMULTYPE_NO_REEXECUTE)
5431                return false;
5432
5433        if (!vcpu->arch.mmu.direct_map) {
5434                /*
5435                 * Write permission should be allowed since only
5436                 * write access need to be emulated.
5437                 */
5438                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5439
5440                /*
5441                 * If the mapping is invalid in guest, let cpu retry
5442                 * it to generate fault.
5443                 */
5444                if (gpa == UNMAPPED_GVA)
5445                        return true;
5446        }
5447
5448        /*
5449         * Do not retry the unhandleable instruction if it faults on the
5450         * readonly host memory, otherwise it will goto a infinite loop:
5451         * retry instruction -> write #PF -> emulation fail -> retry
5452         * instruction -> ...
5453         */
5454        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5455
5456        /*
5457         * If the instruction failed on the error pfn, it can not be fixed,
5458         * report the error to userspace.
5459         */
5460        if (is_error_noslot_pfn(pfn))
5461                return false;
5462
5463        kvm_release_pfn_clean(pfn);
5464
5465        /* The instructions are well-emulated on direct mmu. */
5466        if (vcpu->arch.mmu.direct_map) {
5467                unsigned int indirect_shadow_pages;
5468
5469                spin_lock(&vcpu->kvm->mmu_lock);
5470                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5471                spin_unlock(&vcpu->kvm->mmu_lock);
5472
5473                if (indirect_shadow_pages)
5474                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5475
5476                return true;
5477        }
5478
5479        /*
5480         * if emulation was due to access to shadowed page table
5481         * and it failed try to unshadow page and re-enter the
5482         * guest to let CPU execute the instruction.
5483         */
5484        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5485
5486        /*
5487         * If the access faults on its page table, it can not
5488         * be fixed by unprotecting shadow page and it should
5489         * be reported to userspace.
5490         */
5491        return !write_fault_to_shadow_pgtable;
5492}
5493
5494static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5495                              unsigned long cr2,  int emulation_type)
5496{
5497        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5498        unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5499
5500        last_retry_eip = vcpu->arch.last_retry_eip;
5501        last_retry_addr = vcpu->arch.last_retry_addr;
5502
5503        /*
5504         * If the emulation is caused by #PF and it is non-page_table
5505         * writing instruction, it means the VM-EXIT is caused by shadow
5506         * page protected, we can zap the shadow page and retry this
5507         * instruction directly.
5508         *
5509         * Note: if the guest uses a non-page-table modifying instruction
5510         * on the PDE that points to the instruction, then we will unmap
5511         * the instruction and go to an infinite loop. So, we cache the
5512         * last retried eip and the last fault address, if we meet the eip
5513         * and the address again, we can break out of the potential infinite
5514         * loop.
5515         */
5516        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5517
5518        if (!(emulation_type & EMULTYPE_RETRY))
5519                return false;
5520
5521        if (x86_page_table_writing_insn(ctxt))
5522                return false;
5523
5524        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5525                return false;
5526
5527        vcpu->arch.last_retry_eip = ctxt->eip;
5528        vcpu->arch.last_retry_addr = cr2;
5529
5530        if (!vcpu->arch.mmu.direct_map)
5531                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5532
5533        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5534
5535        return true;
5536}
5537
5538static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5539static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5540
5541static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5542{
5543        if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5544                /* This is a good place to trace that we are exiting SMM.  */
5545                trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5546
5547                /* Process a latched INIT or SMI, if any.  */
5548                kvm_make_request(KVM_REQ_EVENT, vcpu);
5549        }
5550
5551        kvm_mmu_reset_context(vcpu);
5552}
5553
5554static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5555{
5556        unsigned changed = vcpu->arch.hflags ^ emul_flags;
5557
5558        vcpu->arch.hflags = emul_flags;
5559
5560        if (changed & HF_SMM_MASK)
5561                kvm_smm_changed(vcpu);
5562}
5563
5564static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5565                                unsigned long *db)
5566{
5567        u32 dr6 = 0;
5568        int i;
5569        u32 enable, rwlen;
5570
5571        enable = dr7;
5572        rwlen = dr7 >> 16;
5573        for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5574                if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5575                        dr6 |= (1 << i);
5576        return dr6;
5577}
5578
5579static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5580{
5581        struct kvm_run *kvm_run = vcpu->run;
5582
5583        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5584                kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5585                kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5586                kvm_run->debug.arch.exception = DB_VECTOR;
5587                kvm_run->exit_reason = KVM_EXIT_DEBUG;
5588                *r = EMULATE_USER_EXIT;
5589        } else {
5590                /*
5591                 * "Certain debug exceptions may clear bit 0-3.  The
5592                 * remaining contents of the DR6 register are never
5593                 * cleared by the processor".
5594                 */
5595                vcpu->arch.dr6 &= ~15;
5596                vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5597                kvm_queue_exception(vcpu, DB_VECTOR);
5598        }
5599}
5600
5601int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5602{
5603        unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5604        int r = EMULATE_DONE;
5605
5606        kvm_x86_ops->skip_emulated_instruction(vcpu);
5607
5608        /*
5609         * rflags is the old, "raw" value of the flags.  The new value has
5610         * not been saved yet.
5611         *
5612         * This is correct even for TF set by the guest, because "the
5613         * processor will not generate this exception after the instruction
5614         * that sets the TF flag".
5615         */
5616        if (unlikely(rflags & X86_EFLAGS_TF))
5617                kvm_vcpu_do_singlestep(vcpu, &r);
5618        return r == EMULATE_DONE;
5619}
5620EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5621
5622static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5623{
5624        if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5625            (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5626                struct kvm_run *kvm_run = vcpu->run;
5627                unsigned long eip = kvm_get_linear_rip(vcpu);
5628                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5629                                           vcpu->arch.guest_debug_dr7,
5630                                           vcpu->arch.eff_db);
5631
5632                if (dr6 != 0) {
5633                        kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5634                        kvm_run->debug.arch.pc = eip;
5635                        kvm_run->debug.arch.exception = DB_VECTOR;
5636                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
5637                        *r = EMULATE_USER_EXIT;
5638                        return true;
5639                }
5640        }
5641
5642        if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5643            !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5644                unsigned long eip = kvm_get_linear_rip(vcpu);
5645                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5646                                           vcpu->arch.dr7,
5647                                           vcpu->arch.db);
5648
5649                if (dr6 != 0) {
5650                        vcpu->arch.dr6 &= ~15;
5651                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
5652                        kvm_queue_exception(vcpu, DB_VECTOR);
5653                        *r = EMULATE_DONE;
5654                        return true;
5655                }
5656        }
5657
5658        return false;
5659}
5660
5661int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5662                            unsigned long cr2,
5663                            int emulation_type,
5664                            void *insn,
5665                            int insn_len)
5666{
5667        int r;
5668        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5669        bool writeback = true;
5670        bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5671
5672        /*
5673         * Clear write_fault_to_shadow_pgtable here to ensure it is
5674         * never reused.
5675         */
5676        vcpu->arch.write_fault_to_shadow_pgtable = false;
5677        kvm_clear_exception_queue(vcpu);
5678
5679        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5680                init_emulate_ctxt(vcpu);
5681
5682                /*
5683                 * We will reenter on the same instruction since
5684                 * we do not set complete_userspace_io.  This does not
5685                 * handle watchpoints yet, those would be handled in
5686                 * the emulate_ops.
5687                 */
5688                if (kvm_vcpu_check_breakpoint(vcpu, &r))
5689                        return r;
5690
5691                ctxt->interruptibility = 0;
5692                ctxt->have_exception = false;
5693                ctxt->exception.vector = -1;
5694                ctxt->perm_ok = false;
5695
5696                ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5697
5698                r = x86_decode_insn(ctxt, insn, insn_len);
5699
5700                trace_kvm_emulate_insn_start(vcpu);
5701                ++vcpu->stat.insn_emulation;
5702                if (r != EMULATION_OK)  {
5703                        if (emulation_type & EMULTYPE_TRAP_UD)
5704                                return EMULATE_FAIL;
5705                        if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5706                                                emulation_type))
5707                                return EMULATE_DONE;
5708                        if (emulation_type & EMULTYPE_SKIP)
5709                                return EMULATE_FAIL;
5710                        return handle_emulation_failure(vcpu);
5711                }
5712        }
5713
5714        if (emulation_type & EMULTYPE_SKIP) {
5715                kvm_rip_write(vcpu, ctxt->_eip);
5716                if (ctxt->eflags & X86_EFLAGS_RF)
5717                        kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5718                return EMULATE_DONE;
5719        }
5720
5721        if (retry_instruction(ctxt, cr2, emulation_type))
5722                return EMULATE_DONE;
5723
5724        /* this is needed for vmware backdoor interface to work since it
5725           changes registers values  during IO operation */
5726        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5727                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5728                emulator_invalidate_register_cache(ctxt);
5729        }
5730
5731restart:
5732        /* Save the faulting GPA (cr2) in the address field */
5733        ctxt->exception.address = cr2;
5734
5735        r = x86_emulate_insn(ctxt);
5736
5737        if (r == EMULATION_INTERCEPTED)
5738                return EMULATE_DONE;
5739
5740        if (r == EMULATION_FAILED) {
5741                if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5742                                        emulation_type))
5743                        return EMULATE_DONE;
5744
5745                return handle_emulation_failure(vcpu);
5746        }
5747
5748        if (ctxt->have_exception) {
5749                r = EMULATE_DONE;
5750                if (inject_emulated_exception(vcpu))
5751                        return r;
5752        } else if (vcpu->arch.pio.count) {
5753                if (!vcpu->arch.pio.in) {
5754                        /* FIXME: return into emulator if single-stepping.  */
5755                        vcpu->arch.pio.count = 0;
5756                } else {
5757                        writeback = false;
5758                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
5759                }
5760                r = EMULATE_USER_EXIT;
5761        } else if (vcpu->mmio_needed) {
5762                if (!vcpu->mmio_is_write)
5763                        writeback = false;
5764                r = EMULATE_USER_EXIT;
5765                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5766        } else if (r == EMULATION_RESTART)
5767                goto restart;
5768        else
5769                r = EMULATE_DONE;
5770
5771        if (writeback) {
5772                unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5773                toggle_interruptibility(vcpu, ctxt->interruptibility);
5774                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5775                kvm_rip_write(vcpu, ctxt->eip);
5776                if (r == EMULATE_DONE &&
5777                    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5778                        kvm_vcpu_do_singlestep(vcpu, &r);
5779                if (!ctxt->have_exception ||
5780                    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5781                        __kvm_set_rflags(vcpu, ctxt->eflags);
5782
5783                /*
5784                 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5785                 * do nothing, and it will be requested again as soon as
5786                 * the shadow expires.  But we still need to check here,
5787                 * because POPF has no interrupt shadow.
5788                 */
5789                if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5790                        kvm_make_request(KVM_REQ_EVENT, vcpu);
5791        } else
5792                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5793
5794        return r;
5795}
5796EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5797
5798int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5799{
5800        unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5801        int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5802                                            size, port, &val, 1);
5803        /* do not return to emulator after return from userspace */
5804        vcpu->arch.pio.count = 0;
5805        return ret;
5806}
5807EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5808
5809static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5810{
5811        unsigned long val;
5812
5813        /* We should only ever be called with arch.pio.count equal to 1 */
5814        BUG_ON(vcpu->arch.pio.count != 1);
5815
5816        /* For size less than 4 we merge, else we zero extend */
5817        val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5818                                        : 0;
5819
5820        /*
5821         * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5822         * the copy and tracing
5823         */
5824        emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5825                                 vcpu->arch.pio.port, &val, 1);
5826        kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5827
5828        return 1;
5829}
5830
5831int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5832{
5833        unsigned long val;
5834        int ret;
5835
5836        /* For size less than 4 we merge, else we zero extend */
5837        val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5838
5839        ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5840                                       &val, 1);
5841        if (ret) {
5842                kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5843                return ret;
5844        }
5845
5846        vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5847
5848        return 0;
5849}
5850EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5851
5852static int kvmclock_cpu_down_prep(unsigned int cpu)
5853{
5854        __this_cpu_write(cpu_tsc_khz, 0);
5855        return 0;
5856}
5857
5858static void tsc_khz_changed(void *data)
5859{
5860        struct cpufreq_freqs *freq = data;
5861        unsigned long khz = 0;
5862
5863        if (data)
5864                khz = freq->new;
5865        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5866                khz = cpufreq_quick_get(raw_smp_processor_id());
5867        if (!khz)
5868                khz = tsc_khz;
5869        __this_cpu_write(cpu_tsc_khz, khz);
5870}
5871
5872static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5873                                     void *data)
5874{
5875        struct cpufreq_freqs *freq = data;
5876        struct kvm *kvm;
5877        struct kvm_vcpu *vcpu;
5878        int i, send_ipi = 0;
5879
5880        /*
5881         * We allow guests to temporarily run on slowing clocks,
5882         * provided we notify them after, or to run on accelerating
5883         * clocks, provided we notify them before.  Thus time never
5884         * goes backwards.
5885         *
5886         * However, we have a problem.  We can't atomically update
5887         * the frequency of a given CPU from this function; it is
5888         * merely a notifier, which can be called from any CPU.
5889         * Changing the TSC frequency at arbitrary points in time
5890         * requires a recomputation of local variables related to
5891         * the TSC for each VCPU.  We must flag these local variables
5892         * to be updated and be sure the update takes place with the
5893         * new frequency before any guests proceed.
5894         *
5895         * Unfortunately, the combination of hotplug CPU and frequency
5896         * change creates an intractable locking scenario; the order
5897         * of when these callouts happen is undefined with respect to
5898         * CPU hotplug, and they can race with each other.  As such,
5899         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5900         * undefined; you can actually have a CPU frequency change take
5901         * place in between the computation of X and the setting of the
5902         * variable.  To protect against this problem, all updates of
5903         * the per_cpu tsc_khz variable are done in an interrupt
5904         * protected IPI, and all callers wishing to update the value
5905         * must wait for a synchronous IPI to complete (which is trivial
5906         * if the caller is on the CPU already).  This establishes the
5907         * necessary total order on variable updates.
5908         *
5909         * Note that because a guest time update may take place
5910         * anytime after the setting of the VCPU's request bit, the
5911         * correct TSC value must be set before the request.  However,
5912         * to ensure the update actually makes it to any guest which
5913         * starts running in hardware virtualization between the set
5914         * and the acquisition of the spinlock, we must also ping the
5915         * CPU after setting the request bit.
5916         *
5917         */
5918
5919        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5920                return 0;
5921        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5922                return 0;
5923
5924        smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5925
5926        spin_lock(&kvm_lock);
5927        list_for_each_entry(kvm, &vm_list, vm_list) {
5928                kvm_for_each_vcpu(i, vcpu, kvm) {
5929                        if (vcpu->cpu != freq->cpu)
5930                                continue;
5931                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5932                        if (vcpu->cpu != smp_processor_id())
5933                                send_ipi = 1;
5934                }
5935        }
5936        spin_unlock(&kvm_lock);
5937
5938        if (freq->old < freq->new && send_ipi) {
5939                /*
5940                 * We upscale the frequency.  Must make the guest
5941                 * doesn't see old kvmclock values while running with
5942                 * the new frequency, otherwise we risk the guest sees
5943                 * time go backwards.
5944                 *
5945                 * In case we update the frequency for another cpu
5946                 * (which might be in guest context) send an interrupt
5947                 * to kick the cpu out of guest context.  Next time
5948                 * guest context is entered kvmclock will be updated,
5949                 * so the guest will not see stale values.
5950                 */
5951                smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5952        }
5953        return 0;
5954}
5955
5956static struct notifier_block kvmclock_cpufreq_notifier_block = {
5957        .notifier_call  = kvmclock_cpufreq_notifier
5958};
5959
5960static int kvmclock_cpu_online(unsigned int cpu)
5961{
5962        tsc_khz_changed(NULL);
5963        return 0;
5964}
5965
5966static void kvm_timer_init(void)
5967{
5968        max_tsc_khz = tsc_khz;
5969
5970        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5971#ifdef CONFIG_CPU_FREQ
5972                struct cpufreq_policy policy;
5973                int cpu;
5974
5975                memset(&policy, 0, sizeof(policy));
5976                cpu = get_cpu();
5977                cpufreq_get_policy(&policy, cpu);
5978                if (policy.cpuinfo.max_freq)
5979                        max_tsc_khz = policy.cpuinfo.max_freq;
5980                put_cpu();
5981#endif
5982                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5983                                          CPUFREQ_TRANSITION_NOTIFIER);
5984        }
5985        pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5986
5987        cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5988                          kvmclock_cpu_online, kvmclock_cpu_down_prep);
5989}
5990
5991static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5992
5993int kvm_is_in_guest(void)
5994{
5995        return __this_cpu_read(current_vcpu) != NULL;
5996}
5997
5998static int kvm_is_user_mode(void)
5999{
6000        int user_mode = 3;
6001
6002        if (__this_cpu_read(current_vcpu))
6003                user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6004
6005        return user_mode != 0;
6006}
6007
6008static unsigned long kvm_get_guest_ip(void)
6009{
6010        unsigned long ip = 0;
6011
6012        if (__this_cpu_read(current_vcpu))
6013                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6014
6015        return ip;
6016}
6017
6018static struct perf_guest_info_callbacks kvm_guest_cbs = {
6019        .is_in_guest            = kvm_is_in_guest,
6020        .is_user_mode           = kvm_is_user_mode,
6021        .get_guest_ip           = kvm_get_guest_ip,
6022};
6023
6024void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6025{
6026        __this_cpu_write(current_vcpu, vcpu);
6027}
6028EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6029
6030void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6031{
6032        __this_cpu_write(current_vcpu, NULL);
6033}
6034EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6035
6036static void kvm_set_mmio_spte_mask(void)
6037{
6038        u64 mask;
6039        int maxphyaddr = boot_cpu_data.x86_phys_bits;
6040
6041        /*
6042         * Set the reserved bits and the present bit of an paging-structure
6043         * entry to generate page fault with PFER.RSV = 1.
6044         */
6045         /* Mask the reserved physical address bits. */
6046        mask = rsvd_bits(maxphyaddr, 51);
6047
6048        /* Set the present bit. */
6049        mask |= 1ull;
6050
6051#ifdef CONFIG_X86_64
6052        /*
6053         * If reserved bit is not supported, clear the present bit to disable
6054         * mmio page fault.
6055         */
6056        if (maxphyaddr == 52)
6057                mask &= ~1ull;
6058#endif
6059
6060        kvm_mmu_set_mmio_spte_mask(mask, mask);
6061}
6062
6063#ifdef CONFIG_X86_64
6064static void pvclock_gtod_update_fn(struct work_struct *work)
6065{
6066        struct kvm *kvm;
6067
6068        struct kvm_vcpu *vcpu;
6069        int i;
6070
6071        spin_lock(&kvm_lock);
6072        list_for_each_entry(kvm, &vm_list, vm_list)
6073                kvm_for_each_vcpu(i, vcpu, kvm)
6074                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6075        atomic_set(&kvm_guest_has_master_clock, 0);
6076        spin_unlock(&kvm_lock);
6077}
6078
6079static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6080
6081/*
6082 * Notification about pvclock gtod data update.
6083 */
6084static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6085                               void *priv)
6086{
6087        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6088        struct timekeeper *tk = priv;
6089
6090        update_pvclock_gtod(tk);
6091
6092        /* disable master clock if host does not trust, or does not
6093         * use, TSC clocksource
6094         */
6095        if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6096            atomic_read(&kvm_guest_has_master_clock) != 0)
6097                queue_work(system_long_wq, &pvclock_gtod_work);
6098
6099        return 0;
6100}
6101
6102static struct notifier_block pvclock_gtod_notifier = {
6103        .notifier_call = pvclock_gtod_notify,
6104};
6105#endif
6106
6107int kvm_arch_init(void *opaque)
6108{
6109        int r;
6110        struct kvm_x86_ops *ops = opaque;
6111
6112        if (kvm_x86_ops) {
6113                printk(KERN_ERR "kvm: already loaded the other module\n");
6114                r = -EEXIST;
6115                goto out;
6116        }
6117
6118        if (!ops->cpu_has_kvm_support()) {
6119                printk(KERN_ERR "kvm: no hardware support\n");
6120                r = -EOPNOTSUPP;
6121                goto out;
6122        }
6123        if (ops->disabled_by_bios()) {
6124                printk(KERN_ERR "kvm: disabled by bios\n");
6125                r = -EOPNOTSUPP;
6126                goto out;
6127        }
6128
6129        r = -ENOMEM;
6130        shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6131        if (!shared_msrs) {
6132                printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6133                goto out;
6134        }
6135
6136        r = kvm_mmu_module_init();
6137        if (r)
6138                goto out_free_percpu;
6139
6140        kvm_set_mmio_spte_mask();
6141
6142        kvm_x86_ops = ops;
6143
6144        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6145                        PT_DIRTY_MASK, PT64_NX_MASK, 0,
6146                        PT_PRESENT_MASK, 0, sme_me_mask);
6147        kvm_timer_init();
6148
6149        perf_register_guest_info_callbacks(&kvm_guest_cbs);
6150
6151        if (boot_cpu_has(X86_FEATURE_XSAVE))
6152                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6153
6154        kvm_lapic_init();
6155#ifdef CONFIG_X86_64
6156        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6157#endif
6158
6159        return 0;
6160
6161out_free_percpu:
6162        free_percpu(shared_msrs);
6163out:
6164        return r;
6165}
6166
6167void kvm_arch_exit(void)
6168{
6169        kvm_lapic_exit();
6170        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6171
6172        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6173                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6174                                            CPUFREQ_TRANSITION_NOTIFIER);
6175        cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6176#ifdef CONFIG_X86_64
6177        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6178#endif
6179        kvm_x86_ops = NULL;
6180        kvm_mmu_module_exit();
6181        free_percpu(shared_msrs);
6182}
6183
6184int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6185{
6186        ++vcpu->stat.halt_exits;
6187        if (lapic_in_kernel(vcpu)) {
6188                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6189                return 1;
6190        } else {
6191                vcpu->run->exit_reason = KVM_EXIT_HLT;
6192                return 0;
6193        }
6194}
6195EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6196
6197int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6198{
6199        int ret = kvm_skip_emulated_instruction(vcpu);
6200        /*
6201         * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6202         * KVM_EXIT_DEBUG here.
6203         */
6204        return kvm_vcpu_halt(vcpu) && ret;
6205}
6206EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6207
6208#ifdef CONFIG_X86_64
6209static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6210                                unsigned long clock_type)
6211{
6212        struct kvm_clock_pairing clock_pairing;
6213        struct timespec ts;
6214        u64 cycle;
6215        int ret;
6216
6217        if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6218                return -KVM_EOPNOTSUPP;
6219
6220        if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6221                return -KVM_EOPNOTSUPP;
6222
6223        clock_pairing.sec = ts.tv_sec;
6224        clock_pairing.nsec = ts.tv_nsec;
6225        clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6226        clock_pairing.flags = 0;
6227
6228        ret = 0;
6229        if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6230                            sizeof(struct kvm_clock_pairing)))
6231                ret = -KVM_EFAULT;
6232
6233        return ret;
6234}
6235#endif
6236
6237/*
6238 * kvm_pv_kick_cpu_op:  Kick a vcpu.
6239 *
6240 * @apicid - apicid of vcpu to be kicked.
6241 */
6242static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6243{
6244        struct kvm_lapic_irq lapic_irq;
6245
6246        lapic_irq.shorthand = 0;
6247        lapic_irq.dest_mode = 0;
6248        lapic_irq.level = 0;
6249        lapic_irq.dest_id = apicid;
6250        lapic_irq.msi_redir_hint = false;
6251
6252        lapic_irq.delivery_mode = APIC_DM_REMRD;
6253        kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6254}
6255
6256void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6257{
6258        vcpu->arch.apicv_active = false;
6259        kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6260}
6261
6262int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6263{
6264        unsigned long nr, a0, a1, a2, a3, ret;
6265        int op_64_bit, r;
6266
6267        r = kvm_skip_emulated_instruction(vcpu);
6268
6269        if (kvm_hv_hypercall_enabled(vcpu->kvm))
6270                return kvm_hv_hypercall(vcpu);
6271
6272        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6273        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6274        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6275        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6276        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6277
6278        trace_kvm_hypercall(nr, a0, a1, a2, a3);
6279
6280        op_64_bit = is_64_bit_mode(vcpu);
6281        if (!op_64_bit) {
6282                nr &= 0xFFFFFFFF;
6283                a0 &= 0xFFFFFFFF;
6284                a1 &= 0xFFFFFFFF;
6285                a2 &= 0xFFFFFFFF;
6286                a3 &= 0xFFFFFFFF;
6287        }
6288
6289        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6290                ret = -KVM_EPERM;
6291                goto out;
6292        }
6293
6294        switch (nr) {
6295        case KVM_HC_VAPIC_POLL_IRQ:
6296                ret = 0;
6297                break;
6298        case KVM_HC_KICK_CPU:
6299                kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6300                ret = 0;
6301                break;
6302#ifdef CONFIG_X86_64
6303        case KVM_HC_CLOCK_PAIRING:
6304                ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6305                break;
6306#endif
6307        default:
6308                ret = -KVM_ENOSYS;
6309                break;
6310        }
6311out:
6312        if (!op_64_bit)
6313                ret = (u32)ret;
6314        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6315        ++vcpu->stat.hypercalls;
6316        return r;
6317}
6318EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6319
6320static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6321{
6322        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6323        char instruction[3];
6324        unsigned long rip = kvm_rip_read(vcpu);
6325
6326        kvm_x86_ops->patch_hypercall(vcpu, instruction);
6327
6328        return emulator_write_emulated(ctxt, rip, instruction, 3,
6329                &ctxt->exception);
6330}
6331
6332static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6333{
6334        return vcpu->run->request_interrupt_window &&
6335                likely(!pic_in_kernel(vcpu->kvm));
6336}
6337
6338static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6339{
6340        struct kvm_run *kvm_run = vcpu->run;
6341
6342        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6343        kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6344        kvm_run->cr8 = kvm_get_cr8(vcpu);
6345        kvm_run->apic_base = kvm_get_apic_base(vcpu);
6346        kvm_run->ready_for_interrupt_injection =
6347                pic_in_kernel(vcpu->kvm) ||
6348                kvm_vcpu_ready_for_interrupt_injection(vcpu);
6349}
6350
6351static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6352{
6353        int max_irr, tpr;
6354
6355        if (!kvm_x86_ops->update_cr8_intercept)
6356                return;
6357
6358        if (!lapic_in_kernel(vcpu))
6359                return;
6360
6361        if (vcpu->arch.apicv_active)
6362                return;
6363
6364        if (!vcpu->arch.apic->vapic_addr)
6365                max_irr = kvm_lapic_find_highest_irr(vcpu);
6366        else
6367                max_irr = -1;
6368
6369        if (max_irr != -1)
6370                max_irr >>= 4;
6371
6372        tpr = kvm_lapic_get_cr8(vcpu);
6373
6374        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6375}
6376
6377static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6378{
6379        int r;
6380
6381        /* try to reinject previous events if any */
6382        if (vcpu->arch.exception.injected) {
6383                kvm_x86_ops->queue_exception(vcpu);
6384                return 0;
6385        }
6386
6387        /*
6388         * Exceptions must be injected immediately, or the exception
6389         * frame will have the address of the NMI or interrupt handler.
6390         */
6391        if (!vcpu->arch.exception.pending) {
6392                if (vcpu->arch.nmi_injected) {
6393                        kvm_x86_ops->set_nmi(vcpu);
6394                        return 0;
6395                }
6396
6397                if (vcpu->arch.interrupt.pending) {
6398                        kvm_x86_ops->set_irq(vcpu);
6399                        return 0;
6400                }
6401        }
6402
6403        if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6404                r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6405                if (r != 0)
6406                        return r;
6407        }
6408
6409        /* try to inject new event if pending */
6410        if (vcpu->arch.exception.pending) {
6411                trace_kvm_inj_exception(vcpu->arch.exception.nr,
6412                                        vcpu->arch.exception.has_error_code,
6413                                        vcpu->arch.exception.error_code);
6414
6415                vcpu->arch.exception.pending = false;
6416                vcpu->arch.exception.injected = true;
6417
6418                if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6419                        __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6420                                             X86_EFLAGS_RF);
6421
6422                if (vcpu->arch.exception.nr == DB_VECTOR &&
6423                    (vcpu->arch.dr7 & DR7_GD)) {
6424                        vcpu->arch.dr7 &= ~DR7_GD;
6425                        kvm_update_dr7(vcpu);
6426                }
6427
6428                kvm_x86_ops->queue_exception(vcpu);
6429        } else if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6430                vcpu->arch.smi_pending = false;
6431                enter_smm(vcpu);
6432        } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6433                --vcpu->arch.nmi_pending;
6434                vcpu->arch.nmi_injected = true;
6435                kvm_x86_ops->set_nmi(vcpu);
6436        } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6437                /*
6438                 * Because interrupts can be injected asynchronously, we are
6439                 * calling check_nested_events again here to avoid a race condition.
6440                 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6441                 * proposal and current concerns.  Perhaps we should be setting
6442                 * KVM_REQ_EVENT only on certain events and not unconditionally?
6443                 */
6444                if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6445                        r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6446                        if (r != 0)
6447                                return r;
6448                }
6449                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6450                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6451                                            false);
6452                        kvm_x86_ops->set_irq(vcpu);
6453                }
6454        }
6455
6456        return 0;
6457}
6458
6459static void process_nmi(struct kvm_vcpu *vcpu)
6460{
6461        unsigned limit = 2;
6462
6463        /*
6464         * x86 is limited to one NMI running, and one NMI pending after it.
6465         * If an NMI is already in progress, limit further NMIs to just one.
6466         * Otherwise, allow two (and we'll inject the first one immediately).
6467         */
6468        if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6469                limit = 1;
6470
6471        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6472        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6473        kvm_make_request(KVM_REQ_EVENT, vcpu);
6474}
6475
6476#define put_smstate(type, buf, offset, val)                       \
6477        *(type *)((buf) + (offset) - 0x7e00) = val
6478
6479static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6480{
6481        u32 flags = 0;
6482        flags |= seg->g       << 23;
6483        flags |= seg->db      << 22;
6484        flags |= seg->l       << 21;
6485        flags |= seg->avl     << 20;
6486        flags |= seg->present << 15;
6487        flags |= seg->dpl     << 13;
6488        flags |= seg->s       << 12;
6489        flags |= seg->type    << 8;
6490        return flags;
6491}
6492
6493static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6494{
6495        struct kvm_segment seg;
6496        int offset;
6497
6498        kvm_get_segment(vcpu, &seg, n);
6499        put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6500
6501        if (n < 3)
6502                offset = 0x7f84 + n * 12;
6503        else
6504                offset = 0x7f2c + (n - 3) * 12;
6505
6506        put_smstate(u32, buf, offset + 8, seg.base);
6507        put_smstate(u32, buf, offset + 4, seg.limit);
6508        put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6509}
6510
6511#ifdef CONFIG_X86_64
6512static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6513{
6514        struct kvm_segment seg;
6515        int offset;
6516        u16 flags;
6517
6518        kvm_get_segment(vcpu, &seg, n);
6519        offset = 0x7e00 + n * 16;
6520
6521        flags = enter_smm_get_segment_flags(&seg) >> 8;
6522        put_smstate(u16, buf, offset, seg.selector);
6523        put_smstate(u16, buf, offset + 2, flags);
6524        put_smstate(u32, buf, offset + 4, seg.limit);
6525        put_smstate(u64, buf, offset + 8, seg.base);
6526}
6527#endif
6528
6529static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6530{
6531        struct desc_ptr dt;
6532        struct kvm_segment seg;
6533        unsigned long val;
6534        int i;
6535
6536        put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6537        put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6538        put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6539        put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6540
6541        for (i = 0; i < 8; i++)
6542                put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6543
6544        kvm_get_dr(vcpu, 6, &val);
6545        put_smstate(u32, buf, 0x7fcc, (u32)val);
6546        kvm_get_dr(vcpu, 7, &val);
6547        put_smstate(u32, buf, 0x7fc8, (u32)val);
6548
6549        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6550        put_smstate(u32, buf, 0x7fc4, seg.selector);
6551        put_smstate(u32, buf, 0x7f64, seg.base);
6552        put_smstate(u32, buf, 0x7f60, seg.limit);
6553        put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6554
6555        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6556        put_smstate(u32, buf, 0x7fc0, seg.selector);
6557        put_smstate(u32, buf, 0x7f80, seg.base);
6558        put_smstate(u32, buf, 0x7f7c, seg.limit);
6559        put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6560
6561        kvm_x86_ops->get_gdt(vcpu, &dt);
6562        put_smstate(u32, buf, 0x7f74, dt.address);
6563        put_smstate(u32, buf, 0x7f70, dt.size);
6564
6565        kvm_x86_ops->get_idt(vcpu, &dt);
6566        put_smstate(u32, buf, 0x7f58, dt.address);
6567        put_smstate(u32, buf, 0x7f54, dt.size);
6568
6569        for (i = 0; i < 6; i++)
6570                enter_smm_save_seg_32(vcpu, buf, i);
6571
6572        put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6573
6574        /* revision id */
6575        put_smstate(u32, buf, 0x7efc, 0x00020000);
6576        put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6577}
6578
6579static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6580{
6581#ifdef CONFIG_X86_64
6582        struct desc_ptr dt;
6583        struct kvm_segment seg;
6584        unsigned long val;
6585        int i;
6586
6587        for (i = 0; i < 16; i++)
6588                put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6589
6590        put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6591        put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6592
6593        kvm_get_dr(vcpu, 6, &val);
6594        put_smstate(u64, buf, 0x7f68, val);
6595        kvm_get_dr(vcpu, 7, &val);
6596        put_smstate(u64, buf, 0x7f60, val);
6597
6598        put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6599        put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6600        put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6601
6602        put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6603
6604        /* revision id */
6605        put_smstate(u32, buf, 0x7efc, 0x00020064);
6606
6607        put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6608
6609        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6610        put_smstate(u16, buf, 0x7e90, seg.selector);
6611        put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6612        put_smstate(u32, buf, 0x7e94, seg.limit);
6613        put_smstate(u64, buf, 0x7e98, seg.base);
6614
6615        kvm_x86_ops->get_idt(vcpu, &dt);
6616        put_smstate(u32, buf, 0x7e84, dt.size);
6617        put_smstate(u64, buf, 0x7e88, dt.address);
6618
6619        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6620        put_smstate(u16, buf, 0x7e70, seg.selector);
6621        put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6622        put_smstate(u32, buf, 0x7e74, seg.limit);
6623        put_smstate(u64, buf, 0x7e78, seg.base);
6624
6625        kvm_x86_ops->get_gdt(vcpu, &dt);
6626        put_smstate(u32, buf, 0x7e64, dt.size);
6627        put_smstate(u64, buf, 0x7e68, dt.address);
6628
6629        for (i = 0; i < 6; i++)
6630                enter_smm_save_seg_64(vcpu, buf, i);
6631#else
6632        WARN_ON_ONCE(1);
6633#endif
6634}
6635
6636static void enter_smm(struct kvm_vcpu *vcpu)
6637{
6638        struct kvm_segment cs, ds;
6639        struct desc_ptr dt;
6640        char buf[512];
6641        u32 cr0;
6642
6643        trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6644        vcpu->arch.hflags |= HF_SMM_MASK;
6645        memset(buf, 0, 512);
6646        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6647                enter_smm_save_state_64(vcpu, buf);
6648        else
6649                enter_smm_save_state_32(vcpu, buf);
6650
6651        kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6652
6653        if (kvm_x86_ops->get_nmi_mask(vcpu))
6654                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6655        else
6656                kvm_x86_ops->set_nmi_mask(vcpu, true);
6657
6658        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6659        kvm_rip_write(vcpu, 0x8000);
6660
6661        cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6662        kvm_x86_ops->set_cr0(vcpu, cr0);
6663        vcpu->arch.cr0 = cr0;
6664
6665        kvm_x86_ops->set_cr4(vcpu, 0);
6666
6667        /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6668        dt.address = dt.size = 0;
6669        kvm_x86_ops->set_idt(vcpu, &dt);
6670
6671        __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6672
6673        cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6674        cs.base = vcpu->arch.smbase;
6675
6676        ds.selector = 0;
6677        ds.base = 0;
6678
6679        cs.limit    = ds.limit = 0xffffffff;
6680        cs.type     = ds.type = 0x3;
6681        cs.dpl      = ds.dpl = 0;
6682        cs.db       = ds.db = 0;
6683        cs.s        = ds.s = 1;
6684        cs.l        = ds.l = 0;
6685        cs.g        = ds.g = 1;
6686        cs.avl      = ds.avl = 0;
6687        cs.present  = ds.present = 1;
6688        cs.unusable = ds.unusable = 0;
6689        cs.padding  = ds.padding = 0;
6690
6691        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6692        kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6693        kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6694        kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6695        kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6696        kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6697
6698        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6699                kvm_x86_ops->set_efer(vcpu, 0);
6700
6701        kvm_update_cpuid(vcpu);
6702        kvm_mmu_reset_context(vcpu);
6703}
6704
6705static void process_smi(struct kvm_vcpu *vcpu)
6706{
6707        vcpu->arch.smi_pending = true;
6708        kvm_make_request(KVM_REQ_EVENT, vcpu);
6709}
6710
6711void kvm_make_scan_ioapic_request(struct kvm *kvm)
6712{
6713        kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6714}
6715
6716static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6717{
6718        u64 eoi_exit_bitmap[4];
6719
6720        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6721                return;
6722
6723        bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6724
6725        if (irqchip_split(vcpu->kvm))
6726                kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6727        else {
6728                if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6729                        kvm_x86_ops->sync_pir_to_irr(vcpu);
6730                kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6731        }
6732        bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6733                  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6734        kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6735}
6736
6737static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6738{
6739        ++vcpu->stat.tlb_flush;
6740        kvm_x86_ops->tlb_flush(vcpu);
6741}
6742
6743void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6744{
6745        struct page *page = NULL;
6746
6747        if (!lapic_in_kernel(vcpu))
6748                return;
6749
6750        if (!kvm_x86_ops->set_apic_access_page_addr)
6751                return;
6752
6753        page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6754        if (is_error_page(page))
6755                return;
6756        kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6757
6758        /*
6759         * Do not pin apic access page in memory, the MMU notifier
6760         * will call us again if it is migrated or swapped out.
6761         */
6762        put_page(page);
6763}
6764EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6765
6766/*
6767 * Returns 1 to let vcpu_run() continue the guest execution loop without
6768 * exiting to the userspace.  Otherwise, the value will be returned to the
6769 * userspace.
6770 */
6771static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6772{
6773        int r;
6774        bool req_int_win =
6775                dm_request_for_irq_injection(vcpu) &&
6776                kvm_cpu_accept_dm_intr(vcpu);
6777
6778        bool req_immediate_exit = false;
6779
6780        if (kvm_request_pending(vcpu)) {
6781                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6782                        kvm_mmu_unload(vcpu);
6783                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6784                        __kvm_migrate_timers(vcpu);
6785                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6786                        kvm_gen_update_masterclock(vcpu->kvm);
6787                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6788                        kvm_gen_kvmclock_update(vcpu);
6789                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6790                        r = kvm_guest_time_update(vcpu);
6791                        if (unlikely(r))
6792                                goto out;
6793                }
6794                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6795                        kvm_mmu_sync_roots(vcpu);
6796                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6797                        kvm_vcpu_flush_tlb(vcpu);
6798                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6799                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6800                        r = 0;
6801                        goto out;
6802                }
6803                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6804                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6805                        vcpu->mmio_needed = 0;
6806                        r = 0;
6807                        goto out;
6808                }
6809                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6810                        /* Page is swapped out. Do synthetic halt */
6811                        vcpu->arch.apf.halted = true;
6812                        r = 1;
6813                        goto out;
6814                }
6815                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6816                        record_steal_time(vcpu);
6817                if (kvm_check_request(KVM_REQ_SMI, vcpu))
6818                        process_smi(vcpu);
6819                if (kvm_check_request(KVM_REQ_NMI, vcpu))
6820                        process_nmi(vcpu);
6821                if (kvm_check_request(KVM_REQ_PMU, vcpu))
6822                        kvm_pmu_handle_event(vcpu);
6823                if (kvm_check_request(KVM_REQ_PMI, vcpu))
6824                        kvm_pmu_deliver_pmi(vcpu);
6825                if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6826                        BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6827                        if (test_bit(vcpu->arch.pending_ioapic_eoi,
6828                                     vcpu->arch.ioapic_handled_vectors)) {
6829                                vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6830                                vcpu->run->eoi.vector =
6831                                                vcpu->arch.pending_ioapic_eoi;
6832                                r = 0;
6833                                goto out;
6834                        }
6835                }
6836                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6837                        vcpu_scan_ioapic(vcpu);
6838                if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6839                        kvm_vcpu_reload_apic_access_page(vcpu);
6840                if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6841                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6842                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6843                        r = 0;
6844                        goto out;
6845                }
6846                if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6847                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6848                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6849                        r = 0;
6850                        goto out;
6851                }
6852                if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6853                        vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6854                        vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6855                        r = 0;
6856                        goto out;
6857                }
6858
6859                /*
6860                 * KVM_REQ_HV_STIMER has to be processed after
6861                 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6862                 * depend on the guest clock being up-to-date
6863                 */
6864                if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6865                        kvm_hv_process_stimers(vcpu);
6866        }
6867
6868        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6869                ++vcpu->stat.req_event;
6870                kvm_apic_accept_events(vcpu);
6871                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6872                        r = 1;
6873                        goto out;
6874                }
6875
6876                if (inject_pending_event(vcpu, req_int_win) != 0)
6877                        req_immediate_exit = true;
6878                else {
6879                        /* Enable NMI/IRQ window open exits if needed.
6880                         *
6881                         * SMIs have two cases: 1) they can be nested, and
6882                         * then there is nothing to do here because RSM will
6883                         * cause a vmexit anyway; 2) or the SMI can be pending
6884                         * because inject_pending_event has completed the
6885                         * injection of an IRQ or NMI from the previous vmexit,
6886                         * and then we request an immediate exit to inject the SMI.
6887                         */
6888                        if (vcpu->arch.smi_pending && !is_smm(vcpu))
6889                                req_immediate_exit = true;
6890                        if (vcpu->arch.nmi_pending)
6891                                kvm_x86_ops->enable_nmi_window(vcpu);
6892                        if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6893                                kvm_x86_ops->enable_irq_window(vcpu);
6894                        WARN_ON(vcpu->arch.exception.pending);
6895                }
6896
6897                if (kvm_lapic_enabled(vcpu)) {
6898                        update_cr8_intercept(vcpu);
6899                        kvm_lapic_sync_to_vapic(vcpu);
6900                }
6901        }
6902
6903        r = kvm_mmu_reload(vcpu);
6904        if (unlikely(r)) {
6905                goto cancel_injection;
6906        }
6907
6908        preempt_disable();
6909
6910        kvm_x86_ops->prepare_guest_switch(vcpu);
6911        kvm_load_guest_fpu(vcpu);
6912
6913        /*
6914         * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6915         * IPI are then delayed after guest entry, which ensures that they
6916         * result in virtual interrupt delivery.
6917         */
6918        local_irq_disable();
6919        vcpu->mode = IN_GUEST_MODE;
6920
6921        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6922
6923        /*
6924         * 1) We should set ->mode before checking ->requests.  Please see
6925         * the comment in kvm_vcpu_exiting_guest_mode().
6926         *
6927         * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6928         * pairs with the memory barrier implicit in pi_test_and_set_on
6929         * (see vmx_deliver_posted_interrupt).
6930         *
6931         * 3) This also orders the write to mode from any reads to the page
6932         * tables done while the VCPU is running.  Please see the comment
6933         * in kvm_flush_remote_tlbs.
6934         */
6935        smp_mb__after_srcu_read_unlock();
6936
6937        /*
6938         * This handles the case where a posted interrupt was
6939         * notified with kvm_vcpu_kick.
6940         */
6941        if (kvm_lapic_enabled(vcpu)) {
6942                if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6943                        kvm_x86_ops->sync_pir_to_irr(vcpu);
6944        }
6945
6946        if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6947            || need_resched() || signal_pending(current)) {
6948                vcpu->mode = OUTSIDE_GUEST_MODE;
6949                smp_wmb();
6950                local_irq_enable();
6951                preempt_enable();
6952                vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6953                r = 1;
6954                goto cancel_injection;
6955        }
6956
6957        kvm_load_guest_xcr0(vcpu);
6958
6959        if (req_immediate_exit) {
6960                kvm_make_request(KVM_REQ_EVENT, vcpu);
6961                smp_send_reschedule(vcpu->cpu);
6962        }
6963
6964        trace_kvm_entry(vcpu->vcpu_id);
6965        wait_lapic_expire(vcpu);
6966        guest_enter_irqoff();
6967
6968        if (unlikely(vcpu->arch.switch_db_regs)) {
6969                set_debugreg(0, 7);
6970                set_debugreg(vcpu->arch.eff_db[0], 0);
6971                set_debugreg(vcpu->arch.eff_db[1], 1);
6972                set_debugreg(vcpu->arch.eff_db[2], 2);
6973                set_debugreg(vcpu->arch.eff_db[3], 3);
6974                set_debugreg(vcpu->arch.dr6, 6);
6975                vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6976        }
6977
6978        kvm_x86_ops->run(vcpu);
6979
6980        /*
6981         * Do this here before restoring debug registers on the host.  And
6982         * since we do this before handling the vmexit, a DR access vmexit
6983         * can (a) read the correct value of the debug registers, (b) set
6984         * KVM_DEBUGREG_WONT_EXIT again.
6985         */
6986        if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6987                WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6988                kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6989                kvm_update_dr0123(vcpu);
6990                kvm_update_dr6(vcpu);
6991                kvm_update_dr7(vcpu);
6992                vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6993        }
6994
6995        /*
6996         * If the guest has used debug registers, at least dr7
6997         * will be disabled while returning to the host.
6998         * If we don't have active breakpoints in the host, we don't
6999         * care about the messed up debug address registers. But if
7000         * we have some of them active, restore the old state.
7001         */
7002        if (hw_breakpoint_active())
7003                hw_breakpoint_restore();
7004
7005        vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7006
7007        vcpu->mode = OUTSIDE_GUEST_MODE;
7008        smp_wmb();
7009
7010        kvm_put_guest_xcr0(vcpu);
7011
7012        kvm_x86_ops->handle_external_intr(vcpu);
7013
7014        ++vcpu->stat.exits;
7015
7016        guest_exit_irqoff();
7017
7018        local_irq_enable();
7019        preempt_enable();
7020
7021        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7022
7023        /*
7024         * Profile KVM exit RIPs:
7025         */
7026        if (unlikely(prof_on == KVM_PROFILING)) {
7027                unsigned long rip = kvm_rip_read(vcpu);
7028                profile_hit(KVM_PROFILING, (void *)rip);
7029        }
7030
7031        if (unlikely(vcpu->arch.tsc_always_catchup))
7032                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7033
7034        if (vcpu->arch.apic_attention)
7035                kvm_lapic_sync_from_vapic(vcpu);
7036
7037        vcpu->arch.gpa_available = false;
7038        r = kvm_x86_ops->handle_exit(vcpu);
7039        return r;
7040
7041cancel_injection:
7042        kvm_x86_ops->cancel_injection(vcpu);
7043        if (unlikely(vcpu->arch.apic_attention))
7044                kvm_lapic_sync_from_vapic(vcpu);
7045out:
7046        return r;
7047}
7048
7049static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7050{
7051        if (!kvm_arch_vcpu_runnable(vcpu) &&
7052            (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7053                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7054                kvm_vcpu_block(vcpu);
7055                vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7056
7057                if (kvm_x86_ops->post_block)
7058                        kvm_x86_ops->post_block(vcpu);
7059
7060                if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7061                        return 1;
7062        }
7063
7064        kvm_apic_accept_events(vcpu);
7065        switch(vcpu->arch.mp_state) {
7066        case KVM_MP_STATE_HALTED:
7067                vcpu->arch.pv.pv_unhalted = false;
7068                vcpu->arch.mp_state =
7069                        KVM_MP_STATE_RUNNABLE;
7070        case KVM_MP_STATE_RUNNABLE:
7071                vcpu->arch.apf.halted = false;
7072                break;
7073        case KVM_MP_STATE_INIT_RECEIVED:
7074                break;
7075        default:
7076                return -EINTR;
7077                break;
7078        }
7079        return 1;
7080}
7081
7082static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7083{
7084        if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7085                kvm_x86_ops->check_nested_events(vcpu, false);
7086
7087        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7088                !vcpu->arch.apf.halted);
7089}
7090
7091static int vcpu_run(struct kvm_vcpu *vcpu)
7092{
7093        int r;
7094        struct kvm *kvm = vcpu->kvm;
7095
7096        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7097
7098        for (;;) {
7099                if (kvm_vcpu_running(vcpu)) {
7100                        r = vcpu_enter_guest(vcpu);
7101                } else {
7102                        r = vcpu_block(kvm, vcpu);
7103                }
7104
7105                if (r <= 0)
7106                        break;
7107
7108                kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7109                if (kvm_cpu_has_pending_timer(vcpu))
7110                        kvm_inject_pending_timer_irqs(vcpu);
7111
7112                if (dm_request_for_irq_injection(vcpu) &&
7113                        kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7114                        r = 0;
7115                        vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7116                        ++vcpu->stat.request_irq_exits;
7117                        break;
7118                }
7119
7120                kvm_check_async_pf_completion(vcpu);
7121
7122                if (signal_pending(current)) {
7123                        r = -EINTR;
7124                        vcpu->run->exit_reason = KVM_EXIT_INTR;
7125                        ++vcpu->stat.signal_exits;
7126                        break;
7127                }
7128                if (need_resched()) {
7129                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7130                        cond_resched();
7131                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7132                }
7133        }
7134
7135        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7136
7137        return r;
7138}
7139
7140static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7141{
7142        int r;
7143        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7144        r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7145        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7146        if (r != EMULATE_DONE)
7147                return 0;
7148        return 1;
7149}
7150
7151static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7152{
7153        BUG_ON(!vcpu->arch.pio.count);
7154
7155        return complete_emulated_io(vcpu);
7156}
7157
7158/*
7159 * Implements the following, as a state machine:
7160 *
7161 * read:
7162 *   for each fragment
7163 *     for each mmio piece in the fragment
7164 *       write gpa, len
7165 *       exit
7166 *       copy data
7167 *   execute insn
7168 *
7169 * write:
7170 *   for each fragment
7171 *     for each mmio piece in the fragment
7172 *       write gpa, len
7173 *       copy data
7174 *       exit
7175 */
7176static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7177{
7178        struct kvm_run *run = vcpu->run;
7179        struct kvm_mmio_fragment *frag;
7180        unsigned len;
7181
7182        BUG_ON(!vcpu->mmio_needed);
7183
7184        /* Complete previous fragment */
7185        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7186        len = min(8u, frag->len);
7187        if (!vcpu->mmio_is_write)
7188                memcpy(frag->data, run->mmio.data, len);
7189
7190        if (frag->len <= 8) {
7191                /* Switch to the next fragment. */
7192                frag++;
7193                vcpu->mmio_cur_fragment++;
7194        } else {
7195                /* Go forward to the next mmio piece. */
7196                frag->data += len;
7197                frag->gpa += len;
7198                frag->len -= len;
7199        }
7200
7201        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7202                vcpu->mmio_needed = 0;
7203
7204                /* FIXME: return into emulator if single-stepping.  */
7205                if (vcpu->mmio_is_write)
7206                        return 1;
7207                vcpu->mmio_read_completed = 1;
7208                return complete_emulated_io(vcpu);
7209        }
7210
7211        run->exit_reason = KVM_EXIT_MMIO;
7212        run->mmio.phys_addr = frag->gpa;
7213        if (vcpu->mmio_is_write)
7214                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7215        run->mmio.len = min(8u, frag->len);
7216        run->mmio.is_write = vcpu->mmio_is_write;
7217        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7218        return 0;
7219}
7220
7221
7222int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7223{
7224        struct fpu *fpu = &current->thread.fpu;
7225        int r;
7226        sigset_t sigsaved;
7227
7228        fpu__initialize(fpu);
7229
7230        if (vcpu->sigset_active)
7231                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7232
7233        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7234                if (kvm_run->immediate_exit) {
7235                        r = -EINTR;
7236                        goto out;
7237                }
7238                kvm_vcpu_block(vcpu);
7239                kvm_apic_accept_events(vcpu);
7240                kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7241                r = -EAGAIN;
7242                if (signal_pending(current)) {
7243                        r = -EINTR;
7244                        vcpu->run->exit_reason = KVM_EXIT_INTR;
7245                        ++vcpu->stat.signal_exits;
7246                }
7247                goto out;
7248        }
7249
7250        /* re-sync apic's tpr */
7251        if (!lapic_in_kernel(vcpu)) {
7252                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7253                        r = -EINVAL;
7254                        goto out;
7255                }
7256        }
7257
7258        if (unlikely(vcpu->arch.complete_userspace_io)) {
7259                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7260                vcpu->arch.complete_userspace_io = NULL;
7261                r = cui(vcpu);
7262                if (r <= 0)
7263                        goto out;
7264        } else
7265                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7266
7267        if (kvm_run->immediate_exit)
7268                r = -EINTR;
7269        else
7270                r = vcpu_run(vcpu);
7271
7272out:
7273        post_kvm_run_save(vcpu);
7274        if (vcpu->sigset_active)
7275                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7276
7277        return r;
7278}
7279
7280int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7281{
7282        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7283                /*
7284                 * We are here if userspace calls get_regs() in the middle of
7285                 * instruction emulation. Registers state needs to be copied
7286                 * back from emulation context to vcpu. Userspace shouldn't do
7287                 * that usually, but some bad designed PV devices (vmware
7288                 * backdoor interface) need this to work
7289                 */
7290                emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7291                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7292        }
7293        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7294        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7295        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7296        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7297        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7298        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7299        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7300        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7301#ifdef CONFIG_X86_64
7302        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7303        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7304        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7305        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7306        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7307        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7308        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7309        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7310#endif
7311
7312        regs->rip = kvm_rip_read(vcpu);
7313        regs->rflags = kvm_get_rflags(vcpu);
7314
7315        return 0;
7316}
7317
7318int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7319{
7320        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7321        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7322
7323        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7324        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7325        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7326        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7327        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7328        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7329        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7330        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7331#ifdef CONFIG_X86_64
7332        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7333        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7334        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7335        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7336        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7337        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7338        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7339        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7340#endif
7341
7342        kvm_rip_write(vcpu, regs->rip);
7343        kvm_set_rflags(vcpu, regs->rflags);
7344
7345        vcpu->arch.exception.pending = false;
7346
7347        kvm_make_request(KVM_REQ_EVENT, vcpu);
7348
7349        return 0;
7350}
7351
7352void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7353{
7354        struct kvm_segment cs;
7355
7356        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7357        *db = cs.db;
7358        *l = cs.l;
7359}
7360EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7361
7362int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7363                                  struct kvm_sregs *sregs)
7364{
7365        struct desc_ptr dt;
7366
7367        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7368        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7369        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7370        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7371        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7372        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7373
7374        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7375        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7376
7377        kvm_x86_ops->get_idt(vcpu, &dt);
7378        sregs->idt.limit = dt.size;
7379        sregs->idt.base = dt.address;
7380        kvm_x86_ops->get_gdt(vcpu, &dt);
7381        sregs->gdt.limit = dt.size;
7382        sregs->gdt.base = dt.address;
7383
7384        sregs->cr0 = kvm_read_cr0(vcpu);
7385        sregs->cr2 = vcpu->arch.cr2;
7386        sregs->cr3 = kvm_read_cr3(vcpu);
7387        sregs->cr4 = kvm_read_cr4(vcpu);
7388        sregs->cr8 = kvm_get_cr8(vcpu);
7389        sregs->efer = vcpu->arch.efer;
7390        sregs->apic_base = kvm_get_apic_base(vcpu);
7391
7392        memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7393
7394        if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7395                set_bit(vcpu->arch.interrupt.nr,
7396                        (unsigned long *)sregs->interrupt_bitmap);
7397
7398        return 0;
7399}
7400
7401int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7402                                    struct kvm_mp_state *mp_state)
7403{
7404        kvm_apic_accept_events(vcpu);
7405        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7406                                        vcpu->arch.pv.pv_unhalted)
7407                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7408        else
7409                mp_state->mp_state = vcpu->arch.mp_state;
7410
7411        return 0;
7412}
7413
7414int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7415                                    struct kvm_mp_state *mp_state)
7416{
7417        if (!lapic_in_kernel(vcpu) &&
7418            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7419                return -EINVAL;
7420
7421        /* INITs are latched while in SMM */
7422        if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7423            (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7424             mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7425                return -EINVAL;
7426
7427        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7428                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7429                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7430        } else
7431                vcpu->arch.mp_state = mp_state->mp_state;
7432        kvm_make_request(KVM_REQ_EVENT, vcpu);
7433        return 0;
7434}
7435
7436int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7437                    int reason, bool has_error_code, u32 error_code)
7438{
7439        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7440        int ret;
7441
7442        init_emulate_ctxt(vcpu);
7443
7444        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7445                                   has_error_code, error_code);
7446
7447        if (ret)
7448                return EMULATE_FAIL;
7449
7450        kvm_rip_write(vcpu, ctxt->eip);
7451        kvm_set_rflags(vcpu, ctxt->eflags);
7452        kvm_make_request(KVM_REQ_EVENT, vcpu);
7453        return EMULATE_DONE;
7454}
7455EXPORT_SYMBOL_GPL(kvm_task_switch);
7456
7457int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7458                                  struct kvm_sregs *sregs)
7459{
7460        struct msr_data apic_base_msr;
7461        int mmu_reset_needed = 0;
7462        int pending_vec, max_bits, idx;
7463        struct desc_ptr dt;
7464
7465        if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7466                        (sregs->cr4 & X86_CR4_OSXSAVE))
7467                return -EINVAL;
7468
7469        apic_base_msr.data = sregs->apic_base;
7470        apic_base_msr.host_initiated = true;
7471        if (kvm_set_apic_base(vcpu, &apic_base_msr))
7472                return -EINVAL;
7473
7474        dt.size = sregs->idt.limit;
7475        dt.address = sregs->idt.base;
7476        kvm_x86_ops->set_idt(vcpu, &dt);
7477        dt.size = sregs->gdt.limit;
7478        dt.address = sregs->gdt.base;
7479        kvm_x86_ops->set_gdt(vcpu, &dt);
7480
7481        vcpu->arch.cr2 = sregs->cr2;
7482        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7483        vcpu->arch.cr3 = sregs->cr3;
7484        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7485
7486        kvm_set_cr8(vcpu, sregs->cr8);
7487
7488        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7489        kvm_x86_ops->set_efer(vcpu, sregs->efer);
7490
7491        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7492        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7493        vcpu->arch.cr0 = sregs->cr0;
7494
7495        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7496        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7497        if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7498                kvm_update_cpuid(vcpu);
7499
7500        idx = srcu_read_lock(&vcpu->kvm->srcu);
7501        if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7502                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7503                mmu_reset_needed = 1;
7504        }
7505        srcu_read_unlock(&vcpu->kvm->srcu, idx);
7506
7507        if (mmu_reset_needed)
7508                kvm_mmu_reset_context(vcpu);
7509
7510        max_bits = KVM_NR_INTERRUPTS;
7511        pending_vec = find_first_bit(
7512                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7513        if (pending_vec < max_bits) {
7514                kvm_queue_interrupt(vcpu, pending_vec, false);
7515                pr_debug("Set back pending irq %d\n", pending_vec);
7516        }
7517
7518        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7519        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7520        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7521        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7522        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7523        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7524
7525        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7526        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7527
7528        update_cr8_intercept(vcpu);
7529
7530        /* Older userspace won't unhalt the vcpu on reset. */
7531        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7532            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7533            !is_protmode(vcpu))
7534                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7535
7536        kvm_make_request(KVM_REQ_EVENT, vcpu);
7537
7538        return 0;
7539}
7540
7541int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7542                                        struct kvm_guest_debug *dbg)
7543{
7544        unsigned long rflags;
7545        int i, r;
7546
7547        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7548                r = -EBUSY;
7549                if (vcpu->arch.exception.pending)
7550                        goto out;
7551                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7552                        kvm_queue_exception(vcpu, DB_VECTOR);
7553                else
7554                        kvm_queue_exception(vcpu, BP_VECTOR);
7555        }
7556
7557        /*
7558         * Read rflags as long as potentially injected trace flags are still
7559         * filtered out.
7560         */
7561        rflags = kvm_get_rflags(vcpu);
7562
7563        vcpu->guest_debug = dbg->control;
7564        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7565                vcpu->guest_debug = 0;
7566
7567        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7568                for (i = 0; i < KVM_NR_DB_REGS; ++i)
7569                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7570                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7571        } else {
7572                for (i = 0; i < KVM_NR_DB_REGS; i++)
7573                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7574        }
7575        kvm_update_dr7(vcpu);
7576
7577        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7578                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7579                        get_segment_base(vcpu, VCPU_SREG_CS);
7580
7581        /*
7582         * Trigger an rflags update that will inject or remove the trace
7583         * flags.
7584         */
7585        kvm_set_rflags(vcpu, rflags);
7586
7587        kvm_x86_ops->update_bp_intercept(vcpu);
7588
7589        r = 0;
7590
7591out:
7592
7593        return r;
7594}
7595
7596/*
7597 * Translate a guest virtual address to a guest physical address.
7598 */
7599int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7600                                    struct kvm_translation *tr)
7601{
7602        unsigned long vaddr = tr->linear_address;
7603        gpa_t gpa;
7604        int idx;
7605
7606        idx = srcu_read_lock(&vcpu->kvm->srcu);
7607        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7608        srcu_read_unlock(&vcpu->kvm->srcu, idx);
7609        tr->physical_address = gpa;
7610        tr->valid = gpa != UNMAPPED_GVA;
7611        tr->writeable = 1;
7612        tr->usermode = 0;
7613
7614        return 0;
7615}
7616
7617int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7618{
7619        struct fxregs_state *fxsave =
7620                        &vcpu->arch.guest_fpu.state.fxsave;
7621
7622        memcpy(fpu->fpr, fxsave->st_space, 128);
7623        fpu->fcw = fxsave->cwd;
7624        fpu->fsw = fxsave->swd;
7625        fpu->ftwx = fxsave->twd;
7626        fpu->last_opcode = fxsave->fop;
7627        fpu->last_ip = fxsave->rip;
7628        fpu->last_dp = fxsave->rdp;
7629        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7630
7631        return 0;
7632}
7633
7634int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7635{
7636        struct fxregs_state *fxsave =
7637                        &vcpu->arch.guest_fpu.state.fxsave;
7638
7639        memcpy(fxsave->st_space, fpu->fpr, 128);
7640        fxsave->cwd = fpu->fcw;
7641        fxsave->swd = fpu->fsw;
7642        fxsave->twd = fpu->ftwx;
7643        fxsave->fop = fpu->last_opcode;
7644        fxsave->rip = fpu->last_ip;
7645        fxsave->rdp = fpu->last_dp;
7646        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7647
7648        return 0;
7649}
7650
7651static void fx_init(struct kvm_vcpu *vcpu)
7652{
7653        fpstate_init(&vcpu->arch.guest_fpu.state);
7654        if (boot_cpu_has(X86_FEATURE_XSAVES))
7655                vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7656                        host_xcr0 | XSTATE_COMPACTION_ENABLED;
7657
7658        /*
7659         * Ensure guest xcr0 is valid for loading
7660         */
7661        vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7662
7663        vcpu->arch.cr0 |= X86_CR0_ET;
7664}
7665
7666void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7667{
7668        if (vcpu->guest_fpu_loaded)
7669                return;
7670
7671        /*
7672         * Restore all possible states in the guest,
7673         * and assume host would use all available bits.
7674         * Guest xcr0 would be loaded later.
7675         */
7676        vcpu->guest_fpu_loaded = 1;
7677        __kernel_fpu_begin();
7678        /* PKRU is separately restored in kvm_x86_ops->run.  */
7679        __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7680                                ~XFEATURE_MASK_PKRU);
7681        trace_kvm_fpu(1);
7682}
7683
7684void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7685{
7686        if (!vcpu->guest_fpu_loaded)
7687                return;
7688
7689        vcpu->guest_fpu_loaded = 0;
7690        copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7691        __kernel_fpu_end();
7692        ++vcpu->stat.fpu_reload;
7693        trace_kvm_fpu(0);
7694}
7695
7696void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7697{
7698        void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7699
7700        kvmclock_reset(vcpu);
7701
7702        kvm_x86_ops->vcpu_free(vcpu);
7703        free_cpumask_var(wbinvd_dirty_mask);
7704}
7705
7706struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7707                                                unsigned int id)
7708{
7709        struct kvm_vcpu *vcpu;
7710
7711        if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7712                printk_once(KERN_WARNING
7713                "kvm: SMP vm created on host with unstable TSC; "
7714                "guest TSC will not be reliable\n");
7715
7716        vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7717
7718        return vcpu;
7719}
7720
7721int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7722{
7723        int r;
7724
7725        kvm_vcpu_mtrr_init(vcpu);
7726        r = vcpu_load(vcpu);
7727        if (r)
7728                return r;
7729        kvm_vcpu_reset(vcpu, false);
7730        kvm_mmu_setup(vcpu);
7731        vcpu_put(vcpu);
7732        return r;
7733}
7734
7735void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7736{
7737        struct msr_data msr;
7738        struct kvm *kvm = vcpu->kvm;
7739
7740        kvm_hv_vcpu_postcreate(vcpu);
7741
7742        if (vcpu_load(vcpu))
7743                return;
7744        msr.data = 0x0;
7745        msr.index = MSR_IA32_TSC;
7746        msr.host_initiated = true;
7747        kvm_write_tsc(vcpu, &msr);
7748        vcpu_put(vcpu);
7749
7750        if (!kvmclock_periodic_sync)
7751                return;
7752
7753        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7754                                        KVMCLOCK_SYNC_PERIOD);
7755}
7756
7757void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7758{
7759        int r;
7760        vcpu->arch.apf.msr_val = 0;
7761
7762        r = vcpu_load(vcpu);
7763        BUG_ON(r);
7764        kvm_mmu_unload(vcpu);
7765        vcpu_put(vcpu);
7766
7767        kvm_x86_ops->vcpu_free(vcpu);
7768}
7769
7770void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7771{
7772        vcpu->arch.hflags = 0;
7773
7774        vcpu->arch.smi_pending = 0;
7775        atomic_set(&vcpu->arch.nmi_queued, 0);
7776        vcpu->arch.nmi_pending = 0;
7777        vcpu->arch.nmi_injected = false;
7778        kvm_clear_interrupt_queue(vcpu);
7779        kvm_clear_exception_queue(vcpu);
7780        vcpu->arch.exception.pending = false;
7781
7782        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7783        kvm_update_dr0123(vcpu);
7784        vcpu->arch.dr6 = DR6_INIT;
7785        kvm_update_dr6(vcpu);
7786        vcpu->arch.dr7 = DR7_FIXED_1;
7787        kvm_update_dr7(vcpu);
7788
7789        vcpu->arch.cr2 = 0;
7790
7791        kvm_make_request(KVM_REQ_EVENT, vcpu);
7792        vcpu->arch.apf.msr_val = 0;
7793        vcpu->arch.st.msr_val = 0;
7794
7795        kvmclock_reset(vcpu);
7796
7797        kvm_clear_async_pf_completion_queue(vcpu);
7798        kvm_async_pf_hash_reset(vcpu);
7799        vcpu->arch.apf.halted = false;
7800
7801        if (!init_event) {
7802                kvm_pmu_reset(vcpu);
7803                vcpu->arch.smbase = 0x30000;
7804
7805                vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7806                vcpu->arch.msr_misc_features_enables = 0;
7807        }
7808
7809        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7810        vcpu->arch.regs_avail = ~0;
7811        vcpu->arch.regs_dirty = ~0;
7812
7813        kvm_x86_ops->vcpu_reset(vcpu, init_event);
7814}
7815
7816void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7817{
7818        struct kvm_segment cs;
7819
7820        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7821        cs.selector = vector << 8;
7822        cs.base = vector << 12;
7823        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7824        kvm_rip_write(vcpu, 0);
7825}
7826
7827int kvm_arch_hardware_enable(void)
7828{
7829        struct kvm *kvm;
7830        struct kvm_vcpu *vcpu;
7831        int i;
7832        int ret;
7833        u64 local_tsc;
7834        u64 max_tsc = 0;
7835        bool stable, backwards_tsc = false;
7836
7837        kvm_shared_msr_cpu_online();
7838        ret = kvm_x86_ops->hardware_enable();
7839        if (ret != 0)
7840                return ret;
7841
7842        local_tsc = rdtsc();
7843        stable = !check_tsc_unstable();
7844        list_for_each_entry(kvm, &vm_list, vm_list) {
7845                kvm_for_each_vcpu(i, vcpu, kvm) {
7846                        if (!stable && vcpu->cpu == smp_processor_id())
7847                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7848                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7849                                backwards_tsc = true;
7850                                if (vcpu->arch.last_host_tsc > max_tsc)
7851                                        max_tsc = vcpu->arch.last_host_tsc;
7852                        }
7853                }
7854        }
7855
7856        /*
7857         * Sometimes, even reliable TSCs go backwards.  This happens on
7858         * platforms that reset TSC during suspend or hibernate actions, but
7859         * maintain synchronization.  We must compensate.  Fortunately, we can
7860         * detect that condition here, which happens early in CPU bringup,
7861         * before any KVM threads can be running.  Unfortunately, we can't
7862         * bring the TSCs fully up to date with real time, as we aren't yet far
7863         * enough into CPU bringup that we know how much real time has actually
7864         * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7865         * variables that haven't been updated yet.
7866         *
7867         * So we simply find the maximum observed TSC above, then record the
7868         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7869         * the adjustment will be applied.  Note that we accumulate
7870         * adjustments, in case multiple suspend cycles happen before some VCPU
7871         * gets a chance to run again.  In the event that no KVM threads get a
7872         * chance to run, we will miss the entire elapsed period, as we'll have
7873         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7874         * loose cycle time.  This isn't too big a deal, since the loss will be
7875         * uniform across all VCPUs (not to mention the scenario is extremely
7876         * unlikely). It is possible that a second hibernate recovery happens
7877         * much faster than a first, causing the observed TSC here to be
7878         * smaller; this would require additional padding adjustment, which is
7879         * why we set last_host_tsc to the local tsc observed here.
7880         *
7881         * N.B. - this code below runs only on platforms with reliable TSC,
7882         * as that is the only way backwards_tsc is set above.  Also note
7883         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7884         * have the same delta_cyc adjustment applied if backwards_tsc
7885         * is detected.  Note further, this adjustment is only done once,
7886         * as we reset last_host_tsc on all VCPUs to stop this from being
7887         * called multiple times (one for each physical CPU bringup).
7888         *
7889         * Platforms with unreliable TSCs don't have to deal with this, they
7890         * will be compensated by the logic in vcpu_load, which sets the TSC to
7891         * catchup mode.  This will catchup all VCPUs to real time, but cannot
7892         * guarantee that they stay in perfect synchronization.
7893         */
7894        if (backwards_tsc) {
7895                u64 delta_cyc = max_tsc - local_tsc;
7896                list_for_each_entry(kvm, &vm_list, vm_list) {
7897                        kvm->arch.backwards_tsc_observed = true;
7898                        kvm_for_each_vcpu(i, vcpu, kvm) {
7899                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
7900                                vcpu->arch.last_host_tsc = local_tsc;
7901                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7902                        }
7903
7904                        /*
7905                         * We have to disable TSC offset matching.. if you were
7906                         * booting a VM while issuing an S4 host suspend....
7907                         * you may have some problem.  Solving this issue is
7908                         * left as an exercise to the reader.
7909                         */
7910                        kvm->arch.last_tsc_nsec = 0;
7911                        kvm->arch.last_tsc_write = 0;
7912                }
7913
7914        }
7915        return 0;
7916}
7917
7918void kvm_arch_hardware_disable(void)
7919{
7920        kvm_x86_ops->hardware_disable();
7921        drop_user_return_notifiers();
7922}
7923
7924int kvm_arch_hardware_setup(void)
7925{
7926        int r;
7927
7928        r = kvm_x86_ops->hardware_setup();
7929        if (r != 0)
7930                return r;
7931
7932        if (kvm_has_tsc_control) {
7933                /*
7934                 * Make sure the user can only configure tsc_khz values that
7935                 * fit into a signed integer.
7936                 * A min value is not calculated needed because it will always
7937                 * be 1 on all machines.
7938                 */
7939                u64 max = min(0x7fffffffULL,
7940                              __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7941                kvm_max_guest_tsc_khz = max;
7942
7943                kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7944        }
7945
7946        kvm_init_msr_list();
7947        return 0;
7948}
7949
7950void kvm_arch_hardware_unsetup(void)
7951{
7952        kvm_x86_ops->hardware_unsetup();
7953}
7954
7955void kvm_arch_check_processor_compat(void *rtn)
7956{
7957        kvm_x86_ops->check_processor_compatibility(rtn);
7958}
7959
7960bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7961{
7962        return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7963}
7964EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7965
7966bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7967{
7968        return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7969}
7970
7971struct static_key kvm_no_apic_vcpu __read_mostly;
7972EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7973
7974int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7975{
7976        struct page *page;
7977        struct kvm *kvm;
7978        int r;
7979
7980        BUG_ON(vcpu->kvm == NULL);
7981        kvm = vcpu->kvm;
7982
7983        vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
7984        vcpu->arch.pv.pv_unhalted = false;
7985        vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7986        if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7987                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7988        else
7989                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7990
7991        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7992        if (!page) {
7993                r = -ENOMEM;
7994                goto fail;
7995        }
7996        vcpu->arch.pio_data = page_address(page);
7997
7998        kvm_set_tsc_khz(vcpu, max_tsc_khz);
7999
8000        r = kvm_mmu_create(vcpu);
8001        if (r < 0)
8002                goto fail_free_pio_data;
8003
8004        if (irqchip_in_kernel(kvm)) {
8005                r = kvm_create_lapic(vcpu);
8006                if (r < 0)
8007                        goto fail_mmu_destroy;
8008        } else
8009                static_key_slow_inc(&kvm_no_apic_vcpu);
8010
8011        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8012                                       GFP_KERNEL);
8013        if (!vcpu->arch.mce_banks) {
8014                r = -ENOMEM;
8015                goto fail_free_lapic;
8016        }
8017        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8018
8019        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8020                r = -ENOMEM;
8021                goto fail_free_mce_banks;
8022        }
8023
8024        fx_init(vcpu);
8025
8026        vcpu->arch.ia32_tsc_adjust_msr = 0x0;
8027        vcpu->arch.pv_time_enabled = false;
8028
8029        vcpu->arch.guest_supported_xcr0 = 0;
8030        vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8031
8032        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8033
8034        vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8035
8036        kvm_async_pf_hash_reset(vcpu);
8037        kvm_pmu_init(vcpu);
8038
8039        vcpu->arch.pending_external_vector = -1;
8040        vcpu->arch.preempted_in_kernel = false;
8041
8042        kvm_hv_vcpu_init(vcpu);
8043
8044        return 0;
8045
8046fail_free_mce_banks:
8047        kfree(vcpu->arch.mce_banks);
8048fail_free_lapic:
8049        kvm_free_lapic(vcpu);
8050fail_mmu_destroy:
8051        kvm_mmu_destroy(vcpu);
8052fail_free_pio_data:
8053        free_page((unsigned long)vcpu->arch.pio_data);
8054fail:
8055        return r;
8056}
8057
8058void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8059{
8060        int idx;
8061
8062        kvm_hv_vcpu_uninit(vcpu);
8063        kvm_pmu_destroy(vcpu);
8064        kfree(vcpu->arch.mce_banks);
8065        kvm_free_lapic(vcpu);
8066        idx = srcu_read_lock(&vcpu->kvm->srcu);
8067        kvm_mmu_destroy(vcpu);
8068        srcu_read_unlock(&vcpu->kvm->srcu, idx);
8069        free_page((unsigned long)vcpu->arch.pio_data);
8070        if (!lapic_in_kernel(vcpu))
8071                static_key_slow_dec(&kvm_no_apic_vcpu);
8072}
8073
8074void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8075{
8076        kvm_x86_ops->sched_in(vcpu, cpu);
8077}
8078
8079int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8080{
8081        if (type)
8082                return -EINVAL;
8083
8084        INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8085        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8086        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8087        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8088        atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8089
8090        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8091        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8092        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8093        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8094                &kvm->arch.irq_sources_bitmap);
8095
8096        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8097        mutex_init(&kvm->arch.apic_map_lock);
8098        mutex_init(&kvm->arch.hyperv.hv_lock);
8099        spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8100
8101        kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8102        pvclock_update_vm_gtod_copy(kvm);
8103
8104        INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8105        INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8106
8107        kvm_page_track_init(kvm);
8108        kvm_mmu_init_vm(kvm);
8109
8110        if (kvm_x86_ops->vm_init)
8111                return kvm_x86_ops->vm_init(kvm);
8112
8113        return 0;
8114}
8115
8116static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8117{
8118        int r;
8119        r = vcpu_load(vcpu);
8120        BUG_ON(r);
8121        kvm_mmu_unload(vcpu);
8122        vcpu_put(vcpu);
8123}
8124
8125static void kvm_free_vcpus(struct kvm *kvm)
8126{
8127        unsigned int i;
8128        struct kvm_vcpu *vcpu;
8129
8130        /*
8131         * Unpin any mmu pages first.
8132         */
8133        kvm_for_each_vcpu(i, vcpu, kvm) {
8134                kvm_clear_async_pf_completion_queue(vcpu);
8135                kvm_unload_vcpu_mmu(vcpu);
8136        }
8137        kvm_for_each_vcpu(i, vcpu, kvm)
8138                kvm_arch_vcpu_free(vcpu);
8139
8140        mutex_lock(&kvm->lock);
8141        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8142                kvm->vcpus[i] = NULL;
8143
8144        atomic_set(&kvm->online_vcpus, 0);
8145        mutex_unlock(&kvm->lock);
8146}
8147
8148void kvm_arch_sync_events(struct kvm *kvm)
8149{
8150        cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8151        cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8152        kvm_free_pit(kvm);
8153}
8154
8155int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8156{
8157        int i, r;
8158        unsigned long hva;
8159        struct kvm_memslots *slots = kvm_memslots(kvm);
8160        struct kvm_memory_slot *slot, old;
8161
8162        /* Called with kvm->slots_lock held.  */
8163        if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8164                return -EINVAL;
8165
8166        slot = id_to_memslot(slots, id);
8167        if (size) {
8168                if (slot->npages)
8169                        return -EEXIST;
8170
8171                /*
8172                 * MAP_SHARED to prevent internal slot pages from being moved
8173                 * by fork()/COW.
8174                 */
8175                hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8176                              MAP_SHARED | MAP_ANONYMOUS, 0);
8177                if (IS_ERR((void *)hva))
8178                        return PTR_ERR((void *)hva);
8179        } else {
8180                if (!slot->npages)
8181                        return 0;
8182
8183                hva = 0;
8184        }
8185
8186        old = *slot;
8187        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8188                struct kvm_userspace_memory_region m;
8189
8190                m.slot = id | (i << 16);
8191                m.flags = 0;
8192                m.guest_phys_addr = gpa;
8193                m.userspace_addr = hva;
8194                m.memory_size = size;
8195                r = __kvm_set_memory_region(kvm, &m);
8196                if (r < 0)
8197                        return r;
8198        }
8199
8200        if (!size) {
8201                r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8202                WARN_ON(r < 0);
8203        }
8204
8205        return 0;
8206}
8207EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8208
8209int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8210{
8211        int r;
8212
8213        mutex_lock(&kvm->slots_lock);
8214        r = __x86_set_memory_region(kvm, id, gpa, size);
8215        mutex_unlock(&kvm->slots_lock);
8216
8217        return r;
8218}
8219EXPORT_SYMBOL_GPL(x86_set_memory_region);
8220
8221void kvm_arch_destroy_vm(struct kvm *kvm)
8222{
8223        if (current->mm == kvm->mm) {
8224                /*
8225                 * Free memory regions allocated on behalf of userspace,
8226                 * unless the the memory map has changed due to process exit
8227                 * or fd copying.
8228                 */
8229                x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8230                x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8231                x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8232        }
8233        if (kvm_x86_ops->vm_destroy)
8234                kvm_x86_ops->vm_destroy(kvm);
8235        kvm_pic_destroy(kvm);
8236        kvm_ioapic_destroy(kvm);
8237        kvm_free_vcpus(kvm);
8238        kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8239        kvm_mmu_uninit_vm(kvm);
8240        kvm_page_track_cleanup(kvm);
8241}
8242
8243void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8244                           struct kvm_memory_slot *dont)
8245{
8246        int i;
8247
8248        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8249                if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8250                        kvfree(free->arch.rmap[i]);
8251                        free->arch.rmap[i] = NULL;
8252                }
8253                if (i == 0)
8254                        continue;
8255
8256                if (!dont || free->arch.lpage_info[i - 1] !=
8257                             dont->arch.lpage_info[i - 1]) {
8258                        kvfree(free->arch.lpage_info[i - 1]);
8259                        free->arch.lpage_info[i - 1] = NULL;
8260                }
8261        }
8262
8263        kvm_page_track_free_memslot(free, dont);
8264}
8265
8266int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8267                            unsigned long npages)
8268{
8269        int i;
8270
8271        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8272                struct kvm_lpage_info *linfo;
8273                unsigned long ugfn;
8274                int lpages;
8275                int level = i + 1;
8276
8277                lpages = gfn_to_index(slot->base_gfn + npages - 1,
8278                                      slot->base_gfn, level) + 1;
8279
8280                slot->arch.rmap[i] =
8281                        kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8282                if (!slot->arch.rmap[i])
8283                        goto out_free;
8284                if (i == 0)
8285                        continue;
8286
8287                linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8288                if (!linfo)
8289                        goto out_free;
8290
8291                slot->arch.lpage_info[i - 1] = linfo;
8292
8293                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8294                        linfo[0].disallow_lpage = 1;
8295                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8296                        linfo[lpages - 1].disallow_lpage = 1;
8297                ugfn = slot->userspace_addr >> PAGE_SHIFT;
8298                /*
8299                 * If the gfn and userspace address are not aligned wrt each
8300                 * other, or if explicitly asked to, disable large page
8301                 * support for this slot
8302                 */
8303                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8304                    !kvm_largepages_enabled()) {
8305                        unsigned long j;
8306
8307                        for (j = 0; j < lpages; ++j)
8308                                linfo[j].disallow_lpage = 1;
8309                }
8310        }
8311
8312        if (kvm_page_track_create_memslot(slot, npages))
8313                goto out_free;
8314
8315        return 0;
8316
8317out_free:
8318        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8319                kvfree(slot->arch.rmap[i]);
8320                slot->arch.rmap[i] = NULL;
8321                if (i == 0)
8322                        continue;
8323
8324                kvfree(slot->arch.lpage_info[i - 1]);
8325                slot->arch.lpage_info[i - 1] = NULL;
8326        }
8327        return -ENOMEM;
8328}
8329
8330void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8331{
8332        /*
8333         * memslots->generation has been incremented.
8334         * mmio generation may have reached its maximum value.
8335         */
8336        kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8337}
8338
8339int kvm_arch_prepare_memory_region(struct kvm *kvm,
8340                                struct kvm_memory_slot *memslot,
8341                                const struct kvm_userspace_memory_region *mem,
8342                                enum kvm_mr_change change)
8343{
8344        return 0;
8345}
8346
8347static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8348                                     struct kvm_memory_slot *new)
8349{
8350        /* Still write protect RO slot */
8351        if (new->flags & KVM_MEM_READONLY) {
8352                kvm_mmu_slot_remove_write_access(kvm, new);
8353                return;
8354        }
8355
8356        /*
8357         * Call kvm_x86_ops dirty logging hooks when they are valid.
8358         *
8359         * kvm_x86_ops->slot_disable_log_dirty is called when:
8360         *
8361         *  - KVM_MR_CREATE with dirty logging is disabled
8362         *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8363         *
8364         * The reason is, in case of PML, we need to set D-bit for any slots
8365         * with dirty logging disabled in order to eliminate unnecessary GPA
8366         * logging in PML buffer (and potential PML buffer full VMEXT). This
8367         * guarantees leaving PML enabled during guest's lifetime won't have
8368         * any additonal overhead from PML when guest is running with dirty
8369         * logging disabled for memory slots.
8370         *
8371         * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8372         * to dirty logging mode.
8373         *
8374         * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8375         *
8376         * In case of write protect:
8377         *
8378         * Write protect all pages for dirty logging.
8379         *
8380         * All the sptes including the large sptes which point to this
8381         * slot are set to readonly. We can not create any new large
8382         * spte on this slot until the end of the logging.
8383         *
8384         * See the comments in fast_page_fault().
8385         */
8386        if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8387                if (kvm_x86_ops->slot_enable_log_dirty)
8388                        kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8389                else
8390                        kvm_mmu_slot_remove_write_access(kvm, new);
8391        } else {
8392                if (kvm_x86_ops->slot_disable_log_dirty)
8393                        kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8394        }
8395}
8396
8397void kvm_arch_commit_memory_region(struct kvm *kvm,
8398                                const struct kvm_userspace_memory_region *mem,
8399                                const struct kvm_memory_slot *old,
8400                                const struct kvm_memory_slot *new,
8401                                enum kvm_mr_change change)
8402{
8403        int nr_mmu_pages = 0;
8404
8405        if (!kvm->arch.n_requested_mmu_pages)
8406                nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8407
8408        if (nr_mmu_pages)
8409                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8410
8411        /*
8412         * Dirty logging tracks sptes in 4k granularity, meaning that large
8413         * sptes have to be split.  If live migration is successful, the guest
8414         * in the source machine will be destroyed and large sptes will be
8415         * created in the destination. However, if the guest continues to run
8416         * in the source machine (for example if live migration fails), small
8417         * sptes will remain around and cause bad performance.
8418         *
8419         * Scan sptes if dirty logging has been stopped, dropping those
8420         * which can be collapsed into a single large-page spte.  Later
8421         * page faults will create the large-page sptes.
8422         */
8423        if ((change != KVM_MR_DELETE) &&
8424                (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8425                !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8426                kvm_mmu_zap_collapsible_sptes(kvm, new);
8427
8428        /*
8429         * Set up write protection and/or dirty logging for the new slot.
8430         *
8431         * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8432         * been zapped so no dirty logging staff is needed for old slot. For
8433         * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8434         * new and it's also covered when dealing with the new slot.
8435         *
8436         * FIXME: const-ify all uses of struct kvm_memory_slot.
8437         */
8438        if (change != KVM_MR_DELETE)
8439                kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8440}
8441
8442void kvm_arch_flush_shadow_all(struct kvm *kvm)
8443{
8444        kvm_mmu_invalidate_zap_all_pages(kvm);
8445}
8446
8447void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8448                                   struct kvm_memory_slot *slot)
8449{
8450        kvm_page_track_flush_slot(kvm, slot);
8451}
8452
8453static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8454{
8455        if (!list_empty_careful(&vcpu->async_pf.done))
8456                return true;
8457
8458        if (kvm_apic_has_events(vcpu))
8459                return true;
8460
8461        if (vcpu->arch.pv.pv_unhalted)
8462                return true;
8463
8464        if (vcpu->arch.exception.pending)
8465                return true;
8466
8467        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8468            (vcpu->arch.nmi_pending &&
8469             kvm_x86_ops->nmi_allowed(vcpu)))
8470                return true;
8471
8472        if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8473            (vcpu->arch.smi_pending && !is_smm(vcpu)))
8474                return true;
8475
8476        if (kvm_arch_interrupt_allowed(vcpu) &&
8477            kvm_cpu_has_interrupt(vcpu))
8478                return true;
8479
8480        if (kvm_hv_has_stimer_pending(vcpu))
8481                return true;
8482
8483        return false;
8484}
8485
8486int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8487{
8488        return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8489}
8490
8491bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8492{
8493        return vcpu->arch.preempted_in_kernel;
8494}
8495
8496int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8497{
8498        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8499}
8500
8501int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8502{
8503        return kvm_x86_ops->interrupt_allowed(vcpu);
8504}
8505
8506unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8507{
8508        if (is_64_bit_mode(vcpu))
8509                return kvm_rip_read(vcpu);
8510        return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8511                     kvm_rip_read(vcpu));
8512}
8513EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8514
8515bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8516{
8517        return kvm_get_linear_rip(vcpu) == linear_rip;
8518}
8519EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8520
8521unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8522{
8523        unsigned long rflags;
8524
8525        rflags = kvm_x86_ops->get_rflags(vcpu);
8526        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8527                rflags &= ~X86_EFLAGS_TF;
8528        return rflags;
8529}
8530EXPORT_SYMBOL_GPL(kvm_get_rflags);
8531
8532static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8533{
8534        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8535            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8536                rflags |= X86_EFLAGS_TF;
8537        kvm_x86_ops->set_rflags(vcpu, rflags);
8538}
8539
8540void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8541{
8542        __kvm_set_rflags(vcpu, rflags);
8543        kvm_make_request(KVM_REQ_EVENT, vcpu);
8544}
8545EXPORT_SYMBOL_GPL(kvm_set_rflags);
8546
8547void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8548{
8549        int r;
8550
8551        if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8552              work->wakeup_all)
8553                return;
8554
8555        r = kvm_mmu_reload(vcpu);
8556        if (unlikely(r))
8557                return;
8558
8559        if (!vcpu->arch.mmu.direct_map &&
8560              work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8561                return;
8562
8563        vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8564}
8565
8566static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8567{
8568        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8569}
8570
8571static inline u32 kvm_async_pf_next_probe(u32 key)
8572{
8573        return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8574}
8575
8576static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8577{
8578        u32 key = kvm_async_pf_hash_fn(gfn);
8579
8580        while (vcpu->arch.apf.gfns[key] != ~0)
8581                key = kvm_async_pf_next_probe(key);
8582
8583        vcpu->arch.apf.gfns[key] = gfn;
8584}
8585
8586static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8587{
8588        int i;
8589        u32 key = kvm_async_pf_hash_fn(gfn);
8590
8591        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8592                     (vcpu->arch.apf.gfns[key] != gfn &&
8593                      vcpu->arch.apf.gfns[key] != ~0); i++)
8594                key = kvm_async_pf_next_probe(key);
8595
8596        return key;
8597}
8598
8599bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8600{
8601        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8602}
8603
8604static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8605{
8606        u32 i, j, k;
8607
8608        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8609        while (true) {
8610                vcpu->arch.apf.gfns[i] = ~0;
8611                do {
8612                        j = kvm_async_pf_next_probe(j);
8613                        if (vcpu->arch.apf.gfns[j] == ~0)
8614                                return;
8615                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8616                        /*
8617                         * k lies cyclically in ]i,j]
8618                         * |    i.k.j |
8619                         * |....j i.k.| or  |.k..j i...|
8620                         */
8621                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8622                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8623                i = j;
8624        }
8625}
8626
8627static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8628{
8629
8630        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8631                                      sizeof(val));
8632}
8633
8634static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8635{
8636
8637        return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8638                                      sizeof(u32));
8639}
8640
8641void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8642                                     struct kvm_async_pf *work)
8643{
8644        struct x86_exception fault;
8645
8646        trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8647        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8648
8649        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8650            (vcpu->arch.apf.send_user_only &&
8651             kvm_x86_ops->get_cpl(vcpu) == 0))
8652                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8653        else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8654                fault.vector = PF_VECTOR;
8655                fault.error_code_valid = true;
8656                fault.error_code = 0;
8657                fault.nested_page_fault = false;
8658                fault.address = work->arch.token;
8659                fault.async_page_fault = true;
8660                kvm_inject_page_fault(vcpu, &fault);
8661        }
8662}
8663
8664void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8665                                 struct kvm_async_pf *work)
8666{
8667        struct x86_exception fault;
8668        u32 val;
8669
8670        if (work->wakeup_all)
8671                work->arch.token = ~0; /* broadcast wakeup */
8672        else
8673                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8674        trace_kvm_async_pf_ready(work->arch.token, work->gva);
8675
8676        if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8677            !apf_get_user(vcpu, &val)) {
8678                if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8679                    vcpu->arch.exception.pending &&
8680                    vcpu->arch.exception.nr == PF_VECTOR &&
8681                    !apf_put_user(vcpu, 0)) {
8682                        vcpu->arch.exception.injected = false;
8683                        vcpu->arch.exception.pending = false;
8684                        vcpu->arch.exception.nr = 0;
8685                        vcpu->arch.exception.has_error_code = false;
8686                        vcpu->arch.exception.error_code = 0;
8687                } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8688                        fault.vector = PF_VECTOR;
8689                        fault.error_code_valid = true;
8690                        fault.error_code = 0;
8691                        fault.nested_page_fault = false;
8692                        fault.address = work->arch.token;
8693                        fault.async_page_fault = true;
8694                        kvm_inject_page_fault(vcpu, &fault);
8695                }
8696        }
8697        vcpu->arch.apf.halted = false;
8698        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8699}
8700
8701bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8702{
8703        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8704                return true;
8705        else
8706                return kvm_can_do_async_pf(vcpu);
8707}
8708
8709void kvm_arch_start_assignment(struct kvm *kvm)
8710{
8711        atomic_inc(&kvm->arch.assigned_device_count);
8712}
8713EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8714
8715void kvm_arch_end_assignment(struct kvm *kvm)
8716{
8717        atomic_dec(&kvm->arch.assigned_device_count);
8718}
8719EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8720
8721bool kvm_arch_has_assigned_device(struct kvm *kvm)
8722{
8723        return atomic_read(&kvm->arch.assigned_device_count);
8724}
8725EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8726
8727void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8728{
8729        atomic_inc(&kvm->arch.noncoherent_dma_count);
8730}
8731EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8732
8733void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8734{
8735        atomic_dec(&kvm->arch.noncoherent_dma_count);
8736}
8737EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8738
8739bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8740{
8741        return atomic_read(&kvm->arch.noncoherent_dma_count);
8742}
8743EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8744
8745bool kvm_arch_has_irq_bypass(void)
8746{
8747        return kvm_x86_ops->update_pi_irte != NULL;
8748}
8749
8750int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8751                                      struct irq_bypass_producer *prod)
8752{
8753        struct kvm_kernel_irqfd *irqfd =
8754                container_of(cons, struct kvm_kernel_irqfd, consumer);
8755
8756        irqfd->producer = prod;
8757
8758        return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8759                                           prod->irq, irqfd->gsi, 1);
8760}
8761
8762void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8763                                      struct irq_bypass_producer *prod)
8764{
8765        int ret;
8766        struct kvm_kernel_irqfd *irqfd =
8767                container_of(cons, struct kvm_kernel_irqfd, consumer);
8768
8769        WARN_ON(irqfd->producer != prod);
8770        irqfd->producer = NULL;
8771
8772        /*
8773         * When producer of consumer is unregistered, we change back to
8774         * remapped mode, so we can re-use the current implementation
8775         * when the irq is masked/disabled or the consumer side (KVM
8776         * int this case doesn't want to receive the interrupts.
8777        */
8778        ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8779        if (ret)
8780                printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8781                       " fails: %d\n", irqfd->consumer.token, ret);
8782}
8783
8784int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8785                                   uint32_t guest_irq, bool set)
8786{
8787        if (!kvm_x86_ops->update_pi_irte)
8788                return -EINVAL;
8789
8790        return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8791}
8792
8793bool kvm_vector_hashing_enabled(void)
8794{
8795        return vector_hashing;
8796}
8797EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8798
8799EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8800EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8801EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8802EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8803EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8804EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8805EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8806EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8807EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8808EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8809EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8810EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8811EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8812EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8813EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8814EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8815EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8816EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8817EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8818