linux/arch/x86/mm/init.c
<<
>>
Prefs
   1#include <linux/gfp.h>
   2#include <linux/initrd.h>
   3#include <linux/ioport.h>
   4#include <linux/swap.h>
   5#include <linux/memblock.h>
   6#include <linux/bootmem.h>      /* for max_low_pfn */
   7
   8#include <asm/set_memory.h>
   9#include <asm/e820/api.h>
  10#include <asm/init.h>
  11#include <asm/page.h>
  12#include <asm/page_types.h>
  13#include <asm/sections.h>
  14#include <asm/setup.h>
  15#include <asm/tlbflush.h>
  16#include <asm/tlb.h>
  17#include <asm/proto.h>
  18#include <asm/dma.h>            /* for MAX_DMA_PFN */
  19#include <asm/microcode.h>
  20#include <asm/kaslr.h>
  21#include <asm/hypervisor.h>
  22#include <asm/cpufeature.h>
  23
  24/*
  25 * We need to define the tracepoints somewhere, and tlb.c
  26 * is only compied when SMP=y.
  27 */
  28#define CREATE_TRACE_POINTS
  29#include <trace/events/tlb.h>
  30
  31#include "mm_internal.h"
  32
  33/*
  34 * Tables translating between page_cache_type_t and pte encoding.
  35 *
  36 * The default values are defined statically as minimal supported mode;
  37 * WC and WT fall back to UC-.  pat_init() updates these values to support
  38 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
  39 * for the details.  Note, __early_ioremap() used during early boot-time
  40 * takes pgprot_t (pte encoding) and does not use these tables.
  41 *
  42 *   Index into __cachemode2pte_tbl[] is the cachemode.
  43 *
  44 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  45 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  46 */
  47uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  48        [_PAGE_CACHE_MODE_WB      ]     = 0         | 0        ,
  49        [_PAGE_CACHE_MODE_WC      ]     = 0         | _PAGE_PCD,
  50        [_PAGE_CACHE_MODE_UC_MINUS]     = 0         | _PAGE_PCD,
  51        [_PAGE_CACHE_MODE_UC      ]     = _PAGE_PWT | _PAGE_PCD,
  52        [_PAGE_CACHE_MODE_WT      ]     = 0         | _PAGE_PCD,
  53        [_PAGE_CACHE_MODE_WP      ]     = 0         | _PAGE_PCD,
  54};
  55EXPORT_SYMBOL(__cachemode2pte_tbl);
  56
  57uint8_t __pte2cachemode_tbl[8] = {
  58        [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
  59        [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  60        [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  61        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
  62        [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  63        [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  64        [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  65        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  66};
  67EXPORT_SYMBOL(__pte2cachemode_tbl);
  68
  69static unsigned long __initdata pgt_buf_start;
  70static unsigned long __initdata pgt_buf_end;
  71static unsigned long __initdata pgt_buf_top;
  72
  73static unsigned long min_pfn_mapped;
  74
  75static bool __initdata can_use_brk_pgt = true;
  76
  77/*
  78 * Pages returned are already directly mapped.
  79 *
  80 * Changing that is likely to break Xen, see commit:
  81 *
  82 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  83 *
  84 * for detailed information.
  85 */
  86__ref void *alloc_low_pages(unsigned int num)
  87{
  88        unsigned long pfn;
  89        int i;
  90
  91        if (after_bootmem) {
  92                unsigned int order;
  93
  94                order = get_order((unsigned long)num << PAGE_SHIFT);
  95                return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
  96                                                __GFP_ZERO, order);
  97        }
  98
  99        if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 100                unsigned long ret;
 101                if (min_pfn_mapped >= max_pfn_mapped)
 102                        panic("alloc_low_pages: ran out of memory");
 103                ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
 104                                        max_pfn_mapped << PAGE_SHIFT,
 105                                        PAGE_SIZE * num , PAGE_SIZE);
 106                if (!ret)
 107                        panic("alloc_low_pages: can not alloc memory");
 108                memblock_reserve(ret, PAGE_SIZE * num);
 109                pfn = ret >> PAGE_SHIFT;
 110        } else {
 111                pfn = pgt_buf_end;
 112                pgt_buf_end += num;
 113                printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
 114                        pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
 115        }
 116
 117        for (i = 0; i < num; i++) {
 118                void *adr;
 119
 120                adr = __va((pfn + i) << PAGE_SHIFT);
 121                clear_page(adr);
 122        }
 123
 124        return __va(pfn << PAGE_SHIFT);
 125}
 126
 127/*
 128 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
 129 * With KASLR memory randomization, depending on the machine e820 memory
 130 * and the PUD alignment. We may need twice more pages when KASLR memory
 131 * randomization is enabled.
 132 */
 133#ifndef CONFIG_RANDOMIZE_MEMORY
 134#define INIT_PGD_PAGE_COUNT      6
 135#else
 136#define INIT_PGD_PAGE_COUNT      12
 137#endif
 138#define INIT_PGT_BUF_SIZE       (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
 139RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 140void  __init early_alloc_pgt_buf(void)
 141{
 142        unsigned long tables = INIT_PGT_BUF_SIZE;
 143        phys_addr_t base;
 144
 145        base = __pa(extend_brk(tables, PAGE_SIZE));
 146
 147        pgt_buf_start = base >> PAGE_SHIFT;
 148        pgt_buf_end = pgt_buf_start;
 149        pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 150}
 151
 152int after_bootmem;
 153
 154early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 155
 156struct map_range {
 157        unsigned long start;
 158        unsigned long end;
 159        unsigned page_size_mask;
 160};
 161
 162static int page_size_mask;
 163
 164static void __init probe_page_size_mask(void)
 165{
 166        /*
 167         * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
 168         * use small pages.
 169         * This will simplify cpa(), which otherwise needs to support splitting
 170         * large pages into small in interrupt context, etc.
 171         */
 172        if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled() && !IS_ENABLED(CONFIG_KMEMCHECK))
 173                page_size_mask |= 1 << PG_LEVEL_2M;
 174        else
 175                direct_gbpages = 0;
 176
 177        /* Enable PSE if available */
 178        if (boot_cpu_has(X86_FEATURE_PSE))
 179                cr4_set_bits_and_update_boot(X86_CR4_PSE);
 180
 181        /* Enable PGE if available */
 182        if (boot_cpu_has(X86_FEATURE_PGE)) {
 183                cr4_set_bits_and_update_boot(X86_CR4_PGE);
 184                __supported_pte_mask |= _PAGE_GLOBAL;
 185        } else
 186                __supported_pte_mask &= ~_PAGE_GLOBAL;
 187
 188        /* Enable 1 GB linear kernel mappings if available: */
 189        if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
 190                printk(KERN_INFO "Using GB pages for direct mapping\n");
 191                page_size_mask |= 1 << PG_LEVEL_1G;
 192        } else {
 193                direct_gbpages = 0;
 194        }
 195}
 196
 197static void setup_pcid(void)
 198{
 199#ifdef CONFIG_X86_64
 200        if (boot_cpu_has(X86_FEATURE_PCID)) {
 201                if (boot_cpu_has(X86_FEATURE_PGE)) {
 202                        /*
 203                         * This can't be cr4_set_bits_and_update_boot() --
 204                         * the trampoline code can't handle CR4.PCIDE and
 205                         * it wouldn't do any good anyway.  Despite the name,
 206                         * cr4_set_bits_and_update_boot() doesn't actually
 207                         * cause the bits in question to remain set all the
 208                         * way through the secondary boot asm.
 209                         *
 210                         * Instead, we brute-force it and set CR4.PCIDE
 211                         * manually in start_secondary().
 212                         */
 213                        cr4_set_bits(X86_CR4_PCIDE);
 214                } else {
 215                        /*
 216                         * flush_tlb_all(), as currently implemented, won't
 217                         * work if PCID is on but PGE is not.  Since that
 218                         * combination doesn't exist on real hardware, there's
 219                         * no reason to try to fully support it, but it's
 220                         * polite to avoid corrupting data if we're on
 221                         * an improperly configured VM.
 222                         */
 223                        setup_clear_cpu_cap(X86_FEATURE_PCID);
 224                }
 225        }
 226#endif
 227}
 228
 229#ifdef CONFIG_X86_32
 230#define NR_RANGE_MR 3
 231#else /* CONFIG_X86_64 */
 232#define NR_RANGE_MR 5
 233#endif
 234
 235static int __meminit save_mr(struct map_range *mr, int nr_range,
 236                             unsigned long start_pfn, unsigned long end_pfn,
 237                             unsigned long page_size_mask)
 238{
 239        if (start_pfn < end_pfn) {
 240                if (nr_range >= NR_RANGE_MR)
 241                        panic("run out of range for init_memory_mapping\n");
 242                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 243                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 244                mr[nr_range].page_size_mask = page_size_mask;
 245                nr_range++;
 246        }
 247
 248        return nr_range;
 249}
 250
 251/*
 252 * adjust the page_size_mask for small range to go with
 253 *      big page size instead small one if nearby are ram too.
 254 */
 255static void __ref adjust_range_page_size_mask(struct map_range *mr,
 256                                                         int nr_range)
 257{
 258        int i;
 259
 260        for (i = 0; i < nr_range; i++) {
 261                if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 262                    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 263                        unsigned long start = round_down(mr[i].start, PMD_SIZE);
 264                        unsigned long end = round_up(mr[i].end, PMD_SIZE);
 265
 266#ifdef CONFIG_X86_32
 267                        if ((end >> PAGE_SHIFT) > max_low_pfn)
 268                                continue;
 269#endif
 270
 271                        if (memblock_is_region_memory(start, end - start))
 272                                mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 273                }
 274                if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 275                    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 276                        unsigned long start = round_down(mr[i].start, PUD_SIZE);
 277                        unsigned long end = round_up(mr[i].end, PUD_SIZE);
 278
 279                        if (memblock_is_region_memory(start, end - start))
 280                                mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 281                }
 282        }
 283}
 284
 285static const char *page_size_string(struct map_range *mr)
 286{
 287        static const char str_1g[] = "1G";
 288        static const char str_2m[] = "2M";
 289        static const char str_4m[] = "4M";
 290        static const char str_4k[] = "4k";
 291
 292        if (mr->page_size_mask & (1<<PG_LEVEL_1G))
 293                return str_1g;
 294        /*
 295         * 32-bit without PAE has a 4M large page size.
 296         * PG_LEVEL_2M is misnamed, but we can at least
 297         * print out the right size in the string.
 298         */
 299        if (IS_ENABLED(CONFIG_X86_32) &&
 300            !IS_ENABLED(CONFIG_X86_PAE) &&
 301            mr->page_size_mask & (1<<PG_LEVEL_2M))
 302                return str_4m;
 303
 304        if (mr->page_size_mask & (1<<PG_LEVEL_2M))
 305                return str_2m;
 306
 307        return str_4k;
 308}
 309
 310static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 311                                     unsigned long start,
 312                                     unsigned long end)
 313{
 314        unsigned long start_pfn, end_pfn, limit_pfn;
 315        unsigned long pfn;
 316        int i;
 317
 318        limit_pfn = PFN_DOWN(end);
 319
 320        /* head if not big page alignment ? */
 321        pfn = start_pfn = PFN_DOWN(start);
 322#ifdef CONFIG_X86_32
 323        /*
 324         * Don't use a large page for the first 2/4MB of memory
 325         * because there are often fixed size MTRRs in there
 326         * and overlapping MTRRs into large pages can cause
 327         * slowdowns.
 328         */
 329        if (pfn == 0)
 330                end_pfn = PFN_DOWN(PMD_SIZE);
 331        else
 332                end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 333#else /* CONFIG_X86_64 */
 334        end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 335#endif
 336        if (end_pfn > limit_pfn)
 337                end_pfn = limit_pfn;
 338        if (start_pfn < end_pfn) {
 339                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 340                pfn = end_pfn;
 341        }
 342
 343        /* big page (2M) range */
 344        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 345#ifdef CONFIG_X86_32
 346        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 347#else /* CONFIG_X86_64 */
 348        end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 349        if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 350                end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 351#endif
 352
 353        if (start_pfn < end_pfn) {
 354                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 355                                page_size_mask & (1<<PG_LEVEL_2M));
 356                pfn = end_pfn;
 357        }
 358
 359#ifdef CONFIG_X86_64
 360        /* big page (1G) range */
 361        start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 362        end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 363        if (start_pfn < end_pfn) {
 364                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 365                                page_size_mask &
 366                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 367                pfn = end_pfn;
 368        }
 369
 370        /* tail is not big page (1G) alignment */
 371        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 372        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 373        if (start_pfn < end_pfn) {
 374                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 375                                page_size_mask & (1<<PG_LEVEL_2M));
 376                pfn = end_pfn;
 377        }
 378#endif
 379
 380        /* tail is not big page (2M) alignment */
 381        start_pfn = pfn;
 382        end_pfn = limit_pfn;
 383        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 384
 385        if (!after_bootmem)
 386                adjust_range_page_size_mask(mr, nr_range);
 387
 388        /* try to merge same page size and continuous */
 389        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 390                unsigned long old_start;
 391                if (mr[i].end != mr[i+1].start ||
 392                    mr[i].page_size_mask != mr[i+1].page_size_mask)
 393                        continue;
 394                /* move it */
 395                old_start = mr[i].start;
 396                memmove(&mr[i], &mr[i+1],
 397                        (nr_range - 1 - i) * sizeof(struct map_range));
 398                mr[i--].start = old_start;
 399                nr_range--;
 400        }
 401
 402        for (i = 0; i < nr_range; i++)
 403                pr_debug(" [mem %#010lx-%#010lx] page %s\n",
 404                                mr[i].start, mr[i].end - 1,
 405                                page_size_string(&mr[i]));
 406
 407        return nr_range;
 408}
 409
 410struct range pfn_mapped[E820_MAX_ENTRIES];
 411int nr_pfn_mapped;
 412
 413static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 414{
 415        nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
 416                                             nr_pfn_mapped, start_pfn, end_pfn);
 417        nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
 418
 419        max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 420
 421        if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 422                max_low_pfn_mapped = max(max_low_pfn_mapped,
 423                                         min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 424}
 425
 426bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 427{
 428        int i;
 429
 430        for (i = 0; i < nr_pfn_mapped; i++)
 431                if ((start_pfn >= pfn_mapped[i].start) &&
 432                    (end_pfn <= pfn_mapped[i].end))
 433                        return true;
 434
 435        return false;
 436}
 437
 438/*
 439 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 440 * This runs before bootmem is initialized and gets pages directly from
 441 * the physical memory. To access them they are temporarily mapped.
 442 */
 443unsigned long __ref init_memory_mapping(unsigned long start,
 444                                               unsigned long end)
 445{
 446        struct map_range mr[NR_RANGE_MR];
 447        unsigned long ret = 0;
 448        int nr_range, i;
 449
 450        pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 451               start, end - 1);
 452
 453        memset(mr, 0, sizeof(mr));
 454        nr_range = split_mem_range(mr, 0, start, end);
 455
 456        for (i = 0; i < nr_range; i++)
 457                ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 458                                                   mr[i].page_size_mask);
 459
 460        add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 461
 462        return ret >> PAGE_SHIFT;
 463}
 464
 465/*
 466 * We need to iterate through the E820 memory map and create direct mappings
 467 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
 468 * create direct mappings for all pfns from [0 to max_low_pfn) and
 469 * [4GB to max_pfn) because of possible memory holes in high addresses
 470 * that cannot be marked as UC by fixed/variable range MTRRs.
 471 * Depending on the alignment of E820 ranges, this may possibly result
 472 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 473 *
 474 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 475 * That range would have hole in the middle or ends, and only ram parts
 476 * will be mapped in init_range_memory_mapping().
 477 */
 478static unsigned long __init init_range_memory_mapping(
 479                                           unsigned long r_start,
 480                                           unsigned long r_end)
 481{
 482        unsigned long start_pfn, end_pfn;
 483        unsigned long mapped_ram_size = 0;
 484        int i;
 485
 486        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 487                u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 488                u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 489                if (start >= end)
 490                        continue;
 491
 492                /*
 493                 * if it is overlapping with brk pgt, we need to
 494                 * alloc pgt buf from memblock instead.
 495                 */
 496                can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 497                                    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 498                init_memory_mapping(start, end);
 499                mapped_ram_size += end - start;
 500                can_use_brk_pgt = true;
 501        }
 502
 503        return mapped_ram_size;
 504}
 505
 506static unsigned long __init get_new_step_size(unsigned long step_size)
 507{
 508        /*
 509         * Initial mapped size is PMD_SIZE (2M).
 510         * We can not set step_size to be PUD_SIZE (1G) yet.
 511         * In worse case, when we cross the 1G boundary, and
 512         * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 513         * to map 1G range with PTE. Hence we use one less than the
 514         * difference of page table level shifts.
 515         *
 516         * Don't need to worry about overflow in the top-down case, on 32bit,
 517         * when step_size is 0, round_down() returns 0 for start, and that
 518         * turns it into 0x100000000ULL.
 519         * In the bottom-up case, round_up(x, 0) returns 0 though too, which
 520         * needs to be taken into consideration by the code below.
 521         */
 522        return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
 523}
 524
 525/**
 526 * memory_map_top_down - Map [map_start, map_end) top down
 527 * @map_start: start address of the target memory range
 528 * @map_end: end address of the target memory range
 529 *
 530 * This function will setup direct mapping for memory range
 531 * [map_start, map_end) in top-down. That said, the page tables
 532 * will be allocated at the end of the memory, and we map the
 533 * memory in top-down.
 534 */
 535static void __init memory_map_top_down(unsigned long map_start,
 536                                       unsigned long map_end)
 537{
 538        unsigned long real_end, start, last_start;
 539        unsigned long step_size;
 540        unsigned long addr;
 541        unsigned long mapped_ram_size = 0;
 542
 543        /* xen has big range in reserved near end of ram, skip it at first.*/
 544        addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 545        real_end = addr + PMD_SIZE;
 546
 547        /* step_size need to be small so pgt_buf from BRK could cover it */
 548        step_size = PMD_SIZE;
 549        max_pfn_mapped = 0; /* will get exact value next */
 550        min_pfn_mapped = real_end >> PAGE_SHIFT;
 551        last_start = start = real_end;
 552
 553        /*
 554         * We start from the top (end of memory) and go to the bottom.
 555         * The memblock_find_in_range() gets us a block of RAM from the
 556         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 557         * for page table.
 558         */
 559        while (last_start > map_start) {
 560                if (last_start > step_size) {
 561                        start = round_down(last_start - 1, step_size);
 562                        if (start < map_start)
 563                                start = map_start;
 564                } else
 565                        start = map_start;
 566                mapped_ram_size += init_range_memory_mapping(start,
 567                                                        last_start);
 568                last_start = start;
 569                min_pfn_mapped = last_start >> PAGE_SHIFT;
 570                if (mapped_ram_size >= step_size)
 571                        step_size = get_new_step_size(step_size);
 572        }
 573
 574        if (real_end < map_end)
 575                init_range_memory_mapping(real_end, map_end);
 576}
 577
 578/**
 579 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 580 * @map_start: start address of the target memory range
 581 * @map_end: end address of the target memory range
 582 *
 583 * This function will setup direct mapping for memory range
 584 * [map_start, map_end) in bottom-up. Since we have limited the
 585 * bottom-up allocation above the kernel, the page tables will
 586 * be allocated just above the kernel and we map the memory
 587 * in [map_start, map_end) in bottom-up.
 588 */
 589static void __init memory_map_bottom_up(unsigned long map_start,
 590                                        unsigned long map_end)
 591{
 592        unsigned long next, start;
 593        unsigned long mapped_ram_size = 0;
 594        /* step_size need to be small so pgt_buf from BRK could cover it */
 595        unsigned long step_size = PMD_SIZE;
 596
 597        start = map_start;
 598        min_pfn_mapped = start >> PAGE_SHIFT;
 599
 600        /*
 601         * We start from the bottom (@map_start) and go to the top (@map_end).
 602         * The memblock_find_in_range() gets us a block of RAM from the
 603         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 604         * for page table.
 605         */
 606        while (start < map_end) {
 607                if (step_size && map_end - start > step_size) {
 608                        next = round_up(start + 1, step_size);
 609                        if (next > map_end)
 610                                next = map_end;
 611                } else {
 612                        next = map_end;
 613                }
 614
 615                mapped_ram_size += init_range_memory_mapping(start, next);
 616                start = next;
 617
 618                if (mapped_ram_size >= step_size)
 619                        step_size = get_new_step_size(step_size);
 620        }
 621}
 622
 623void __init init_mem_mapping(void)
 624{
 625        unsigned long end;
 626
 627        probe_page_size_mask();
 628        setup_pcid();
 629
 630#ifdef CONFIG_X86_64
 631        end = max_pfn << PAGE_SHIFT;
 632#else
 633        end = max_low_pfn << PAGE_SHIFT;
 634#endif
 635
 636        /* the ISA range is always mapped regardless of memory holes */
 637        init_memory_mapping(0, ISA_END_ADDRESS);
 638
 639        /* Init the trampoline, possibly with KASLR memory offset */
 640        init_trampoline();
 641
 642        /*
 643         * If the allocation is in bottom-up direction, we setup direct mapping
 644         * in bottom-up, otherwise we setup direct mapping in top-down.
 645         */
 646        if (memblock_bottom_up()) {
 647                unsigned long kernel_end = __pa_symbol(_end);
 648
 649                /*
 650                 * we need two separate calls here. This is because we want to
 651                 * allocate page tables above the kernel. So we first map
 652                 * [kernel_end, end) to make memory above the kernel be mapped
 653                 * as soon as possible. And then use page tables allocated above
 654                 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 655                 */
 656                memory_map_bottom_up(kernel_end, end);
 657                memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 658        } else {
 659                memory_map_top_down(ISA_END_ADDRESS, end);
 660        }
 661
 662#ifdef CONFIG_X86_64
 663        if (max_pfn > max_low_pfn) {
 664                /* can we preseve max_low_pfn ?*/
 665                max_low_pfn = max_pfn;
 666        }
 667#else
 668        early_ioremap_page_table_range_init();
 669#endif
 670
 671        load_cr3(swapper_pg_dir);
 672        __flush_tlb_all();
 673
 674        hypervisor_init_mem_mapping();
 675
 676        early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 677}
 678
 679/*
 680 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 681 * is valid. The argument is a physical page number.
 682 *
 683 * On x86, access has to be given to the first megabyte of RAM because that
 684 * area traditionally contains BIOS code and data regions used by X, dosemu,
 685 * and similar apps. Since they map the entire memory range, the whole range
 686 * must be allowed (for mapping), but any areas that would otherwise be
 687 * disallowed are flagged as being "zero filled" instead of rejected.
 688 * Access has to be given to non-kernel-ram areas as well, these contain the
 689 * PCI mmio resources as well as potential bios/acpi data regions.
 690 */
 691int devmem_is_allowed(unsigned long pagenr)
 692{
 693        if (page_is_ram(pagenr)) {
 694                /*
 695                 * For disallowed memory regions in the low 1MB range,
 696                 * request that the page be shown as all zeros.
 697                 */
 698                if (pagenr < 256)
 699                        return 2;
 700
 701                return 0;
 702        }
 703
 704        /*
 705         * This must follow RAM test, since System RAM is considered a
 706         * restricted resource under CONFIG_STRICT_IOMEM.
 707         */
 708        if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
 709                /* Low 1MB bypasses iomem restrictions. */
 710                if (pagenr < 256)
 711                        return 1;
 712
 713                return 0;
 714        }
 715
 716        return 1;
 717}
 718
 719void free_init_pages(char *what, unsigned long begin, unsigned long end)
 720{
 721        unsigned long begin_aligned, end_aligned;
 722
 723        /* Make sure boundaries are page aligned */
 724        begin_aligned = PAGE_ALIGN(begin);
 725        end_aligned   = end & PAGE_MASK;
 726
 727        if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 728                begin = begin_aligned;
 729                end   = end_aligned;
 730        }
 731
 732        if (begin >= end)
 733                return;
 734
 735        /*
 736         * If debugging page accesses then do not free this memory but
 737         * mark them not present - any buggy init-section access will
 738         * create a kernel page fault:
 739         */
 740        if (debug_pagealloc_enabled()) {
 741                pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
 742                        begin, end - 1);
 743                set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 744        } else {
 745                /*
 746                 * We just marked the kernel text read only above, now that
 747                 * we are going to free part of that, we need to make that
 748                 * writeable and non-executable first.
 749                 */
 750                set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 751                set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 752
 753                free_reserved_area((void *)begin, (void *)end,
 754                                   POISON_FREE_INITMEM, what);
 755        }
 756}
 757
 758void __ref free_initmem(void)
 759{
 760        e820__reallocate_tables();
 761
 762        free_init_pages("unused kernel",
 763                        (unsigned long)(&__init_begin),
 764                        (unsigned long)(&__init_end));
 765}
 766
 767#ifdef CONFIG_BLK_DEV_INITRD
 768void __init free_initrd_mem(unsigned long start, unsigned long end)
 769{
 770        /*
 771         * end could be not aligned, and We can not align that,
 772         * decompresser could be confused by aligned initrd_end
 773         * We already reserve the end partial page before in
 774         *   - i386_start_kernel()
 775         *   - x86_64_start_kernel()
 776         *   - relocate_initrd()
 777         * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 778         */
 779        free_init_pages("initrd", start, PAGE_ALIGN(end));
 780}
 781#endif
 782
 783/*
 784 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
 785 * and pass it to the MM layer - to help it set zone watermarks more
 786 * accurately.
 787 *
 788 * Done on 64-bit systems only for the time being, although 32-bit systems
 789 * might benefit from this as well.
 790 */
 791void __init memblock_find_dma_reserve(void)
 792{
 793#ifdef CONFIG_X86_64
 794        u64 nr_pages = 0, nr_free_pages = 0;
 795        unsigned long start_pfn, end_pfn;
 796        phys_addr_t start_addr, end_addr;
 797        int i;
 798        u64 u;
 799
 800        /*
 801         * Iterate over all memory ranges (free and reserved ones alike),
 802         * to calculate the total number of pages in the first 16 MB of RAM:
 803         */
 804        nr_pages = 0;
 805        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 806                start_pfn = min(start_pfn, MAX_DMA_PFN);
 807                end_pfn   = min(end_pfn,   MAX_DMA_PFN);
 808
 809                nr_pages += end_pfn - start_pfn;
 810        }
 811
 812        /*
 813         * Iterate over free memory ranges to calculate the number of free
 814         * pages in the DMA zone, while not counting potential partial
 815         * pages at the beginning or the end of the range:
 816         */
 817        nr_free_pages = 0;
 818        for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
 819                start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
 820                end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
 821
 822                if (start_pfn < end_pfn)
 823                        nr_free_pages += end_pfn - start_pfn;
 824        }
 825
 826        set_dma_reserve(nr_pages - nr_free_pages);
 827#endif
 828}
 829
 830void __init zone_sizes_init(void)
 831{
 832        unsigned long max_zone_pfns[MAX_NR_ZONES];
 833
 834        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 835
 836#ifdef CONFIG_ZONE_DMA
 837        max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
 838#endif
 839#ifdef CONFIG_ZONE_DMA32
 840        max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
 841#endif
 842        max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
 843#ifdef CONFIG_HIGHMEM
 844        max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
 845#endif
 846
 847        free_area_init_nodes(max_zone_pfns);
 848}
 849
 850DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
 851        .loaded_mm = &init_mm,
 852        .next_asid = 1,
 853        .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
 854};
 855EXPORT_SYMBOL_GPL(cpu_tlbstate);
 856
 857void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
 858{
 859        /* entry 0 MUST be WB (hardwired to speed up translations) */
 860        BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
 861
 862        __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
 863        __pte2cachemode_tbl[entry] = cache;
 864}
 865