linux/arch/x86/mm/mpx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * mpx.c - Memory Protection eXtensions
   4 *
   5 * Copyright (c) 2014, Intel Corporation.
   6 * Qiaowei Ren <qiaowei.ren@intel.com>
   7 * Dave Hansen <dave.hansen@intel.com>
   8 */
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/mm_types.h>
  12#include <linux/syscalls.h>
  13#include <linux/sched/sysctl.h>
  14
  15#include <asm/insn.h>
  16#include <asm/mman.h>
  17#include <asm/mmu_context.h>
  18#include <asm/mpx.h>
  19#include <asm/processor.h>
  20#include <asm/fpu/internal.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include <asm/trace/mpx.h>
  24
  25static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
  26{
  27        if (is_64bit_mm(mm))
  28                return MPX_BD_SIZE_BYTES_64;
  29        else
  30                return MPX_BD_SIZE_BYTES_32;
  31}
  32
  33static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
  34{
  35        if (is_64bit_mm(mm))
  36                return MPX_BT_SIZE_BYTES_64;
  37        else
  38                return MPX_BT_SIZE_BYTES_32;
  39}
  40
  41/*
  42 * This is really a simplified "vm_mmap". it only handles MPX
  43 * bounds tables (the bounds directory is user-allocated).
  44 */
  45static unsigned long mpx_mmap(unsigned long len)
  46{
  47        struct mm_struct *mm = current->mm;
  48        unsigned long addr, populate;
  49
  50        /* Only bounds table can be allocated here */
  51        if (len != mpx_bt_size_bytes(mm))
  52                return -EINVAL;
  53
  54        down_write(&mm->mmap_sem);
  55        addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
  56                       MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate, NULL);
  57        up_write(&mm->mmap_sem);
  58        if (populate)
  59                mm_populate(addr, populate);
  60
  61        return addr;
  62}
  63
  64enum reg_type {
  65        REG_TYPE_RM = 0,
  66        REG_TYPE_INDEX,
  67        REG_TYPE_BASE,
  68};
  69
  70static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
  71                          enum reg_type type)
  72{
  73        int regno = 0;
  74
  75        static const int regoff[] = {
  76                offsetof(struct pt_regs, ax),
  77                offsetof(struct pt_regs, cx),
  78                offsetof(struct pt_regs, dx),
  79                offsetof(struct pt_regs, bx),
  80                offsetof(struct pt_regs, sp),
  81                offsetof(struct pt_regs, bp),
  82                offsetof(struct pt_regs, si),
  83                offsetof(struct pt_regs, di),
  84#ifdef CONFIG_X86_64
  85                offsetof(struct pt_regs, r8),
  86                offsetof(struct pt_regs, r9),
  87                offsetof(struct pt_regs, r10),
  88                offsetof(struct pt_regs, r11),
  89                offsetof(struct pt_regs, r12),
  90                offsetof(struct pt_regs, r13),
  91                offsetof(struct pt_regs, r14),
  92                offsetof(struct pt_regs, r15),
  93#endif
  94        };
  95        int nr_registers = ARRAY_SIZE(regoff);
  96        /*
  97         * Don't possibly decode a 32-bit instructions as
  98         * reading a 64-bit-only register.
  99         */
 100        if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
 101                nr_registers -= 8;
 102
 103        switch (type) {
 104        case REG_TYPE_RM:
 105                regno = X86_MODRM_RM(insn->modrm.value);
 106                if (X86_REX_B(insn->rex_prefix.value))
 107                        regno += 8;
 108                break;
 109
 110        case REG_TYPE_INDEX:
 111                regno = X86_SIB_INDEX(insn->sib.value);
 112                if (X86_REX_X(insn->rex_prefix.value))
 113                        regno += 8;
 114                break;
 115
 116        case REG_TYPE_BASE:
 117                regno = X86_SIB_BASE(insn->sib.value);
 118                if (X86_REX_B(insn->rex_prefix.value))
 119                        regno += 8;
 120                break;
 121
 122        default:
 123                pr_err("invalid register type");
 124                BUG();
 125                break;
 126        }
 127
 128        if (regno >= nr_registers) {
 129                WARN_ONCE(1, "decoded an instruction with an invalid register");
 130                return -EINVAL;
 131        }
 132        return regoff[regno];
 133}
 134
 135/*
 136 * return the address being referenced be instruction
 137 * for rm=3 returning the content of the rm reg
 138 * for rm!=3 calculates the address using SIB and Disp
 139 */
 140static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
 141{
 142        unsigned long addr, base, indx;
 143        int addr_offset, base_offset, indx_offset;
 144        insn_byte_t sib;
 145
 146        insn_get_modrm(insn);
 147        insn_get_sib(insn);
 148        sib = insn->sib.value;
 149
 150        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
 151                addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
 152                if (addr_offset < 0)
 153                        goto out_err;
 154                addr = regs_get_register(regs, addr_offset);
 155        } else {
 156                if (insn->sib.nbytes) {
 157                        base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
 158                        if (base_offset < 0)
 159                                goto out_err;
 160
 161                        indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
 162                        if (indx_offset < 0)
 163                                goto out_err;
 164
 165                        base = regs_get_register(regs, base_offset);
 166                        indx = regs_get_register(regs, indx_offset);
 167                        addr = base + indx * (1 << X86_SIB_SCALE(sib));
 168                } else {
 169                        addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
 170                        if (addr_offset < 0)
 171                                goto out_err;
 172                        addr = regs_get_register(regs, addr_offset);
 173                }
 174                addr += insn->displacement.value;
 175        }
 176        return (void __user *)addr;
 177out_err:
 178        return (void __user *)-1;
 179}
 180
 181static int mpx_insn_decode(struct insn *insn,
 182                           struct pt_regs *regs)
 183{
 184        unsigned char buf[MAX_INSN_SIZE];
 185        int x86_64 = !test_thread_flag(TIF_IA32);
 186        int not_copied;
 187        int nr_copied;
 188
 189        not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
 190        nr_copied = sizeof(buf) - not_copied;
 191        /*
 192         * The decoder _should_ fail nicely if we pass it a short buffer.
 193         * But, let's not depend on that implementation detail.  If we
 194         * did not get anything, just error out now.
 195         */
 196        if (!nr_copied)
 197                return -EFAULT;
 198        insn_init(insn, buf, nr_copied, x86_64);
 199        insn_get_length(insn);
 200        /*
 201         * copy_from_user() tries to get as many bytes as we could see in
 202         * the largest possible instruction.  If the instruction we are
 203         * after is shorter than that _and_ we attempt to copy from
 204         * something unreadable, we might get a short read.  This is OK
 205         * as long as the read did not stop in the middle of the
 206         * instruction.  Check to see if we got a partial instruction.
 207         */
 208        if (nr_copied < insn->length)
 209                return -EFAULT;
 210
 211        insn_get_opcode(insn);
 212        /*
 213         * We only _really_ need to decode bndcl/bndcn/bndcu
 214         * Error out on anything else.
 215         */
 216        if (insn->opcode.bytes[0] != 0x0f)
 217                goto bad_opcode;
 218        if ((insn->opcode.bytes[1] != 0x1a) &&
 219            (insn->opcode.bytes[1] != 0x1b))
 220                goto bad_opcode;
 221
 222        return 0;
 223bad_opcode:
 224        return -EINVAL;
 225}
 226
 227/*
 228 * If a bounds overflow occurs then a #BR is generated. This
 229 * function decodes MPX instructions to get violation address
 230 * and set this address into extended struct siginfo.
 231 *
 232 * Note that this is not a super precise way of doing this.
 233 * Userspace could have, by the time we get here, written
 234 * anything it wants in to the instructions.  We can not
 235 * trust anything about it.  They might not be valid
 236 * instructions or might encode invalid registers, etc...
 237 *
 238 * The caller is expected to kfree() the returned siginfo_t.
 239 */
 240siginfo_t *mpx_generate_siginfo(struct pt_regs *regs)
 241{
 242        const struct mpx_bndreg_state *bndregs;
 243        const struct mpx_bndreg *bndreg;
 244        siginfo_t *info = NULL;
 245        struct insn insn;
 246        uint8_t bndregno;
 247        int err;
 248
 249        err = mpx_insn_decode(&insn, regs);
 250        if (err)
 251                goto err_out;
 252
 253        /*
 254         * We know at this point that we are only dealing with
 255         * MPX instructions.
 256         */
 257        insn_get_modrm(&insn);
 258        bndregno = X86_MODRM_REG(insn.modrm.value);
 259        if (bndregno > 3) {
 260                err = -EINVAL;
 261                goto err_out;
 262        }
 263        /* get bndregs field from current task's xsave area */
 264        bndregs = get_xsave_field_ptr(XFEATURE_MASK_BNDREGS);
 265        if (!bndregs) {
 266                err = -EINVAL;
 267                goto err_out;
 268        }
 269        /* now go select the individual register in the set of 4 */
 270        bndreg = &bndregs->bndreg[bndregno];
 271
 272        info = kzalloc(sizeof(*info), GFP_KERNEL);
 273        if (!info) {
 274                err = -ENOMEM;
 275                goto err_out;
 276        }
 277        /*
 278         * The registers are always 64-bit, but the upper 32
 279         * bits are ignored in 32-bit mode.  Also, note that the
 280         * upper bounds are architecturally represented in 1's
 281         * complement form.
 282         *
 283         * The 'unsigned long' cast is because the compiler
 284         * complains when casting from integers to different-size
 285         * pointers.
 286         */
 287        info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
 288        info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
 289        info->si_addr_lsb = 0;
 290        info->si_signo = SIGSEGV;
 291        info->si_errno = 0;
 292        info->si_code = SEGV_BNDERR;
 293        info->si_addr = mpx_get_addr_ref(&insn, regs);
 294        /*
 295         * We were not able to extract an address from the instruction,
 296         * probably because there was something invalid in it.
 297         */
 298        if (info->si_addr == (void __user *)-1) {
 299                err = -EINVAL;
 300                goto err_out;
 301        }
 302        trace_mpx_bounds_register_exception(info->si_addr, bndreg);
 303        return info;
 304err_out:
 305        /* info might be NULL, but kfree() handles that */
 306        kfree(info);
 307        return ERR_PTR(err);
 308}
 309
 310static __user void *mpx_get_bounds_dir(void)
 311{
 312        const struct mpx_bndcsr *bndcsr;
 313
 314        if (!cpu_feature_enabled(X86_FEATURE_MPX))
 315                return MPX_INVALID_BOUNDS_DIR;
 316
 317        /*
 318         * The bounds directory pointer is stored in a register
 319         * only accessible if we first do an xsave.
 320         */
 321        bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 322        if (!bndcsr)
 323                return MPX_INVALID_BOUNDS_DIR;
 324
 325        /*
 326         * Make sure the register looks valid by checking the
 327         * enable bit.
 328         */
 329        if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
 330                return MPX_INVALID_BOUNDS_DIR;
 331
 332        /*
 333         * Lastly, mask off the low bits used for configuration
 334         * flags, and return the address of the bounds table.
 335         */
 336        return (void __user *)(unsigned long)
 337                (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
 338}
 339
 340int mpx_enable_management(void)
 341{
 342        void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
 343        struct mm_struct *mm = current->mm;
 344        int ret = 0;
 345
 346        /*
 347         * runtime in the userspace will be responsible for allocation of
 348         * the bounds directory. Then, it will save the base of the bounds
 349         * directory into XSAVE/XRSTOR Save Area and enable MPX through
 350         * XRSTOR instruction.
 351         *
 352         * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
 353         * expected to be relatively expensive. Storing the bounds
 354         * directory here means that we do not have to do xsave in the
 355         * unmap path; we can just use mm->context.bd_addr instead.
 356         */
 357        bd_base = mpx_get_bounds_dir();
 358        down_write(&mm->mmap_sem);
 359
 360        /* MPX doesn't support addresses above 47 bits yet. */
 361        if (find_vma(mm, DEFAULT_MAP_WINDOW)) {
 362                pr_warn_once("%s (%d): MPX cannot handle addresses "
 363                                "above 47-bits. Disabling.",
 364                                current->comm, current->pid);
 365                ret = -ENXIO;
 366                goto out;
 367        }
 368        mm->context.bd_addr = bd_base;
 369        if (mm->context.bd_addr == MPX_INVALID_BOUNDS_DIR)
 370                ret = -ENXIO;
 371out:
 372        up_write(&mm->mmap_sem);
 373        return ret;
 374}
 375
 376int mpx_disable_management(void)
 377{
 378        struct mm_struct *mm = current->mm;
 379
 380        if (!cpu_feature_enabled(X86_FEATURE_MPX))
 381                return -ENXIO;
 382
 383        down_write(&mm->mmap_sem);
 384        mm->context.bd_addr = MPX_INVALID_BOUNDS_DIR;
 385        up_write(&mm->mmap_sem);
 386        return 0;
 387}
 388
 389static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
 390                unsigned long *curval,
 391                unsigned long __user *addr,
 392                unsigned long old_val, unsigned long new_val)
 393{
 394        int ret;
 395        /*
 396         * user_atomic_cmpxchg_inatomic() actually uses sizeof()
 397         * the pointer that we pass to it to figure out how much
 398         * data to cmpxchg.  We have to be careful here not to
 399         * pass a pointer to a 64-bit data type when we only want
 400         * a 32-bit copy.
 401         */
 402        if (is_64bit_mm(mm)) {
 403                ret = user_atomic_cmpxchg_inatomic(curval,
 404                                addr, old_val, new_val);
 405        } else {
 406                u32 uninitialized_var(curval_32);
 407                u32 old_val_32 = old_val;
 408                u32 new_val_32 = new_val;
 409                u32 __user *addr_32 = (u32 __user *)addr;
 410
 411                ret = user_atomic_cmpxchg_inatomic(&curval_32,
 412                                addr_32, old_val_32, new_val_32);
 413                *curval = curval_32;
 414        }
 415        return ret;
 416}
 417
 418/*
 419 * With 32-bit mode, a bounds directory is 4MB, and the size of each
 420 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
 421 * and the size of each bounds table is 4MB.
 422 */
 423static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
 424{
 425        unsigned long expected_old_val = 0;
 426        unsigned long actual_old_val = 0;
 427        unsigned long bt_addr;
 428        unsigned long bd_new_entry;
 429        int ret = 0;
 430
 431        /*
 432         * Carve the virtual space out of userspace for the new
 433         * bounds table:
 434         */
 435        bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
 436        if (IS_ERR((void *)bt_addr))
 437                return PTR_ERR((void *)bt_addr);
 438        /*
 439         * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
 440         */
 441        bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 442
 443        /*
 444         * Go poke the address of the new bounds table in to the
 445         * bounds directory entry out in userspace memory.  Note:
 446         * we may race with another CPU instantiating the same table.
 447         * In that case the cmpxchg will see an unexpected
 448         * 'actual_old_val'.
 449         *
 450         * This can fault, but that's OK because we do not hold
 451         * mmap_sem at this point, unlike some of the other part
 452         * of the MPX code that have to pagefault_disable().
 453         */
 454        ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry,
 455                                   expected_old_val, bd_new_entry);
 456        if (ret)
 457                goto out_unmap;
 458
 459        /*
 460         * The user_atomic_cmpxchg_inatomic() will only return nonzero
 461         * for faults, *not* if the cmpxchg itself fails.  Now we must
 462         * verify that the cmpxchg itself completed successfully.
 463         */
 464        /*
 465         * We expected an empty 'expected_old_val', but instead found
 466         * an apparently valid entry.  Assume we raced with another
 467         * thread to instantiate this table and desclare succecss.
 468         */
 469        if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
 470                ret = 0;
 471                goto out_unmap;
 472        }
 473        /*
 474         * We found a non-empty bd_entry but it did not have the
 475         * VALID_FLAG set.  Return an error which will result in
 476         * a SEGV since this probably means that somebody scribbled
 477         * some invalid data in to a bounds table.
 478         */
 479        if (expected_old_val != actual_old_val) {
 480                ret = -EINVAL;
 481                goto out_unmap;
 482        }
 483        trace_mpx_new_bounds_table(bt_addr);
 484        return 0;
 485out_unmap:
 486        vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
 487        return ret;
 488}
 489
 490/*
 491 * When a BNDSTX instruction attempts to save bounds to a bounds
 492 * table, it will first attempt to look up the table in the
 493 * first-level bounds directory.  If it does not find a table in
 494 * the directory, a #BR is generated and we get here in order to
 495 * allocate a new table.
 496 *
 497 * With 32-bit mode, the size of BD is 4MB, and the size of each
 498 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
 499 * and the size of each bound table is 4MB.
 500 */
 501static int do_mpx_bt_fault(void)
 502{
 503        unsigned long bd_entry, bd_base;
 504        const struct mpx_bndcsr *bndcsr;
 505        struct mm_struct *mm = current->mm;
 506
 507        bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 508        if (!bndcsr)
 509                return -EINVAL;
 510        /*
 511         * Mask off the preserve and enable bits
 512         */
 513        bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
 514        /*
 515         * The hardware provides the address of the missing or invalid
 516         * entry via BNDSTATUS, so we don't have to go look it up.
 517         */
 518        bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
 519        /*
 520         * Make sure the directory entry is within where we think
 521         * the directory is.
 522         */
 523        if ((bd_entry < bd_base) ||
 524            (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
 525                return -EINVAL;
 526
 527        return allocate_bt(mm, (long __user *)bd_entry);
 528}
 529
 530int mpx_handle_bd_fault(void)
 531{
 532        /*
 533         * Userspace never asked us to manage the bounds tables,
 534         * so refuse to help.
 535         */
 536        if (!kernel_managing_mpx_tables(current->mm))
 537                return -EINVAL;
 538
 539        return do_mpx_bt_fault();
 540}
 541
 542/*
 543 * A thin wrapper around get_user_pages().  Returns 0 if the
 544 * fault was resolved or -errno if not.
 545 */
 546static int mpx_resolve_fault(long __user *addr, int write)
 547{
 548        long gup_ret;
 549        int nr_pages = 1;
 550
 551        gup_ret = get_user_pages((unsigned long)addr, nr_pages,
 552                        write ? FOLL_WRITE : 0, NULL, NULL);
 553        /*
 554         * get_user_pages() returns number of pages gotten.
 555         * 0 means we failed to fault in and get anything,
 556         * probably because 'addr' is bad.
 557         */
 558        if (!gup_ret)
 559                return -EFAULT;
 560        /* Other error, return it */
 561        if (gup_ret < 0)
 562                return gup_ret;
 563        /* must have gup'd a page and gup_ret>0, success */
 564        return 0;
 565}
 566
 567static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
 568                                             unsigned long bd_entry)
 569{
 570        unsigned long bt_addr = bd_entry;
 571        int align_to_bytes;
 572        /*
 573         * Bit 0 in a bt_entry is always the valid bit.
 574         */
 575        bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
 576        /*
 577         * Tables are naturally aligned at 8-byte boundaries
 578         * on 64-bit and 4-byte boundaries on 32-bit.  The
 579         * documentation makes it appear that the low bits
 580         * are ignored by the hardware, so we do the same.
 581         */
 582        if (is_64bit_mm(mm))
 583                align_to_bytes = 8;
 584        else
 585                align_to_bytes = 4;
 586        bt_addr &= ~(align_to_bytes-1);
 587        return bt_addr;
 588}
 589
 590/*
 591 * We only want to do a 4-byte get_user() on 32-bit.  Otherwise,
 592 * we might run off the end of the bounds table if we are on
 593 * a 64-bit kernel and try to get 8 bytes.
 594 */
 595static int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
 596                long __user *bd_entry_ptr)
 597{
 598        u32 bd_entry_32;
 599        int ret;
 600
 601        if (is_64bit_mm(mm))
 602                return get_user(*bd_entry_ret, bd_entry_ptr);
 603
 604        /*
 605         * Note that get_user() uses the type of the *pointer* to
 606         * establish the size of the get, not the destination.
 607         */
 608        ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
 609        *bd_entry_ret = bd_entry_32;
 610        return ret;
 611}
 612
 613/*
 614 * Get the base of bounds tables pointed by specific bounds
 615 * directory entry.
 616 */
 617static int get_bt_addr(struct mm_struct *mm,
 618                        long __user *bd_entry_ptr,
 619                        unsigned long *bt_addr_result)
 620{
 621        int ret;
 622        int valid_bit;
 623        unsigned long bd_entry;
 624        unsigned long bt_addr;
 625
 626        if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
 627                return -EFAULT;
 628
 629        while (1) {
 630                int need_write = 0;
 631
 632                pagefault_disable();
 633                ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
 634                pagefault_enable();
 635                if (!ret)
 636                        break;
 637                if (ret == -EFAULT)
 638                        ret = mpx_resolve_fault(bd_entry_ptr, need_write);
 639                /*
 640                 * If we could not resolve the fault, consider it
 641                 * userspace's fault and error out.
 642                 */
 643                if (ret)
 644                        return ret;
 645        }
 646
 647        valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
 648        bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
 649
 650        /*
 651         * When the kernel is managing bounds tables, a bounds directory
 652         * entry will either have a valid address (plus the valid bit)
 653         * *OR* be completely empty. If we see a !valid entry *and* some
 654         * data in the address field, we know something is wrong. This
 655         * -EINVAL return will cause a SIGSEGV.
 656         */
 657        if (!valid_bit && bt_addr)
 658                return -EINVAL;
 659        /*
 660         * Do we have an completely zeroed bt entry?  That is OK.  It
 661         * just means there was no bounds table for this memory.  Make
 662         * sure to distinguish this from -EINVAL, which will cause
 663         * a SEGV.
 664         */
 665        if (!valid_bit)
 666                return -ENOENT;
 667
 668        *bt_addr_result = bt_addr;
 669        return 0;
 670}
 671
 672static inline int bt_entry_size_bytes(struct mm_struct *mm)
 673{
 674        if (is_64bit_mm(mm))
 675                return MPX_BT_ENTRY_BYTES_64;
 676        else
 677                return MPX_BT_ENTRY_BYTES_32;
 678}
 679
 680/*
 681 * Take a virtual address and turns it in to the offset in bytes
 682 * inside of the bounds table where the bounds table entry
 683 * controlling 'addr' can be found.
 684 */
 685static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
 686                unsigned long addr)
 687{
 688        unsigned long bt_table_nr_entries;
 689        unsigned long offset = addr;
 690
 691        if (is_64bit_mm(mm)) {
 692                /* Bottom 3 bits are ignored on 64-bit */
 693                offset >>= 3;
 694                bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
 695        } else {
 696                /* Bottom 2 bits are ignored on 32-bit */
 697                offset >>= 2;
 698                bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
 699        }
 700        /*
 701         * We know the size of the table in to which we are
 702         * indexing, and we have eliminated all the low bits
 703         * which are ignored for indexing.
 704         *
 705         * Mask out all the high bits which we do not need
 706         * to index in to the table.  Note that the tables
 707         * are always powers of two so this gives us a proper
 708         * mask.
 709         */
 710        offset &= (bt_table_nr_entries-1);
 711        /*
 712         * We now have an entry offset in terms of *entries* in
 713         * the table.  We need to scale it back up to bytes.
 714         */
 715        offset *= bt_entry_size_bytes(mm);
 716        return offset;
 717}
 718
 719/*
 720 * How much virtual address space does a single bounds
 721 * directory entry cover?
 722 *
 723 * Note, we need a long long because 4GB doesn't fit in
 724 * to a long on 32-bit.
 725 */
 726static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
 727{
 728        unsigned long long virt_space;
 729        unsigned long long GB = (1ULL << 30);
 730
 731        /*
 732         * This covers 32-bit emulation as well as 32-bit kernels
 733         * running on 64-bit hardware.
 734         */
 735        if (!is_64bit_mm(mm))
 736                return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
 737
 738        /*
 739         * 'x86_virt_bits' returns what the hardware is capable
 740         * of, and returns the full >32-bit address space when
 741         * running 32-bit kernels on 64-bit hardware.
 742         */
 743        virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
 744        return virt_space / MPX_BD_NR_ENTRIES_64;
 745}
 746
 747/*
 748 * Free the backing physical pages of bounds table 'bt_addr'.
 749 * Assume start...end is within that bounds table.
 750 */
 751static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
 752                unsigned long bt_addr,
 753                unsigned long start_mapping, unsigned long end_mapping)
 754{
 755        struct vm_area_struct *vma;
 756        unsigned long addr, len;
 757        unsigned long start;
 758        unsigned long end;
 759
 760        /*
 761         * if we 'end' on a boundary, the offset will be 0 which
 762         * is not what we want.  Back it up a byte to get the
 763         * last bt entry.  Then once we have the entry itself,
 764         * move 'end' back up by the table entry size.
 765         */
 766        start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
 767        end   = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
 768        /*
 769         * Move end back up by one entry.  Among other things
 770         * this ensures that it remains page-aligned and does
 771         * not screw up zap_page_range()
 772         */
 773        end += bt_entry_size_bytes(mm);
 774
 775        /*
 776         * Find the first overlapping vma. If vma->vm_start > start, there
 777         * will be a hole in the bounds table. This -EINVAL return will
 778         * cause a SIGSEGV.
 779         */
 780        vma = find_vma(mm, start);
 781        if (!vma || vma->vm_start > start)
 782                return -EINVAL;
 783
 784        /*
 785         * A NUMA policy on a VM_MPX VMA could cause this bounds table to
 786         * be split. So we need to look across the entire 'start -> end'
 787         * range of this bounds table, find all of the VM_MPX VMAs, and
 788         * zap only those.
 789         */
 790        addr = start;
 791        while (vma && vma->vm_start < end) {
 792                /*
 793                 * We followed a bounds directory entry down
 794                 * here.  If we find a non-MPX VMA, that's bad,
 795                 * so stop immediately and return an error.  This
 796                 * probably results in a SIGSEGV.
 797                 */
 798                if (!(vma->vm_flags & VM_MPX))
 799                        return -EINVAL;
 800
 801                len = min(vma->vm_end, end) - addr;
 802                zap_page_range(vma, addr, len);
 803                trace_mpx_unmap_zap(addr, addr+len);
 804
 805                vma = vma->vm_next;
 806                addr = vma->vm_start;
 807        }
 808        return 0;
 809}
 810
 811static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
 812                unsigned long addr)
 813{
 814        /*
 815         * There are several ways to derive the bd offsets.  We
 816         * use the following approach here:
 817         * 1. We know the size of the virtual address space
 818         * 2. We know the number of entries in a bounds table
 819         * 3. We know that each entry covers a fixed amount of
 820         *    virtual address space.
 821         * So, we can just divide the virtual address by the
 822         * virtual space used by one entry to determine which
 823         * entry "controls" the given virtual address.
 824         */
 825        if (is_64bit_mm(mm)) {
 826                int bd_entry_size = 8; /* 64-bit pointer */
 827                /*
 828                 * Take the 64-bit addressing hole in to account.
 829                 */
 830                addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
 831                return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 832        } else {
 833                int bd_entry_size = 4; /* 32-bit pointer */
 834                /*
 835                 * 32-bit has no hole so this case needs no mask
 836                 */
 837                return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 838        }
 839        /*
 840         * The two return calls above are exact copies.  If we
 841         * pull out a single copy and put it in here, gcc won't
 842         * realize that we're doing a power-of-2 divide and use
 843         * shifts.  It uses a real divide.  If we put them up
 844         * there, it manages to figure it out (gcc 4.8.3).
 845         */
 846}
 847
 848static int unmap_entire_bt(struct mm_struct *mm,
 849                long __user *bd_entry, unsigned long bt_addr)
 850{
 851        unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 852        unsigned long uninitialized_var(actual_old_val);
 853        int ret;
 854
 855        while (1) {
 856                int need_write = 1;
 857                unsigned long cleared_bd_entry = 0;
 858
 859                pagefault_disable();
 860                ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
 861                                bd_entry, expected_old_val, cleared_bd_entry);
 862                pagefault_enable();
 863                if (!ret)
 864                        break;
 865                if (ret == -EFAULT)
 866                        ret = mpx_resolve_fault(bd_entry, need_write);
 867                /*
 868                 * If we could not resolve the fault, consider it
 869                 * userspace's fault and error out.
 870                 */
 871                if (ret)
 872                        return ret;
 873        }
 874        /*
 875         * The cmpxchg was performed, check the results.
 876         */
 877        if (actual_old_val != expected_old_val) {
 878                /*
 879                 * Someone else raced with us to unmap the table.
 880                 * That is OK, since we were both trying to do
 881                 * the same thing.  Declare success.
 882                 */
 883                if (!actual_old_val)
 884                        return 0;
 885                /*
 886                 * Something messed with the bounds directory
 887                 * entry.  We hold mmap_sem for read or write
 888                 * here, so it could not be a _new_ bounds table
 889                 * that someone just allocated.  Something is
 890                 * wrong, so pass up the error and SIGSEGV.
 891                 */
 892                return -EINVAL;
 893        }
 894        /*
 895         * Note, we are likely being called under do_munmap() already. To
 896         * avoid recursion, do_munmap() will check whether it comes
 897         * from one bounds table through VM_MPX flag.
 898         */
 899        return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm), NULL);
 900}
 901
 902static int try_unmap_single_bt(struct mm_struct *mm,
 903               unsigned long start, unsigned long end)
 904{
 905        struct vm_area_struct *next;
 906        struct vm_area_struct *prev;
 907        /*
 908         * "bta" == Bounds Table Area: the area controlled by the
 909         * bounds table that we are unmapping.
 910         */
 911        unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
 912        unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
 913        unsigned long uninitialized_var(bt_addr);
 914        void __user *bde_vaddr;
 915        int ret;
 916        /*
 917         * We already unlinked the VMAs from the mm's rbtree so 'start'
 918         * is guaranteed to be in a hole. This gets us the first VMA
 919         * before the hole in to 'prev' and the next VMA after the hole
 920         * in to 'next'.
 921         */
 922        next = find_vma_prev(mm, start, &prev);
 923        /*
 924         * Do not count other MPX bounds table VMAs as neighbors.
 925         * Although theoretically possible, we do not allow bounds
 926         * tables for bounds tables so our heads do not explode.
 927         * If we count them as neighbors here, we may end up with
 928         * lots of tables even though we have no actual table
 929         * entries in use.
 930         */
 931        while (next && (next->vm_flags & VM_MPX))
 932                next = next->vm_next;
 933        while (prev && (prev->vm_flags & VM_MPX))
 934                prev = prev->vm_prev;
 935        /*
 936         * We know 'start' and 'end' lie within an area controlled
 937         * by a single bounds table.  See if there are any other
 938         * VMAs controlled by that bounds table.  If there are not
 939         * then we can "expand" the are we are unmapping to possibly
 940         * cover the entire table.
 941         */
 942        next = find_vma_prev(mm, start, &prev);
 943        if ((!prev || prev->vm_end <= bta_start_vaddr) &&
 944            (!next || next->vm_start >= bta_end_vaddr)) {
 945                /*
 946                 * No neighbor VMAs controlled by same bounds
 947                 * table.  Try to unmap the whole thing
 948                 */
 949                start = bta_start_vaddr;
 950                end = bta_end_vaddr;
 951        }
 952
 953        bde_vaddr = mm->context.bd_addr + mpx_get_bd_entry_offset(mm, start);
 954        ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
 955        /*
 956         * No bounds table there, so nothing to unmap.
 957         */
 958        if (ret == -ENOENT) {
 959                ret = 0;
 960                return 0;
 961        }
 962        if (ret)
 963                return ret;
 964        /*
 965         * We are unmapping an entire table.  Either because the
 966         * unmap that started this whole process was large enough
 967         * to cover an entire table, or that the unmap was small
 968         * but was the area covered by a bounds table.
 969         */
 970        if ((start == bta_start_vaddr) &&
 971            (end == bta_end_vaddr))
 972                return unmap_entire_bt(mm, bde_vaddr, bt_addr);
 973        return zap_bt_entries_mapping(mm, bt_addr, start, end);
 974}
 975
 976static int mpx_unmap_tables(struct mm_struct *mm,
 977                unsigned long start, unsigned long end)
 978{
 979        unsigned long one_unmap_start;
 980        trace_mpx_unmap_search(start, end);
 981
 982        one_unmap_start = start;
 983        while (one_unmap_start < end) {
 984                int ret;
 985                unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
 986                                                       bd_entry_virt_space(mm));
 987                unsigned long one_unmap_end = end;
 988                /*
 989                 * if the end is beyond the current bounds table,
 990                 * move it back so we only deal with a single one
 991                 * at a time
 992                 */
 993                if (one_unmap_end > next_unmap_start)
 994                        one_unmap_end = next_unmap_start;
 995                ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
 996                if (ret)
 997                        return ret;
 998
 999                one_unmap_start = next_unmap_start;
1000        }
1001        return 0;
1002}
1003
1004/*
1005 * Free unused bounds tables covered in a virtual address region being
1006 * munmap()ed. Assume end > start.
1007 *
1008 * This function will be called by do_munmap(), and the VMAs covering
1009 * the virtual address region start...end have already been split if
1010 * necessary, and the 'vma' is the first vma in this range (start -> end).
1011 */
1012void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
1013                unsigned long start, unsigned long end)
1014{
1015        int ret;
1016
1017        /*
1018         * Refuse to do anything unless userspace has asked
1019         * the kernel to help manage the bounds tables,
1020         */
1021        if (!kernel_managing_mpx_tables(current->mm))
1022                return;
1023        /*
1024         * This will look across the entire 'start -> end' range,
1025         * and find all of the non-VM_MPX VMAs.
1026         *
1027         * To avoid recursion, if a VM_MPX vma is found in the range
1028         * (start->end), we will not continue follow-up work. This
1029         * recursion represents having bounds tables for bounds tables,
1030         * which should not occur normally. Being strict about it here
1031         * helps ensure that we do not have an exploitable stack overflow.
1032         */
1033        do {
1034                if (vma->vm_flags & VM_MPX)
1035                        return;
1036                vma = vma->vm_next;
1037        } while (vma && vma->vm_start < end);
1038
1039        ret = mpx_unmap_tables(mm, start, end);
1040        if (ret)
1041                force_sig(SIGSEGV, current);
1042}
1043
1044/* MPX cannot handle addresses above 47 bits yet. */
1045unsigned long mpx_unmapped_area_check(unsigned long addr, unsigned long len,
1046                unsigned long flags)
1047{
1048        if (!kernel_managing_mpx_tables(current->mm))
1049                return addr;
1050        if (addr + len <= DEFAULT_MAP_WINDOW)
1051                return addr;
1052        if (flags & MAP_FIXED)
1053                return -ENOMEM;
1054
1055        /*
1056         * Requested len is larger than the whole area we're allowed to map in.
1057         * Resetting hinting address wouldn't do much good -- fail early.
1058         */
1059        if (len > DEFAULT_MAP_WINDOW)
1060                return -ENOMEM;
1061
1062        /* Look for unmap area within DEFAULT_MAP_WINDOW */
1063        return 0;
1064}
1065