linux/arch/x86/mm/tlb.c
<<
>>
Prefs
   1#include <linux/init.h>
   2
   3#include <linux/mm.h>
   4#include <linux/spinlock.h>
   5#include <linux/smp.h>
   6#include <linux/interrupt.h>
   7#include <linux/export.h>
   8#include <linux/cpu.h>
   9
  10#include <asm/tlbflush.h>
  11#include <asm/mmu_context.h>
  12#include <asm/cache.h>
  13#include <asm/apic.h>
  14#include <asm/uv/uv.h>
  15#include <linux/debugfs.h>
  16
  17/*
  18 *      TLB flushing, formerly SMP-only
  19 *              c/o Linus Torvalds.
  20 *
  21 *      These mean you can really definitely utterly forget about
  22 *      writing to user space from interrupts. (Its not allowed anyway).
  23 *
  24 *      Optimizations Manfred Spraul <manfred@colorfullife.com>
  25 *
  26 *      More scalable flush, from Andi Kleen
  27 *
  28 *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  29 */
  30
  31atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
  32
  33
  34static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
  35                            u16 *new_asid, bool *need_flush)
  36{
  37        u16 asid;
  38
  39        if (!static_cpu_has(X86_FEATURE_PCID)) {
  40                *new_asid = 0;
  41                *need_flush = true;
  42                return;
  43        }
  44
  45        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
  46                if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
  47                    next->context.ctx_id)
  48                        continue;
  49
  50                *new_asid = asid;
  51                *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
  52                               next_tlb_gen);
  53                return;
  54        }
  55
  56        /*
  57         * We don't currently own an ASID slot on this CPU.
  58         * Allocate a slot.
  59         */
  60        *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
  61        if (*new_asid >= TLB_NR_DYN_ASIDS) {
  62                *new_asid = 0;
  63                this_cpu_write(cpu_tlbstate.next_asid, 1);
  64        }
  65        *need_flush = true;
  66}
  67
  68void leave_mm(int cpu)
  69{
  70        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
  71
  72        /*
  73         * It's plausible that we're in lazy TLB mode while our mm is init_mm.
  74         * If so, our callers still expect us to flush the TLB, but there
  75         * aren't any user TLB entries in init_mm to worry about.
  76         *
  77         * This needs to happen before any other sanity checks due to
  78         * intel_idle's shenanigans.
  79         */
  80        if (loaded_mm == &init_mm)
  81                return;
  82
  83        /* Warn if we're not lazy. */
  84        WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
  85
  86        switch_mm(NULL, &init_mm, NULL);
  87}
  88EXPORT_SYMBOL_GPL(leave_mm);
  89
  90void switch_mm(struct mm_struct *prev, struct mm_struct *next,
  91               struct task_struct *tsk)
  92{
  93        unsigned long flags;
  94
  95        local_irq_save(flags);
  96        switch_mm_irqs_off(prev, next, tsk);
  97        local_irq_restore(flags);
  98}
  99
 100void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 101                        struct task_struct *tsk)
 102{
 103        struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 104        u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 105        unsigned cpu = smp_processor_id();
 106        u64 next_tlb_gen;
 107
 108        /*
 109         * NB: The scheduler will call us with prev == next when switching
 110         * from lazy TLB mode to normal mode if active_mm isn't changing.
 111         * When this happens, we don't assume that CR3 (and hence
 112         * cpu_tlbstate.loaded_mm) matches next.
 113         *
 114         * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
 115         */
 116
 117        /* We don't want flush_tlb_func_* to run concurrently with us. */
 118        if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 119                WARN_ON_ONCE(!irqs_disabled());
 120
 121        /*
 122         * Verify that CR3 is what we think it is.  This will catch
 123         * hypothetical buggy code that directly switches to swapper_pg_dir
 124         * without going through leave_mm() / switch_mm_irqs_off() or that
 125         * does something like write_cr3(read_cr3_pa()).
 126         *
 127         * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
 128         * isn't free.
 129         */
 130#ifdef CONFIG_DEBUG_VM
 131        if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev, prev_asid))) {
 132                /*
 133                 * If we were to BUG here, we'd be very likely to kill
 134                 * the system so hard that we don't see the call trace.
 135                 * Try to recover instead by ignoring the error and doing
 136                 * a global flush to minimize the chance of corruption.
 137                 *
 138                 * (This is far from being a fully correct recovery.
 139                 *  Architecturally, the CPU could prefetch something
 140                 *  back into an incorrect ASID slot and leave it there
 141                 *  to cause trouble down the road.  It's better than
 142                 *  nothing, though.)
 143                 */
 144                __flush_tlb_all();
 145        }
 146#endif
 147        this_cpu_write(cpu_tlbstate.is_lazy, false);
 148
 149        if (real_prev == next) {
 150                VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
 151                           next->context.ctx_id);
 152
 153                /*
 154                 * We don't currently support having a real mm loaded without
 155                 * our cpu set in mm_cpumask().  We have all the bookkeeping
 156                 * in place to figure out whether we would need to flush
 157                 * if our cpu were cleared in mm_cpumask(), but we don't
 158                 * currently use it.
 159                 */
 160                if (WARN_ON_ONCE(real_prev != &init_mm &&
 161                                 !cpumask_test_cpu(cpu, mm_cpumask(next))))
 162                        cpumask_set_cpu(cpu, mm_cpumask(next));
 163
 164                return;
 165        } else {
 166                u16 new_asid;
 167                bool need_flush;
 168
 169                if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 170                        /*
 171                         * If our current stack is in vmalloc space and isn't
 172                         * mapped in the new pgd, we'll double-fault.  Forcibly
 173                         * map it.
 174                         */
 175                        unsigned int index = pgd_index(current_stack_pointer);
 176                        pgd_t *pgd = next->pgd + index;
 177
 178                        if (unlikely(pgd_none(*pgd)))
 179                                set_pgd(pgd, init_mm.pgd[index]);
 180                }
 181
 182                /* Stop remote flushes for the previous mm */
 183                VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
 184                                real_prev != &init_mm);
 185                cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
 186
 187                /*
 188                 * Start remote flushes and then read tlb_gen.
 189                 */
 190                cpumask_set_cpu(cpu, mm_cpumask(next));
 191                next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 192
 193                choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
 194
 195                if (need_flush) {
 196                        this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
 197                        this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
 198                        write_cr3(build_cr3(next, new_asid));
 199
 200                        /*
 201                         * NB: This gets called via leave_mm() in the idle path
 202                         * where RCU functions differently.  Tracing normally
 203                         * uses RCU, so we need to use the _rcuidle variant.
 204                         *
 205                         * (There is no good reason for this.  The idle code should
 206                         *  be rearranged to call this before rcu_idle_enter().)
 207                         */
 208                        trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 209                } else {
 210                        /* The new ASID is already up to date. */
 211                        write_cr3(build_cr3_noflush(next, new_asid));
 212
 213                        /* See above wrt _rcuidle. */
 214                        trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
 215                }
 216
 217                this_cpu_write(cpu_tlbstate.loaded_mm, next);
 218                this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
 219        }
 220
 221        load_mm_cr4(next);
 222        switch_ldt(real_prev, next);
 223}
 224
 225/*
 226 * Please ignore the name of this function.  It should be called
 227 * switch_to_kernel_thread().
 228 *
 229 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
 230 * kernel thread or other context without an mm.  Acceptable implementations
 231 * include doing nothing whatsoever, switching to init_mm, or various clever
 232 * lazy tricks to try to minimize TLB flushes.
 233 *
 234 * The scheduler reserves the right to call enter_lazy_tlb() several times
 235 * in a row.  It will notify us that we're going back to a real mm by
 236 * calling switch_mm_irqs_off().
 237 */
 238void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 239{
 240        if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
 241                return;
 242
 243        if (tlb_defer_switch_to_init_mm()) {
 244                /*
 245                 * There's a significant optimization that may be possible
 246                 * here.  We have accurate enough TLB flush tracking that we
 247                 * don't need to maintain coherence of TLB per se when we're
 248                 * lazy.  We do, however, need to maintain coherence of
 249                 * paging-structure caches.  We could, in principle, leave our
 250                 * old mm loaded and only switch to init_mm when
 251                 * tlb_remove_page() happens.
 252                 */
 253                this_cpu_write(cpu_tlbstate.is_lazy, true);
 254        } else {
 255                switch_mm(NULL, &init_mm, NULL);
 256        }
 257}
 258
 259/*
 260 * Call this when reinitializing a CPU.  It fixes the following potential
 261 * problems:
 262 *
 263 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 264 *   because the CPU was taken down and came back up with CR3's PCID
 265 *   bits clear.  CPU hotplug can do this.
 266 *
 267 * - The TLB contains junk in slots corresponding to inactive ASIDs.
 268 *
 269 * - The CPU went so far out to lunch that it may have missed a TLB
 270 *   flush.
 271 */
 272void initialize_tlbstate_and_flush(void)
 273{
 274        int i;
 275        struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 276        u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
 277        unsigned long cr3 = __read_cr3();
 278
 279        /* Assert that CR3 already references the right mm. */
 280        WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
 281
 282        /*
 283         * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
 284         * doesn't work like other CR4 bits because it can only be set from
 285         * long mode.)
 286         */
 287        WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
 288                !(cr4_read_shadow() & X86_CR4_PCIDE));
 289
 290        /* Force ASID 0 and force a TLB flush. */
 291        write_cr3(build_cr3(mm, 0));
 292
 293        /* Reinitialize tlbstate. */
 294        this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
 295        this_cpu_write(cpu_tlbstate.next_asid, 1);
 296        this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
 297        this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
 298
 299        for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
 300                this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
 301}
 302
 303/*
 304 * flush_tlb_func_common()'s memory ordering requirement is that any
 305 * TLB fills that happen after we flush the TLB are ordered after we
 306 * read active_mm's tlb_gen.  We don't need any explicit barriers
 307 * because all x86 flush operations are serializing and the
 308 * atomic64_read operation won't be reordered by the compiler.
 309 */
 310static void flush_tlb_func_common(const struct flush_tlb_info *f,
 311                                  bool local, enum tlb_flush_reason reason)
 312{
 313        /*
 314         * We have three different tlb_gen values in here.  They are:
 315         *
 316         * - mm_tlb_gen:     the latest generation.
 317         * - local_tlb_gen:  the generation that this CPU has already caught
 318         *                   up to.
 319         * - f->new_tlb_gen: the generation that the requester of the flush
 320         *                   wants us to catch up to.
 321         */
 322        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 323        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 324        u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
 325        u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
 326
 327        /* This code cannot presently handle being reentered. */
 328        VM_WARN_ON(!irqs_disabled());
 329
 330        if (unlikely(loaded_mm == &init_mm))
 331                return;
 332
 333        VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
 334                   loaded_mm->context.ctx_id);
 335
 336        if (this_cpu_read(cpu_tlbstate.is_lazy)) {
 337                /*
 338                 * We're in lazy mode.  We need to at least flush our
 339                 * paging-structure cache to avoid speculatively reading
 340                 * garbage into our TLB.  Since switching to init_mm is barely
 341                 * slower than a minimal flush, just switch to init_mm.
 342                 */
 343                switch_mm_irqs_off(NULL, &init_mm, NULL);
 344                return;
 345        }
 346
 347        if (unlikely(local_tlb_gen == mm_tlb_gen)) {
 348                /*
 349                 * There's nothing to do: we're already up to date.  This can
 350                 * happen if two concurrent flushes happen -- the first flush to
 351                 * be handled can catch us all the way up, leaving no work for
 352                 * the second flush.
 353                 */
 354                trace_tlb_flush(reason, 0);
 355                return;
 356        }
 357
 358        WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
 359        WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
 360
 361        /*
 362         * If we get to this point, we know that our TLB is out of date.
 363         * This does not strictly imply that we need to flush (it's
 364         * possible that f->new_tlb_gen <= local_tlb_gen), but we're
 365         * going to need to flush in the very near future, so we might
 366         * as well get it over with.
 367         *
 368         * The only question is whether to do a full or partial flush.
 369         *
 370         * We do a partial flush if requested and two extra conditions
 371         * are met:
 372         *
 373         * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
 374         *    we've always done all needed flushes to catch up to
 375         *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
 376         *    f->new_tlb_gen == 3, then we know that the flush needed to bring
 377         *    us up to date for tlb_gen 3 is the partial flush we're
 378         *    processing.
 379         *
 380         *    As an example of why this check is needed, suppose that there
 381         *    are two concurrent flushes.  The first is a full flush that
 382         *    changes context.tlb_gen from 1 to 2.  The second is a partial
 383         *    flush that changes context.tlb_gen from 2 to 3.  If they get
 384         *    processed on this CPU in reverse order, we'll see
 385         *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
 386         *    If we were to use __flush_tlb_single() and set local_tlb_gen to
 387         *    3, we'd be break the invariant: we'd update local_tlb_gen above
 388         *    1 without the full flush that's needed for tlb_gen 2.
 389         *
 390         * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
 391         *    Partial TLB flushes are not all that much cheaper than full TLB
 392         *    flushes, so it seems unlikely that it would be a performance win
 393         *    to do a partial flush if that won't bring our TLB fully up to
 394         *    date.  By doing a full flush instead, we can increase
 395         *    local_tlb_gen all the way to mm_tlb_gen and we can probably
 396         *    avoid another flush in the very near future.
 397         */
 398        if (f->end != TLB_FLUSH_ALL &&
 399            f->new_tlb_gen == local_tlb_gen + 1 &&
 400            f->new_tlb_gen == mm_tlb_gen) {
 401                /* Partial flush */
 402                unsigned long addr;
 403                unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
 404
 405                addr = f->start;
 406                while (addr < f->end) {
 407                        __flush_tlb_single(addr);
 408                        addr += PAGE_SIZE;
 409                }
 410                if (local)
 411                        count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
 412                trace_tlb_flush(reason, nr_pages);
 413        } else {
 414                /* Full flush. */
 415                local_flush_tlb();
 416                if (local)
 417                        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 418                trace_tlb_flush(reason, TLB_FLUSH_ALL);
 419        }
 420
 421        /* Both paths above update our state to mm_tlb_gen. */
 422        this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
 423}
 424
 425static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
 426{
 427        const struct flush_tlb_info *f = info;
 428
 429        flush_tlb_func_common(f, true, reason);
 430}
 431
 432static void flush_tlb_func_remote(void *info)
 433{
 434        const struct flush_tlb_info *f = info;
 435
 436        inc_irq_stat(irq_tlb_count);
 437
 438        if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
 439                return;
 440
 441        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 442        flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
 443}
 444
 445void native_flush_tlb_others(const struct cpumask *cpumask,
 446                             const struct flush_tlb_info *info)
 447{
 448        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 449        if (info->end == TLB_FLUSH_ALL)
 450                trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
 451        else
 452                trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 453                                (info->end - info->start) >> PAGE_SHIFT);
 454
 455        if (is_uv_system()) {
 456                /*
 457                 * This whole special case is confused.  UV has a "Broadcast
 458                 * Assist Unit", which seems to be a fancy way to send IPIs.
 459                 * Back when x86 used an explicit TLB flush IPI, UV was
 460                 * optimized to use its own mechanism.  These days, x86 uses
 461                 * smp_call_function_many(), but UV still uses a manual IPI,
 462                 * and that IPI's action is out of date -- it does a manual
 463                 * flush instead of calling flush_tlb_func_remote().  This
 464                 * means that the percpu tlb_gen variables won't be updated
 465                 * and we'll do pointless flushes on future context switches.
 466                 *
 467                 * Rather than hooking native_flush_tlb_others() here, I think
 468                 * that UV should be updated so that smp_call_function_many(),
 469                 * etc, are optimal on UV.
 470                 */
 471                unsigned int cpu;
 472
 473                cpu = smp_processor_id();
 474                cpumask = uv_flush_tlb_others(cpumask, info);
 475                if (cpumask)
 476                        smp_call_function_many(cpumask, flush_tlb_func_remote,
 477                                               (void *)info, 1);
 478                return;
 479        }
 480        smp_call_function_many(cpumask, flush_tlb_func_remote,
 481                               (void *)info, 1);
 482}
 483
 484/*
 485 * See Documentation/x86/tlb.txt for details.  We choose 33
 486 * because it is large enough to cover the vast majority (at
 487 * least 95%) of allocations, and is small enough that we are
 488 * confident it will not cause too much overhead.  Each single
 489 * flush is about 100 ns, so this caps the maximum overhead at
 490 * _about_ 3,000 ns.
 491 *
 492 * This is in units of pages.
 493 */
 494static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 495
 496void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 497                                unsigned long end, unsigned long vmflag)
 498{
 499        int cpu;
 500
 501        struct flush_tlb_info info = {
 502                .mm = mm,
 503        };
 504
 505        cpu = get_cpu();
 506
 507        /* This is also a barrier that synchronizes with switch_mm(). */
 508        info.new_tlb_gen = inc_mm_tlb_gen(mm);
 509
 510        /* Should we flush just the requested range? */
 511        if ((end != TLB_FLUSH_ALL) &&
 512            !(vmflag & VM_HUGETLB) &&
 513            ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
 514                info.start = start;
 515                info.end = end;
 516        } else {
 517                info.start = 0UL;
 518                info.end = TLB_FLUSH_ALL;
 519        }
 520
 521        if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
 522                VM_WARN_ON(irqs_disabled());
 523                local_irq_disable();
 524                flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
 525                local_irq_enable();
 526        }
 527
 528        if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
 529                flush_tlb_others(mm_cpumask(mm), &info);
 530
 531        put_cpu();
 532}
 533
 534
 535static void do_flush_tlb_all(void *info)
 536{
 537        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 538        __flush_tlb_all();
 539}
 540
 541void flush_tlb_all(void)
 542{
 543        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 544        on_each_cpu(do_flush_tlb_all, NULL, 1);
 545}
 546
 547static void do_kernel_range_flush(void *info)
 548{
 549        struct flush_tlb_info *f = info;
 550        unsigned long addr;
 551
 552        /* flush range by one by one 'invlpg' */
 553        for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
 554                __flush_tlb_single(addr);
 555}
 556
 557void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 558{
 559
 560        /* Balance as user space task's flush, a bit conservative */
 561        if (end == TLB_FLUSH_ALL ||
 562            (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
 563                on_each_cpu(do_flush_tlb_all, NULL, 1);
 564        } else {
 565                struct flush_tlb_info info;
 566                info.start = start;
 567                info.end = end;
 568                on_each_cpu(do_kernel_range_flush, &info, 1);
 569        }
 570}
 571
 572void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
 573{
 574        struct flush_tlb_info info = {
 575                .mm = NULL,
 576                .start = 0UL,
 577                .end = TLB_FLUSH_ALL,
 578        };
 579
 580        int cpu = get_cpu();
 581
 582        if (cpumask_test_cpu(cpu, &batch->cpumask)) {
 583                VM_WARN_ON(irqs_disabled());
 584                local_irq_disable();
 585                flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
 586                local_irq_enable();
 587        }
 588
 589        if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
 590                flush_tlb_others(&batch->cpumask, &info);
 591
 592        cpumask_clear(&batch->cpumask);
 593
 594        put_cpu();
 595}
 596
 597static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
 598                             size_t count, loff_t *ppos)
 599{
 600        char buf[32];
 601        unsigned int len;
 602
 603        len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
 604        return simple_read_from_buffer(user_buf, count, ppos, buf, len);
 605}
 606
 607static ssize_t tlbflush_write_file(struct file *file,
 608                 const char __user *user_buf, size_t count, loff_t *ppos)
 609{
 610        char buf[32];
 611        ssize_t len;
 612        int ceiling;
 613
 614        len = min(count, sizeof(buf) - 1);
 615        if (copy_from_user(buf, user_buf, len))
 616                return -EFAULT;
 617
 618        buf[len] = '\0';
 619        if (kstrtoint(buf, 0, &ceiling))
 620                return -EINVAL;
 621
 622        if (ceiling < 0)
 623                return -EINVAL;
 624
 625        tlb_single_page_flush_ceiling = ceiling;
 626        return count;
 627}
 628
 629static const struct file_operations fops_tlbflush = {
 630        .read = tlbflush_read_file,
 631        .write = tlbflush_write_file,
 632        .llseek = default_llseek,
 633};
 634
 635static int __init create_tlb_single_page_flush_ceiling(void)
 636{
 637        debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
 638                            arch_debugfs_dir, NULL, &fops_tlbflush);
 639        return 0;
 640}
 641late_initcall(create_tlb_single_page_flush_ceiling);
 642