linux/block/blk-wbt.c
<<
>>
Prefs
   1/*
   2 * buffered writeback throttling. loosely based on CoDel. We can't drop
   3 * packets for IO scheduling, so the logic is something like this:
   4 *
   5 * - Monitor latencies in a defined window of time.
   6 * - If the minimum latency in the above window exceeds some target, increment
   7 *   scaling step and scale down queue depth by a factor of 2x. The monitoring
   8 *   window is then shrunk to 100 / sqrt(scaling step + 1).
   9 * - For any window where we don't have solid data on what the latencies
  10 *   look like, retain status quo.
  11 * - If latencies look good, decrement scaling step.
  12 * - If we're only doing writes, allow the scaling step to go negative. This
  13 *   will temporarily boost write performance, snapping back to a stable
  14 *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
  15 *   positive scaling steps where we shrink the monitoring window, a negative
  16 *   scaling step retains the default step==0 window size.
  17 *
  18 * Copyright (C) 2016 Jens Axboe
  19 *
  20 */
  21#include <linux/kernel.h>
  22#include <linux/blk_types.h>
  23#include <linux/slab.h>
  24#include <linux/backing-dev.h>
  25#include <linux/swap.h>
  26
  27#include "blk-wbt.h"
  28
  29#define CREATE_TRACE_POINTS
  30#include <trace/events/wbt.h>
  31
  32enum {
  33        /*
  34         * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
  35         * from here depending on device stats
  36         */
  37        RWB_DEF_DEPTH   = 16,
  38
  39        /*
  40         * 100msec window
  41         */
  42        RWB_WINDOW_NSEC         = 100 * 1000 * 1000ULL,
  43
  44        /*
  45         * Disregard stats, if we don't meet this minimum
  46         */
  47        RWB_MIN_WRITE_SAMPLES   = 3,
  48
  49        /*
  50         * If we have this number of consecutive windows with not enough
  51         * information to scale up or down, scale up.
  52         */
  53        RWB_UNKNOWN_BUMP        = 5,
  54};
  55
  56static inline bool rwb_enabled(struct rq_wb *rwb)
  57{
  58        return rwb && rwb->wb_normal != 0;
  59}
  60
  61/*
  62 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
  63 * false if 'v' + 1 would be bigger than 'below'.
  64 */
  65static bool atomic_inc_below(atomic_t *v, int below)
  66{
  67        int cur = atomic_read(v);
  68
  69        for (;;) {
  70                int old;
  71
  72                if (cur >= below)
  73                        return false;
  74                old = atomic_cmpxchg(v, cur, cur + 1);
  75                if (old == cur)
  76                        break;
  77                cur = old;
  78        }
  79
  80        return true;
  81}
  82
  83static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
  84{
  85        if (rwb_enabled(rwb)) {
  86                const unsigned long cur = jiffies;
  87
  88                if (cur != *var)
  89                        *var = cur;
  90        }
  91}
  92
  93/*
  94 * If a task was rate throttled in balance_dirty_pages() within the last
  95 * second or so, use that to indicate a higher cleaning rate.
  96 */
  97static bool wb_recent_wait(struct rq_wb *rwb)
  98{
  99        struct bdi_writeback *wb = &rwb->queue->backing_dev_info->wb;
 100
 101        return time_before(jiffies, wb->dirty_sleep + HZ);
 102}
 103
 104static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, bool is_kswapd)
 105{
 106        return &rwb->rq_wait[is_kswapd];
 107}
 108
 109static void rwb_wake_all(struct rq_wb *rwb)
 110{
 111        int i;
 112
 113        for (i = 0; i < WBT_NUM_RWQ; i++) {
 114                struct rq_wait *rqw = &rwb->rq_wait[i];
 115
 116                if (waitqueue_active(&rqw->wait))
 117                        wake_up_all(&rqw->wait);
 118        }
 119}
 120
 121void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct)
 122{
 123        struct rq_wait *rqw;
 124        int inflight, limit;
 125
 126        if (!(wb_acct & WBT_TRACKED))
 127                return;
 128
 129        rqw = get_rq_wait(rwb, wb_acct & WBT_KSWAPD);
 130        inflight = atomic_dec_return(&rqw->inflight);
 131
 132        /*
 133         * wbt got disabled with IO in flight. Wake up any potential
 134         * waiters, we don't have to do more than that.
 135         */
 136        if (unlikely(!rwb_enabled(rwb))) {
 137                rwb_wake_all(rwb);
 138                return;
 139        }
 140
 141        /*
 142         * If the device does write back caching, drop further down
 143         * before we wake people up.
 144         */
 145        if (rwb->wc && !wb_recent_wait(rwb))
 146                limit = 0;
 147        else
 148                limit = rwb->wb_normal;
 149
 150        /*
 151         * Don't wake anyone up if we are above the normal limit.
 152         */
 153        if (inflight && inflight >= limit)
 154                return;
 155
 156        if (waitqueue_active(&rqw->wait)) {
 157                int diff = limit - inflight;
 158
 159                if (!inflight || diff >= rwb->wb_background / 2)
 160                        wake_up_all(&rqw->wait);
 161        }
 162}
 163
 164/*
 165 * Called on completion of a request. Note that it's also called when
 166 * a request is merged, when the request gets freed.
 167 */
 168void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat)
 169{
 170        if (!rwb)
 171                return;
 172
 173        if (!wbt_is_tracked(stat)) {
 174                if (rwb->sync_cookie == stat) {
 175                        rwb->sync_issue = 0;
 176                        rwb->sync_cookie = NULL;
 177                }
 178
 179                if (wbt_is_read(stat))
 180                        wb_timestamp(rwb, &rwb->last_comp);
 181                wbt_clear_state(stat);
 182        } else {
 183                WARN_ON_ONCE(stat == rwb->sync_cookie);
 184                __wbt_done(rwb, wbt_stat_to_mask(stat));
 185                wbt_clear_state(stat);
 186        }
 187}
 188
 189/*
 190 * Return true, if we can't increase the depth further by scaling
 191 */
 192static bool calc_wb_limits(struct rq_wb *rwb)
 193{
 194        unsigned int depth;
 195        bool ret = false;
 196
 197        if (!rwb->min_lat_nsec) {
 198                rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0;
 199                return false;
 200        }
 201
 202        /*
 203         * For QD=1 devices, this is a special case. It's important for those
 204         * to have one request ready when one completes, so force a depth of
 205         * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
 206         * since the device can't have more than that in flight. If we're
 207         * scaling down, then keep a setting of 1/1/1.
 208         */
 209        if (rwb->queue_depth == 1) {
 210                if (rwb->scale_step > 0)
 211                        rwb->wb_max = rwb->wb_normal = 1;
 212                else {
 213                        rwb->wb_max = rwb->wb_normal = 2;
 214                        ret = true;
 215                }
 216                rwb->wb_background = 1;
 217        } else {
 218                /*
 219                 * scale_step == 0 is our default state. If we have suffered
 220                 * latency spikes, step will be > 0, and we shrink the
 221                 * allowed write depths. If step is < 0, we're only doing
 222                 * writes, and we allow a temporarily higher depth to
 223                 * increase performance.
 224                 */
 225                depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth);
 226                if (rwb->scale_step > 0)
 227                        depth = 1 + ((depth - 1) >> min(31, rwb->scale_step));
 228                else if (rwb->scale_step < 0) {
 229                        unsigned int maxd = 3 * rwb->queue_depth / 4;
 230
 231                        depth = 1 + ((depth - 1) << -rwb->scale_step);
 232                        if (depth > maxd) {
 233                                depth = maxd;
 234                                ret = true;
 235                        }
 236                }
 237
 238                /*
 239                 * Set our max/normal/bg queue depths based on how far
 240                 * we have scaled down (->scale_step).
 241                 */
 242                rwb->wb_max = depth;
 243                rwb->wb_normal = (rwb->wb_max + 1) / 2;
 244                rwb->wb_background = (rwb->wb_max + 3) / 4;
 245        }
 246
 247        return ret;
 248}
 249
 250static inline bool stat_sample_valid(struct blk_rq_stat *stat)
 251{
 252        /*
 253         * We need at least one read sample, and a minimum of
 254         * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
 255         * that it's writes impacting us, and not just some sole read on
 256         * a device that is in a lower power state.
 257         */
 258        return (stat[READ].nr_samples >= 1 &&
 259                stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
 260}
 261
 262static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
 263{
 264        u64 now, issue = ACCESS_ONCE(rwb->sync_issue);
 265
 266        if (!issue || !rwb->sync_cookie)
 267                return 0;
 268
 269        now = ktime_to_ns(ktime_get());
 270        return now - issue;
 271}
 272
 273enum {
 274        LAT_OK = 1,
 275        LAT_UNKNOWN,
 276        LAT_UNKNOWN_WRITES,
 277        LAT_EXCEEDED,
 278};
 279
 280static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
 281{
 282        struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
 283        u64 thislat;
 284
 285        /*
 286         * If our stored sync issue exceeds the window size, or it
 287         * exceeds our min target AND we haven't logged any entries,
 288         * flag the latency as exceeded. wbt works off completion latencies,
 289         * but for a flooded device, a single sync IO can take a long time
 290         * to complete after being issued. If this time exceeds our
 291         * monitoring window AND we didn't see any other completions in that
 292         * window, then count that sync IO as a violation of the latency.
 293         */
 294        thislat = rwb_sync_issue_lat(rwb);
 295        if (thislat > rwb->cur_win_nsec ||
 296            (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
 297                trace_wbt_lat(bdi, thislat);
 298                return LAT_EXCEEDED;
 299        }
 300
 301        /*
 302         * No read/write mix, if stat isn't valid
 303         */
 304        if (!stat_sample_valid(stat)) {
 305                /*
 306                 * If we had writes in this stat window and the window is
 307                 * current, we're only doing writes. If a task recently
 308                 * waited or still has writes in flights, consider us doing
 309                 * just writes as well.
 310                 */
 311                if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
 312                    wbt_inflight(rwb))
 313                        return LAT_UNKNOWN_WRITES;
 314                return LAT_UNKNOWN;
 315        }
 316
 317        /*
 318         * If the 'min' latency exceeds our target, step down.
 319         */
 320        if (stat[READ].min > rwb->min_lat_nsec) {
 321                trace_wbt_lat(bdi, stat[READ].min);
 322                trace_wbt_stat(bdi, stat);
 323                return LAT_EXCEEDED;
 324        }
 325
 326        if (rwb->scale_step)
 327                trace_wbt_stat(bdi, stat);
 328
 329        return LAT_OK;
 330}
 331
 332static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
 333{
 334        struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
 335
 336        trace_wbt_step(bdi, msg, rwb->scale_step, rwb->cur_win_nsec,
 337                        rwb->wb_background, rwb->wb_normal, rwb->wb_max);
 338}
 339
 340static void scale_up(struct rq_wb *rwb)
 341{
 342        /*
 343         * Hit max in previous round, stop here
 344         */
 345        if (rwb->scaled_max)
 346                return;
 347
 348        rwb->scale_step--;
 349        rwb->unknown_cnt = 0;
 350
 351        rwb->scaled_max = calc_wb_limits(rwb);
 352
 353        rwb_wake_all(rwb);
 354
 355        rwb_trace_step(rwb, "step up");
 356}
 357
 358/*
 359 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
 360 * had a latency violation.
 361 */
 362static void scale_down(struct rq_wb *rwb, bool hard_throttle)
 363{
 364        /*
 365         * Stop scaling down when we've hit the limit. This also prevents
 366         * ->scale_step from going to crazy values, if the device can't
 367         * keep up.
 368         */
 369        if (rwb->wb_max == 1)
 370                return;
 371
 372        if (rwb->scale_step < 0 && hard_throttle)
 373                rwb->scale_step = 0;
 374        else
 375                rwb->scale_step++;
 376
 377        rwb->scaled_max = false;
 378        rwb->unknown_cnt = 0;
 379        calc_wb_limits(rwb);
 380        rwb_trace_step(rwb, "step down");
 381}
 382
 383static void rwb_arm_timer(struct rq_wb *rwb)
 384{
 385        if (rwb->scale_step > 0) {
 386                /*
 387                 * We should speed this up, using some variant of a fast
 388                 * integer inverse square root calculation. Since we only do
 389                 * this for every window expiration, it's not a huge deal,
 390                 * though.
 391                 */
 392                rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
 393                                        int_sqrt((rwb->scale_step + 1) << 8));
 394        } else {
 395                /*
 396                 * For step < 0, we don't want to increase/decrease the
 397                 * window size.
 398                 */
 399                rwb->cur_win_nsec = rwb->win_nsec;
 400        }
 401
 402        blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
 403}
 404
 405static void wb_timer_fn(struct blk_stat_callback *cb)
 406{
 407        struct rq_wb *rwb = cb->data;
 408        unsigned int inflight = wbt_inflight(rwb);
 409        int status;
 410
 411        status = latency_exceeded(rwb, cb->stat);
 412
 413        trace_wbt_timer(rwb->queue->backing_dev_info, status, rwb->scale_step,
 414                        inflight);
 415
 416        /*
 417         * If we exceeded the latency target, step down. If we did not,
 418         * step one level up. If we don't know enough to say either exceeded
 419         * or ok, then don't do anything.
 420         */
 421        switch (status) {
 422        case LAT_EXCEEDED:
 423                scale_down(rwb, true);
 424                break;
 425        case LAT_OK:
 426                scale_up(rwb);
 427                break;
 428        case LAT_UNKNOWN_WRITES:
 429                /*
 430                 * We started a the center step, but don't have a valid
 431                 * read/write sample, but we do have writes going on.
 432                 * Allow step to go negative, to increase write perf.
 433                 */
 434                scale_up(rwb);
 435                break;
 436        case LAT_UNKNOWN:
 437                if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
 438                        break;
 439                /*
 440                 * We get here when previously scaled reduced depth, and we
 441                 * currently don't have a valid read/write sample. For that
 442                 * case, slowly return to center state (step == 0).
 443                 */
 444                if (rwb->scale_step > 0)
 445                        scale_up(rwb);
 446                else if (rwb->scale_step < 0)
 447                        scale_down(rwb, false);
 448                break;
 449        default:
 450                break;
 451        }
 452
 453        /*
 454         * Re-arm timer, if we have IO in flight
 455         */
 456        if (rwb->scale_step || inflight)
 457                rwb_arm_timer(rwb);
 458}
 459
 460void wbt_update_limits(struct rq_wb *rwb)
 461{
 462        rwb->scale_step = 0;
 463        rwb->scaled_max = false;
 464        calc_wb_limits(rwb);
 465
 466        rwb_wake_all(rwb);
 467}
 468
 469static bool close_io(struct rq_wb *rwb)
 470{
 471        const unsigned long now = jiffies;
 472
 473        return time_before(now, rwb->last_issue + HZ / 10) ||
 474                time_before(now, rwb->last_comp + HZ / 10);
 475}
 476
 477#define REQ_HIPRIO      (REQ_SYNC | REQ_META | REQ_PRIO)
 478
 479static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
 480{
 481        unsigned int limit;
 482
 483        /*
 484         * At this point we know it's a buffered write. If this is
 485         * kswapd trying to free memory, or REQ_SYNC is set, set, then
 486         * it's WB_SYNC_ALL writeback, and we'll use the max limit for
 487         * that. If the write is marked as a background write, then use
 488         * the idle limit, or go to normal if we haven't had competing
 489         * IO for a bit.
 490         */
 491        if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
 492                limit = rwb->wb_max;
 493        else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
 494                /*
 495                 * If less than 100ms since we completed unrelated IO,
 496                 * limit us to half the depth for background writeback.
 497                 */
 498                limit = rwb->wb_background;
 499        } else
 500                limit = rwb->wb_normal;
 501
 502        return limit;
 503}
 504
 505static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw,
 506                             wait_queue_entry_t *wait, unsigned long rw)
 507{
 508        /*
 509         * inc it here even if disabled, since we'll dec it at completion.
 510         * this only happens if the task was sleeping in __wbt_wait(),
 511         * and someone turned it off at the same time.
 512         */
 513        if (!rwb_enabled(rwb)) {
 514                atomic_inc(&rqw->inflight);
 515                return true;
 516        }
 517
 518        /*
 519         * If the waitqueue is already active and we are not the next
 520         * in line to be woken up, wait for our turn.
 521         */
 522        if (waitqueue_active(&rqw->wait) &&
 523            rqw->wait.head.next != &wait->entry)
 524                return false;
 525
 526        return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw));
 527}
 528
 529/*
 530 * Block if we will exceed our limit, or if we are currently waiting for
 531 * the timer to kick off queuing again.
 532 */
 533static void __wbt_wait(struct rq_wb *rwb, unsigned long rw, spinlock_t *lock)
 534        __releases(lock)
 535        __acquires(lock)
 536{
 537        struct rq_wait *rqw = get_rq_wait(rwb, current_is_kswapd());
 538        DEFINE_WAIT(wait);
 539
 540        if (may_queue(rwb, rqw, &wait, rw))
 541                return;
 542
 543        do {
 544                prepare_to_wait_exclusive(&rqw->wait, &wait,
 545                                                TASK_UNINTERRUPTIBLE);
 546
 547                if (may_queue(rwb, rqw, &wait, rw))
 548                        break;
 549
 550                if (lock) {
 551                        spin_unlock_irq(lock);
 552                        io_schedule();
 553                        spin_lock_irq(lock);
 554                } else
 555                        io_schedule();
 556        } while (1);
 557
 558        finish_wait(&rqw->wait, &wait);
 559}
 560
 561static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
 562{
 563        const int op = bio_op(bio);
 564
 565        /*
 566         * If not a WRITE, do nothing
 567         */
 568        if (op != REQ_OP_WRITE)
 569                return false;
 570
 571        /*
 572         * Don't throttle WRITE_ODIRECT
 573         */
 574        if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE))
 575                return false;
 576
 577        return true;
 578}
 579
 580/*
 581 * Returns true if the IO request should be accounted, false if not.
 582 * May sleep, if we have exceeded the writeback limits. Caller can pass
 583 * in an irq held spinlock, if it holds one when calling this function.
 584 * If we do sleep, we'll release and re-grab it.
 585 */
 586enum wbt_flags wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock)
 587{
 588        unsigned int ret = 0;
 589
 590        if (!rwb_enabled(rwb))
 591                return 0;
 592
 593        if (bio_op(bio) == REQ_OP_READ)
 594                ret = WBT_READ;
 595
 596        if (!wbt_should_throttle(rwb, bio)) {
 597                if (ret & WBT_READ)
 598                        wb_timestamp(rwb, &rwb->last_issue);
 599                return ret;
 600        }
 601
 602        __wbt_wait(rwb, bio->bi_opf, lock);
 603
 604        if (!blk_stat_is_active(rwb->cb))
 605                rwb_arm_timer(rwb);
 606
 607        if (current_is_kswapd())
 608                ret |= WBT_KSWAPD;
 609
 610        return ret | WBT_TRACKED;
 611}
 612
 613void wbt_issue(struct rq_wb *rwb, struct blk_issue_stat *stat)
 614{
 615        if (!rwb_enabled(rwb))
 616                return;
 617
 618        /*
 619         * Track sync issue, in case it takes a long time to complete. Allows
 620         * us to react quicker, if a sync IO takes a long time to complete.
 621         * Note that this is just a hint. 'stat' can go away when the
 622         * request completes, so it's important we never dereference it. We
 623         * only use the address to compare with, which is why we store the
 624         * sync_issue time locally.
 625         */
 626        if (wbt_is_read(stat) && !rwb->sync_issue) {
 627                rwb->sync_cookie = stat;
 628                rwb->sync_issue = blk_stat_time(stat);
 629        }
 630}
 631
 632void wbt_requeue(struct rq_wb *rwb, struct blk_issue_stat *stat)
 633{
 634        if (!rwb_enabled(rwb))
 635                return;
 636        if (stat == rwb->sync_cookie) {
 637                rwb->sync_issue = 0;
 638                rwb->sync_cookie = NULL;
 639        }
 640}
 641
 642void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth)
 643{
 644        if (rwb) {
 645                rwb->queue_depth = depth;
 646                wbt_update_limits(rwb);
 647        }
 648}
 649
 650void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on)
 651{
 652        if (rwb)
 653                rwb->wc = write_cache_on;
 654}
 655
 656/*
 657 * Disable wbt, if enabled by default. Only called from CFQ.
 658 */
 659void wbt_disable_default(struct request_queue *q)
 660{
 661        struct rq_wb *rwb = q->rq_wb;
 662
 663        if (rwb && rwb->enable_state == WBT_STATE_ON_DEFAULT)
 664                wbt_exit(q);
 665}
 666EXPORT_SYMBOL_GPL(wbt_disable_default);
 667
 668/*
 669 * Enable wbt if defaults are configured that way
 670 */
 671void wbt_enable_default(struct request_queue *q)
 672{
 673        /* Throttling already enabled? */
 674        if (q->rq_wb)
 675                return;
 676
 677        /* Queue not registered? Maybe shutting down... */
 678        if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
 679                return;
 680
 681        if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) ||
 682            (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ)))
 683                wbt_init(q);
 684}
 685EXPORT_SYMBOL_GPL(wbt_enable_default);
 686
 687u64 wbt_default_latency_nsec(struct request_queue *q)
 688{
 689        /*
 690         * We default to 2msec for non-rotational storage, and 75msec
 691         * for rotational storage.
 692         */
 693        if (blk_queue_nonrot(q))
 694                return 2000000ULL;
 695        else
 696                return 75000000ULL;
 697}
 698
 699static int wbt_data_dir(const struct request *rq)
 700{
 701        return rq_data_dir(rq);
 702}
 703
 704int wbt_init(struct request_queue *q)
 705{
 706        struct rq_wb *rwb;
 707        int i;
 708
 709        BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS);
 710
 711        rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
 712        if (!rwb)
 713                return -ENOMEM;
 714
 715        rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
 716        if (!rwb->cb) {
 717                kfree(rwb);
 718                return -ENOMEM;
 719        }
 720
 721        for (i = 0; i < WBT_NUM_RWQ; i++) {
 722                atomic_set(&rwb->rq_wait[i].inflight, 0);
 723                init_waitqueue_head(&rwb->rq_wait[i].wait);
 724        }
 725
 726        rwb->wc = 1;
 727        rwb->queue_depth = RWB_DEF_DEPTH;
 728        rwb->last_comp = rwb->last_issue = jiffies;
 729        rwb->queue = q;
 730        rwb->win_nsec = RWB_WINDOW_NSEC;
 731        rwb->enable_state = WBT_STATE_ON_DEFAULT;
 732        wbt_update_limits(rwb);
 733
 734        /*
 735         * Assign rwb and add the stats callback.
 736         */
 737        q->rq_wb = rwb;
 738        blk_stat_add_callback(q, rwb->cb);
 739
 740        rwb->min_lat_nsec = wbt_default_latency_nsec(q);
 741
 742        wbt_set_queue_depth(rwb, blk_queue_depth(q));
 743        wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
 744
 745        return 0;
 746}
 747
 748void wbt_exit(struct request_queue *q)
 749{
 750        struct rq_wb *rwb = q->rq_wb;
 751
 752        if (rwb) {
 753                blk_stat_remove_callback(q, rwb->cb);
 754                blk_stat_free_callback(rwb->cb);
 755                q->rq_wb = NULL;
 756                kfree(rwb);
 757        }
 758}
 759