linux/drivers/block/xsysace.c
<<
>>
Prefs
   1/*
   2 * Xilinx SystemACE device driver
   3 *
   4 * Copyright 2007 Secret Lab Technologies Ltd.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 */
  10
  11/*
  12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
  13 * bitstream from a file on a CF card and squirting it into FPGAs connected
  14 * to the SystemACE JTAG chain.  It also has the advantage of providing an
  15 * MPU interface which can be used to control the FPGA configuration process
  16 * and to use the attached CF card for general purpose storage.
  17 *
  18 * This driver is a block device driver for the SystemACE.
  19 *
  20 * Initialization:
  21 *    The driver registers itself as a platform_device driver at module
  22 *    load time.  The platform bus will take care of calling the
  23 *    ace_probe() method for all SystemACE instances in the system.  Any
  24 *    number of SystemACE instances are supported.  ace_probe() calls
  25 *    ace_setup() which initialized all data structures, reads the CF
  26 *    id structure and registers the device.
  27 *
  28 * Processing:
  29 *    Just about all of the heavy lifting in this driver is performed by
  30 *    a Finite State Machine (FSM).  The driver needs to wait on a number
  31 *    of events; some raised by interrupts, some which need to be polled
  32 *    for.  Describing all of the behaviour in a FSM seems to be the
  33 *    easiest way to keep the complexity low and make it easy to
  34 *    understand what the driver is doing.  If the block ops or the
  35 *    request function need to interact with the hardware, then they
  36 *    simply need to flag the request and kick of FSM processing.
  37 *
  38 *    The FSM itself is atomic-safe code which can be run from any
  39 *    context.  The general process flow is:
  40 *    1. obtain the ace->lock spinlock.
  41 *    2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
  42 *       cleared.
  43 *    3. release the lock.
  44 *
  45 *    Individual states do not sleep in any way.  If a condition needs to
  46 *    be waited for then the state much clear the fsm_continue flag and
  47 *    either schedule the FSM to be run again at a later time, or expect
  48 *    an interrupt to call the FSM when the desired condition is met.
  49 *
  50 *    In normal operation, the FSM is processed at interrupt context
  51 *    either when the driver's tasklet is scheduled, or when an irq is
  52 *    raised by the hardware.  The tasklet can be scheduled at any time.
  53 *    The request method in particular schedules the tasklet when a new
  54 *    request has been indicated by the block layer.  Once started, the
  55 *    FSM proceeds as far as it can processing the request until it
  56 *    needs on a hardware event.  At this point, it must yield execution.
  57 *
  58 *    A state has two options when yielding execution:
  59 *    1. ace_fsm_yield()
  60 *       - Call if need to poll for event.
  61 *       - clears the fsm_continue flag to exit the processing loop
  62 *       - reschedules the tasklet to run again as soon as possible
  63 *    2. ace_fsm_yieldirq()
  64 *       - Call if an irq is expected from the HW
  65 *       - clears the fsm_continue flag to exit the processing loop
  66 *       - does not reschedule the tasklet so the FSM will not be processed
  67 *         again until an irq is received.
  68 *    After calling a yield function, the state must return control back
  69 *    to the FSM main loop.
  70 *
  71 *    Additionally, the driver maintains a kernel timer which can process
  72 *    the FSM.  If the FSM gets stalled, typically due to a missed
  73 *    interrupt, then the kernel timer will expire and the driver can
  74 *    continue where it left off.
  75 *
  76 * To Do:
  77 *    - Add FPGA configuration control interface.
  78 *    - Request major number from lanana
  79 */
  80
  81#undef DEBUG
  82
  83#include <linux/module.h>
  84#include <linux/ctype.h>
  85#include <linux/init.h>
  86#include <linux/interrupt.h>
  87#include <linux/errno.h>
  88#include <linux/kernel.h>
  89#include <linux/delay.h>
  90#include <linux/slab.h>
  91#include <linux/blkdev.h>
  92#include <linux/mutex.h>
  93#include <linux/ata.h>
  94#include <linux/hdreg.h>
  95#include <linux/platform_device.h>
  96#if defined(CONFIG_OF)
  97#include <linux/of_address.h>
  98#include <linux/of_device.h>
  99#include <linux/of_platform.h>
 100#endif
 101
 102MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
 103MODULE_DESCRIPTION("Xilinx SystemACE device driver");
 104MODULE_LICENSE("GPL");
 105
 106/* SystemACE register definitions */
 107#define ACE_BUSMODE (0x00)
 108
 109#define ACE_STATUS (0x04)
 110#define ACE_STATUS_CFGLOCK      (0x00000001)
 111#define ACE_STATUS_MPULOCK      (0x00000002)
 112#define ACE_STATUS_CFGERROR     (0x00000004)    /* config controller error */
 113#define ACE_STATUS_CFCERROR     (0x00000008)    /* CF controller error */
 114#define ACE_STATUS_CFDETECT     (0x00000010)
 115#define ACE_STATUS_DATABUFRDY   (0x00000020)
 116#define ACE_STATUS_DATABUFMODE  (0x00000040)
 117#define ACE_STATUS_CFGDONE      (0x00000080)
 118#define ACE_STATUS_RDYFORCFCMD  (0x00000100)
 119#define ACE_STATUS_CFGMODEPIN   (0x00000200)
 120#define ACE_STATUS_CFGADDR_MASK (0x0000e000)
 121#define ACE_STATUS_CFBSY        (0x00020000)
 122#define ACE_STATUS_CFRDY        (0x00040000)
 123#define ACE_STATUS_CFDWF        (0x00080000)
 124#define ACE_STATUS_CFDSC        (0x00100000)
 125#define ACE_STATUS_CFDRQ        (0x00200000)
 126#define ACE_STATUS_CFCORR       (0x00400000)
 127#define ACE_STATUS_CFERR        (0x00800000)
 128
 129#define ACE_ERROR (0x08)
 130#define ACE_CFGLBA (0x0c)
 131#define ACE_MPULBA (0x10)
 132
 133#define ACE_SECCNTCMD (0x14)
 134#define ACE_SECCNTCMD_RESET      (0x0100)
 135#define ACE_SECCNTCMD_IDENTIFY   (0x0200)
 136#define ACE_SECCNTCMD_READ_DATA  (0x0300)
 137#define ACE_SECCNTCMD_WRITE_DATA (0x0400)
 138#define ACE_SECCNTCMD_ABORT      (0x0600)
 139
 140#define ACE_VERSION (0x16)
 141#define ACE_VERSION_REVISION_MASK (0x00FF)
 142#define ACE_VERSION_MINOR_MASK    (0x0F00)
 143#define ACE_VERSION_MAJOR_MASK    (0xF000)
 144
 145#define ACE_CTRL (0x18)
 146#define ACE_CTRL_FORCELOCKREQ   (0x0001)
 147#define ACE_CTRL_LOCKREQ        (0x0002)
 148#define ACE_CTRL_FORCECFGADDR   (0x0004)
 149#define ACE_CTRL_FORCECFGMODE   (0x0008)
 150#define ACE_CTRL_CFGMODE        (0x0010)
 151#define ACE_CTRL_CFGSTART       (0x0020)
 152#define ACE_CTRL_CFGSEL         (0x0040)
 153#define ACE_CTRL_CFGRESET       (0x0080)
 154#define ACE_CTRL_DATABUFRDYIRQ  (0x0100)
 155#define ACE_CTRL_ERRORIRQ       (0x0200)
 156#define ACE_CTRL_CFGDONEIRQ     (0x0400)
 157#define ACE_CTRL_RESETIRQ       (0x0800)
 158#define ACE_CTRL_CFGPROG        (0x1000)
 159#define ACE_CTRL_CFGADDR_MASK   (0xe000)
 160
 161#define ACE_FATSTAT (0x1c)
 162
 163#define ACE_NUM_MINORS 16
 164#define ACE_SECTOR_SIZE (512)
 165#define ACE_FIFO_SIZE (32)
 166#define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
 167
 168#define ACE_BUS_WIDTH_8  0
 169#define ACE_BUS_WIDTH_16 1
 170
 171struct ace_reg_ops;
 172
 173struct ace_device {
 174        /* driver state data */
 175        int id;
 176        int media_change;
 177        int users;
 178        struct list_head list;
 179
 180        /* finite state machine data */
 181        struct tasklet_struct fsm_tasklet;
 182        uint fsm_task;          /* Current activity (ACE_TASK_*) */
 183        uint fsm_state;         /* Current state (ACE_FSM_STATE_*) */
 184        uint fsm_continue_flag; /* cleared to exit FSM mainloop */
 185        uint fsm_iter_num;
 186        struct timer_list stall_timer;
 187
 188        /* Transfer state/result, use for both id and block request */
 189        struct request *req;    /* request being processed */
 190        void *data_ptr;         /* pointer to I/O buffer */
 191        int data_count;         /* number of buffers remaining */
 192        int data_result;        /* Result of transfer; 0 := success */
 193
 194        int id_req_count;       /* count of id requests */
 195        int id_result;
 196        struct completion id_completion;        /* used when id req finishes */
 197        int in_irq;
 198
 199        /* Details of hardware device */
 200        resource_size_t physaddr;
 201        void __iomem *baseaddr;
 202        int irq;
 203        int bus_width;          /* 0 := 8 bit; 1 := 16 bit */
 204        struct ace_reg_ops *reg_ops;
 205        int lock_count;
 206
 207        /* Block device data structures */
 208        spinlock_t lock;
 209        struct device *dev;
 210        struct request_queue *queue;
 211        struct gendisk *gd;
 212
 213        /* Inserted CF card parameters */
 214        u16 cf_id[ATA_ID_WORDS];
 215};
 216
 217static DEFINE_MUTEX(xsysace_mutex);
 218static int ace_major;
 219
 220/* ---------------------------------------------------------------------
 221 * Low level register access
 222 */
 223
 224struct ace_reg_ops {
 225        u16(*in) (struct ace_device * ace, int reg);
 226        void (*out) (struct ace_device * ace, int reg, u16 val);
 227        void (*datain) (struct ace_device * ace);
 228        void (*dataout) (struct ace_device * ace);
 229};
 230
 231/* 8 Bit bus width */
 232static u16 ace_in_8(struct ace_device *ace, int reg)
 233{
 234        void __iomem *r = ace->baseaddr + reg;
 235        return in_8(r) | (in_8(r + 1) << 8);
 236}
 237
 238static void ace_out_8(struct ace_device *ace, int reg, u16 val)
 239{
 240        void __iomem *r = ace->baseaddr + reg;
 241        out_8(r, val);
 242        out_8(r + 1, val >> 8);
 243}
 244
 245static void ace_datain_8(struct ace_device *ace)
 246{
 247        void __iomem *r = ace->baseaddr + 0x40;
 248        u8 *dst = ace->data_ptr;
 249        int i = ACE_FIFO_SIZE;
 250        while (i--)
 251                *dst++ = in_8(r++);
 252        ace->data_ptr = dst;
 253}
 254
 255static void ace_dataout_8(struct ace_device *ace)
 256{
 257        void __iomem *r = ace->baseaddr + 0x40;
 258        u8 *src = ace->data_ptr;
 259        int i = ACE_FIFO_SIZE;
 260        while (i--)
 261                out_8(r++, *src++);
 262        ace->data_ptr = src;
 263}
 264
 265static struct ace_reg_ops ace_reg_8_ops = {
 266        .in = ace_in_8,
 267        .out = ace_out_8,
 268        .datain = ace_datain_8,
 269        .dataout = ace_dataout_8,
 270};
 271
 272/* 16 bit big endian bus attachment */
 273static u16 ace_in_be16(struct ace_device *ace, int reg)
 274{
 275        return in_be16(ace->baseaddr + reg);
 276}
 277
 278static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
 279{
 280        out_be16(ace->baseaddr + reg, val);
 281}
 282
 283static void ace_datain_be16(struct ace_device *ace)
 284{
 285        int i = ACE_FIFO_SIZE / 2;
 286        u16 *dst = ace->data_ptr;
 287        while (i--)
 288                *dst++ = in_le16(ace->baseaddr + 0x40);
 289        ace->data_ptr = dst;
 290}
 291
 292static void ace_dataout_be16(struct ace_device *ace)
 293{
 294        int i = ACE_FIFO_SIZE / 2;
 295        u16 *src = ace->data_ptr;
 296        while (i--)
 297                out_le16(ace->baseaddr + 0x40, *src++);
 298        ace->data_ptr = src;
 299}
 300
 301/* 16 bit little endian bus attachment */
 302static u16 ace_in_le16(struct ace_device *ace, int reg)
 303{
 304        return in_le16(ace->baseaddr + reg);
 305}
 306
 307static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
 308{
 309        out_le16(ace->baseaddr + reg, val);
 310}
 311
 312static void ace_datain_le16(struct ace_device *ace)
 313{
 314        int i = ACE_FIFO_SIZE / 2;
 315        u16 *dst = ace->data_ptr;
 316        while (i--)
 317                *dst++ = in_be16(ace->baseaddr + 0x40);
 318        ace->data_ptr = dst;
 319}
 320
 321static void ace_dataout_le16(struct ace_device *ace)
 322{
 323        int i = ACE_FIFO_SIZE / 2;
 324        u16 *src = ace->data_ptr;
 325        while (i--)
 326                out_be16(ace->baseaddr + 0x40, *src++);
 327        ace->data_ptr = src;
 328}
 329
 330static struct ace_reg_ops ace_reg_be16_ops = {
 331        .in = ace_in_be16,
 332        .out = ace_out_be16,
 333        .datain = ace_datain_be16,
 334        .dataout = ace_dataout_be16,
 335};
 336
 337static struct ace_reg_ops ace_reg_le16_ops = {
 338        .in = ace_in_le16,
 339        .out = ace_out_le16,
 340        .datain = ace_datain_le16,
 341        .dataout = ace_dataout_le16,
 342};
 343
 344static inline u16 ace_in(struct ace_device *ace, int reg)
 345{
 346        return ace->reg_ops->in(ace, reg);
 347}
 348
 349static inline u32 ace_in32(struct ace_device *ace, int reg)
 350{
 351        return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
 352}
 353
 354static inline void ace_out(struct ace_device *ace, int reg, u16 val)
 355{
 356        ace->reg_ops->out(ace, reg, val);
 357}
 358
 359static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
 360{
 361        ace_out(ace, reg, val);
 362        ace_out(ace, reg + 2, val >> 16);
 363}
 364
 365/* ---------------------------------------------------------------------
 366 * Debug support functions
 367 */
 368
 369#if defined(DEBUG)
 370static void ace_dump_mem(void *base, int len)
 371{
 372        const char *ptr = base;
 373        int i, j;
 374
 375        for (i = 0; i < len; i += 16) {
 376                printk(KERN_INFO "%.8x:", i);
 377                for (j = 0; j < 16; j++) {
 378                        if (!(j % 4))
 379                                printk(" ");
 380                        printk("%.2x", ptr[i + j]);
 381                }
 382                printk(" ");
 383                for (j = 0; j < 16; j++)
 384                        printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
 385                printk("\n");
 386        }
 387}
 388#else
 389static inline void ace_dump_mem(void *base, int len)
 390{
 391}
 392#endif
 393
 394static void ace_dump_regs(struct ace_device *ace)
 395{
 396        dev_info(ace->dev,
 397                 "    ctrl:  %.8x  seccnt/cmd: %.4x      ver:%.4x\n"
 398                 "    status:%.8x  mpu_lba:%.8x  busmode:%4x\n"
 399                 "    error: %.8x  cfg_lba:%.8x  fatstat:%.4x\n",
 400                 ace_in32(ace, ACE_CTRL),
 401                 ace_in(ace, ACE_SECCNTCMD),
 402                 ace_in(ace, ACE_VERSION),
 403                 ace_in32(ace, ACE_STATUS),
 404                 ace_in32(ace, ACE_MPULBA),
 405                 ace_in(ace, ACE_BUSMODE),
 406                 ace_in32(ace, ACE_ERROR),
 407                 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
 408}
 409
 410static void ace_fix_driveid(u16 *id)
 411{
 412#if defined(__BIG_ENDIAN)
 413        int i;
 414
 415        /* All half words have wrong byte order; swap the bytes */
 416        for (i = 0; i < ATA_ID_WORDS; i++, id++)
 417                *id = le16_to_cpu(*id);
 418#endif
 419}
 420
 421/* ---------------------------------------------------------------------
 422 * Finite State Machine (FSM) implementation
 423 */
 424
 425/* FSM tasks; used to direct state transitions */
 426#define ACE_TASK_IDLE      0
 427#define ACE_TASK_IDENTIFY  1
 428#define ACE_TASK_READ      2
 429#define ACE_TASK_WRITE     3
 430#define ACE_FSM_NUM_TASKS  4
 431
 432/* FSM state definitions */
 433#define ACE_FSM_STATE_IDLE               0
 434#define ACE_FSM_STATE_REQ_LOCK           1
 435#define ACE_FSM_STATE_WAIT_LOCK          2
 436#define ACE_FSM_STATE_WAIT_CFREADY       3
 437#define ACE_FSM_STATE_IDENTIFY_PREPARE   4
 438#define ACE_FSM_STATE_IDENTIFY_TRANSFER  5
 439#define ACE_FSM_STATE_IDENTIFY_COMPLETE  6
 440#define ACE_FSM_STATE_REQ_PREPARE        7
 441#define ACE_FSM_STATE_REQ_TRANSFER       8
 442#define ACE_FSM_STATE_REQ_COMPLETE       9
 443#define ACE_FSM_STATE_ERROR             10
 444#define ACE_FSM_NUM_STATES              11
 445
 446/* Set flag to exit FSM loop and reschedule tasklet */
 447static inline void ace_fsm_yield(struct ace_device *ace)
 448{
 449        dev_dbg(ace->dev, "ace_fsm_yield()\n");
 450        tasklet_schedule(&ace->fsm_tasklet);
 451        ace->fsm_continue_flag = 0;
 452}
 453
 454/* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
 455static inline void ace_fsm_yieldirq(struct ace_device *ace)
 456{
 457        dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
 458
 459        if (!ace->irq)
 460                /* No IRQ assigned, so need to poll */
 461                tasklet_schedule(&ace->fsm_tasklet);
 462        ace->fsm_continue_flag = 0;
 463}
 464
 465/* Get the next read/write request; ending requests that we don't handle */
 466static struct request *ace_get_next_request(struct request_queue *q)
 467{
 468        struct request *req;
 469
 470        while ((req = blk_peek_request(q)) != NULL) {
 471                if (!blk_rq_is_passthrough(req))
 472                        break;
 473                blk_start_request(req);
 474                __blk_end_request_all(req, BLK_STS_IOERR);
 475        }
 476        return req;
 477}
 478
 479static void ace_fsm_dostate(struct ace_device *ace)
 480{
 481        struct request *req;
 482        u32 status;
 483        u16 val;
 484        int count;
 485
 486#if defined(DEBUG)
 487        dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
 488                ace->fsm_state, ace->id_req_count);
 489#endif
 490
 491        /* Verify that there is actually a CF in the slot. If not, then
 492         * bail out back to the idle state and wake up all the waiters */
 493        status = ace_in32(ace, ACE_STATUS);
 494        if ((status & ACE_STATUS_CFDETECT) == 0) {
 495                ace->fsm_state = ACE_FSM_STATE_IDLE;
 496                ace->media_change = 1;
 497                set_capacity(ace->gd, 0);
 498                dev_info(ace->dev, "No CF in slot\n");
 499
 500                /* Drop all in-flight and pending requests */
 501                if (ace->req) {
 502                        __blk_end_request_all(ace->req, BLK_STS_IOERR);
 503                        ace->req = NULL;
 504                }
 505                while ((req = blk_fetch_request(ace->queue)) != NULL)
 506                        __blk_end_request_all(req, BLK_STS_IOERR);
 507
 508                /* Drop back to IDLE state and notify waiters */
 509                ace->fsm_state = ACE_FSM_STATE_IDLE;
 510                ace->id_result = -EIO;
 511                while (ace->id_req_count) {
 512                        complete(&ace->id_completion);
 513                        ace->id_req_count--;
 514                }
 515        }
 516
 517        switch (ace->fsm_state) {
 518        case ACE_FSM_STATE_IDLE:
 519                /* See if there is anything to do */
 520                if (ace->id_req_count || ace_get_next_request(ace->queue)) {
 521                        ace->fsm_iter_num++;
 522                        ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
 523                        mod_timer(&ace->stall_timer, jiffies + HZ);
 524                        if (!timer_pending(&ace->stall_timer))
 525                                add_timer(&ace->stall_timer);
 526                        break;
 527                }
 528                del_timer(&ace->stall_timer);
 529                ace->fsm_continue_flag = 0;
 530                break;
 531
 532        case ACE_FSM_STATE_REQ_LOCK:
 533                if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
 534                        /* Already have the lock, jump to next state */
 535                        ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
 536                        break;
 537                }
 538
 539                /* Request the lock */
 540                val = ace_in(ace, ACE_CTRL);
 541                ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
 542                ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
 543                break;
 544
 545        case ACE_FSM_STATE_WAIT_LOCK:
 546                if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
 547                        /* got the lock; move to next state */
 548                        ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
 549                        break;
 550                }
 551
 552                /* wait a bit for the lock */
 553                ace_fsm_yield(ace);
 554                break;
 555
 556        case ACE_FSM_STATE_WAIT_CFREADY:
 557                status = ace_in32(ace, ACE_STATUS);
 558                if (!(status & ACE_STATUS_RDYFORCFCMD) ||
 559                    (status & ACE_STATUS_CFBSY)) {
 560                        /* CF card isn't ready; it needs to be polled */
 561                        ace_fsm_yield(ace);
 562                        break;
 563                }
 564
 565                /* Device is ready for command; determine what to do next */
 566                if (ace->id_req_count)
 567                        ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
 568                else
 569                        ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
 570                break;
 571
 572        case ACE_FSM_STATE_IDENTIFY_PREPARE:
 573                /* Send identify command */
 574                ace->fsm_task = ACE_TASK_IDENTIFY;
 575                ace->data_ptr = ace->cf_id;
 576                ace->data_count = ACE_BUF_PER_SECTOR;
 577                ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
 578
 579                /* As per datasheet, put config controller in reset */
 580                val = ace_in(ace, ACE_CTRL);
 581                ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
 582
 583                /* irq handler takes over from this point; wait for the
 584                 * transfer to complete */
 585                ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
 586                ace_fsm_yieldirq(ace);
 587                break;
 588
 589        case ACE_FSM_STATE_IDENTIFY_TRANSFER:
 590                /* Check that the sysace is ready to receive data */
 591                status = ace_in32(ace, ACE_STATUS);
 592                if (status & ACE_STATUS_CFBSY) {
 593                        dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
 594                                ace->fsm_task, ace->fsm_iter_num,
 595                                ace->data_count);
 596                        ace_fsm_yield(ace);
 597                        break;
 598                }
 599                if (!(status & ACE_STATUS_DATABUFRDY)) {
 600                        ace_fsm_yield(ace);
 601                        break;
 602                }
 603
 604                /* Transfer the next buffer */
 605                ace->reg_ops->datain(ace);
 606                ace->data_count--;
 607
 608                /* If there are still buffers to be transfers; jump out here */
 609                if (ace->data_count != 0) {
 610                        ace_fsm_yieldirq(ace);
 611                        break;
 612                }
 613
 614                /* transfer finished; kick state machine */
 615                dev_dbg(ace->dev, "identify finished\n");
 616                ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
 617                break;
 618
 619        case ACE_FSM_STATE_IDENTIFY_COMPLETE:
 620                ace_fix_driveid(ace->cf_id);
 621                ace_dump_mem(ace->cf_id, 512);  /* Debug: Dump out disk ID */
 622
 623                if (ace->data_result) {
 624                        /* Error occurred, disable the disk */
 625                        ace->media_change = 1;
 626                        set_capacity(ace->gd, 0);
 627                        dev_err(ace->dev, "error fetching CF id (%i)\n",
 628                                ace->data_result);
 629                } else {
 630                        ace->media_change = 0;
 631
 632                        /* Record disk parameters */
 633                        set_capacity(ace->gd,
 634                                ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
 635                        dev_info(ace->dev, "capacity: %i sectors\n",
 636                                ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
 637                }
 638
 639                /* We're done, drop to IDLE state and notify waiters */
 640                ace->fsm_state = ACE_FSM_STATE_IDLE;
 641                ace->id_result = ace->data_result;
 642                while (ace->id_req_count) {
 643                        complete(&ace->id_completion);
 644                        ace->id_req_count--;
 645                }
 646                break;
 647
 648        case ACE_FSM_STATE_REQ_PREPARE:
 649                req = ace_get_next_request(ace->queue);
 650                if (!req) {
 651                        ace->fsm_state = ACE_FSM_STATE_IDLE;
 652                        break;
 653                }
 654                blk_start_request(req);
 655
 656                /* Okay, it's a data request, set it up for transfer */
 657                dev_dbg(ace->dev,
 658                        "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
 659                        (unsigned long long)blk_rq_pos(req),
 660                        blk_rq_sectors(req), blk_rq_cur_sectors(req),
 661                        rq_data_dir(req));
 662
 663                ace->req = req;
 664                ace->data_ptr = bio_data(req->bio);
 665                ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
 666                ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
 667
 668                count = blk_rq_sectors(req);
 669                if (rq_data_dir(req)) {
 670                        /* Kick off write request */
 671                        dev_dbg(ace->dev, "write data\n");
 672                        ace->fsm_task = ACE_TASK_WRITE;
 673                        ace_out(ace, ACE_SECCNTCMD,
 674                                count | ACE_SECCNTCMD_WRITE_DATA);
 675                } else {
 676                        /* Kick off read request */
 677                        dev_dbg(ace->dev, "read data\n");
 678                        ace->fsm_task = ACE_TASK_READ;
 679                        ace_out(ace, ACE_SECCNTCMD,
 680                                count | ACE_SECCNTCMD_READ_DATA);
 681                }
 682
 683                /* As per datasheet, put config controller in reset */
 684                val = ace_in(ace, ACE_CTRL);
 685                ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
 686
 687                /* Move to the transfer state.  The systemace will raise
 688                 * an interrupt once there is something to do
 689                 */
 690                ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
 691                if (ace->fsm_task == ACE_TASK_READ)
 692                        ace_fsm_yieldirq(ace);  /* wait for data ready */
 693                break;
 694
 695        case ACE_FSM_STATE_REQ_TRANSFER:
 696                /* Check that the sysace is ready to receive data */
 697                status = ace_in32(ace, ACE_STATUS);
 698                if (status & ACE_STATUS_CFBSY) {
 699                        dev_dbg(ace->dev,
 700                                "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
 701                                ace->fsm_task, ace->fsm_iter_num,
 702                                blk_rq_cur_sectors(ace->req) * 16,
 703                                ace->data_count, ace->in_irq);
 704                        ace_fsm_yield(ace);     /* need to poll CFBSY bit */
 705                        break;
 706                }
 707                if (!(status & ACE_STATUS_DATABUFRDY)) {
 708                        dev_dbg(ace->dev,
 709                                "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
 710                                ace->fsm_task, ace->fsm_iter_num,
 711                                blk_rq_cur_sectors(ace->req) * 16,
 712                                ace->data_count, ace->in_irq);
 713                        ace_fsm_yieldirq(ace);
 714                        break;
 715                }
 716
 717                /* Transfer the next buffer */
 718                if (ace->fsm_task == ACE_TASK_WRITE)
 719                        ace->reg_ops->dataout(ace);
 720                else
 721                        ace->reg_ops->datain(ace);
 722                ace->data_count--;
 723
 724                /* If there are still buffers to be transfers; jump out here */
 725                if (ace->data_count != 0) {
 726                        ace_fsm_yieldirq(ace);
 727                        break;
 728                }
 729
 730                /* bio finished; is there another one? */
 731                if (__blk_end_request_cur(ace->req, BLK_STS_OK)) {
 732                        /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
 733                         *      blk_rq_sectors(ace->req),
 734                         *      blk_rq_cur_sectors(ace->req));
 735                         */
 736                        ace->data_ptr = bio_data(ace->req->bio);
 737                        ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
 738                        ace_fsm_yieldirq(ace);
 739                        break;
 740                }
 741
 742                ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
 743                break;
 744
 745        case ACE_FSM_STATE_REQ_COMPLETE:
 746                ace->req = NULL;
 747
 748                /* Finished request; go to idle state */
 749                ace->fsm_state = ACE_FSM_STATE_IDLE;
 750                break;
 751
 752        default:
 753                ace->fsm_state = ACE_FSM_STATE_IDLE;
 754                break;
 755        }
 756}
 757
 758static void ace_fsm_tasklet(unsigned long data)
 759{
 760        struct ace_device *ace = (void *)data;
 761        unsigned long flags;
 762
 763        spin_lock_irqsave(&ace->lock, flags);
 764
 765        /* Loop over state machine until told to stop */
 766        ace->fsm_continue_flag = 1;
 767        while (ace->fsm_continue_flag)
 768                ace_fsm_dostate(ace);
 769
 770        spin_unlock_irqrestore(&ace->lock, flags);
 771}
 772
 773static void ace_stall_timer(unsigned long data)
 774{
 775        struct ace_device *ace = (void *)data;
 776        unsigned long flags;
 777
 778        dev_warn(ace->dev,
 779                 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
 780                 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
 781                 ace->data_count);
 782        spin_lock_irqsave(&ace->lock, flags);
 783
 784        /* Rearm the stall timer *before* entering FSM (which may then
 785         * delete the timer) */
 786        mod_timer(&ace->stall_timer, jiffies + HZ);
 787
 788        /* Loop over state machine until told to stop */
 789        ace->fsm_continue_flag = 1;
 790        while (ace->fsm_continue_flag)
 791                ace_fsm_dostate(ace);
 792
 793        spin_unlock_irqrestore(&ace->lock, flags);
 794}
 795
 796/* ---------------------------------------------------------------------
 797 * Interrupt handling routines
 798 */
 799static int ace_interrupt_checkstate(struct ace_device *ace)
 800{
 801        u32 sreg = ace_in32(ace, ACE_STATUS);
 802        u16 creg = ace_in(ace, ACE_CTRL);
 803
 804        /* Check for error occurrence */
 805        if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
 806            (creg & ACE_CTRL_ERRORIRQ)) {
 807                dev_err(ace->dev, "transfer failure\n");
 808                ace_dump_regs(ace);
 809                return -EIO;
 810        }
 811
 812        return 0;
 813}
 814
 815static irqreturn_t ace_interrupt(int irq, void *dev_id)
 816{
 817        u16 creg;
 818        struct ace_device *ace = dev_id;
 819
 820        /* be safe and get the lock */
 821        spin_lock(&ace->lock);
 822        ace->in_irq = 1;
 823
 824        /* clear the interrupt */
 825        creg = ace_in(ace, ACE_CTRL);
 826        ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
 827        ace_out(ace, ACE_CTRL, creg);
 828
 829        /* check for IO failures */
 830        if (ace_interrupt_checkstate(ace))
 831                ace->data_result = -EIO;
 832
 833        if (ace->fsm_task == 0) {
 834                dev_err(ace->dev,
 835                        "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
 836                        ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
 837                        ace_in(ace, ACE_SECCNTCMD));
 838                dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
 839                        ace->fsm_task, ace->fsm_state, ace->data_count);
 840        }
 841
 842        /* Loop over state machine until told to stop */
 843        ace->fsm_continue_flag = 1;
 844        while (ace->fsm_continue_flag)
 845                ace_fsm_dostate(ace);
 846
 847        /* done with interrupt; drop the lock */
 848        ace->in_irq = 0;
 849        spin_unlock(&ace->lock);
 850
 851        return IRQ_HANDLED;
 852}
 853
 854/* ---------------------------------------------------------------------
 855 * Block ops
 856 */
 857static void ace_request(struct request_queue * q)
 858{
 859        struct request *req;
 860        struct ace_device *ace;
 861
 862        req = ace_get_next_request(q);
 863
 864        if (req) {
 865                ace = req->rq_disk->private_data;
 866                tasklet_schedule(&ace->fsm_tasklet);
 867        }
 868}
 869
 870static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing)
 871{
 872        struct ace_device *ace = gd->private_data;
 873        dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change);
 874
 875        return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0;
 876}
 877
 878static int ace_revalidate_disk(struct gendisk *gd)
 879{
 880        struct ace_device *ace = gd->private_data;
 881        unsigned long flags;
 882
 883        dev_dbg(ace->dev, "ace_revalidate_disk()\n");
 884
 885        if (ace->media_change) {
 886                dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
 887
 888                spin_lock_irqsave(&ace->lock, flags);
 889                ace->id_req_count++;
 890                spin_unlock_irqrestore(&ace->lock, flags);
 891
 892                tasklet_schedule(&ace->fsm_tasklet);
 893                wait_for_completion(&ace->id_completion);
 894        }
 895
 896        dev_dbg(ace->dev, "revalidate complete\n");
 897        return ace->id_result;
 898}
 899
 900static int ace_open(struct block_device *bdev, fmode_t mode)
 901{
 902        struct ace_device *ace = bdev->bd_disk->private_data;
 903        unsigned long flags;
 904
 905        dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
 906
 907        mutex_lock(&xsysace_mutex);
 908        spin_lock_irqsave(&ace->lock, flags);
 909        ace->users++;
 910        spin_unlock_irqrestore(&ace->lock, flags);
 911
 912        check_disk_change(bdev);
 913        mutex_unlock(&xsysace_mutex);
 914
 915        return 0;
 916}
 917
 918static void ace_release(struct gendisk *disk, fmode_t mode)
 919{
 920        struct ace_device *ace = disk->private_data;
 921        unsigned long flags;
 922        u16 val;
 923
 924        dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
 925
 926        mutex_lock(&xsysace_mutex);
 927        spin_lock_irqsave(&ace->lock, flags);
 928        ace->users--;
 929        if (ace->users == 0) {
 930                val = ace_in(ace, ACE_CTRL);
 931                ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
 932        }
 933        spin_unlock_irqrestore(&ace->lock, flags);
 934        mutex_unlock(&xsysace_mutex);
 935}
 936
 937static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 938{
 939        struct ace_device *ace = bdev->bd_disk->private_data;
 940        u16 *cf_id = ace->cf_id;
 941
 942        dev_dbg(ace->dev, "ace_getgeo()\n");
 943
 944        geo->heads      = cf_id[ATA_ID_HEADS];
 945        geo->sectors    = cf_id[ATA_ID_SECTORS];
 946        geo->cylinders  = cf_id[ATA_ID_CYLS];
 947
 948        return 0;
 949}
 950
 951static const struct block_device_operations ace_fops = {
 952        .owner = THIS_MODULE,
 953        .open = ace_open,
 954        .release = ace_release,
 955        .check_events = ace_check_events,
 956        .revalidate_disk = ace_revalidate_disk,
 957        .getgeo = ace_getgeo,
 958};
 959
 960/* --------------------------------------------------------------------
 961 * SystemACE device setup/teardown code
 962 */
 963static int ace_setup(struct ace_device *ace)
 964{
 965        u16 version;
 966        u16 val;
 967        int rc;
 968
 969        dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
 970        dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
 971                (unsigned long long)ace->physaddr, ace->irq);
 972
 973        spin_lock_init(&ace->lock);
 974        init_completion(&ace->id_completion);
 975
 976        /*
 977         * Map the device
 978         */
 979        ace->baseaddr = ioremap(ace->physaddr, 0x80);
 980        if (!ace->baseaddr)
 981                goto err_ioremap;
 982
 983        /*
 984         * Initialize the state machine tasklet and stall timer
 985         */
 986        tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
 987        setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
 988
 989        /*
 990         * Initialize the request queue
 991         */
 992        ace->queue = blk_init_queue(ace_request, &ace->lock);
 993        if (ace->queue == NULL)
 994                goto err_blk_initq;
 995        blk_queue_logical_block_size(ace->queue, 512);
 996        blk_queue_bounce_limit(ace->queue, BLK_BOUNCE_HIGH);
 997
 998        /*
 999         * Allocate and initialize GD structure
1000         */
1001        ace->gd = alloc_disk(ACE_NUM_MINORS);
1002        if (!ace->gd)
1003                goto err_alloc_disk;
1004
1005        ace->gd->major = ace_major;
1006        ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
1007        ace->gd->fops = &ace_fops;
1008        ace->gd->queue = ace->queue;
1009        ace->gd->private_data = ace;
1010        snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
1011
1012        /* set bus width */
1013        if (ace->bus_width == ACE_BUS_WIDTH_16) {
1014                /* 0x0101 should work regardless of endianess */
1015                ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1016
1017                /* read it back to determine endianess */
1018                if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1019                        ace->reg_ops = &ace_reg_le16_ops;
1020                else
1021                        ace->reg_ops = &ace_reg_be16_ops;
1022        } else {
1023                ace_out_8(ace, ACE_BUSMODE, 0x00);
1024                ace->reg_ops = &ace_reg_8_ops;
1025        }
1026
1027        /* Make sure version register is sane */
1028        version = ace_in(ace, ACE_VERSION);
1029        if ((version == 0) || (version == 0xFFFF))
1030                goto err_read;
1031
1032        /* Put sysace in a sane state by clearing most control reg bits */
1033        ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1034                ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1035
1036        /* Now we can hook up the irq handler */
1037        if (ace->irq) {
1038                rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1039                if (rc) {
1040                        /* Failure - fall back to polled mode */
1041                        dev_err(ace->dev, "request_irq failed\n");
1042                        ace->irq = 0;
1043                }
1044        }
1045
1046        /* Enable interrupts */
1047        val = ace_in(ace, ACE_CTRL);
1048        val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1049        ace_out(ace, ACE_CTRL, val);
1050
1051        /* Print the identification */
1052        dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1053                 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1054        dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1055                (unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1056
1057        ace->media_change = 1;
1058        ace_revalidate_disk(ace->gd);
1059
1060        /* Make the sysace device 'live' */
1061        add_disk(ace->gd);
1062
1063        return 0;
1064
1065err_read:
1066        put_disk(ace->gd);
1067err_alloc_disk:
1068        blk_cleanup_queue(ace->queue);
1069err_blk_initq:
1070        iounmap(ace->baseaddr);
1071err_ioremap:
1072        dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1073                 (unsigned long long) ace->physaddr);
1074        return -ENOMEM;
1075}
1076
1077static void ace_teardown(struct ace_device *ace)
1078{
1079        if (ace->gd) {
1080                del_gendisk(ace->gd);
1081                put_disk(ace->gd);
1082        }
1083
1084        if (ace->queue)
1085                blk_cleanup_queue(ace->queue);
1086
1087        tasklet_kill(&ace->fsm_tasklet);
1088
1089        if (ace->irq)
1090                free_irq(ace->irq, ace);
1091
1092        iounmap(ace->baseaddr);
1093}
1094
1095static int ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1096                     int irq, int bus_width)
1097{
1098        struct ace_device *ace;
1099        int rc;
1100        dev_dbg(dev, "ace_alloc(%p)\n", dev);
1101
1102        if (!physaddr) {
1103                rc = -ENODEV;
1104                goto err_noreg;
1105        }
1106
1107        /* Allocate and initialize the ace device structure */
1108        ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1109        if (!ace) {
1110                rc = -ENOMEM;
1111                goto err_alloc;
1112        }
1113
1114        ace->dev = dev;
1115        ace->id = id;
1116        ace->physaddr = physaddr;
1117        ace->irq = irq;
1118        ace->bus_width = bus_width;
1119
1120        /* Call the setup code */
1121        rc = ace_setup(ace);
1122        if (rc)
1123                goto err_setup;
1124
1125        dev_set_drvdata(dev, ace);
1126        return 0;
1127
1128err_setup:
1129        dev_set_drvdata(dev, NULL);
1130        kfree(ace);
1131err_alloc:
1132err_noreg:
1133        dev_err(dev, "could not initialize device, err=%i\n", rc);
1134        return rc;
1135}
1136
1137static void ace_free(struct device *dev)
1138{
1139        struct ace_device *ace = dev_get_drvdata(dev);
1140        dev_dbg(dev, "ace_free(%p)\n", dev);
1141
1142        if (ace) {
1143                ace_teardown(ace);
1144                dev_set_drvdata(dev, NULL);
1145                kfree(ace);
1146        }
1147}
1148
1149/* ---------------------------------------------------------------------
1150 * Platform Bus Support
1151 */
1152
1153static int ace_probe(struct platform_device *dev)
1154{
1155        resource_size_t physaddr = 0;
1156        int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1157        u32 id = dev->id;
1158        int irq = 0;
1159        int i;
1160
1161        dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1162
1163        /* device id and bus width */
1164        if (of_property_read_u32(dev->dev.of_node, "port-number", &id))
1165                id = 0;
1166        if (of_find_property(dev->dev.of_node, "8-bit", NULL))
1167                bus_width = ACE_BUS_WIDTH_8;
1168
1169        for (i = 0; i < dev->num_resources; i++) {
1170                if (dev->resource[i].flags & IORESOURCE_MEM)
1171                        physaddr = dev->resource[i].start;
1172                if (dev->resource[i].flags & IORESOURCE_IRQ)
1173                        irq = dev->resource[i].start;
1174        }
1175
1176        /* Call the bus-independent setup code */
1177        return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1178}
1179
1180/*
1181 * Platform bus remove() method
1182 */
1183static int ace_remove(struct platform_device *dev)
1184{
1185        ace_free(&dev->dev);
1186        return 0;
1187}
1188
1189#if defined(CONFIG_OF)
1190/* Match table for of_platform binding */
1191static const struct of_device_id ace_of_match[] = {
1192        { .compatible = "xlnx,opb-sysace-1.00.b", },
1193        { .compatible = "xlnx,opb-sysace-1.00.c", },
1194        { .compatible = "xlnx,xps-sysace-1.00.a", },
1195        { .compatible = "xlnx,sysace", },
1196        {},
1197};
1198MODULE_DEVICE_TABLE(of, ace_of_match);
1199#else /* CONFIG_OF */
1200#define ace_of_match NULL
1201#endif /* CONFIG_OF */
1202
1203static struct platform_driver ace_platform_driver = {
1204        .probe = ace_probe,
1205        .remove = ace_remove,
1206        .driver = {
1207                .name = "xsysace",
1208                .of_match_table = ace_of_match,
1209        },
1210};
1211
1212/* ---------------------------------------------------------------------
1213 * Module init/exit routines
1214 */
1215static int __init ace_init(void)
1216{
1217        int rc;
1218
1219        ace_major = register_blkdev(ace_major, "xsysace");
1220        if (ace_major <= 0) {
1221                rc = -ENOMEM;
1222                goto err_blk;
1223        }
1224
1225        rc = platform_driver_register(&ace_platform_driver);
1226        if (rc)
1227                goto err_plat;
1228
1229        pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1230        return 0;
1231
1232err_plat:
1233        unregister_blkdev(ace_major, "xsysace");
1234err_blk:
1235        printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1236        return rc;
1237}
1238module_init(ace_init);
1239
1240static void __exit ace_exit(void)
1241{
1242        pr_debug("Unregistering Xilinx SystemACE driver\n");
1243        platform_driver_unregister(&ace_platform_driver);
1244        unregister_blkdev(ace_major, "xsysace");
1245}
1246module_exit(ace_exit);
1247