linux/drivers/clocksource/arm_global_timer.c
<<
>>
Prefs
   1/*
   2 * drivers/clocksource/arm_global_timer.c
   3 *
   4 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
   5 * Author: Stuart Menefy <stuart.menefy@st.com>
   6 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/clocksource.h>
  16#include <linux/clockchips.h>
  17#include <linux/cpu.h>
  18#include <linux/clk.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/io.h>
  22#include <linux/of.h>
  23#include <linux/of_irq.h>
  24#include <linux/of_address.h>
  25#include <linux/sched_clock.h>
  26
  27#include <asm/cputype.h>
  28
  29#define GT_COUNTER0     0x00
  30#define GT_COUNTER1     0x04
  31
  32#define GT_CONTROL      0x08
  33#define GT_CONTROL_TIMER_ENABLE         BIT(0)  /* this bit is NOT banked */
  34#define GT_CONTROL_COMP_ENABLE          BIT(1)  /* banked */
  35#define GT_CONTROL_IRQ_ENABLE           BIT(2)  /* banked */
  36#define GT_CONTROL_AUTO_INC             BIT(3)  /* banked */
  37
  38#define GT_INT_STATUS   0x0c
  39#define GT_INT_STATUS_EVENT_FLAG        BIT(0)
  40
  41#define GT_COMP0        0x10
  42#define GT_COMP1        0x14
  43#define GT_AUTO_INC     0x18
  44
  45/*
  46 * We are expecting to be clocked by the ARM peripheral clock.
  47 *
  48 * Note: it is assumed we are using a prescaler value of zero, so this is
  49 * the units for all operations.
  50 */
  51static void __iomem *gt_base;
  52static unsigned long gt_clk_rate;
  53static int gt_ppi;
  54static struct clock_event_device __percpu *gt_evt;
  55
  56/*
  57 * To get the value from the Global Timer Counter register proceed as follows:
  58 * 1. Read the upper 32-bit timer counter register
  59 * 2. Read the lower 32-bit timer counter register
  60 * 3. Read the upper 32-bit timer counter register again. If the value is
  61 *  different to the 32-bit upper value read previously, go back to step 2.
  62 *  Otherwise the 64-bit timer counter value is correct.
  63 */
  64static u64 notrace _gt_counter_read(void)
  65{
  66        u64 counter;
  67        u32 lower;
  68        u32 upper, old_upper;
  69
  70        upper = readl_relaxed(gt_base + GT_COUNTER1);
  71        do {
  72                old_upper = upper;
  73                lower = readl_relaxed(gt_base + GT_COUNTER0);
  74                upper = readl_relaxed(gt_base + GT_COUNTER1);
  75        } while (upper != old_upper);
  76
  77        counter = upper;
  78        counter <<= 32;
  79        counter |= lower;
  80        return counter;
  81}
  82
  83static u64 gt_counter_read(void)
  84{
  85        return _gt_counter_read();
  86}
  87
  88/**
  89 * To ensure that updates to comparator value register do not set the
  90 * Interrupt Status Register proceed as follows:
  91 * 1. Clear the Comp Enable bit in the Timer Control Register.
  92 * 2. Write the lower 32-bit Comparator Value Register.
  93 * 3. Write the upper 32-bit Comparator Value Register.
  94 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
  95 */
  96static void gt_compare_set(unsigned long delta, int periodic)
  97{
  98        u64 counter = gt_counter_read();
  99        unsigned long ctrl;
 100
 101        counter += delta;
 102        ctrl = GT_CONTROL_TIMER_ENABLE;
 103        writel_relaxed(ctrl, gt_base + GT_CONTROL);
 104        writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
 105        writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
 106
 107        if (periodic) {
 108                writel_relaxed(delta, gt_base + GT_AUTO_INC);
 109                ctrl |= GT_CONTROL_AUTO_INC;
 110        }
 111
 112        ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
 113        writel_relaxed(ctrl, gt_base + GT_CONTROL);
 114}
 115
 116static int gt_clockevent_shutdown(struct clock_event_device *evt)
 117{
 118        unsigned long ctrl;
 119
 120        ctrl = readl(gt_base + GT_CONTROL);
 121        ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
 122                  GT_CONTROL_AUTO_INC);
 123        writel(ctrl, gt_base + GT_CONTROL);
 124        return 0;
 125}
 126
 127static int gt_clockevent_set_periodic(struct clock_event_device *evt)
 128{
 129        gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
 130        return 0;
 131}
 132
 133static int gt_clockevent_set_next_event(unsigned long evt,
 134                                        struct clock_event_device *unused)
 135{
 136        gt_compare_set(evt, 0);
 137        return 0;
 138}
 139
 140static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
 141{
 142        struct clock_event_device *evt = dev_id;
 143
 144        if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
 145                                GT_INT_STATUS_EVENT_FLAG))
 146                return IRQ_NONE;
 147
 148        /**
 149         * ERRATA 740657( Global Timer can send 2 interrupts for
 150         * the same event in single-shot mode)
 151         * Workaround:
 152         *      Either disable single-shot mode.
 153         *      Or
 154         *      Modify the Interrupt Handler to avoid the
 155         *      offending sequence. This is achieved by clearing
 156         *      the Global Timer flag _after_ having incremented
 157         *      the Comparator register value to a higher value.
 158         */
 159        if (clockevent_state_oneshot(evt))
 160                gt_compare_set(ULONG_MAX, 0);
 161
 162        writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
 163        evt->event_handler(evt);
 164
 165        return IRQ_HANDLED;
 166}
 167
 168static int gt_starting_cpu(unsigned int cpu)
 169{
 170        struct clock_event_device *clk = this_cpu_ptr(gt_evt);
 171
 172        clk->name = "arm_global_timer";
 173        clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
 174                CLOCK_EVT_FEAT_PERCPU;
 175        clk->set_state_shutdown = gt_clockevent_shutdown;
 176        clk->set_state_periodic = gt_clockevent_set_periodic;
 177        clk->set_state_oneshot = gt_clockevent_shutdown;
 178        clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
 179        clk->set_next_event = gt_clockevent_set_next_event;
 180        clk->cpumask = cpumask_of(cpu);
 181        clk->rating = 300;
 182        clk->irq = gt_ppi;
 183        clockevents_config_and_register(clk, gt_clk_rate,
 184                                        1, 0xffffffff);
 185        enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
 186        return 0;
 187}
 188
 189static int gt_dying_cpu(unsigned int cpu)
 190{
 191        struct clock_event_device *clk = this_cpu_ptr(gt_evt);
 192
 193        gt_clockevent_shutdown(clk);
 194        disable_percpu_irq(clk->irq);
 195        return 0;
 196}
 197
 198static u64 gt_clocksource_read(struct clocksource *cs)
 199{
 200        return gt_counter_read();
 201}
 202
 203static void gt_resume(struct clocksource *cs)
 204{
 205        unsigned long ctrl;
 206
 207        ctrl = readl(gt_base + GT_CONTROL);
 208        if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
 209                /* re-enable timer on resume */
 210                writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
 211}
 212
 213static struct clocksource gt_clocksource = {
 214        .name   = "arm_global_timer",
 215        .rating = 300,
 216        .read   = gt_clocksource_read,
 217        .mask   = CLOCKSOURCE_MASK(64),
 218        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 219        .resume = gt_resume,
 220};
 221
 222#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
 223static u64 notrace gt_sched_clock_read(void)
 224{
 225        return _gt_counter_read();
 226}
 227#endif
 228
 229static unsigned long gt_read_long(void)
 230{
 231        return readl_relaxed(gt_base + GT_COUNTER0);
 232}
 233
 234static struct delay_timer gt_delay_timer = {
 235        .read_current_timer = gt_read_long,
 236};
 237
 238static void __init gt_delay_timer_init(void)
 239{
 240        gt_delay_timer.freq = gt_clk_rate;
 241        register_current_timer_delay(&gt_delay_timer);
 242}
 243
 244static int __init gt_clocksource_init(void)
 245{
 246        writel(0, gt_base + GT_CONTROL);
 247        writel(0, gt_base + GT_COUNTER0);
 248        writel(0, gt_base + GT_COUNTER1);
 249        /* enables timer on all the cores */
 250        writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
 251
 252#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
 253        sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
 254#endif
 255        return clocksource_register_hz(&gt_clocksource, gt_clk_rate);
 256}
 257
 258static int __init global_timer_of_register(struct device_node *np)
 259{
 260        struct clk *gt_clk;
 261        int err = 0;
 262
 263        /*
 264         * In A9 r2p0 the comparators for each processor with the global timer
 265         * fire when the timer value is greater than or equal to. In previous
 266         * revisions the comparators fired when the timer value was equal to.
 267         */
 268        if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
 269            && (read_cpuid_id() & 0xf0000f) < 0x200000) {
 270                pr_warn("global-timer: non support for this cpu version.\n");
 271                return -ENOSYS;
 272        }
 273
 274        gt_ppi = irq_of_parse_and_map(np, 0);
 275        if (!gt_ppi) {
 276                pr_warn("global-timer: unable to parse irq\n");
 277                return -EINVAL;
 278        }
 279
 280        gt_base = of_iomap(np, 0);
 281        if (!gt_base) {
 282                pr_warn("global-timer: invalid base address\n");
 283                return -ENXIO;
 284        }
 285
 286        gt_clk = of_clk_get(np, 0);
 287        if (!IS_ERR(gt_clk)) {
 288                err = clk_prepare_enable(gt_clk);
 289                if (err)
 290                        goto out_unmap;
 291        } else {
 292                pr_warn("global-timer: clk not found\n");
 293                err = -EINVAL;
 294                goto out_unmap;
 295        }
 296
 297        gt_clk_rate = clk_get_rate(gt_clk);
 298        gt_evt = alloc_percpu(struct clock_event_device);
 299        if (!gt_evt) {
 300                pr_warn("global-timer: can't allocate memory\n");
 301                err = -ENOMEM;
 302                goto out_clk;
 303        }
 304
 305        err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
 306                                 "gt", gt_evt);
 307        if (err) {
 308                pr_warn("global-timer: can't register interrupt %d (%d)\n",
 309                        gt_ppi, err);
 310                goto out_free;
 311        }
 312
 313        /* Register and immediately configure the timer on the boot CPU */
 314        err = gt_clocksource_init();
 315        if (err)
 316                goto out_irq;
 317        
 318        err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
 319                                "clockevents/arm/global_timer:starting",
 320                                gt_starting_cpu, gt_dying_cpu);
 321        if (err)
 322                goto out_irq;
 323
 324        gt_delay_timer_init();
 325
 326        return 0;
 327
 328out_irq:
 329        free_percpu_irq(gt_ppi, gt_evt);
 330out_free:
 331        free_percpu(gt_evt);
 332out_clk:
 333        clk_disable_unprepare(gt_clk);
 334out_unmap:
 335        iounmap(gt_base);
 336        WARN(err, "ARM Global timer register failed (%d)\n", err);
 337
 338        return err;
 339}
 340
 341/* Only tested on r2p2 and r3p0  */
 342TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
 343                        global_timer_of_register);
 344